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Obesity-related metabolic conditions such as insulin resistance (IR), type 2 diabetes and
CVD share a number of pathological features, one of which is metabolic-inflammation.
Metabolic-inflammation results from the infiltration of immune cells into the adipose tissue,
driving a pro-inflammatory environment, which can induce IR. Furthermore, resolution of
inflammation, an active process wherein the immune system counteracts pro-inflammatory
states, may be dysregulated in obesity. Anti-inflammatory nutritional interventions have fo-
cused on attenuating this pro-inflammatory environment. Furthermore, with inherent vari-
ability among individuals, establishing at-risk populations who respond favourably to
nutritional intervention strategies is important. This review will focus on chronic low-
grade metabolic-inflammation, resolution of inflammation and the putative role anti-inflam-
matory nutrients have as a potential therapy. Finally, in the context of personalised nutri-
tion, the approaches used in defining individuals who respond favourably to nutritional
interventions will be highlighted. With increasing prevalence of obesity in younger people,
age-dependent biological processes, preventative strategies and therapeutic options are im-
portant to help protect against development of obesity-associated co-morbidities.

Obesity: Metabolic health: Anti-inflammatory nutrients

The underlying aetiology of obesity-related co- CVD and IR™. The long-term health consequences of

morbidities are multifaceted. Systemic and local inflam-
mation, along with dysregulated fatty acid metabolism
and mitochondrial dysfunction are pathological features
of a number of metabolic conditions including insulin
resistance (IR), type 2 diabetes (T2D) and CVD!?.
Childhood and adolescent obesity are associated with
an adverse metabolic phenotype™. In the short term,
some obese children experience respiratory problems
and hypertension, as well as displaying markers of

childhood obesity include increased risk of T2D, stroke
and CHD, as well as increased risk of some cancers in
later life®®. Biomarkers of inflammation such as circu-
lating C-reactive protein (CRP) and IL-6, along with
decreased levels of adiponectin, are potential predictors
of future adverse outcomes such as CVD and T2D in
overweight and obese children”’. However, despite the
present childhood obesity epidemic few studies have
examined anti-inflammatory nutritional interventions in
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a paediatric population. Ideally, reducing BMI would be
the favourable strategy to attenuate T2D risk. Yet,
weight management is difficult to achieve in this age
group®™. Further research into nutritional approaches
to reduce risk in the absence of weight loss is needed.
Furthermore, understanding the putative pathophysi-
ology and establishing novel effective treatments have be-
come of utmost importance.

Obesity and dysregulated insulin signalling

Obesity-induced IR is a key risk factor for T2D®. The
primary role of insulin in its target tissues is to facilitate
glucose disposal, as well as inhibiting hepatic glucose
production %!V IR is defined as the inadequate response
by insulin target tissues such as adipose tissue (AT), skel-
etal muscle and liver to the physiological effects of insu-
1in"?. The main characteristics associated with IR are:
(1) decreased insulin-stimulated glucose-uptake into skel-
etal muscle and AT; (2) impaired insulin-mediated inhib-
ition of hepatic glucose production and (3) reduced
ability of insulin to inhibit lipolysis in ATU*!9,
Additionally, as a result of IR, there is a compensatory
increase in insulin leading to enhanced lipogenesis in
the liver. Hyperinsulinaemia is known to decrease the ex-
pression of insulin receptor substrate (IRS)-1 and IRS-2
in liver and AT by inducing the degradation of IRS-1
protein and inhibition of IRS-2 at a transcriptional
level "9 Insulin signalling is negatively re%ulated via
phosphorylation of serine residues on IRS""'? imped-
ing tyrosine-induced phosphorylation of IRS-1 by the in-
sulin receptor blocking downstream propagation of
signalling"”. Several kinases such as mammalian target
of rapamycin, protein kinase C-6, inflammatory kinases
IxB kinase (IKK) and c-Jun N-terminal kinase (JNK)
have been shown to phosphorylate serine residues on
IRS-1"%19 " These inflammatory components impede
insulin signalling leading to the development of IR, pro-
viding a potential link between obesity-induced inflam-
mation and dysregulation of insulin signalling'?,

The role of metabolic-inflammation in
obesity-induced insulin resistance

The association between obesity, IR and subsequently
T2D and CVD may be partially attributable to the pres-
ence of low-grade chronic inflammation also known as
metabolic-inflammation. Metabolic-inflammation s
orchestrated by prolonged nutritional and metabolic
cues and manifests at tissue level®”. This is in contrast
to classic inflammation in response to an acute trigger
such as infection or tissue damage, which is typically
assessed in response to lipopolysaccharide (LPS).
Classic inflammation is wusually rapidly resolved,
whereas metabolic-inflammation can persist long-term.
Furthermore, metabolic-inflammation is characterised
by an influx of inflammatory cells to metabolic tissues
and the release of pro-inflammatory cytokines locally
and systemically, leading to a sub-acute, chronic
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inflammatory state that is characteristic of metabolic-
inflammation.

