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In this paper, the instability of shallow-water shear flow with a sheared parallel magnetic
field is studied. Waves propagating in such magnetic shear flows encounter critical levels
where the phase velocity relative to the basic flow, c − U( y), matches the Alfvén wave
velocities ±B( y)/

√
μρ, based on the local magnetic field B( y), the magnetic permeability

μ, and the mass density of the fluid ρ. It is shown that when the two critical levels are
close to each other, the critical layer can generate an instability. The instability problem
is solved, combining asymptotic solutions at large wavenumbers and numerical solutions,
and the mechanism of instability explained using the conservation of momentum. For
the shallow-water magnetohydrodynamic system, the paper gives the general form of the
local differential equation governing such coalescing critical layers for any generic field
and flow profiles, and determines precisely how the magnetic field modifies the purely
hydrodynamic stability criterion based on the potential vorticity gradient in the critical
layer. The curvature of the magnetic field profile, or equivalently the electric current
gradient J′ = −B′′/μ in the critical layer, is found to play a complementary role in the
instability.

Key words: critical layers, shear-flow instability

1. Introduction

The shallow-water equations are an essential idealised model for the study of large-scale
dynamics in geophysical fluid systems. Their relatively simple form has provided
significant insights in our understanding of waves, instabilities and turbulence in the
oceans and atmosphere. More recently, Gilman (2000) extended the application of
the shallow-water model to the dynamics of the solar tachocline by incorporating a
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magnetic field. In the present study, we will examine the stability of such shallow-water
magnetohydrodynamic (MHD) systems.

The stability properties of hydrodynamic shallow-water flows have been studied
extensively, and we now know of a number of instabilities with distinctive features. They
include Rayleigh’s instability, which is related to an inflectional point of the shear flow
profile (Blumen, Drazin & Billings 1975), resonant instability generated by interaction
between two neutral modes (Satomura 1981; Hayashi & Young 1987), critical-layer
instability induced by singularities of neutral modes (Balmforth 1999; Riedinger & Gilbert
2014), and radiative instability caused by waves radiating outwards in an unbounded
domain (Ford 1994; Riedinger & Gilbert 2014).

In the context of astrophysical flows, such as in the solar tachocline, magnetic fields
are present and will generally modify the stability properties of the flow. Although the
elasticity of field lines suggests a stabilising effect, in reality this additional coupling can
lead to new modes of instability, as occurs for example in the magnetorotational instability
(Balbus & Hawley 1991). The instability of two-dimensional shear flow with a parallel
magnetic field has been investigated by a number of researchers. It is well known that a
strong magnetic field has a stabilising effect. Gilman (1967), Chandra (1973) and Hughes
& Tobias (2001) have shown that modified versions of Howard’s (1961) semicircle rule
exist when the field is included. The magnetic field reduces the possible domain in which
the complex phase velocity may reside, and instability will be suppressed if the magnetic
field is sufficiently strong everywhere.

The role of a weaker magnetic field, however, is more subtle, and researchers have
found situations where it may have a destabilising effect. Kent (1968), Stern (1963) and
Chen & Morrison (1991) have studied the instability problem analytically in the zero
wavenumber limit, in which case the dispersion relation reduces to an equation involving
a simple integral. They have demonstrated various examples where the magnetic field may
destabilise an otherwise stable flow; e.g. a parabolic profile of the field can destabilise a
plane Couette flow (Chen & Morrison 1991). Guided by these theoretical studies, Tatsuno
& Dorland (2006), Lecoanet et al. (2010) and Heifetz et al. (2015) have computed unstable
modes numerically at finite small wavenumbers.

The instability of shallow-water MHD systems has been studied by Mak, Griffiths &
Hughes (2016). They consider basic velocity profiles of unstable shear layers and jets,
and examine the effect of a uniform magnetic field on these classical instabilities. Their
results demonstrate that the field plays mainly a stabilising role. The same semicircle rule
of Hughes & Tobias (2001) exists, so a sufficiently strong magnetic field can suppress any
instability. Increasing the field always reduces the maximum unstable growth rate, but in
some situations may increase the (albeit small) growth rates for long wavelength modes.

The instability analyses cited so far are all based on flows in Cartesian geometry, but for
the solar tachocline, spherical geometry is a better representation. Gilman & Fox (1997,
1999) considered two-dimensional MHD flows in a thin spherical shell with the basic
differential rotation profile of the Sun and various magnetic fields. They found a ‘joint
instability’: either the shear flow or the magnetic field is stable by itself, but the system is
unstable when they are present together. Gilman & Dikpati (2002) and Dikpati, Gilman &
Rempel (2003) studied the effect of a free surface on these joint instabilities by employing
the shallow-water MHD model of Gilman (2000). They show that the free surface has
a weak effect on the instability as long as the effective gravity is not too small, but as
this parameter is decreased, the instability is eventually completely suppressed as the shell
thickness of the reference state tends to zero at certain latitudes. Márquez-Artavia, Jones
& Tobias (2017) revealed yet another type of instability for shallow-water MHD flow on
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Critical-layer MHD instability

a sphere: it is induced purely by the free surface and the magnetic field, and exists even
when the basic flow is quiescent or is solid-body rotation. A review of MHD instabilities
in spherical shells has been given by Gilman & Cally (2007). The consequences of these
instabilities may include transition to turbulence, magnetic reconnection (Cally 2001;
Cally, Dikpati & Gilman 2003), and the generation of Rossby waves in the solar tachocline
(Dikpati & McIntosh 2020).

In the present study, we investigate the effect of critical levels on the instability of
shallow-water MHD systems. Critical levels appear as singularities of steady waves
propagating in shear flows if the fluid system has no dissipation. In hydrodynamic
problems with flow profile U( y), say, a critical level is a location y = yc at which the phase
velocity of waves matches the basic flow velocity, i.e. c = U( y). When a parallel magnetic
field is added, the critical levels become locations y = yB± where c − U( y) matches the
Alfvén wave velocity ±B( y)/

√
ρμ, with B( y) the magnetic field profile, ρ the mass

density of the fluid, and μ the magnetic permeability. These magnetic critical layers have
been found to play crucial roles in a wide range of phenomena and applications, including
sunspots (Sakurai, Goossens & Hollweg 1991), solar wind (Chen & Hasegawa 1974), hot
Jupiters (Hindle, Bushby & Rogers 2021), and tokamak reactors (Mok & Einaudi 1985).

In hydrodynamic stability theory, critical layers play the key role in driving instabilities
in a wide variety of flows. They include the shallow-water flows that we have mentioned,
baroclinic flows (Bretherton 1966), stratified flows with horizontal shear (Wang &
Balmforth 2018), and, perhaps most famously, wind flowing over water generating
surface water waves (Miles 1957). All these instabilities share a common mechanism:
the critical layer generates a finite amount of mean-flow momentum (or potential
vorticity, equivalently). Thus, given that the total momentum is conserved, the mean-flow
momentum in the critical layer must be balanced by unsteady motion in the outer flow, and
this balance can be thought of as driving the instability.

Therefore, these instabilities are sometimes referred to as ‘critical-layer instabilities’
(Bretherton 1966; Riedinger & Gilbert 2014). However, the magnetic-field-induced
instabilities found in previous studies cannot be understood in terms of this mechanism.
For example, in Tatsuno & Dorland (2006), Lecoanet et al. (2010) and Heifetz et al. (2015),
it can be inferred that the mean-flow modification is anti-symmetric due to the parity
property of the unstable modes. As a result, the mean-flow momentum generated in two
critical layers cancels out completely, and so cannot be seen to drive the growth of the outer
flow. Instead, the instability may be interpreted as a result of adding more magnetic free
energy to the system (Lecoanet et al. 2010) or through the interaction between vorticity
waves (Heifetz et al. 2015).

In this paper, we will reveal a new kind of magnetic critical-layer instability in
shallow-water MHD systems. It shares a similar mechanism with the hydrodynamic
critical-layer instabilities, but magnetic critical levels have distinctive properties. Unlike
hydrodynamic instabilities where there is usually a single critical level, here we have
two critical levels close to each other, hence their interaction plays a crucial role in the
instability. Also, in the hydrodynamic shallow-water system, the potential vorticity (PV)
is conserved, and it largely controls the dynamics of the flow. In particular, the sign of
the background PV gradient Q′ = −(U′/H)′ (where H is the depth of shallow water)
determines whether the critical layer has a stabilising or destabilising effect (Balmforth
1999; Riedinger & Gilbert 2014). A magnetic field, however, breaks the PV conservation
and changes the dynamics significantly. An example of the impact of such a loss of
PV conservation has been presented by Dritschel, Diamond & Tobias (2018) for the
fundamental problem of the evolution of two-dimensional vortices. We will show that
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the loss of PV conservation has a dramatic impact on the MHD shallow-water system as
well: this is evident in the study of the basic flow of linear shear, i.e. vanishing background
vorticity gradient −U′′( y) = 0, and a constant shallow-water depth H. In the absence of
a magnetic field, PV conservation would imply that there is no critical level at all. The
presence of a magnetic field, however, brings back the singular behaviour at the critical
levels, hence the possibility of critical-layer instability. The general instability criterion
that we obtain combines the PV gradient Q′ with the analogous quantity of the electric
current gradient J′ = −B′′/μ in a key ‘curvature parameter’ γ that appears in the local
ODE for the critical layer.

