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The association between maternal metabolic status at the time of conception and subsequent
embryogenesis and offspring development has been studied in detail. However, less attention
has been given to the significance of paternal nutrition and metabolism in directing offspring
health. Despite this disparity, emerging evidence has begun to highlight an important con-
nection between paternal metabolic well-being, semen quality, embryonic development and
ultimately adult offspring health. This has established a new component within the
Developmental Origins of Health and Disease hypothesis. Building on the decades of under-
standing and insight derived from the numerous models of maternal programming, attention
is now becoming focused on defining the mechanisms underlying the links between paternal
well-being, post-fertilisation development and offspring health. Understanding how the
health and fitness of the father impact on semen quality is of fundamental importance for
providing better information to intending fathers. Furthermore, assisted reproductive prac-
tices such as in vitro fertilisation rely on our ability to select the best quality sperm from a
diverse and heterogeneous population. With considerable advances in sequencing capabil-
ities, our understanding of the molecular and epigenetic composition of the sperm and sem-
inal plasma, and their association with male metabolic health, has developed dramatically
over recent years. This review will summarise our current understanding of how a father’s
metabolic status at the time of conception can affect sperm quality, post-fertilisation embry-
onic and fetal development and offspring health.
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Introduction

Over recent decades, human and animal model studies
have highlighted the significance of the in utero period
in shaping patterns of fetal development and offspring
long-term health(1). Investigations into maternal expos-
ure to different environmental factors during pregnancy
have shown that the offspring can display an increased

propensity for developing a range of non-communicable
conditions such as CVD(2), insulin resistance and obesity(3)

and certain behavioural disorders(4). The Developmental
Origins of Health and Disease (DOHaD) field has
expanded to investigate a range of environmental and
lifestyle challenges, as well as defining the sensitivity of
specific ‘windows’ before, during and even after preg-
nancy(5). One such window that appears to display
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specific sensitivity is the time about conception and early
embryonic development. This preconception period, as
defined in Fleming et al.(6), typically represents a time
encompassing parental gamete maturation, fertilisation
of the oocyte and development of the preimplantation
embryo. The importance of the periconception period
is highlighted by the fact that it encompasses a transition
in developmental regulation, driven initially by the qual-
ity of the parental gametes before being directed by the
embryonic genome. Underlying these fundamental devel-
opmental processes are dramatic reorganisations of the
epigenetic status of the parental genomes, allowing a
new embryonic pattern to be established which then
determines subsequent fetal and postnatal develop-
ment(7). Due to the dramatic epigenetic remodelling
that takes place within the preimplantation embryo,
understanding the consequences of programmed changes
in offspring epigenetic status (DNA/RNA methylation,
histone modifications, non-coding RNA populations)
as a result of periconception environmental insults has
become a significant focus in the DOHaD field(8).

The fact that the periconception period represents a
time of both critical developmental importance for future
offspring well-being, as well as heightened sensitivity to
environmental perturbations, has significant implications
for our current lifestyle and fertility. The global popula-
tion is burdened by an increase in the number of people
experiencing either over- or under-nutrition(9). In add-
ition, an increase in the number of people actively delay-
ing parenthood(10) has resulted in a general decline in
fertility, highlighting the interplay between our modern
lifestyle and its influence on our gametes and general
reproductive health(11). Infertility now affects about 15%
of couples in their reproductive age and its global rate
has increased significantly in the period between 1990 and
2017(12). Furthermore, the demand for infertility treat-
ment using assisted reproductive technologies (ARTs)
such as in-vitro fertilisation (IVF) or intracytoplasmic
sperm injection (ICSI) has increased also(13). While the
relationship between maternal diet, gamete quality and
fertility has been studied in detail, the significance of
male nutritional status and post-fertilisation embryo
development has received less attention. Paternal
obesity has been shown to negatively impact male
endocrine function, sperm quality and genomic/epi-
genetic integrity, fertilisation capacity, embryonic
development and offspring health(14). Similarly, stud-
ies have also shown that paternal undernutrition
affects sperm quality and post-fertilisation development
and offspring well-being(15). Therefore, a greater under-
standing of the paternal contribution to offspring devel-
opment is needed if new parental strategies are to be
developed to combat the rise in rates of global non-
communicable disease.

