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Abstract

Policies that promote conversion of antibiotics from intravenous to oral route administration are considered “low hanging fruit” for hospital
antimicrobial stewardship programs. We developed a simple metric based on digestive days of therapy divided by total days of therapy for
targeted agents and a method for hospital comparisons. External comparisons may help identify opportunities for improving prospective
implementation.
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Policies that promote conversion of antibiotics from intravenous to
oral route administration are considered (ie, intravenous [IV] to
oral [PO] conversion protocols) are considered a simple, straight-
forward policy-level intervention for hospital antimicrobial stew-
ardship programs (ASPs), sometimes referred to as “low-hanging
fruit.”1–3 Such policies target patients receiving agents with high
oral bioavailability. These protocols typically require pharmacists
to use simple eligibility criteria to contact prescribing clinicians to
recommend oral conversion or may allow automatic therapeutic
interchange. Potential benefits of IV-to-PO conversion protocols
include reductions in pharmacy and hospitalization costs, reduced
use of intravenous lines and lowered risk of line-related complica-
tions, improved patient comfort, and reduced effort from nurses.
These benefits accrued while maintaining treatment efficacy.4–6

Althoughmany hospitals have IV-to-PO protocols in place, few
studies have assessed whether their institution is capitalizing on
opportunities for IV-to-PO conversions.7 Additionally, some hos-
pitals struggle to consistently perform IV-to-PO conversions due
to competing priorities. We developed a simple calculation of
digestive days of therapy (dDOT) divided by total days of therapy
(tDOT) to assess how implementation of IV-to-PO conversion

policies varied across hospitals, units, and targeted agents. We also
developed reports with comparisons to other network hospitals to
help assess and refine protocol implementation.

Methods

Weperformed a retrospective analysis of existing antimicrobial use
data. Electronic medication administration record (eMAR) data
from adult and pediatric admissions were extracted from the
Duke Antimicrobial Stewardship Outreach Network (DASON)
central database from July 2018 through June 2019 for 16 commu-
nity hospitals.8 Analyses included inpatient units but excluded out-
patient areas, emergency departments, and procedural units as well
as inhaled or topical routes. We defined targeted agents as highly
bioavailable antimicrobials typically included in IV-to-PO conver-
sion policies (Table 1).We calculated dDOT as the number of DOT
administered via an oral, tube, or per rectum route consistent with
National Healthcare Safety Network (NHSN) methods.9 We
defined tDOT as the number of DOT administered via an intra-
venous or a digestive route. The dDOT/tDOT process metric
was the dDOT divided by the tDOT, calculated for each encounter
that used a targeted agent. Mean dDOT/tDOT for all targeted
agents together and each agent separately were graphed to show
the distribution among hospitals and rank, with highest dDOT/
tDOT considered rank first. To demonstrate the value of network
comparisons, we have provided an example hospital-specific
report (Supplementary Material online).
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Table 1. Observed Digestive Days of Therapy Divided by Total Days of Therapy (dDOT/tDOT) Estimates and Characteristics of Encounters with Targeted Agents among
16 Hospitals

Variable No. (%) of Courses
dDOT,
No.

tDOT,
No.

dDOT/tDOT Per Encounter,
Mean (SD)

All agents 50,344 (100) 55,868 156,233 0.36 (0.45)

Azithromycin 12,599 (25) 13,748 35,250 0.38 (0.45)

Ciprofloxacin 6,323 (13) 6,749 18,800 0.38 (0.46)

Doxycycline 6,266 (13) 14,065 21,704 0.66 (0.45)

Linezolid 1,632 (3) 2,537 6,921 0.40 (0.47)

Metronidazole 9,234 (18) 6,840 33,970 0.20 (0.36)

Respiratory fluoroquinolonea 14,180 (28) 11,415 38,860 0.29 (0.42)

Voriconazoleb 110 (<1) 514 728 0.66 (0.43)

Age

<18 y 253 (<1) 275 659 0.40 (0.47)

18–39 y 4,468 (9) 3,836 12,485 0.32 (0.44)

40–65 y 18,359 (37) 19,937 57,519 0.35 (0.44)