Finally, we investigate the mean-flow response of the instability, and show that it is
localised strongly in the critical layer. We explain the instability mechanism via the
conservation of momentum following the paradigm of Hayashi & Young (1987), which is a
balance between the ‘mean momentum’ and the ‘wave momentum’. The mean momentum
is just the momentum of mean-flow response, while the wave momentum is the coupling
between linear waves of velocity and surface displacements. We show that the mean
momentum generated in the critical layer must be balanced by the exponential growth
of the wave momentum, and this can be understood as a mechanism for the instability.
This mechanism is similar to that of hydrodynamic critical-layer instabilities, but we will
show that the magnetic field also controls the mean momentum via the Maxwell stress and
the electric current gradient J′ = −B′′/μ.

The layout of the paper is as follows. In § 2, we present the equations for the problem.
The shallow-water MHD system of Gilman (2000) is given in § 2.1, the eigenvalue problem
for the linear instability is derived in § 2.2, and the equations for the mean-flow responses
and momentum conservation are obtained in § 2.3. In § 3, we present numerical solutions
to the instability problem and the mean-flow response for typical basic-flow profiles, and
summarise the instability criterion and the instability mechanism. In § 4, we derive the
asymptotic solution for the instability problem at large wavenumbers for general basic-flow
profiles, and explain the instability mechanism via momentum conservation. We conclude
in § 5 and compare the new instability to those discussed in the literature.

2. The governing equations

2.1. The shallow-water MHD model
We study the dynamics of the shallow-water magnetohydrodynamic (SWMHD) model for
ideal, perfectly conducting fluid proposed originally by Gilman (2000). Our main objective
is to study the effect of critical levels on stability, and as a starting point we use Cartesian
coordinates, which are easier for analysis. Let (x, y) be the horizontal coordinates, and
z the vertical direction. Under the assumption that the horizontal scale is much greater
than the vertical scale, the leading-order dynamics is characterised by horizontal velocities
u∗ = [u∗(x, y, t), v∗(x, y, t)], which are independent of z, and the depth of the shallow
water h∗(x, y, t). We use a star subscript following the notation of Hayashi & Young (1987),
to denote the total quantity, which may include a basic state, a linear disturbance and a
mean-flow response. The magnetic field is also dominated by the horizontal field B∗ =
[B1∗(x, y, t), B2∗(x, y, t)].

The dimensionless governing equations are

∂h∗
∂t

+ ∇ · (h∗u∗) = 0, (2.1)
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∂u∗
∂t

+ u∗ · ∇u∗ = −F−2 ∇h∗ + B∗ · ∇B∗, (2.2)

∇ · (h∗B∗) = 0, (2.3)

∂B∗
∂t

+ u∗ · ∇B∗ = B∗ · ∇u∗, (2.4)

which are the continuity equation, the momentum equation, the divergence-free condition
in terms of the horizontal magnetic field, and the induction equation. The depth h∗ has
been rescaled by the vertical length scale, which may be taken as the depth H of the shallow
water. The coordinates (x, y) and u∗ have been rescaled by the characteristic horizontal
length scale L and velocity scale U0, respectively. The Froude number F is defined by
F = U0/

√
gH, and the magnetic field B∗ has been rescaled by U0

√
μρ.

Equation (2.3) indicates that the divergence-free condition involves the depth of the
shallow water, and we may use this to define a magnetic flux A∗ = A∗ez, where ez is the
unit vector in the z-direction, such that

h∗B∗ = ∇ × A∗. (2.5)

From (2.1) and (2.4), one can show that A∗ is conserved following a fluid particle:

∂A∗
∂t

+ u∗ · ∇A∗ = 0, (2.6)

which provides an alternative description for the induction equation (2.4). For the
boundary conditions, we take the normal components of velocity and magnetic field to
vanish on boundaries located at dimensionless values y = ±1:

v∗ = B2∗ = 0, at y = ±1. (2.7)

We also take h∗, u∗, B∗ and A∗ to be periodic in the x-direction, with period 2π/k, where
k is the spatial wavenumber.

Dellar (2002) has shown that the SWMHD system admits a number of conserved
quantities. The most common ones are momentum M, energy E, and cross-helicity W:
we have

dM
dt

= d
dt

∫∫
h∗u∗ dx dy = 0,

dW
dt

= d
dt

∫∫
h∗u∗ · B∗ dx dy = 0,

dE
dt

= d
dt

∫∫
1
2

(
h∗|u∗|2 + |∇A∗|2

h∗
+ h2∗

F2

)
dx dy = 0 (2.8a–c)

in one periodic domain. We will study mainly the conservation of momentum. The
conservation of the other two quantities will be discussed briefly at the end of § 4.4.

2.2. The linear instability equations
We now consider linear instability for the SWMHD system outlined in the previous
subsection. For the basic state, we take the shallow water to have uniform depth when
its surface is flat: without loss of generality, we select h∗ = 1. We take a steady parallel
flow and magnetic field pointing in the x-direction, with a shear in the y-direction:
u∗ = [U( y), 0], B∗ = [B( y), 0]. According to (2.5), the basic state for A∗ = A( y) is
determined by A′( y) = B( y). These are all taken to be smooth functions of y; there are
no internal discontinuities or interfaces present in the systems that we study.
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Upon the basic state, we add linear disturbances h, u, v, a, b1, b2 with

h∗ = 1 + ε h(x, y, t), u∗ = U( y) + ε u(x, y, t), v∗ = ε v(x, y, t), (2.9a–c)

A∗ = A( y) + ε a(x, y, t), B1∗ = B( y) + ε b1(x, y, t), B2∗ = ε b2(x, y, t), (2.9d–f )

where ε is a small number representing the order of the amplitude of the linear
disturbances. We substitute (2.9) into the full SWMHD model (2.1)–(2.7), and the order ε

terms yield the linearised governing equations. The linearised version of (2.5) gives

b1 = ay − Bh, b2 = −ax, (2.10a,b)

which express the field components in terms of the flux a, the subscripts representing
partial derivatives. Using (2.10), the linearisation of (2.1), (2.2) and (2.6) yields

ht + Uhx + ux + vy = 0, (2.11)

ut + Uux + U′v = − 1
F2 hx + Baxy − B′ax − B2hx, (2.12)

vt + Uvx = − 1
F2 hy − Baxx, (2.13)

at + Uax + Bv = 0. (2.14)

The boundary conditions are

v = ax = 0, at y = ±1. (2.15)

We seek a normal mode instability

(u, v, h, a) = [û( y), v̂( y), ĥ( y), â( y)] eik(x−ct) + c.c., (2.16)

where k is the wavenumber, c is the complex phase velocity, and c.c. represents the
complex conjugate. Substituting (2.16) into (2.11)–(2.15), we obtain

ik(U − c)ĥ + ikû + v̂′ = 0, (2.17)

ik(U − c)û + U′v̂ = − ik
F2 ĥ + ik(Bâ′ − B′â − B2ĥ), (2.18)

ik(U − c)v̂ = − 1
F2 ĥ′ + k2Bâ, (2.19)

ik(U − c)â + Bv̂ = 0, (2.20)

v̂ = ikâ = 0, at y = ±1. (2.21)

After some algebra, we obtain the relations

û = − v̂′

ik
− (U − c)ĥ, v̂ = − U − c

ik[(U − c)2 − B2]F2 ĥ′, â = − B
ik(U − c)

v̂,

(2.22a–c)
and a second-order ODE for ĥ,

ĥ′′ − 2[(U − c)U′ − BB′]
(U − c)2 − B2 ĥ′ − k2

{
1 − F2[(U − c)2 − B2]

}
ĥ = 0, (2.23)

with boundary conditions
ĥ′(−1) = 0, ĥ′(1) = 0. (2.24a,b)

Equations (2.23) and (2.24) constitute an eigenvalue problem for the phase velocity c, and
will be the main problem that we are going to consider. Because all coefficients except c
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are real, complex phase velocities for normal mode solutions always appear in complex
conjugates, i.e. c = cr + ici and c = cr − ici. Hence we will consider only normal modes
with positive ci, which represent unstable disturbances.

Equations (2.23) and (2.24) are equivalent to the eigenvalue problem of Mak et al.
(2016), expressed by the equation in terms of v̂. They have shown that two semicircle
theorems exist for any unstable mode, which we quote below:

cr
2 + ci

2 ≤ (U2 − B2)max,

(
cr − Umax + Umin

2

)2

+ ci
2 ≤

(
Umax − Umin

2

)2

− B2
min,

(2.25a,b)

where max and min indicate the maximum and minimum values among all locations of y.
The two semicircle rules in (2.25) are the same as those of two-dimensional MHD flow
without a free surface (Gilman 1967; Chandra 1973; Hughes & Tobias 2001), but note that
the semicircle rules in spherical geometry can be different (cf. Watson 1980; Gilman &
Fox 1997). Equation (2.25) indicates that for an arbitrary prescribed U, if B is sufficiently
strong everywhere, then no unstable mode can exist, so the magnetic field must be weak
somewhere in the domain for any instability to occur.

The governing ODE (2.23) becomes singular when c − U = ±B. Such locations of y
are critical levels, which we define as yB±, so

U( yB+) − c + B( yB+) = 0, U( yB−) − c − B( yB−) = 0. (2.26a,b)

The Frobenius solution for ĥ around each critical level is

ĥ = Cs±
[

1 + k2

2
( y − yB±)2 log( y − yB±) + · · ·

]
+ Cr±

[
( y − yB±)2 + · · ·

]
, (2.27)

where Cs± and Cr± are constants. Although ĥ converges as y → yB±, other disturbance
components, û, v̂ and â, all diverge. When the flow is unstable, c has an imaginary part ci
and thus the critical levels yB± are also complex: for small ci, the imaginary part of (2.26)
yields

Im yB± = ci

(U′ ± B′) |y=Re yB±
. (2.28)

Hence the singularity is avoided, but we nonetheless have locally large amplitudes since
ci is found to be small in our study. We will see that the critical levels play crucial roles in
the eigenvalue problem.