In line with our increased interest in the role, nutrition
plays in the regulation of our reproductive fitness, our
understanding of the interplay between our microbiome
and the function of multiple physiological systems has
grown also(16). Our microbiota, the populations of micro-
organisms that live within and on our bodies, and the
role they play in regulating multiple aspects of our health

and well-being are of increasing interest. Within the gut,
the microbiota regulates numerous aspects of metabol-
ism; secreting hormones and metabolites which regulate
processes such as appetite, glucose tolerance, insulin
sensitivity and fat storage(17), all of which are connected
to reproductive health. During pregnancy, the maternal
microbiota shows significant changes in composition(18)

and the female reproductive microbiota has been asso-
ciated with a variety of gynaecological cancers(19). In
addition, the maternal-offspring microbiome exchange
at birth is critical in establishing the neonate’s micro-
biome in postnatal life(20). Interestingly, in males, the
seminal plasma has been shown to have its own micro-
biota, which is modifiable by diet(21). While the signifi-
cance of the seminal plasma microbiota has yet to be
defined, the role of the seminal plasma in modulating
the maternal reproductive tract during preimplantation
embryo development is becoming evident(22). As our
metabolic health, microbiota and our reproductive
fitness appear directly interconnected, the role of the
microbiome in regulating fertility is one we will explore
within this review.

Here, we review the growing body of data surrounding
the paternal nutritional status and the association with
sperm quality, preimplantation embryo development
and adult offspring health. Throughout this review, we
aim to present and highlight evidence reported from
both animal models and human studies discussing,
where possible, the potential relationship(s) between
them. Similar to studies exploring maternal program-
ming, animal model studies have been fundamental in
understanding the mechanistic relationships between
paternal health, reproductive fitness and offspring
development. This has allowed for in-depth analysis of
male gametogenesis, epigenetic status and regulation, in
addition to customised experimental models designed
to simulate real-world nutritional profiles and lifestyle
conditions. These models have aided the characterisation
of the mechanisms underlying the paternal programming
of offspring health.

Paternal nutrition and reproductive fitness

Obesity, defined in human subjects as a BMI >30 kg/m2,
is associated with adverse metabolic effects and higher
CVD risk(23). Obesity has also been linked to reproductive
dysfunction and an association with male infertility(24).
However, while conflicting effects of obesity on semen
quality and fertility have been reported in men, multiple
studies in animal (mostly rodent) models have shown
negative effects of obesity of a high-fat diet (HFD) on
male reproductive fitness. Hammoud et al. demonstrated
that with increasing BMI in men, the incidence of
oligozoospermia increased also, with obese men having
a 15⋅62% incidence compared to 5⋅32 % for normal-
weight men(25). Disturbances in endocrine homoeostasis
underpinning spermatogenesis indicate one mechanism
by which obesity-mediated alterations in hormonal
profiles may alter male fertility. For example, obese
men have been found to have decreased testosterone,
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inhibin B and increased oestrogen levels, all associated
with impaired spermatogenesis(26). Furthermore, altera-
tions in the balance of gonadotropin-releasing hormone
and luteinising hormone/follicle-stimulating hormone
(GnRH-LH/FSH) may further contribute to an
obesity-related impairment of spermatogenesis by dis-
rupting Leydig and Sertoli cell function in bulls(27).
Additionally, fat accumulation in male obesity can
increase the scrotal temperature which impairs spermato-
genesis, contributing to decreased sperm quality(28). In
men, obesity has also been associated with an increased
risk of sperm DNA damage(29), while in mice, increased
reactive oxygen species (ROS) production and higher
levels of DNA damage in sperm of HFD fed males
have been reported(30). Elevated levels of testicular
ROS, and the subsequent increase in oxidative stress,
have been shown to have detrimental effects on mamma-
lian sperm integrity through the impairment of the sperm
plasma membrane(31). Furthermore, the elevation of
ROS in men and the resultant increase in sperm cytotox-
icity and DNA fragmentation(32), have been shown to
reduce sperm vitality and motility(33), lower levels of
sperm capacitation(34) and diminish sperm-oocyte bind-
ing capacity(35).