To date a number of inflammatory features have been
identified in the obese state including AT inflammation,
immune cell infiltration and dysregulated resolution of
inflammation® >, While these features have primarily
been observed in adults, as the inflammatory phenotype
is more pronounced, the presence of these features in
childhood and adolescent obesity remains to be fully
established®®. Interestingly, Sbarbati er al. noted the
presence of ‘inflammatory lesions’ consisting of frag-
ments of adipocytes with the presence of macrophages
in perivascular positions in the AT of obese children“>.
Importantly, these lesions were absent in non-obese chil-
dren®. Furthermore, obese children as young as age 6
years demonstrate increased circulating TNF-a and sol-
uble CD163 with reduced adiponectin and innate im-
mune cell frequency compared with their lean
counterparts(26).

Adipose tissue inflammation

AT plays an essential role in energy homeostasis with the
potential of having detrimental effects if adipose capacity
is exceeded®”. During normal homeostasis adipocytes
secrete an array of proteins termed adipokines which
play an important role in glucose and lipid metabol-
. (28.,29) . . .

ism . However, the progressive expansion of adipo-
cytes as a result of obesity leads to the secretion of
cytokines and chemokines of a pro-inflammatory na-
ture®”. Increased levels of TNF-a, IL-6 and monocyte
chemoattractant protein-1 are secreted from inflamed
AT found in obese mice and man when compared with
AT from healthy subjects®. Intercellular adhesion
molecule-1 also aids immune cell recruitment, which fur-
ther exacerbates the pro-inflammatory environment®*-*?,

Immune cell infiltration

Accompanying the expansion of adipocytes is the
infiltration of immune cells such as T-cells and macro-
phages'%*®. T-cells play an important role in metabol-
ic-inflammation by preceding and potentially modifying
AT macrophage number and activation state®,
Secretion of interferon-y by T helper-1 cells aids in the re-
cruitment of macrophages into the AT, which surround
dying or dead adipocytes, forming crown-like structures.
The release of pro-inflammatory cytokines from these
newly recruited AT macrophage, also known as Ml
macrophages, propagates further immune cell infiltration
and exacerbates AT inflammation'”. With the onset of
obesity M1 AT macrophages accumulate, overwhelming
the protective effects of anti-inflammatory M2 macro-
phages, altering the inflammatory balance to favour
increased levels of pro-inflammatory cytokines®®.
Production of these pro-inflammatory cytokines acti-
vates key signalling pathways and regulators of inflam-
mation!”. TNF-a activates a number of serine kinases
such as JNK and inhibitor of kB kinase gIKKB), leading
to serine phosphorylation of IRS-11%3%_ Additionally,
TNF-a and IL-6 increase secretion of a family of proteins
termed suppressor of cytokine signalling which binds to
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insulin receptors impairing insulin signalling®®*”. In an
animal model of diet-induced obesity SFA prime
pro-IL-18%®. Pro-IL-1 is then cleaved by activation of
the NLRP3 inflammasome, a protein complex, leading
to the cleavage and activation of caspase-1, which in
turn cleaves pro-IL-1p into its mature form“**?. IL-1p
in turn impedes de novo adipogenesis and induces adipo-
cyte IR by inducing serine phosphorylation of IRS-1“".