If the two critical levels yB± coalesce at yB, where B = 0, then the Frobenius solution
about yB is

ĥ = Cs

[
1 − k2

2
( y − yB)2 − U′U′′ − B′B′′

3(U′2 − B′2)

∣∣∣∣
y=yB

k2( y − yB)3 log( y − yB) + · · ·
]

+ Cr

[
( y − yB)3 + · · ·

]
. (2.29)

Unlike in (2.27), now the logarithmic singularity of the coalesced critical level depends
essentially on the local curvatures of the basic field profiles. Using the relations in (2.22),
one can show that for û, v̂ and â, the singular behaviour of the coalesced critical level is
weaker than the separated critical levels. When the two critical levels are close to each
other but do not coalesce exactly, ĥ has the characteristics of both (2.27) and (2.29), and
we will study this problem in detail in the later part of the paper.
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Before discussing the solution to the instability problem, we note that in non-magnetic
hydrodynamic flows, an important quantity is the PV:

q∗ = v∗,x − u∗,y

h∗
. (2.30)

It is conserved following fluid particles. Linearising it in the same manner, i.e. q∗ =
Q( y) + q(x, y, t), its value for the basic flow is Q = −U′( y) and for a linear disturbance
is

q = vx − uy + hUy. (2.31)

According to the linear governing equations (2.11)–(2.14), the evolution of q follows

qt + Uqx + vQy = −Baxxx − (Baxy − Byax − B2hx)y. (2.32)

When the magnetic field is absent, the left-hand side of (2.32) is the material conservation
of PV, and it puts a strong constraint on the shallow-water flow. For example, for the linear
profile of U = −y, which we will study later on, Qy ≡ 0 and hence q ≡ 0 for all x, y, t
when the normal mode solution (2.16) is applied. This would imply no hydrodynamic
critical levels at all. The magnetic field essentially breaks the PV conservation, and as a
result, magnetic critical levels with singular behaviour still exist for linear shear flows.

We will solve the eigenvalue problem represented by (2.23) and (2.24) both numerically
and asymptotically. The numerical method is a shooting method based on ode15s of
Matlab. With an initial guess for c, which can be provided by the asymptotic solution,
we integrate (2.23) from y = 1 with ĥ′(1) = 0 to y = −1. The value of ĥ′(−1) then
serves as an error, which provides a correction to c to be reduced by means of Newton
iteration. Typical numerical results will be given in § 3. The asymptotic analysis provides
approximate analytical solutions for eigenvalues and eigenfunctions at large wavenumbers
k; details will be elaborated in § 4.

2.3. Mean-flow response and momentum conservation
We further explore the mean-flow response of the system to the instability, an important
aspect of nonlinearity. Through quadratic terms, the instability modifies the basic flow
and field profiles, which could potentially modify the instability. We will also study
the momentum conservation through the mean-flow responses, which can provide a
mechanism of the instability.

We extend (2.9) to the next order of ε to include the mean-flow modifications denoted
by �H, �U, �V , �A, �B and �B2:

h∗ = 1 + ε h(x, y, t) + ε2 �H( y, t), u∗ = U( y) + ε u(x, y, t) + ε2 �U( y, t),
(2.33a,b)

v∗ = ε v(x, y, t) + ε2 �V( y, t), A∗ = A( y) + ε a(x, y, t) + ε2 �A( y, t), (2.33c,d)

B1∗ = B( y) + ε b1(x, y, t) + ε2 �B( y, t), B2∗ = ε b2(x, y, t) + ε2 �B2( y, t).
(2.33e, f )

We will limit our attention to weak nonlinearity, so that the mean-flow response is
weak compared to the linear disturbances. The first harmonics of linear disturbances, the
exp(±2ik(x − ct)) waves are also present at order ε2, but are not of interest in our study.
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Critical-layer MHD instability

We denote the zonal average as

(· · · ) = k
2π

∫ 2π/k

0
(· · · ) dx. (2.34)

Spatial periodicity implies that the zonal average of linear disturbances and their
harmonics, as well as quadratic terms such as uux, are all zero. Substituting (2.33) into
(2.5), selecting the order ε2 terms and then taking the zonal average, we have

�B = −B �H − hb1 + ∂�A
∂y

, �B2 = −hb2. (2.35a,b)

Implementing the same procedure for (2.1), (2.2), (2.6) and (2.7), we obtain the mean-flow
equations

∂�H
∂t

+ ∂�V
∂y

+ (hv)y = 0, (2.36)

∂�U
∂t

+ vuy + �V U′ = ax(−ayy + hyB + 2hB′), (2.37)

∂�V
∂t

+ uvx + vvy = − 1
F2

∂�H
∂y

+ axx(hB − 2ay), (2.38)

∂�A
∂t

+ uax + vay + �V B = 0, (2.39)

�V = 0, at y = ±1. (2.40)

Note that the boundary condition for �A, i.e. ∂x�A = 0, is satisfied automatically since
�A is the zonal average independent of x.

For momentum conservation, substituting (2.33a,b) into (2.8a) and collecting the O(ε2)
terms, we have

dMw

dt
+ dMm

dt
= 0, (2.41)

where

Mw =
∫ 1

−1
hu dy, Mm =

∫ 1

−1
(�U + U �H) dy. (2.42a,b)

Following Hayashi & Young (1987), we refer to Mw and Mm as the ‘wave momentum’
and ‘mean momentum’, respectively, since the former is composed of linear disturbance
fields, while the latter are mean-flow modifications. It is straightforward to verify
that (2.11)–(2.15) and (2.36)–(2.40) guarantee (2.41). The conservation of energy and
cross-helicity may also be represented by the balance between the wave and mean
components in the same fashion. We will discuss these briefly in § 4.4.

Solving the mean-flow system (2.36)–(2.40) can be complicated in general, but we will
see that the instability is weak for the examples that we study, i.e. the growth rate ωi = kci
is of the order of 0.01 (cf. figure 2), and this allows us to make significant simplifications
and derive relatively compact results. In particular, since the mean-flow responses are
driven by terms that are quadratic in the linear disturbances, their time dependence is
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exp(2ωit). Hence in (2.36) and (2.38), the time derivatives of �H and �V ,

∂�H
∂t

= 2ωi �H,
∂�V
∂t

= 2ωi �V, (2.43a,b)

are small compared to terms in �H and �V without time derivatives. So we may neglect
the time derivative terms and find

�V = −hv,
∂�H
∂y

= −F2
[
axx(−hB + 2ay) + uvx + vvy

]
. (2.44a,b)

In (2.37) and (2.39), however, there are no terms in �U and �A without time derivatives,
so the quadratic terms drive ∂t�U and ∂t�A directly. Substituting in (2.44a), we find

∂�U
∂t

= vq + ax(−ayy + Bhy + 2B′h), (2.45)

∂�A
∂t

= −uax + v(−ay + Bh), (2.46)

where the PV q is defined in (2.31). Combining (2.46) and (2.35a), we find

∂�B
∂t

= (−uax − vay + Bvh)y, (2.47)

with O(ωi) terms again neglected. Mean-flow equations similar to (2.45) and (2.47)
have been derived by Gilman & Fox (1997) in spherical coordinates. When the field is
switched off, (2.45) becomes ∂t�U = vq, which is the classical result for the mean-flow
response in hydrodynamic flows (cf. Bühler 2014). In that case, q ≡ 0 rendered from PV
conservation in our linear shear flow would simply indicate no mean-flow response at all.
The magnetic field, however, breaks this simple state of affairs fundamentally, as we will
see subsequently.

From (2.43a), (2.44b) and (2.45), we can deduce that the time derivative of the mean
surface displacement ∂t�H is order O(ωi) smaller than that of the mean velocity ∂t�U,
hence we will neglect the former in the time derivative of the mean momentum and let

dMm

dt
=
∫ 1

−1

∂�U
∂t

dy. (2.48)

We will present the numerical solution of (2.45) and (2.47) in § 3 to show the
acceleration of mean velocity and field. We will also analyse the momentum conservation
(2.41) in § 4 to give a mechanism for the instability.

3. General results

In this section, we present typical numerical solutions of the eigenvalue problem, and give
general conclusions regarding the conditions for the instability. We use two basic flow
profiles to present concrete numerical results:

U = −y, B = 1
2 y( y + 1), (3.1a,b)

and
U = −y + 1

3 y2, B = 1
2 y( y + 1). (3.2a,b)

It is known that the basic-flow vorticity gradient −U′′ is responsible for hydrodynamic
critical-layer instabilities. In order to exclude these instabilities and demonstrate the
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Critical-layer MHD instability

U – c B

y y

–B –B

B
U – c

–1 –10 0

yB+

yB– yB–

yB+

(a) (b)

Figure 1. A sketch of the basic flow of (a) U = −y, B = y( y + 1)/2, and (b) U = −y + y2/3,
B = y( y + 1)/2, with two critical levels yB± for cr = 0.2. There is another critical level in (b) that is not

labelled.

impact of breaking PV conservation, in the first example we use a profile that has
U′′ = 0 everywhere. We will show that the magnetic field itself can induce a new kind
of instability. In the second example, we demonstrate how a non-zero U′′ affects the
instability. Given that the flow already has a critical-layer instability without the magnetic
field (cf. Balmforth 1999), we study how the field modifies it. A sketch of the two profiles
with the critical levels identified is shown in figure 1. The field is relatively weak between
y = −1 and y = 0, hence the radii in the semicircle rule (2.25) remain positive, which
retains the possibility for instability.