The impact of paternal nutrition has on a male’s
reproductive health extends beyond the pre-conception
period and into the peri-conception period. An associ-
ation between elevated paternal BMI and impaired
embryo development has been identified in men and
animal models. In men undergoing ART interventions,
an increasing BMI was significantly associated with
a decreased rate of embryo blastulation on day 5 of cul-
ture(36). Furthermore, the same study reported rates of
pregnancy, embryo implantation and live birth decreased
from 41⋅3% for men of a BMI <25 kg/m2 to 22⋅6% for
obese men(36). In rats, similar observations were reported
for embryos derived from obese males, with
HFD-induced obesity reducing the cleavage rates of pre-
implantation embryos. Furthermore, these embryos
demonstrated an impaired ability to achieve developmen-
tal milestones in vitro and ultimately failed to achieve
blastocyst expansion at an appropriate time-point(37).
Early embryo cleavage dynamics have been associated
with rates of ongoing development and live birth
within clinical ART settings(38). Recently, the association
between being overweight in men and a reduction in
fertility has been supported further through a large-scale
meta-analysis of 115 158 study participants, revealing
obese men had an increased likelihood of infertility(39).
Similar to the metabolic insult of high fat and obesogenic
diets, paternal undernutrition and nutrient-deficient diets
have also demonstrated an impact on sperm quality and
early embryo development. In mice, pre-implantation
embryos from low-protein fed stud males were found to
have a reduction in genes associated with metabolic
homoeostasis, particularly a decreased expression of genes
involved in the AMPK pathway(40). Separately, paternal
global dietary restriction found undernutrition in male
mice resulted in a faster cleavage time in preimplantation
embryos, yet reduced rates of blastocyst expansion were
observed(41).

Paternal nutrition and offspring health

The influence of paternal nutritional status extends
beyond alterations in early embryonic development and
a number of studies in animal models have highlighted
the deleterious effects paternal over- and under-nutrition
have on the health of a male’s offspring. In mice, per-
turbed patterns of fetal growth and skeletal formation
have been reported in response to both paternal low pro-
tein and low folate diets(40,42). Interestingly, in both stud-
ies, altered placental development was highlighted as one
central regulator of the changes in fetal growth, mirror-
ing observations from many maternal programming
studies(43). Changes in expression of several hepatic
genes for lipid metabolism have also been observed in
response to paternal low protein diet (LPD)(44). These
differential growths and metabolic profiles seen during
fetal development are then mirrored in postnatal life. In
mice, a paternal 70 % caloric restriction model, designed
to reflect the nutritional availability in of developing
countries, increased levels of adiposity in male offspring
adiposity as well as inducing dyslipidaemia(41). Similarly,
a paternal reduction in caloric intake (reduced by 25 %)
in the rat resulted in an increase in displays of anxiety-
such as behaviours in the adult offspring in addition to
inducing a reduction in food intake, weight gain and
serum leptin levels(45). Data from the Overkalix epi-
demiological data sets also connect patterns of paternal
and grand-paternal nutrition with significant changes in
offspring development(46). Here, periods of low availabil-
ity of food between the ages of 9 and 12 in males, defined
as a ‘slow growth period’ decreased the mortality risk
from CVD in their offspring(47,48). In contrast, paternal
and grand-paternal over-nutrition during this same per-
iod was associated with an increased predisposition to
diabetes-related mortality(47,48). Intergenerational pater-
nal programming has also been reported within experi-
mental animal models. Paternal HFD-induced obesity
in male rats results in increased adiposity, impaired
glucose tolerance and insulin sensitivity within a second
(F2) generation(49). Underlying these changes was a sign-
ificant decrease in DNA methylation in the paternal
testicular germ cells associated with the differential
expression of 414 genes and 11 miRNAs(49). More recently,
we have shown that offspring cardiovascular dysfunction
and impaired renin-angiotensin system homoeostasis were
programmed into a second generation in response to a
paternal LPD in mice(50).