Dysregulated resolution of inflammation

The metabolic-inflammatory state develops gradually and
remains unresolved over time*?. Attenuated resolution of
metabolic-inflammation has been implicated in the devel-
opment of obesity-associated co-morbidities***?. The
classic inflammatory response mechanism protects the
host from infection and other insults, while restoring
homeostasis at infected or damaged sites*?. Response to
triggers such as microbial products and tissue damage ac-
tivate several inflammatory pathways including toll-like
receptor STLR) and nod-like receptor (NLR) signalling
pathways®?. Acute activation of these inflammatory pro-
cesses causes a catabolic state of inflammation with
increased energy expenditure, along with IR and immune
cell infiltration to the site of infection®”. Furthermore, the
classic characteristics of inflammation namely redness,
pain, swelling and heat are displayed once a response
to the invading pathogen or injury is mounted®®.
Importantly, once the trigger is eliminated or under
control, mechanisms come into play to terminate inflamma-
tion, limiting further damage®>). This self-regulating process
known as resolution of inflammation is a negative feedback
mechanism involving secretion of anti-inflammatory cyto-
kines and inhibition of pro-inflammatory signalling
pathways*>49),

Resolution of inflammation is an active process which
requires the activation of a number of endogenous pro-
grammes that enables the host tissue to maintain homeo-
stasis®>. The process of resolution is programmed at the
initial phase of the inflammatory response via the
cyclooxy%enase and lipoxygenase signalling path-
ways“*+*")_Biosynthesis of pro-inflammatory eicosanoids
prostaglandins and leukotrienes which are derived from
the fatty acid arachidonic acid aid, inflammation by
modifying vascular permeability, blood flow and vascu-
lar dilation needed for the recruitment of inflammatory
@9 Furthermore, prostaglandins and leukotrienes
actively switch on the transcription of enzymes required
for the generation of other classes of eicosanoids™®.
Lipoxins which are anti-inflammatory, pro-resolving
and anti-fibrotic are produced endogenously at sites of
inflammation as counter-regulating lipid mediators“?.
Lipoxins play an important role in a number of experi-
mental models of metabolic disease such as CVD and
T2D®*) Lipid mediators generated from long chain
n-3 PUFA (LC n-3 PUFA) termed resolvins and protec-
tins also aid the resolution phase of inflammation®**.
Resolvins and protectins down-regulate or impede poly-
morphonuclear neutrophil infiltration, while regulating
inflammation, reducing fibrosis and stimulating
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phagocytosis of apoptotic polymorphonuclear neutrophil
cells by macrophages.

During metabolic-inflammation, the characteristics of
inflammation (redness, pain, swelling and heat) are ab-
sent with no increase observed in basal energy expend-
iture®”. Macronutrients and their derivatives such as
fatty acids, ceramides, uric acid and glucose, which are
often associated with metabolic surplus are the primar?/
triggers and activate several inflammatory kinases®”.
Additionally, the formation of resolving mediators are
severely dysregulated, with a deficit of endogenous resol-
vins RvD1 and RvD2 seen in AT isolated from obese
mice when compared with AT from lean mice®".
Therefore, dysregulation of the resolution process in an
obese setting, in conjunction with a constant supply of
metabolic triggers may result in pro-inflammatory signal-
ling becoming pathological“®**®. Thus, properly control-
ling the resolution of inflammation may be essential in
terms of maintaining homeostasis with a view of attenu-
ating the impact of metabolic-inflammation.

Pro-inflammatory effect of dietary factors on
inflammation and metabolic health

Nutrient metabolism is a key player in shaping the nature
of the immune response, as reviewed by McArdle e al. 2.
Nutrients influence inflammatory pathways by interacting
with extracellular receptors and mediate intracellular sig-
nalling in either a beneficial or detrimental manner. The
pro-inflammatory effects of SFA are well charac-
terised“*°>?. Interestingly, the structure of SFA and
the bacteria component LPS, a classic TLR4 agonist,
share similarities®*>>. A number of studies have investi-
gated the potential of SFA in activating TLR4%®.
Studies in vitro show that addition of palmitate to macro-
phages and adipocytes elicits a TLR4 dependent
pro-inflammatory response consisting of increased
NF-xB and JNK activation, while increasing TNF-a se-
cretion®. In addition, cytokines, secreted upon activa-
tion of TLR4 by SFA bind to plasma membrane
receptors or intracellular lipid mediators such as diacyl-
glycerol, initiating inflammatory signalling pathwag/s
through several stress kinases such as INK and IKK©7~>?.