The numerical solutions of the dispersion relation for the basic state (3.1), i.e. linear U
and a parabolic B, are shown in figure 2. We plot the real part of the phase velocity cr
and the unstable growth rate ωi = kci versus the wavenumber k. The solid lines represent
normal mode solutions, while the dotted lines represent ‘quasi-modes’, which we will
explain later in more detail. We have plotted four modes: L1 and R1 represent the first
surface-gravity mode (cf. Balmforth 1999) localised near the left and right boundaries,
respectively (see figure 3 for the eigenfunctions of L1). Similarly, L2 and R2 represent
the second such modes. In figure 2(a), the dash-dot lines cr = 1 and cr = −2 are the
conditions that the critical level yB− is on the boundaries y = −1 and y = 1, respectively
(cf. figure 1a). In cr > 1 or cr < −2, modes have no critical level and they are neutral. In
the central region −2 < cr < 1, at least one critical level is inside the domain −1 < y < 1.
It is seen that the critical levels destroy most of the normal modes, turning them into
quasi-modes. On the segments of solid lines where the normal modes survive, they become
unstable, as indicated by the positive growth rates in figure 2(b). For L1 and L2, unstable
modes appear at cr ≈ 0, whereas for R1 and R2, they appear at cr ≈ 1. This is related to
the fact that for the profile of (3.1), when cr = 0 or cr = 1, the two critical levels coalesce
at y = 0 or y = −1 where B = 0 (cf. figure 1a). These instabilities are induced essentially
by the critical layers. Since U′′ ≡ 0, they are distinct from the hydrodynamic critical-layer
instabilities; the local magnetic field plays the crucial role in the destabilisation, as we
will elaborate subsequently. In figure 2(b), we also see two narrow peaks of unstable
growth rates, L1-R1 and L1-R2. They are the resonant instabilities induced by two modes
with nearly the same phase velocity, i.e. they correspond to the intersections of curves in
figure 2(a).

The eigenfunctions of ĥ, v̂, â and û for an L1 unstable mode at k = 3 are shown in
figure 3. As stated above, the wavelike structure is localised near the left boundary y = −1,
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L1 L2

R1
R2

0 2 4 6 8 10
–1.0

–0.5

0

0.5

1.0

1.5

2.0
(×10–2)

R1

R2

L1

L1-R1

L2

6 7 8 9
–8

–4

0

4
(×10–4)

R2

L2
L1-R2

cr

ωi

k

(a)

(b)

Figure 2. Numerical solution giving (a) cr and (b) the unstable growth rate ωi = kci, for the basic flow profile
U = −y, B = y( y + 1)/2 at F = 2. Solid lines represent normal modes governed by (2.23) and (2.24), and
dotted lines represent quasi-modes. ‘L1’ represents the ‘first’ mode localised near the ‘left’ boundary, and
similar definitions apply for the labelling of other modes. In (a), the dash-dot lines at cr = 1 and cr = −2
represent the conditions that critical level yB− is on the boundaries y = −1 and y = 1, respectively.

representing the surface-gravity mode there, and the two critical levels are close to each
other near y = 0. For v̂, â and û, there are very strong amplitude gradients in the critical
layer, and because it contains two adjacent critical levels interacting with each other, the
critical-layer flow is more distorted than those of hydrodynamic critical layers (see e.g.
Drazin & Reid 1982).

The dotted lines in figure 2 represent ‘quasi-modes’, being dotted to indicate that these
‘modes’ are not actual solutions to the eigenvalue problem, but arise only if we deform
the path of y into a contour in the complex plane between y = −1 and y = 1. By this
means, we obtain non-trivial solutions of (2.23) and (2.24), which are referred to as
quasi-modes. Such computations usually appear when we solve an initial-value problem
that involves integrals in y, the paths of which can be deformed in the complex plane. For
large times, a quasi-mode behaves like a decaying normal mode (the decay rates are shown
in figure 2b), but also involves the continuous spectrum. In the early stage, however, it can
contribute to transient algebraic growth under certain initial conditions (Balmforth, del
Castillo-Negrete & Young 1997). For detailed properties and behaviours of quasi-modes,
see Briggs, Daugherty & Levy (1970), Balmforth, Llewellyn Smith & Young (2001) and
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Critical-layer MHD instability

ĥ v̂

â û
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Im WKB
Re numerical
Im numerical

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–0.1 –0.05 0

–0.3

–0.2

–0.1

0

0.1

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0
–40

–20

0

20

40

yt
yB– yB+

y y

(a) (b)

(c) (d )

Figure 3. Eigenfunctions (a) ĥ, (b) v̂, (c) â and (d) û, for the unstable normal mode L1 of figure 2 at k = 3.
In (a) we have also plotted the Wentzel–Kramers–Brillouin (WKB) solution studied in § 4, which uses the
asymptotic eigenvalue and has been normalised by A = 1 in (4.6). The amplitude of the numerical solution is
chosen by fitting to the asymptotic solution in (a).

Turner & Gilbert (2007). We will explain briefly the formation of quasi-modes in our
problem, and our method to compute them, in § 4.3.

The dispersion relation for the basic state (3.2), i.e. parabolic profiles for both U and B,
is shown in figure 4. The general features are very similar to those in figure 2. The L1 and
L2 unstable modes are again located where cr is close to zero. However, we notice that
there is no longer any instability of the R1 and R2 modes. In addition, the growth rates of
the L1 and L2 modes have been enhanced significantly. These are essentially the effects of
U′′ in the critical layer, which we will elaborate later on. Since the basic velocity profile is
unstable itself, in figure 5 we plot the instability both with and without the magnetic field.
The purely hydrodynamic instability (red dashed curves) has a broader unstable waveband,
since there is no additional restriction for the critical-layer instability other than the sign
of U′′ (Balmforth 1999). Thus in the full system (blue curves), the magnetic field has the
effect of narrowing the unstable waveband and also seems to inhibit the resonant instability
significantly. However, the magnetic field enhances the largest growth rate of the L1 mode.

In summary, we see that when the magnetic field is present, the critical-layer instability
may arise only when the two critical levels are close to each other in one critical layer
where B ≈ 0. We will show this analytically in § 4.3 using the asymptotic analysis at large
k, and we find that the closeness is described by

|yB+ − yB−| �
√

π

k3

∣∣∣∣B′B′′ − U′U′′

U′2 − B′2

∣∣∣∣
y=yB

. (3.3)
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Figure 4. Numerical solution giving (a) cr and (b) the unstable growth rate ωi = kci, for the basic flow profile
U = −y + y2/3, B = y( y + 1)/2 at F = 2. Line styles and notations have the same meanings as in figure 2.

1 2 3 4 5 6 7 80
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3
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(×10–2)

B = 0

B = y( y + 1)/2

ωi

k
Figure 5. Growth rates of unstable L1 modes for U = −y + y2/3 with and without the magnetic field, for

F = 2.
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Critical-layer MHD instability

If the two critical levels are well separated, then the magnetic field is found to be stabilising
and even hydrodynamic instabilities are suppressed. Note that only the two critical levels
closest to the boundary where the surface-gravity mode is localised count. For example, for
figure 1(b), if we study the instability of the L1 and L2 modes, then we consider only yB+
and yB−, and we do not count the additional (unlabelled) critical level further away, since
disturbances are much weaker there (similarly to figure 3). Also note that the two critical
levels must come from each of U − c − B = 0 and U − c + B = 0; if both of them belong
to U − c − B = 0 (or both to U − c + B = 0), then the critical levels still have a stabilising
effect even if they are close to each other.

Our asymptotic analysis also indicates that once the two critical levels are close, the key
quantity that determines the instability is B′B′′ − U′U′′ in the critical layer. In particular,
for modes localised near the left boundary (i.e. L1, L2, etc.), the condition for instability
is that in the critical layer,

B′B′′ − U′U′′ > 0. (3.4)

By performing a rotation of the domain, the condition for the instability of the modes
localised near the right boundary is that in the critical layer,

B′B′′ − U′U′′ < 0. (3.5)

These conditions are generalisations of hydrodynamic critical-layer instabilities based on
the vorticity gradient −U′′ (Balmforth 1999; Riedinger & Gilbert 2014), and they can
well explain the numerical results that we just presented. For the profile of (3.1), B′B′′ −
U′U′′ = 1/2 at y = 0, so (3.4) is satisfied, and L1 and L2 are destabilised when the critical
levels are near y = 0. Similarly, B′B′′ − U′U′′ = −1/2 at y = −1, so (3.5) is satisfied, and
R1 and R2 are destabilised when the critical levels are near y = −1. Since U′′ = 0 for
this profile, it is the magnetic field that plays the key role in the destabilisation via the
current gradient J′ = −B′′. When we include curvature of U, in the profile (3.2), B′B′′ −
U′U′′ = 7/6 at y = 0, so unstable modes L1 and L2 again exist, but B′B′′ − U′U′′ = 11/18
at y = −1, which violates (3.5), so instability of the modes R1 and R2 no longer occurs, as
shown in figure 4. Once (3.4) or (3.5) is satisfied, the largest growth rate increases with the
value of |B′B′′ − U′U′′| in the critical layer if the unstable wavenumbers remain similar,
as we see in figures 2, 4 and 5 for the L1 modes. We note that our asymptotic analysis is
based on large k, but we find that for the conditions that we study, it still gives qualitatively
good results even when k is of the order of unity.