>65 y 26,192 (53) 30,636 82,248 0.37 (0.45)

Sex

Female 28,611 (57) 31,044 87,896 0.35 (0.45)

Male 21,733 (43) 24,824 68,337 0.36 (0.45)

Race/Ethnicity

White 32,149 (66) 36,395 99,832 0.36 (0.45)

Black 13,722 (28) 15,189 43,129 0.36 (0.45)

Hispanic 217 (<1) 278 570 0.51 (0.47)

Asian 287 (<1) 266 880 0.32 (0.43)

Native American 1,312 (3) 1,267 3,745 0.33 (0.45)

Other 677 (1) 628 2,091 0.28 (0.42)

Unknown 1,980

Elixhauser comorbidity score

0 5,744 (12) 4,462 12,192 0.38 (0.47)

1–2 11,310 (23) 11,975 32,415 0.37 (0.46)

3–4 15,926 (32) 18,464 49,175 0.37 (0.45)

5–6 11,125 (22) 13,589 38,252 0.35 (0.45)

>7 5,966 (12) 7,104 23,314 0.29 (0.42)

Length of stay

≤2 d 3,647 (7) 1987 5092 0.38 (0.48)

3–7 d 32,098 (64) 30,614 85,165 0.36 (0.45)

>7 d 14,536 (29) 23,187 65,407 0.35 (0.44)

Unit type on day 1 of therapy

Orthopedic ward 123 (<1) 267 316 0.83 (0.35)

Telemetry ward 5,023 (10) 7,465 15,462 0.48 (0.48)

Hematology/Oncology ward 1,213 (2) 1,863 3,979 0.46 (0.47)

Surgical cardiothoracic critical care 40 (<1) 50 98 0.42 (0.48)

Gynecology ward 33 (<1) 29 79 0.40 (0.47)

Medical/Surgical ward 12,730 (26) 14,469 37,590 0.38 (0.46)

Pediatric medical/Surgical ward 300 (<1) 336 839 0.39 (0.46)

Surgical ward 6,961 (14) 7,282 20,817 0.36 (0.46)

Medical ward 14,018 (28) 14,768 41,586 0.36 (0.45)
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We used negative-binomial regression models to produce an
estimated dDOT/tDOT for each hospital and antimicrobial agent.
Models included the following covariates: hospital size, length of
stay, age, unit type, Elixhauser comorbidity score,10 and month.
The all agents model also included adjustment for agent. Due to
our sample size of 16 hospitals, network estimates were subject
to outlier effects.We excluded the target hospital’s data whenmod-
eling expected dDOT/tDOT for that hospital to address this
limitation. For example, in the model designed to evaluate “hospi-
tal X,” data from hospital X were excluded from data sets, then
model parameters were produced based on other hospitals’ data.
Next, covariates from hospital X were used to calculate an esti-
mated dDOT/tDOT outcome from the model. To create a margin
of error range for hospital-specific estimates, we calculated the
median absolute difference of other hospitals’ observed rates from
hospital X’s estimated rate and added and subtracted to create
upper and lower bounds. Hospital-specific reports included graphs
of dDOT/tDOT bymonth and tables describing rates among units.
Unit was defined on day 1 of the course of a targeted agent. Reports
also provided the observed mean among units of the same NHSN
type within the network (Supplementary Material online). This
quality-improvement activity was reviewed by the Duke
University Institutional Review Board and was deemed exempt.
Analyses were performed using SAS version 9.4 software (SAS
Institute, Cary, NC).

Results

In total, 50,344 courses of a targeted agent were prescribed during
40,682 hospital encounters, totaling 156,233 annual DOT among
16 hospitals. The dDOT totaled 55,868, with mean dDOT/tDOT of
0.36 per course. The DOT were frequently either all digestive
(ie, dDOT/tDOT= 1) or fully intravenous (ie, dDOT/
tDOT= 0); thus, standard deviations were wide. Patterns of vari-
ability emerged when data were aggregated on the hospital and
agent level (Fig. 1). The highest dDOT/tDOT values were observed
for doxycycline and voriconazole and the lowest formetronidazole.
Hospital-level variation was wide for most agents, except metroni-
dazole. Encounter characteristics associated with variation in
dDOT/tDOT included length of stay, comorbidity score, and unit
type (Table 1). Intensive care units had lowest dDOT/tDOT.
Hospital-specific estimates based on negative-binomial modeling
and network margins of error, provided a range from which

individual hospitals could compare their observed estimates of
dDOT/tDOT (Supplementary Material online).