In man, it is well acknowledged that habitual SFA in-
take is inversely associated with insulin sensitivity,
assessed by insulin sensitivity index and directly with
homeostatic model of assessment-IR, particularly in
T2D subjects®®. In a cohort of individuals with metabol-
ic syndrome (MetS), a multi-component condition char-
acterised by abdominal obesity, IR, dyslipidemia and
hypertension, high SFA intake is associated with ele-
vated AT caspase-1 and pycard-1 mRNA expression.
This impacts upon NLRP3-mediated IL-1B process-
ing®®. This association between high dietary SFA intake
and inflammation has been observed as early as adoles-
cence. Overweight adolescents had higher plasma SFA
concentrations when compared with normal-weight
counterparts, with obese adolescents also having elevated
IL-6 and CRP concentrations®”.
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From a personalised nutrition perspective, the impact
of dietary insults may be more evident according to
inflammatory genotype/phenotype. Studies have demon-
strated the influence of a variety of pro-inflammatory
cytokine polymorphisms including TNF-o and IL-6 in
the risk of central obesity, diabetes and MetS phenotype,
as reviewed by Phillips®®?. A significant interaction be-
tween total PUFA and IL-1B was found on MetS risk
in a cohort of 1120 men and women with and without
MetS®?. Individuals homozygous for GG and GA het-
erozygotes in the lowest 50th percentile of EPA and
DHA had a higher risk of MetS than AA homozy-
gotes(®?. These results suggested that a diet high in LC
n-3 PUFA may obliterate an increased genetic pre-
disposition towards developing MetS, further promoting
the potential benefits of personalised nutrition®?,
However, while providing insight into the importance
of genetic pre-disposition and dietary response, elucidat-
ing the functional consequences of such polymorphisms
in metabolic-inflammation is essential.

Modulation of inflammation and metabolism by
anti-inflammatory dietary factors

Cellular processes

The anti-inflammatory properties of nutrients and non-
nutrients such as polyphenols have been an important
discovery with respect to novel therapeutics for
metabolic-inflammation and related metabolic diseases.
From the cellular perspective, Fig. 1 illustrates that LC
n-3 PUFA EPA and DHA decrease the production of
classic pro-inflammatory cytokines by modulating com-
ponents of the NF-xB signalling pathway® *”. In con-
junction with decreasing NF-kB activity, DHA
increases phosphorylation of 5-AMP-activated protein
kinase catalytic subunit al, leading to increased sirtuin-1
activity. This increase in sirtuin-1 activity results in dea-
cetylation of NF-kB subunit p65, leading to suppression
of cytokine secretion®”. Interestingly, DHA-treated
macrophages when co-cultured with adipocytes resulted
in partial protection against IR, demonstrating enhanced
insulin signalling through modulation of inflammatory
pathways by DHA®”.

A number of antioxidant nutrients have demonstrated
additional anti-inflammatory properties. Evidence from
in vitro studies demonstrate that components of the
NF-kB and mitogen-activated protein kinase signalling
pathways are (Prime targets of antioxidants, as illustrated
in Fig. 1%79 Epigallocatechin gallate, lycopene and
vitamin C impede NF-kB signalling, by targeting IKK
and attenuate phosphorylation of extracellular signal
related kinase, p-38 and JNK "7V o-Tocopherol, in
conjunction with vitamin D3 ameliorates 1L-6 produc-
tion as well as increasing mRNA and protein expression
of adiponectin in 3T3-L1 adipocytes’’®. Moreover,
Yang et al. proposed that epigallocatechin gallate may
improve insulin sensitivity in AT through reactive oxygen
species scavenging functions, thus improving insulin-
stimulated glucose-uptake’?. In the context of NLRP3
and IL-1pB signalling, the MUFA oleic acid neither
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primes IL-1B nor does it enhance LPS-induced IL-1pB
compared with palmitic acid”*’®. Furthermore, oleic
acid impedes LPS and ATP-mediated IL-1B activation
and secretion from bone marrow-derived macrophages
both in vitro and ex vivo”?. While it is important to ac-
knowledge the putative anti-inflammatory effects of diet-
ary factors in vitro and in animal studies, the validity of
this concept in man is controversial.

Human perspectives

In adults, cross-sectional studies demonstrated that anti-
inflammatory nutrients are consistently associated with
lower levels of inflammatory markers”>’”. LC n-3
PUFA is independently associated with lower levels of
pro-inflammatory markers IL-6, TNF-o. and CRP>79).
Furthermore, vitamin C and a-tocopherol were inversely
associated with several biomarkers of inflammatory sta-
tus including CRP and reactive oxygen species, markers
related to increased risk of CVD'”. Similarly, in an
overweight adolescent cohort LC n-3 PUFA, and in par-
ticular EPA, was inversely related to CRP
concentrations®?.