The numerical results for ∂t�U and ∂t�B from (2.45) and (2.47) for the unstable
mode of figure 3 are plotted in figure 6, normalised by the exponential growth exp(2ωit).
The mean-flow responses are strongly localised around the two critical levels. The flow
response �U generally exhibits two jets forced in opposite directions. The profile of �B
is a little different: it is extended in both directions at each critical level, which may
be understood as a result of stretching caused by the mean-flow jet, following Alfvén’s
theorem.

Another prominent feature of figure 6 is that there is almost no mean-flow or mean-field
response outside the critical layer: we find that the amplitudes of both are of magnitude
0.01 or smaller. In non-magnetic hydrodynamic mean-flow theory, ∂t�U ≈ 0 outside the
critical layer may be inferred from the ‘non-acceleration rule’ (which also applies when the
PV is not zero). This rule states that the mean-flow velocity is not accelerated if the waves
are steady and there is no dissipation (see Bühler 2014). Apparently, adding a streamwise
magnetic field does not change this in our problem. In Appendix B, we give a mathematical
proof that ∂t�U and ∂t�B are both zero outside the critical layer in the limit of neutral
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Figure 6. Mean-flow acceleration of (a) streamwise velocity and (b) magnetic field corresponding to the
unstable mode of figure 3.

stability, hence the use of analytical continuation implies ∂t�U and ∂t�B are of order ωi,
which is small. We note that in hydrodynamic wave–mean-flow interaction, the derivation
of the non-acceleration rule depends strongly on PV conservation, so it is a little surprising
that it still holds when the magnetic field breaks this conservation. Our mathematical
derivation in Appendix B shows that in each of the quadratic terms of (2.45)–(2.47), if the
wave is steady, i.e. ci = 0, then the two components of linear waves have phase difference
π/2, hence their product is still a wave with zero mean value. We do not have a deeper
physical explanation at present, nor can we extend this conclusion to more general flows.

The momentum conservation represented by (2.41) can provide an explanation for the
mechanism of the instability. As we see in figure 6, the mean-velocity acceleration ∂t�U is
very strong in the critical layer. We can show that its integral in y over the critical layer has
a non-trivial value, which represents a source of mean momentum Mm. Thus it drives the
exponential growth of the outer flow following the conservation of momentum. We will
demonstrate details of this mechanism in § 4.4, taking advantage of the large-wavenumber
asymptotics.

4. The asymptotic analysis

In order to better understand the instability and obtain conclusions for general
smooth profiles, we perform an asymptotic analysis at large wavenumbers. This allows
us to derive the instability criteria exhibited in § 3 analytically. We will combine
Wentzel–Kramers–Brillouin (WKB) solutions through the bulk of the flow and a local
analysis near the critical levels, highlighting the effects of the singularities, and then derive
an asymptotic solution for the eigenvalue c. The methodology is similar to Riedinger
& Gilbert’s (2014) analysis of shallow-water instability and Wang & Balmforth’s (2018)
analysis of strato-rotational instability, but here we have a more complicated critical layer
since there are two critical levels inside. We will also study the conservation law of
momentum in detail to provide a mechanism for the instability. We will study only the
instability induced by critical layers as the principal goal of this paper, though we note
that critical layers may also affect the resonant instability, a topic that we leave for further
research.
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Figure 7. Distribution of l2 for the mode of figure 3.

4.1. WKB solutions
We rewrite (2.23) as

ĥ′′ − [(U − c)2 − B2]′

(U − c)2 − B2 ĥ′ + l2ĥ = 0, (4.1)

where

l2 = −λ2 = −k2
{

1 − F2[(U − c)2 − B2]
}

. (4.2)

In the short-wavelength limit k 	 1, we have l, λ	 1, thus (4.1) has WKB solutions.
Since ci is a small number, we may assume c ≈ cr in (4.1) and (4.2), hence l2 and λ2 are
approximately real, as long as we are not close to the critical levels. The height field ĥ
is wavelike when l2 > 0 and evanescent when λ2 > 0; l and λ represent the approximate
wavenumber and the exponential decay rate, respectively.

We take the modes localised near the left boundary, i.e. L1 and L2 in figure 2, as an
example for the asymptotic analysis. The distribution of l2 for the eigenfunction of figure 3
is shown in figure 7. There is a turning point located at y = yt where l2 = 0. Hence ĥ is
wavelike in −1 < y < yt and evanescent in y > yt, which can also be seen in figure 3. The
two critical levels yB± are in the evanescent region. They render a thin critical layer where
the WKB solution fails. For convenience, we define their midpoint as

yB = yB+ + yB−
2

, (4.3)

representing the centre of the critical layer.
For general basic flow profiles, it is also necessary for the instability that l2 > 0 near

the boundary, so that ĥ is wavelike and the surface-gravity mode can exist. For modes
localised near the left boundary, this means

U − c >
√

B2 + F−2 or U − c < −
√

B2 + F−2, at y = −1. (4.4a,b)

It is also necessary that there is no critical level other than yB± between yB and y = −1
(otherwise that critical level would be the dominant one to determine the instability
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property and hence the subject to study). The continuous functions U( y) − c ± B( y) have
designated signs at y = −1 indicated by (4.4), but are nearly zero at y = yB, hence to
guarantee that they have no other zeros in between, the signs of their derivatives at y = yB
are also fixed; that is,

U′ ± B′ < 0 or U′ ± B′ > 0, at y = Re yB, (4.5a,b)

corresponding to (4.4a) and (4.4b), respectively. For either case, |U′| > |B′| at y = Re yB.
Whether the critical layer has (4.5a) or (4.5b) holding will determine the sign of Im yB±
(see (2.28)), and therefore results in a similar derivation with numerous sign changes. We
will use the combination of (4.4a) and (4.5a) for our derivation, which is the case for
figure 1. The other situation of (4.4b) and (4.5b) will be noted briefly, and in fact, the
resulting condition for instability is the same. The flow field in y > yB is not important
since the disturbance is weak there. There could be other turning points or critical levels
in y > yB, as long as they are not close to yB.

In y > yB, we consider the WKB solution of (4.1) that decays exponentially:

ĥ = A
√

(U − c)2 − B2

λ
exp

(
−
∫ y

yB

λ( y′) dy′
)

, (4.6)

where A is an arbitrary constant. In yt < y < yB, because of the critical layer, both
exponential solutions exist, and ĥ is expressed by

ĥ = A−ĥ−+A+ĥ+, (4.7)

where A− and A+ are constants, and ĥ− and ĥ+ are the exponentially decaying and
growing solutions, respectively:

ĥ± =
√

(U − c)2 − B2

λ
exp

(
±
∫ y

yB

λ( y′) dy′
)

. (4.8)

In −1 < y < yt, (4.7) is still applicable but we need to find the corresponding wavelike
solutions of ĥ− and ĥ+. Following the standard procedure to match across the turning
point yt via Airy functions (cf. Hinch 1991; Bender & Orszag 2013), we find

ĥ− = 2

√
(U − c)2 − B2

l
Ψ cos

[∫ y

yt

l( y′) dy′ + π

4

]
, (4.9a)

ĥ+ =
√

(U − c)2 − B2

l
1
Ψ

cos
[∫ y

yt

l( y′) dy′ − π

4

]
, (4.9b)

where

Ψ = exp
(∫ yB

yt

λ dy
)

(4.10)

represents the exponential gain (loss) of the amplitude of ĥ− (ĥ+) from yB to yt. We will
need to determine the relation between A, A− and A+ through analysis of the critical
layer that connects (4.6) and (4.7).
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Critical-layer MHD instability

4.2. Local solution in the critical layer
In the critical layer, we introduce a stretched coordinate

η = y − yB

δ
, δ = k−1 
 1, (4.11a,b)

based on the short-wave limit. To derive a local equation for (2.23), we Taylor expand
U − c ± B around their zeros yB±, then substitute in the local coordinate (4.11) and take
the leading two orders of δ. After some algebra, we arrive at the local equation

ĥηη +
(

γ − 2η

η2 − D2

)
ĥη − ĥ = 0, (4.12)

with the two parameters

D = yB+ − yB−
2δ

, γ = −δ
B′B′′ − U′U′′

B′2 − U′2

∣∣∣∣
y=yB

. (4.13a,b)

The quantity D represents a rescaled distance between the two critical levels that are
located at η = ±D in the local equation, hence we refer to D as the ‘separation parameter’.
The parameter γ is determined by the curvature of the profiles of the basic velocity and
magnetic field, and is therefore referred to as the ‘curvature parameter’. When the magnetic
field vanishes, the separation parameter is D = 0 and we recover the hydrodynamic critical
level at η = 0, with the curvature parameter γ determined by the vorticity gradient
Q′ = −U′′. When a magnetic field is involved, the current gradient J′ = −B′′ appears
on an equal footing. It should be noted that although the curvature parameter γ = O(δ)

is algebraically small, it plays a crucial role in the singularity and instability. This can
be understood easily for the hydrodynamic case D = 0: γ determines the strength of
the singularity at η = 0, and the singularity becomes removable if γ is absent. Similar
arguments have also been given by Riedinger & Gilbert (2014).

To provide the connection condition for the outer WKB solution, we consider the
behaviour of ĥ(η) in an intermediate regime y − yB = O(δ1/2), or η = O(δ−1/2). Applying
the method of dominant balance (Bender & Orszag 2013) to (4.12), we find

ĥ ∼
{

αη e−η, η = O(δ−1/2), η > 0,

α−(−η) e−η + α+(−η) eη, η = O(δ−1/2), η < 0,
(4.14a,b)

where α, α− and α+ are constants. For positive η, only the decaying solution is included
in accordance with the WKB solution. We will see that the key quantity that controls the
instability is

β = Im
(

α+
α−

)
, (4.15)

representing the phase difference between the growing and decaying amplitude for
negative η, and we will study its properties in detail. The relation between α− and α,
representing the amplitudes on two sides of the critical layer, is noted in Appendix A.