Discussion

We used a simple, dDOT/tDOT process metric for hospital- and
network-comparisons to provide insight on opportunities to pro-
mote IV-to-PO conversions. We observed wide variation in
dDOT/tDOT among hospitals, at least some of which was due
to factors such as targeted agent, type of unit, and comorbidity
score. We developed a method to compare observed estimates
and adjusted estimates with a margin of error to assist in tracking
prospective implementation of IV-to-PO conversion policies.

Hospital IV-to-PO conversion policies have been used for dec-
ades as a practical, pharmacy-led intervention to recoup costs and
improve care. However, the wide variation detected in this study
suggests that implementation of such policies may be inconsistent.
Further, IV-to-PO conversion criteria vary among hospitals.
Policies with more restrictive criteria provide less opportunities
to perform conversions, and comparative data may reveal a need
to update hospital policy. Review of local antimicrobial use data
can identify opportunities for improvement and helpmotivate staff
to incrementally improve. However, analytic methods to provide
such feedback for IV-to-PO conversion policies have not been
widely shared, despite suggestions that such processes should be
tracked.3

Prior investigators have employed process metrics for identi-
fying opportunities for IV-to-PO conversion policies4,5 but few
have provided hospital-level comparisons.2 In practice, IV-to-
PO conversions are on a lengthening list of priorities for clinical
pharmacists to navigate on a daily basis. When balancing
priorities, external comparisons may help bring this need to
the attention of pharmacy departments and ASPs. A similar,
unit-level metric of dDOT/tDOT could be calculated using aggre-
gate data available through the NHSN antibiotic use option,
potentially with external comparisons, for hospitals in the
United States to track progress.

This study had several limitations. The study population
included 16 hospitals in the southeastern United States that par-
ticipate in a stewardship network, which affects generalizability.8

Furthermore, we used patient-encounter level data to calculate
the process metric and evaluate encounter-specific factors for
use inmodeling adjustments. Some hospitals or systemsmay only
have unit-level DOT estimates readily available. Route, however,

Table 1. (Continued )

Variable No. (%) of Courses
dDOT,
No.

tDOT,
No.

dDOT/tDOT Per Encounter,
Mean (SD)

Adult step-down unit 2,975 (6) 3,405 9,685 0.35 (0.44)

Mixed acuity 813 (2) 779 2,511 0.31 (0.43)

Medical/Surgical critical care 6,115 (12) 5,155 23,271 0.19 (0.36)

Hospital size in thousand annual patient days

<30 d 7,664 (15) 8,698 23,514 0.37 (0.45)

30–70 d 28,099 (56) 32,939 87,906 0.37 (0.46)

>70 d 14,581 (29) 14231 44,813 0.32 (0.44)

aRespiratory fluoroquinolone includes both levofloxacin and moxifloxacin.
bVoriconazole used at 14 of 16 hospitals.
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is a standardized element in external reporting to the NHSN;
unit- or hospital-level estimates could provide useful information
even without adjustments for other factors. Our definition for
unit may have led to misclassification of digestive DOT to the
ICU rather than where the patient subsequently transferred.
Thus, interpretation of the ICU-level estimates should be inclu-
sive of practice for both ICUs and transfers. We used adjustment
factors readily available in our limited data set; other potential
covariates of case mix could improve comparisons. Finally, this
was a noninterventional descriptive analysis. Next steps could
include assessing whether data feedback encourages local
improvement efforts.

In conclusion, dDOT/tDOT is a simple metric that can be
used to evaluate implementation of IV-to-PO conversion policies.
We observed wide variation by hospital and developed a method
by which comparisons could help identify improvement
opportunities.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2022.158
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