However, the paradigm that anti-inflammatory nutri-
ents may resolve the pro-inflammatory phenotype and
metabolic dysregulation in man may or may not be the
case. Several intervention studies have shown variable
results’® %9 A well-powered study with 324 participants
investigating the effect of LC n-3 PUFA supplementation
showed favourable effects on circulating CRP and IL-6
concentrations, when compared with sunflower 0il”®.
Purified LC n-3 PUFA supplementation significantly
reduced circulating CRP and IL-6 concentrations in
thirty-four hypertriglyceridaemic men after supplementa-
tion with DHA (3 g/d)®". Supplementation with EPA
(1-8 g/d) also significantly lowered CRP concentrations
after 3 months in a cohort of ninety-two obese
Japanese subjects with MetS®?. A cross-over study
showed a significant reduction in CRP and IL-6 in thirty
overweight, but otherwise healthy women following 12
week supplementation with fish oil (4-2 g/d)"®. In an 8
week randomised control trial conducted in a healthy co-
hort with moderate hypertriglyceridaemia, participants
were enrolled to take either a low (3-4g EPA and
DHA) or high dose LC n-3 PUFA intervention (85 g
EPA and DHA)®?. In contrast to the other studies men-
tioned, plasma concentration levels of IL-1B, IL-6,
TNF-a and CRP did not significantly change following
this intervention®”. LIPGENE, a European wide
human dietary intervention, also demonstrated that LC
n-3 PUFA supplementation in conjunction with a low-fat
high complex carbohydrate diet did not significantly alter
plasma IL-6, TNF-q, resistin or CRP concentrations®™.

In keeping with these results, intervention studies in
children and adolescents have shown varied results.
Supplementation with LC n-3 PUFA was shown to re-
duce fasting insulin concentrations and homeostatic
model of assessment-IR, along with inflammatory mark-
er TNF-a and liver fat content®*®>, while other studies
demonstrated that fish-oil supplementation did not result
in beneficial effects on lipid profile or metabolic rate and
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Fig. 1. (colour online) Anti-inflammatory nutrients modulate components of inflammatory signalling pathways. Anti-inflammatory
nutrients such as long chain (LC) n-3 PUFA, vitamins C and E, epigallocatechin gallate and lycopene have been shown to modulate
components of NF-kB, mitogen-activated protein kinase (MAPK) and IL-1p signalling. This leads to decreased pro-inflammatory
secretion and potentially improved insulin signalling. TLR, toll-like receptor; GPR, G-protein coupled receptor; JAK, Janus kinase;
STAT, signal transducer and activator of transcription; MYD, myeloid differentiation primary response gene 88; MIF, macrophage
migration inhibitory factor; AKT, protein kinase B;TNFR, tumour necrosis factor receptor; TRADD, tumour necrosis factor receptor
type 1-associated DEATH domain protein; NLRP, nod-like receptor pyrin domain-containing protein; IR, insulin resistance; IRS,
insulin receptor substrate; ERK, extracellular signal related kinase;lKK, kB kinase; JNK, c-Jun N-Terminal kinase; ROS, reactive
oxygen species; SOCS, suppressor of cytokine signalling. (This figure was prepared using the Servier medical art website http:/

www.servier.fr/servier-medical-art.)

fat oxidation, respectively®®*”. However, it should be
noted that the doses of LC n-3 PUFA used, length of
intervention and cohort characteristics differed between
studies and could explain the varied results. Together
these studies highlight the inconsistencies in relation to
the putative beneficial effect of LC n-3 PUFA on inflam-
matory biomarkers associated with metabolic disease.
An interesting development in recent years is the role
of endogenous lipid mediators derived from LC n-3
PUFA as a novel strateéy to enhance the resolution pro-
cess of inflammation®'*®_ In a western diet, fat compos-
ition is skewed towards increased consumption of n-6
PUFA, with the ratio of n-6 PUFA/n-3 PUFA now
thought to be 10-20 : 1. Potentially, sub-optimal LC
n-3 PUFA content could lead to a deficit in pro-resolving
mediators, particularly in an obesity setting. Therefore,
achieving a 4 : 1 n-6 PUFA/n-3 PUFA ratio may result
in increased availability of substrates for resolution
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mediators. Evidence suggests that increased tissue LC
n-3 PUFA status in a transgenic mouse model that en-
dogenously biosynthesised LC n-3 PUFA from n-6
PUFA resulted in a significant increase in the formation
of anti-inflammatory Rv, reducing tissue injury and
obesity-linked inflammation and TR®%°". Importantly,
following 3 weeks supplementation with LC n-3 PUFA,
resolvins RvD1 and RvD2 were elevated in plasma of
twenty healthy volunteers®”. Therefore in theory, im-
proving LC n-3 PUFA status in relation to n-6 PUFA
would effectively mean targeting key components of
inflammatory pathways, while aiding resolution of
inflammation. However, while these LC »n-3 PUFA
lipid mediators may be promising therapeutically, they
are prone to oxidation and dehydrogenation in vivo, ren-
dering them inactive. The development of analogues has
been a promising avenue“’”**¥ Recently, it has been
reported that LXA,; and its stable analogue
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BenzoLL XA, attenuate obesity-associated inflammation,
with a shift from M1 to M2 macrophages in the
AT, However, further work is needed to further eluci-
date their role in metabolic-inflammation in children and
adolescents, as well as in adults.