When D = 0, i.e. two critical levels overlap exactly, ĥ can be represented by confluent
hypergeometric functions, and we can derive the analytical connection condition. We can
show that under the condition (4.5a) and ci → 0+, in the limit of small γ = O(δ),

β|D=0 = π

2
γ. (4.16)

This result has been derived by Riedinger & Gilbert (2014) for hydrodynamic
shallow-water critical layers, but continues to apply when we include the field curvature
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in γ . Note that (4.16) is the leading-order solution for small γ ; a more precise solution for
finite γ is given in (A5c) in Appendix A. When D /= 0, we have not been able to derive the
connection formula analytically. Equation (4.12) may be converted to Heun’s equation (cf.
Arscott et al. 1995), but still, we have not been able to find analytical connection formulae
for Heun’s functions in the literature. Therefore, we will resort to numerical solutions of
(4.12).

There are some issues to which we should pay attention when solving the equation
numerically. First, we need to make sure that we select the correct branch when passing
the logarithmic branch points. The Frobenius solutions of (4.12) around η = ∓D are

ĥ = Cs±
[
1 + 1

2(η ± D)2 log(η ± D) + · · ·
]

+ Cr±
[
(η ± D)2

k2 + · · ·
]

, (4.17)

which are equivalent to (2.27). By definition, yB±, η, D and γ are all slightly complex due
the small growth rate ci. Our aim is to approach the limit ci → 0+ if numerically possible,
so as to draw parallel conclusions with the analytical relation (4.16). But we also need to
make sure that in (4.17) we select the same branch as (2.27) for the logarithm function,
and therefore we require that Im(η ± D) and Im( y − yB±) have the same sign. According
to (2.28), the quantities Im yB± are negative for an unstable mode if we prescribe the
condition (4.5a). So for convenience, we assume that D and γ are real but add a very
small positive imaginary part to η when integrating (4.12) numerically. In practice, we use
Im η = 10−6–10−8; using different values of Im η in this range does not affect the solution
for ĥ or β.

There is also a technical issue regarding the large |η| limits. The asymptotic behaviour
(4.14) becomes precise when |η| is very large, but numerically, α+(−η) eη becomes too
small compared to α−(−η) e−η for very large −η, and the value of the former may not
be stored precisely in ĥ within the usual numerical precision. To tackle this difficulty,
we develop a numerical method that separately computes the solution corresponding to
the limit of α+(−η) eη, based on shooting from both sides of the domain. Details of this
method are presented in Appendix A.

A sample solution for ĥ is given in figure 8(a): ĥ in general decays exponentially, but
becomes flat at the two critical levels, as predicted by the Frobenius solution (4.17). There
is a phase shift of the decaying amplitude across the critical layer, which is rendered by a
complex α−/α. The numerical solution for the key quantity β is shown in figure 8(b) in
solid curves, as a function of the separation parameter D and the curvature parameter γ . It
is seen clearly that β increases with γ , but decreases with D. In our subsequent analysis, we
are concerned about the situation where β is positive, as this is the condition that instability
may arise. When the two critical levels overlap, i.e. D = 0, our analytical solution (4.16)
indicates that the curvature parameter γ has to be positive for β to be positive, which is
also seen in the figure. When D /= 0, we found that the decrease of β with D can be well
fitted by a quadratic function

β ≈ β|D=0 − 2D2. (4.18)

The results of (4.18) are plotted in figure 8(b) in dashed lines. Hence a positive β requires
|D| to be relatively small. According to the value of β|D=0 provided by (4.16), we need
|D| � √

πγ /2.
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Figure 8. (a) The local solution of ĥ at D = 0.3, γ = 0.3, and (b) β as a function of D and γ for the condition
(4.5a). In (b), solid lines represent the numerical solution for β, and dashed lines show the results of the
empirical fitting (4.18).

4.3. Matching and eigenvalues
We take the limit y → yB for the WKB solutions (4.6) and (4.7), then match them to the
inner solution (4.14). This provides the connection conditions

A
α

=
√

k3

U′2
B − B′2

B
,

A−
A = α−

α
,

A+
A− = α+

α−
, Im

(A+
A−

)
= β. (4.19a–d)

Finally, we incorporate the boundary conditions to determine the eigenvalue c. For modes
localised near the left boundary, the eigenfunction ĥ has an exponential decay structure, so
its amplitude is much larger near the left boundary y = −1 than near the right boundary
y = 1. Therefore, the eigenvalue is primarily determined by the boundary condition at
y = −1, namely ĥ′(−1) = 0, which is

ĥ′
−(−1) + A+

A−
ĥ′
+(−1) = 0. (4.20)

Since |ĥ−| 	 |ĥ+| given Ψ 	 1, the dominant balance of (4.20) is

ĥ′
−(−1) = 0. (4.21)

Substituting in (4.9a) and taking the leading order in terms of l 	 1, we can derive an
integral dispersion relation∫ yt

−1
l( y′, cr) dy′ =

(
nπ − 3

4π
)

, n = 1, 2, . . . . (4.22)

Equation (4.22) implicitly determines c = cr, which is real. In the absence of a critical
layer, it determines the phase velocity of a neutral surface-gravity mode in the large
wavenumber limit. The integer n represents the index of the mode; i.e. L1 and L2 in
figure 2 correspond to n = 1 and n = 2.

The exponentially small ĥ+ in (4.20), however, can make c complex and render an
unstable flow. Suppose that including the ĥ+ term causes a small correction to the phase
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velocity: cr → cr + �c. Then from (4.20) and (4.21), we have

∂

∂c
ĥ′
−(−1)

∣∣∣∣
c=cr

�c + A+
A−

ĥ′
+(−1)

∣∣∣∣
c=cr

= 0. (4.23)

It is now apparent that Im(A+/A−) = β can generate an imaginary part ci of �c, which
demonstrates how the critical layer can make the flow unstable. Substituting (4.9a) into
(4.23), again taking the leading order of l, after some algebra we find

ci = − β

2Ψ 2
∫ yt

−1

(
∂l
∂c

)
c=cr

dy
,

∂l
∂c

= − kF2(U − c)√
F2[(U − c)2 − B2] − 1

. (4.24a,b)

As prescribed in (4.4a), U > cr near the left boundary y = −1, so an unstable mode ci >

0 requires β > 0. The WKB solution for ĥ is compared with the numerical solution in
figure 3(a). The asymptotic solutions of cr and ci for the dispersion relation of figure 4 are
plotted in figure 9. For both L1 and L2 modes, the asymptotic solution becomes inaccurate
for smaller k, because for negative cr, the additional critical level in figure 1(b) moves
close to yB±, and all critical levels may disappear. These effects are not included in the
asymptotic analysis, and make the error of ci very sensitive to the error of cr. But overall,
the asymptotic analysis for k 	 1 gives qualitatively good predictions to the eigenfunction
and the eigenvalue, and in fact, it still works well when k is of the order of unity, as we see
in figure 9.

Hence the crucial condition that the critical layer destabilises the mode localised near
the left boundary is β > 0, for the situation under the conditions (4.4a) and (4.5a). As
shown in figure 8, a positive β requires two conditions: the curvature parameter γ should
be positive and the separation parameter D should be relatively small. The first condition
requires that the curvature of the profiles of the basic velocity and field have designated
signs in the critical layer, that is

B′B′′ − U′U′′ > 0, at y = yB. (4.25)

The second condition, on the other hand, requires that the two critical levels should be
close to each other:

|yB+ − yB−| �
√

πγ

k
(4.26)

approximately from (4.18). It is straightforward to check that for the case of fields satisfying
(4.4b) and (4.5b), the condition for the critical layer to destabilise the mode near the left
boundary is the same. We need to pay attention only to the fact that in this case, U − cr < 0
in (4.24), but we replace β by −β in (4.16) and figure 8(b), a consequence of the sign of
Im yB± reversing (see (2.28)). From (4.13b), (4.16), (4.18) and (4.24), we also see that
the maximum value of the growth rate is proportional to γ if the other quantities in (4.24)
remain similar, thus the growth rate is positively correlated with the value of B′B′′ − U′U′′
in the critical layer. The conditions and properties of the instability exhibited in § 3 are
therefore derived analytically.

If ci predicted by (4.24) becomes negative, then it does not represent a decaying
normal mode. This is because ci < 0 implies Im η < 0, which is inconsistent with our
choice of Im η → 0+ in the critical layer based on the prescription of ci > 0 (cf. (2.28),
(4.11), (4.17) and related discussion). In such situations, the normal mode cannot exist:
it is destroyed by the critical layer. In the setting of an initial-value problem, however,

943 A24-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

42
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.424


Critical-layer MHD instability

–0.5

0

0.5

L1
L2

0

0.5

1.0

1.5

2.0

2.5

3.0
(×10–2)

L1

1 2 3 4 5 6 7

1.5 2.0 2.5 3.0 3.5 4.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

0.2

0.4

0.6

0.8

1.0
(×10–3)

L2

cr

ci

k

k k

(a)

(b) (c)

Figure 9. Comparison between the numerical solution (solid lines) and asymptotic solution (dashed lines) for
cr and ci for the dispersion relation in figure 4. Dotted lines for ci are the solutions predicted by momentum
conservation in (4.37).

the solution of the Laplace-transformed variable involves integrals in y, and one may
deform the integral contour in the complex plane (Briggs et al. 1970). If we choose
Im y > Im yB± > 0 on the contour, then Im η is still positive even when ci < 0. In this
way, we may recover the solution to the eigenvalue problem (2.23) and (2.24) for complex
y, which is the quasi-mode to which we referred earlier in § 3. For the numerical solution
of the quasi-modes shown in figures 2 and 4, we have applied the shooting method on the
complex contour:

y = w + iα(1 − w2), −1 < w < 1, α > 0, α, w real, (4.27)

which is an arc connecting y = −1 and y = 1 in the complex plane with Im y > 0. For the
theoretical foundations of recovering quasi-modes from initial value problems, see Briggs
et al. (1970).