Identifying the mechanisms of paternal programming

The observation that paternal programming can operate
over multiple generations implicates epigenetic transmis-
sion of paternal traits as one potential mediator.
Epigenetic alterations to the sperm (DNA and histone
modifications, RNA populations) have been proposed
as one mechanism for transmission of paternal program-
ming effects in the offspring. In mice, global sperm DNA
hypomethylation, coupled with a reduced testicular
expression of the key regulatory methyltransferase
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genes Dnmt1 and Dnmt3L, have been reported in
response to a paternal LPD(51). Aberrant patterns of
sperm DNA methylation have also been observed in
response to caloric restriction(41) and dietary insufficiency
of key vitamins and minerals such as folate(42). Similarly,
obesity has been shown to induce alterations to DNA
methylation profiles as well as miRNA populations in
sperm of male mice(49). In men, differential sperm
DNA methylation profiles and ncRNA profiles have
also been observed between obese and lean men(52).
With regard to paternal obesity in men, studies have
shown hypomethylation of the IGF2 differentially methy-
lated region in offspring leucocytes at birth(53).
Furthermore, significant hypomethylation of other
imprinted genes including MEST, PEG3 and NNAT
were found in offspring of obese fathers(53). Due to the
involvement of these genes in growth and metabolic
regulation, their differential DNA methylation could be
one mechanism linking paternal obesity with altered off-
spring growth and metabolism. Separately, infertility has
been associated with differential sperm DNA methyla-
tion(54), histone distribution(55) and RNA content(56).
Interestingly, mature sperm contain several different
populations of RNA, both within the nucleus and the
mitochondria(57). Sperm RNAs are detectible within the
fertilised oocyte and can contribute to early embryonic
development(58). The significance of sperm RNAs in pro-
gramming offspring development is exemplified through
the observation that the injection of sperm tsRNA frag-
ments isolated from dietary-induced obese mice into con-
trol zygotes is able to programme the long-term
metabolic ill health in the offspring(59).

Changes to a dietary status not only induce change to
the composition of the sperm, it can also impact the non-
sperm fraction of the semen, the seminal plasma. The
role of the seminal plasma in modulating the maternal
inflammatory and immune status during the periconcep-
tion period has been reviewed in detail recently(22,60).
However, a relatively unexplored connection is between
the seminal plasma microbiome and paternal reproduct-
ive fitness. The mammalian microbiome consists of any-
where between 10 and 100 trillion microorganisms and
functions in a symbiotic relationship with its host(61).
Until recently, our view of our microbes has centred on
their role in pathogenic processes. However, it is now
widely accepted that our body’s microbiota is central in
many developmental, physiological, metabolic and even
psychological areas of everyday life. Our bodies possess
many different and diverse bacterial populations includ-
ing our skin, gut and oral microbiomes. Due to modern
advances in sequencing capabilities, we are beginning to
understand the association between our microbiota and
complex conditions such as inflammatory bowel dis-
ease(62) and even obesity(63). The interplay between our
microbiota and reproductive health has come to the fore-
front over the past few years with the discussion regard-
ing the sterility of the intra-uterine environment(64).
Gaining a better insight into the parental interplay
between the maternal reproductive tract and the develop-
ing fetus is critical for developing new biomarkers for
gestational well-being and both maternal and offspring

long-term health. Initial studies into the seminal micro-
biome focused on the detection of pathogenic bacterial
species, using comparatively simple techniques such
as microscopy and RT-qPCR. In some of the earlier
studies, negative associations between the levels of
Anaerococcus and semen quality were reported(65). In a
separate study, semen samples identified as ‘normal’
within a clinical setting were populated predominantly
with Lactobacillus, while samples of ‘low quality’ dis-
played a predominance of Prevotella(66). One influence
of bacteria on male reproduction stems from the toxic
effects of inflammatory cytokines or ROS produced by
them within the male reproductive tract(67). In addition,
bacteria may also bind directly to the sperm, influencing
motility or inducing apoptosis(68). Prebiotics supplemen-
tation in both human and animal models has been
shown to influence seminal plasma composition and
sperm quality. In obese mice, supplementation with
Lactobacillus rhamnosus PB01 (DSM 14870) improved
sperm kinetics(69). The authors observed increased testos-
terone levels and sperm with higher velocity and motility
in supplemented obese males than non-supplemented
obese males(69). In men, increased sperm motility,
reduced sperm DNA fragmentation and intracellular
H202 levels have also been reported following L. rhamno-
sus CECT8361 and Bifidobacterium longum CECT7347
supplementation in asthenozoospermic males(70).