With respect to antioxidants, animal studies and human
interventions have also shown mixed results®>*®. q-
Tocopherol supplementation, in conjunction with vitamin
D3, was demonstrated to decrease IL-6 concentrations in
vitro and in a mouse model of obesity’?. In a cohort of
T2D patients, while a-tocopherol supplementation ame-
liorated systemic oxidative stress, no positive effect was
seen on plasma markers of inflammation®”.
Additionally, long-term supplementation with vitamin C
and vitamin E had no effect on the risk of development
of T2D in women at high risk of developing CVD®“?.
Supplementation of young overweight and obese adults
with one %lass of tomato juice reduced TNF-a and IL-6
after 20d®”. Similarly, McEneny et al. demonstrated
decreased serum amyloid A, an independent marker of
CVD risk, following 12 weeks supplementation with lyco-
pene'®. In contrast, lycopene supplementation for 12
weeks showed no improvement in inflammatory markers
such as CRP and IL-6, while homeostatic model of
assessment-IR remained the same®®. Studies of mice sup-
plemented with green tea polyphenol extracts showed
decreased levels of TNF-a after LPS injection®®.
However, this did not translate into an adult cohort,
where supplementation with epigallocatechin gallate did
not alter features of the MetS or biomarkers of inflamma-
tion such as IL-6, IL-1p and CRP, but did significantly re-
duce serum amyloid A“°Y. In two separate cohorts of
overweight and obese adolescents, treatment with an anti-
oxidant supplement influenced anti-oxidant defence and
oxidative stress positively, with no improvement in inflam-
matory markers observed'>!1%%.

Inflammatory pathways have been targeted by pharma-
ceutical agents as potential therapeutic avenues for T2D.
Pharmaceutical agents such as Anakinra (IL-1 receptor
blocker), salsalate (IKKB-NF-kB inhibitor) and IL-1§
and TNF-a specific antibodies (IL-1p and TNF-o antag-
onism) have all been shown to increase insulin sensitiv-
ity'"®. However, while these treatments have been
shown to be promising, the long-term immune-
suppression and safety remains unclear’’”. In contrast
to pharmaceutical agents, nutrients are considerably less
potent and may be an alternative treatment option.
However, this difference in potency may be a contributing
factor to the varied results seen between randomised con-
trol trials involving anti-inflammatory and anti-oxidant
nutrients. Interestingly, Minihane ez al. highlighted with
respect to anti-inflammatory nutrients that to date, the
majority of nutritional randomised control trials have
taken a ‘reductionist’ approach. Primary focus has been
on the effect of individual dietary components on inflam-
mation and metabolic health. Diet-derived anti-
inflammatory and anti-oxidative compounds in combin-
ation could potentially target multiple components of
inflammation and metabolic stress in an additive or syner-
gistic manner!®'°?_ A study by Bakker et al. showed
that a combination of anti-inflammatory nutrients in
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overweight men increased adiponectin by 7 %, independ-
ent of weight loss, as well as influencing AT inflammation,
oxidative stress and metabolism. The choice of nutrients
was based on their anti-inflammatory capabilities, aiming
to cover a wide range of inflammation mediators'”,
Together these findings suggest that a combination of a
number of anti-inflammatory and anti-oxidative nutrients
may be more beneficial at modulating metabolic-inflam-
mation than the effect of single nutrients and polyphenols,
by targeting multiple pathways.