4.4. Implications of momentum conservation
Finally, we study the momentum conservation in (2.41) to provide a mechanism for
the critical-layer instability in this system. In studies of hydrodynamic instabilities, the
conservation law has been used to represent the signature of different types of instabilities.
For example: Rayleigh’s instability features the conservation of mean momentum Mm
(Bühler 2014); the resonance instability of shallow-water flows with linear shear velocities
features the cancellation of wave momentum Mw with opposite signs (Balmforth et al.
1997); and the critical-layer instability of shallow-water flows features a balance between
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the wave momentum Mw and the mean momentum Mm (Balmforth et al. 1997; Riedinger
& Gilbert 2014).

The wave momentum is determined by the global structure of the unstable mode:

Mw = 2M̂w e2ωit, M̂w =
∫ 1

−1

1
2(ĥû∗ + ûĥ∗) dy. (4.28a,b)

Although û is locally strong in the critical layer, because the critical layer is too thin,
ĥû∗ + ûĥ∗ is still not strong enough to give a significant contribution to the integral from
the critical layer. Outside the critical layer, the exponential decay of the eigenfunctions
implies that the main contribution to the integral comes from the region y ∈ [−1, yt].
Hence in the large-k limit, using (2.22) and (2.23), one can derive that

M̂w � −
∫ yt

−1

U − cr

F2[(U − cr)2 − B2]
|ĥ|2 dy. (4.29)

Given conditions (4.4a) and (4.5a), we have M̂w < 0, and hence for an unstable mode,
dMw

dt
= 4ωiM̂w e2ωit < 0. (4.30)

For the mean-flow momentum, we have found that the value of ∂t�U is at O(k−1ωi|v̂|2)
outside the critical layer, which is O(k−1) smaller compared to the wave momentum in
the large-k limit. Details of the computation are given in Appendix B. Hence it is the
critical-layer mean-flow acceleration that balances the wave momentum, which is the
same as for hydrodynamic shallow-water instabilities (Balmforth et al. 1997; Riedinger
& Gilbert 2014). Let Δ be half of the critical-layer thickness; then we choose Δ = O(δ1/2)

as we did in (4.14). Substituting (2.45), (2.31) and (2.11) into (2.48), we derive

dMm

dt
�
∫ yB+Δ

yB−Δ

∂�U
∂t

dy

=
∫ yB+Δ

yB−Δ

[
−(uv)y + U′vh − u(ht + Uhx) − (axay)y + ax(Bhy + 2B′h)

]
dy.

(4.31)

From the Frobenius solutions (2.27) or (2.29), together with (2.22), one can show that
the dominant terms of (4.31) are −(vu)y and −(axay)y, and other terms that involve the
surface displacement h are much smaller. Therefore,

dMm

dt
� − (uv + axay)

∣∣∣∣
yB+Δ

yB−Δ

. (4.32)

Equation (4.32) indicates that the mean-flow response is determined by the jump of
Reynolds stress uv and Maxwell stress axay across the critical layer, and it extends the
result of the mean-flow response of hydrodynamic critical layers determined by the jump
of the Reynolds stress (for example, Killworth & McIntyre 1985; Booker & Bretherton
1967). At the edge of the critical layer yB ± Δ, using (2.22) with δ 
 Δ 
 1, we can
show that the following relation holds:

axay � −
(

B′
B

U′
B

)2

uv. (4.33)

So the Maxwell stress has the opposite sign to the Reynolds stress, similar to what was
found by Gilman & Fox (1997), and given |B′

B| < |U′
B| in our problem (see (4.5a)), the
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Critical-layer MHD instability

former is weaker. We note that we should not interpret the Maxwell stress as the overall
effect of the magnetic field, because the Reynolds stress is also controlled by the value of
B′B′′ − U′U′′ in the critical layer.

To find the value of dtMm, we first substitute the normal mode solution, (2.16) and (2.22),
into (4.32) to represent it in terms of ĥ: in the limit of large k,

dMm

dt
� e2ωit

[
2 Im(ĥ

′∗ĥ′′)
k3F4 |(U − c)2 − B2|

]∣∣∣∣∣
yB+Δ

yB−Δ

. (4.34)

Then we use the asymptotic solution (4.14) to compute the value of ĥ at yB ± Δ. Using
the property that Dδ 
 Δ 
 1 and the relations in (4.19), after some algebra, we derive a
compact result in terms of β:

dMm

dt
� 4e2ωit |A−|2β

kF4 . (4.35)

When the magnetic field is switched off, from (2.22b), (4.16), (4.19) and (A5b), together
with ĥ|η=0 = α for the local solution, a property of the relevant confluent hypergeometric
function, it can be shown that (4.35) reduces to

dMm

dt
� e2ωit 2π|v̂c|2U′′

c

k|U′
c|

, (4.36)

where now we use the subscript c to represent the hydrodynamic critical level yc. Equation
(4.36) is the classical result for the mean-flow momentum forced in the critical layer (Miles
1957; Vekstein 1998; Balmforth 1999; Riedinger & Gilbert 2014), with the important
implication that its value is proportional to the local vorticity gradient −U′′

c . So again, we
have generalised this result to MHD flows through use of the phase difference parameter β.
To balance dtMw < 0, (4.35) should be positive, which again requires β > 0. The balance
between (4.30) and (4.35) yields another expression for ci:

ci = − |A−|2β
k2F4M̂w

. (4.37)

Therefore, momentum conservation indicates that the exponential growth of the wave
momentum is driven by the mean-flow acceleration in the critical layer, and this serves
as a mechanism for the instability. The result of (4.37) is also plotted in figures 9(b,c)
using dotted lines, again giving qualitatively good predictions. Note that here we are using
the precise numerical solutions of cr for the computation of (4.37), and that is why it is
much more precise than the results of (4.24) at smaller wavenumbers.

If we study the conservation law of the energy E and cross-helicity W shown in (2.8b,c),
then under the assumption of small Δ and ωi, we can derive that the contributions of the
critical layer to their mean components are

dEm,B

dt
= UB

∫ yB+Δ

yB−Δ

∂�U
∂t

dy + BB

∫ yB+Δ

yB−Δ

∂�B
∂t

dy, (4.38)

dWm,B

dt
= UB

∫ yB+Δ

yB−Δ

∂�B
∂t

dy + BB

∫ yB+Δ

yB−Δ

∂�U
∂t

dy. (4.39)
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For the integral of the mean-field time derivative ∂t�B, according to (2.46) and (2.47),∫ yB+Δ

yB−Δ

∂�B
∂t

dy = ∂�A
∂t

∣∣∣∣
yB+Δ

yB−Δ

, (4.40)

but we show in (B2) that the value of ∂t�A = 0 is nearly zero outside the critical layer, so
the value of (4.40) is negligible. In our problem, BB ≈ 0 in the critical layer (the condition
for the two critical levels to be close), so the mean cross-helicity generated in the critical
layer given by (4.39) is negligible. Similarly, our basic flow also has UB ≈ 0 for the L
modes, so the mean energy in the critical layer is also negligible. Hence in conclusion,
in the conservation laws of energy and cross-helicity, the critical layer does not provide
a source of mean-flow components that drives the growth of the outer flow. Instead, the
conservation is achieved by the cancellation of various wave and mean components outside
the critical layer. We will not investigate these balances further in this paper.

5. Conclusions and remarks

In this paper, we have studied the linear instability of shallow-water flow with a magnetic
field parallel to the basic-flow velocity. We have combined an asymptotic analysis in the
short-wavelength limit and a numerical shooting method to solve the instability problem.
We paid special attention to the magnetic critical levels, which are located where the
Doppler-shifted velocity matches the Alfvén wave velocity, i.e. where c − U( y) = ±B( y)
in our dimensionless system. The critical levels appear as singularities for neutral modes,
and generate pronounced wave amplitudes and mean-flow responses in their vicinity,
namely in the critical layers. We have shown that when two critical levels are close to
each other, they may induce an instability. If the two critical levels are separated, then the
magnetic field has a strong stabilising effect.

The centrepiece of our analysis is a local equation for the critical layer, which has two
parameters: a ‘separation parameter’ D, which represents a rescaled distance between two
critical levels, and a ‘curvature parameter’ γ , representing a combination of the curvature
of the field and velocity profile. We have shown that the critical-layer instability may be
generated if D is sufficiently small and γ has a designated sign. These conditions may
be used to study the instability of generalised profiles of velocity U( y) and field B( y). In
order for the instability to happen, B( y) needs to be very weak somewhere, the simplest
case being where B( y) passes through zero, and then the two critical levels can both reside
there, close to each other. As for the profile curvature, the requirement is that the value
of B′B′′ − U′U′′ in the critical layer should be positive (negative) if the critical layer is
to destabilise a surface-gravity mode localised near the left boundary at y = −1 (the right
boundary at y = 1). This result generalises that for hydrodynamic instabilities based on the
vorticity gradient −U′′, bringing in the electric current gradient −B′′ on an equal footing.
If these conditions are satisfied, then provided that the surface-gravity mode localised
on the boundary exists and there are no other critical levels closer to the boundary, the
critical-layer instability will arise.