Not only can the seminal microbiome influence male
reproductive health, unprotected sexual intercourse can
result in the exchange of microbes between partners, sug-
gesting that each partner’s reproductive microbiota can
affect that of the other. Factors such as frequency of sex-
ual intercourse and number of partners can all be related
to the vaginal microbiota and incidences of bacterial
vaginosis(71,72). Therefore, it is conceivable that the
male’s metabolic status at the time of conception could
influence his seminal microbiome, which in turn influence
the female reproductive microbiota. As the female
reproductive microbiota is directly related to that of the
neonate(20), this offers a novel mode of paternal pro-
gramming of offspring metabolic health. However, such
direct demonstration of seminal microbiota paternal pro-
gramming has yet to be demonstrated.

Conclusions and future perspectives

It is now widely recognised that a connection between
sub-optimal in utero development and long-term off-
spring ill-health exists. Despite this wealth of knowledge,
much less attention has been given to the influence of the
father’s lifestyle on the health of his offspring. However,
it is becoming increasingly apparent that a father’s nutri-
tional status at the time of conception can influence post-
fertilisation development through a range of mechanisms
(see Fig. 1). Sperm quality and functionality can be
influenced by factors such as obesity and the associated
hormonal imbalances. New sequencing approaches
have revealed the epigenetic complexity of the sperm,
revealing how sperm can regulate the first few cell cycles
of the preimplantation embryo(73). Separately, studies
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have revealed the role of the seminal plasma in modulat-
ing the maternal reproductive tract vascular and immune
systems, preparing the uterus for the implanting
embryo(60). With new analyses indicating the seminal
microbiome may also influence post-fertilisation develop-
ment, our understating of this male reproductive compo-
nent is extending from just a simple supportive medium
for the sperm during their transit through the female
reproductive tract, to a central mediator in paternal pro-
gramming. As our understanding of the interplay
between our physiology and our microbiomes increases,
modification of our reproductive fitness through changes
in our microbiota may open up a new area of persona-
lised reproductive medicine.

Looking forward, there is a clear need to define the
associations between other aspects of paternal lifestyle
with his nutrition and fertility. Sperm quality is a funda-
mental component for a successful outcome in ART
practices. However, there is still a heavy reliance on fac-
tors such as sperm morphology and motility in guiding
practitioners to select single sperm in procedures such
as ICSI. As such, a more detailed understanding of
what cellular constituents make a ‘good quality sperm’
are clearly needed. Furthermore, many ART practices
are conducted within a seminal plasma-free environment,
precluding the normal interaction that occurs between
the seminal plasma and the female reproductive tract
during natural conception. The impact of removing
such interactions for ongoing pregnancy and child health

remain to be defined(60). Finally, factors such as advan-
cing paternal age, and the changes in metabolic status
that accompany male ageing, have received limited atten-
tion until recently. However, connections between pater-
nal age and offspring well-being are becoming more
evident(74). We believe that gaining a fuller understand-
ing of how modern lifestyle factors influence paternal
metabolic status, sperm quality, embryo development
and offspring health is of fundamental significance for
ensuring the life-long health and well-being of his
offspring.
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Fig. 1. Outline of key mechanisms linking paternal metabolic status at the time of conception to post-fertilisation
development and offspring health. The seminal microbiome has been associated with semen quality and may influence
the post-fertilisation maternal uterine microbiome. Seminal plasma cytokines and signalling molecules, such as
transforming growth factor-β, interact with the maternal reproductive tract, priming the immune system and preparing
the uterine tissue for the implanting embryo. Changes in epigenetic status of the sperm provide one mechanism capable
to propagating paternal influences over multiple generations. Histones have been shown to be located at key
pluripotency genes within the paternal genome and have been shown to contribute to the zygotic histone pool after
fertilisation. More recently, sperm-borne RNAs (e.g. ncRNA, miRNA, tsRNA) have been shown to be capable of
programming offspring metabolic health separate to the genomic content of the sperm. Sperm, as fully differentiated
cells, possess high levels of DNA methylation. Changes in sperm DNA methylation can be indicative of a perturbed
testicular environment and reduced male fertility.
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