Future perspectives: a personalised nutrition approach

With inherent variability observed between individuals,
response to nutritional interventions can vary consider-
ably, with potentially onlgy a small percentage of subjects
responding favourably!®®. Factors such as genotype and
environment can impact an individual’s response to an
intervention!”. In the context of personalised nutrition,
determination of an individual’s metabolic-inflammatory
phenotype prior to a nutritional intervention may be im-
portant. Stratification of obese adults based on their
metabolic phenotype classified using fasting blood sam-
ples, may highlight those who are metabolically overbur-
dened and unresponsive to diectary intervention,
compared with those who are metabolically healthy,
yet obese"'?. In contrast, adolescents who responded
to a lifestyle intervention appear to display a distinct ad-
verse metabolic profile compared with non-responders,
as reviewed in McMorrow ef al'. Establishing metabolic
phenotype may highlight individuals who are in the
at-risk population and may respond favourably to an
intervention, with potentially adolescence a unique op-
portunity for intervention.

Alternatively, establishing inflammatory phenotype
might be of use in classifying those at risk individuals.
Individuals with elevated complement C3 concentrations
have a 3-fold higher risk of MetS compared with indivi-
duals with lower complement C3 concentrations, which
was further accentuated in high-fat consumers!''".
These individuals may benefit by adhering to the public
health recommendations of reduced dietary fat in-
take"!'. A randomised control trial in an overweight
female cohort demonstrated that individuals who were
considered to have a high inflammatory phenotype
based on sialic acid concentrations responded favourably
to an LC n-3 PUFA intervention. Following a glucose
load, individuals with high inflammatory phenotype
demonstrated improved insulin area under the curve,
with no change seen in fasting markers’”. This may
raise the question as to whether fasting markers are suit-
able for assessing metabolic-inflammation and its impact
on metabolic health. Conventional methods of profiling
metabolic parameters using fasting blood samples may
not reveal changes in response to a nutritional interven-
tion''?. Metabolic challenges such as oral glucose toler-
ance tests and oral lipid tolerance tests trigger
substantially different molecular responses, which may
be linked to other key processes such as inflammation
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and oxidative stress, which may not be reflected in fasting
samples"'¥. Thus, relying on plasma cytokine or adipo-
kine profiles, although easily measured, may not directly
reflect organ specific metabolic dysregulation which is the
core of metabolic-inflammation. A recent report asses-
sing suitable biomarkers for evaluation of inflammation
suggested that potentially patterns or clusters, as opposed
to single inflammatory variables, may be more robust as
biomarkers of inflammation®. In line with this report, a
number of research groups have utilised inflammatory
scores encompassing a range of inflammatory and anti-
inflammatory markers to assess sub-clinical inflamma-
tion and relating this to insulin sensitivity, which could
be used to stratify cohorts based on inflammatory pheno-
type! ' 119 An increase in the inflammatory score was
associated with an increase in IR, with a high inflamma-
tory score associated with increased BMI, waist circum-
ference and higher blood pressure’'. In a separate
study, those who were above the median for four out
of the six markers assessed in that study had a 2-4-fold
higher risk of developing diabetes compared with indivi-
duals with no markers above median values''®.
Furthermore, high inflammatory score in T2D indivi-
duals strongly correlated with whole-body insulin sensi-
tivity as evaluated by euglycaemic clamp, S-cell
function, glucose levels in oral glucose tolerance tests
and HbA1c!"'*"® Indeed further studies would be
needed to determine sensitivity of an inflammatory
score in assessing changes in IR and to fully elucidate
the role metabolic-inflammatory phenotype may play in
response to dietary intervention.

Conclusion

Evidence supports the role of sub-acute, metabolic-
inflammation in obesity-induced IR not only in adults,
but also in children and adolescents. Dysregulation of
key inflammatory pathways, ineffective resolution of
inflammatory response, as well as dysregulated metabol-
ism appear to be key factors in inflammation observed in
obesity. It is clear that nutrition plays an important role,
both in a negative and positive manner. The use of nutri-
ents with anti-inflammatory and anti-oxidant properties
as well as manipulating dietary fats may be helpful in
modulating several mechanisms associated with obesity-
induced inflammation. Furthermore, establishment of ef-
fective tools to assess efficacy of novel anti-inflammatory
neutriceuticals as a strategy for treating obesity-induced
chronic inflammation is vital, particularly in children
and adolescent cohorts. Finally, establishing those at-
risk individuals who will respond favourably to nutrition-
al interventions will be beneficial with regard to preven-
tion and treatment of obesity-induced inflammation
and metabolic disease.
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