We have explained the mechanism of the instability via the conservation of momentum,
following the framework of Hayashi & Young (1987). There is a balance between
the ‘mean momentum’, which consists of the mean-flow modifications, and the ‘wave
momentum’, which combines surface displacements and velocities of linear waves. We
demonstrate that the critical layer produces a finite amount of mean momentum, which
drives the exponential growth of the wave momentum and makes the flow unstable. This
mechanism is similar to the critical-layer instability of hydrodynamic shallow-water shear
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flows (Balmforth 1999; Riedinger & Gilbert 2014), but we note the importance of the
magnetic field: the Maxwell stress forces the mean-flow response on an equal footing to
the Reynolds stress, and the mean-flow momentum in the critical layer is again controlled
by the local value of B′B′′ − U′U′′ in the critical layer.

The magnetic field can play a fundamental role in destabilising the flow, so the
critical-layer instability reported here is different from the shallow-water MHD instability
studied by Mak et al. (2016), which is driven primarily by the hydrodynamic shear.
The instability here is also quite different from the field-induced instabilities in
two-dimensional shear flows reported in previous studies (Stern 1963; Kent 1968; Chen
& Morrison 1991; Tatsuno & Dorland 2006; Lecoanet et al. 2010; Heifetz et al. 2015)
owing to the free surface in our problem. The analytical studies of these instabilities
(Stern 1963; Kent 1968; Chen & Morrison 1991) were undertaken in the limit of zero
wavenumber, and as the numerical solutions of Tatsuno & Dorland (2006), Lecoanet et al.
(2010) and Heifetz et al. (2015) confirm, the instability exists when the wavenumbers are
small. Our instability, on the other hand, exists for large wavenumbers, which is the feature
of the surface-gravity mode. Also, for the numerical studies in these papers, the symmetry
of the unstable modes makes the mean-flow modifications anti-symmetric; hence the
mean-flow modifications in the two critical layers cancel each other and cannot drive
an instability. Momentum conservation in their problems involves only the mean-flow
momentum, unlike the balance between the wave momentum and mean momentum in
our case.

The magnetic critical layers have also been shown to play important roles in the
instability of fluids in spherical geometry: Gilman & Fox (1997, 1999) and Dikpati &
Gilman (1999) have studied the instability of fluid in a thin spherical shell with toroidal
magnetic field, and they found an energy reservoir for the instability, concentrated around
the critical layers. These instabilities have quite a different nature from the instability that
we study here: they can arise in the absence of a free surface, so the ‘wave momentum’
that serves as a fundamental element in our instability mechanism does not exist there. In
a forthcoming paper, we will show that the instability is strongly related to the spherical
geometry of the flow. In particular, the global structure of the unstable mode features a
pattern of tilted basic toroidal field (cf. Cally 2001; Cally et al. 2003), and we have found
that its interaction with the critical layer drives the instability.

The strong amplitudes in the critical layers suggest that the effects of nonlinearity and
diffusion may also be important. Shukhman (1998a,b) has constructed weakly nonlinear
theories for the evolution of magnetic critical layers, which we may adopt to extend the
study in the present paper.
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Appendix A. Numerical method to compute the connection condition

In this appendix, we give an effective numerical method to compute the connection
formula for (4.14). To obtain the precise values of α− and β, we first set out a more
accurate version of (4.14) by including the effect of small γ and going to one order higher
in η−1:

ĥ ∼ αηs− er−η

(
1 + d−

η

)
, η → +∞, (A1)

and for η < 0, we define

ĥ = α−Ĥ−+α+Ĥ+, (A2)

Ĥ−∼(−η)s− er−η

(
1 + d−

η

)
, Ĥ+∼(−η)s+ er+η

(
1 + d+

η

)
, η → −∞, (A3a,b)

where s±, r± and d± are constants:

r± = ±
√

γ 2 + 4
2

− γ

2
, s± = 1 ∓ γ√

γ 2 + 4
, d± = s−(s− − 3)

−(s− − 1)(γ + 2r−) + 2r−
.

(A4a–c)
When D = 0, the analytical connection condition under (4.5a) and ci → 0+ is

α+
α

∣∣∣
D=0

= −(γ 2 + 4)(s+−s−)/2 Γ (−s+)

Γ (−s−)
,

α−
α

∣∣∣
D=0

= eiπs−,

β|D=0 = (γ 2 + 4)(s+−s−)/2 sin(πs−)
Γ (−s+)

Γ (−s−)
, (A5a–c)

where Γ represents the Gamma function. Equation (4.16) is the γ → 0 limit of (A5c).
As discussed in § 4.2, we consider the limit Im η → 0+, so that Ĥ− and Ĥ+ are real

functions as long as η < −D. We first shoot from η = R given by (A1) to η = −R for
a large positive number R ∼ 20, and find ĥ|η=−R . Since Ĥ− 	 Ĥ+ at η = −R, we can
neglect α+Ĥ+ in (A2) and compute α− from

α−= ĥ|η=−R

Rs− e−r−R (1 − d−/R)
. (A6)

Our numerical results indicate that for all of the parameters that we have considered, up
to our numerical precision, α−/α is independent of the separation parameter D, and is
therefore identical to the analytical relation (A5b) at D = 0. This means that for the same
curvature parameter γ , the exponential decay behaviour of ĥ as |η| → ∞ does not depend
on the distance between the two critical levels. While the evidence clearly shows that this
holds, we have not been able to find an analytical justification.

We then choose a location ηm with ηm < −D but ηm = O(1), such that at η = ηm, Ĥ−
and Ĥ+ are of the same order of magnitude, and ĥ therefore contains sufficient information
about α+Ĥ+. We record ĥ|η=ηm from the previous shooting, and then do a second shooting
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for Ĥ+ from η = −R given by (A3b) to η = ηm, and find H+|η=ηm . We rewrite (A2) as

α+
α−

= ĥ

α−Ĥ+
− Ĥ−

Ĥ+
. (A7)

We evaluate (A7) at η = ηm and can take its imaginary part, giving

β = Im
(

α+
α−

)
= Im

(
ĥ

α−Ĥ+

)∣∣∣∣∣
η=ηm

, (A8)

from which we can compute the numerical value of β. We have compared the results
of (A6) and (A8) against the analytical solution (A5b,c) at D = 0, and found that the
numerical error is smaller than 0.5 %. It is also apparent that we cannot find Re(α+/α−)

by this method due to the Ĥ−/Ĥ+ term in (A7), but it is unimportant for the instability.

Appendix B. Mean-flow response outside the critical layer

In this appendix, we prove that outside the critical layer, ∂t�U and ∂t�B are zero in the
limit of neutral stability ωi = 0. We also discuss briefly ∂t�U for small ωi in the large-k
limit.

Substituting the normal mode (2.16) into (2.32), (2.45) and (2.46), we have

∂�U
∂t

= − |v̂|2Q′

ik(U − c)
+ v̂∗

U − c

[
k2Bâ − (Bâ′ − Bâ − B2ĥ)′

]
+ ikâ∗(â′′ − Bĥ′ − 2B′ĥ) + c.c., (B1)

∂�A
∂t

= −
(

ikû∗â + v̂∗â′ − Bv̂∗ĥ
)

e2ωit + c.c. (B2)

Using the relations in (2.22) and (2.23), one can show that if c is real, then most of the
terms in (B1) and (B2) cancel out after adding the complex conjugates, and what is left
can be represented by real functions of U and B multiplying

Im(ĥ∗ĥ′) = ĥrĥ′
i − ĥiĥ′

r. (B3)

When c is real, (2.23) is a real equation, so ĥr and ĥi are both its solutions. Therefore, (B3)
is the Wronskian of (2.23), which according to Abel’s identity is

Im(ĥ∗ĥ′) = C exp
(∫

2[(U − c)U′ − BB′]
(U − c)2 − B2 dy

)
= C[(U − c)2 − B2], (B4)

for some constant C. But according to the boundary condition ĥ′ = 0 on both boundaries,
(B4) must be zero, hence the mean-flow responses are zero when c is real. Note that this
calculation fails when we approach the critical levels, because the functions multiplying
(B3) become singular.

If ci is a small number, then both ∂t�U and ∂t�A are at O(ci) by analytical continuation.
When k is large, more analytical insight is available for ∂t�U outside the critical layer.
Using (2.22) and (2.23), we can find the largest terms in (B1) and compute them:

v̂∗

U − c
k2Bâ + c.c. = −ωi|v̂|2

[
4B2

(U − cr)3 + O(ci)

]
, (B5)
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v̂∗

U − c
B2ĥ′ − ikâ∗Bĥ′ + c.c. = ωi|v̂|2

{
4B2F2 [(U − cr)

2 − B2]
(U − cr)3 + O(ci)

}
, (B6)

− v̂∗

U − c
Bâ′′ + ikâ∗â′′ + c.c. = ωi|v̂|2

{
4B2 {1 − F2 [(U − cr)

2 − B2]}
(U − cr)3

+ O
(

1
k

)
+ O(ci)

}
. (B7)

Interestingly, the sum of (B5)–(B7) completely cancels out to leading order, leaving ∂t�U
to be at order O(k−1ωi|v̂|2), which is O(k−1) of the wave-momentum acceleration given
by (4.30). We believe that there should be a deeper underlying reason for this surprising
cancellation.
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