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The development of an implicit, unconditionally stable, numerical method for solving
the Vlasov–Poisson system in one dimension using a phase-space grid is presented. The
algorithm uses the Crank–Nicolson discretization scheme and operator splitting allowing
for direct solution of the finite difference equations. This method exactly conserves
particle number, enstrophy and momentum. A variant of the algorithm which does not
use splitting also exactly conserves energy but requires the use of iterative solvers. This
algorithm has no dissipation and thus fine-scale variations can lead to oscillations and the
production of negative values of the distribution function. We find that overall, the effects
of negative values of the distribution function are relatively benign. We consider a variety
of test cases that have been used extensively in the literature where numerical results
can be compared with analytical solutions or growth rates. We examine higher-order
differencing and construct higher-order temporal updates using standard composition
methods.
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1. Introduction

Detailed understanding and quantitative predictions relating to kinetic processes in
plasma is only accessible computationally. Particle-in-cell methods (Birdsall & Langdon
1991) are widely used and are computationally efficient but there is evidence that
they are inappropriate when high phase-space fidelity is required (Esarey et al. 2007;
Cormier-Michel et al. 2008; Cowan et al. 2012; Shadwick, Stamm & Evstatiev 2014;
Camporeale et al. 2016). Alternatively, phase-space methods can be employed to solve
the Vlasov equation directly. This approach is noiseless, in principle, and can thus be
of great interest where high accuracy is needed. However, Vlasov dynamics generically
results in filamentation (van Kampen 1955; Krall & Trivelpiece 1973) which occurs
when the characteristics of the Vlasov equation swirl around one another in phase
space. This process, which leads to sharp gradients in phase space, presents significant
computational challenges; most seriously the production of negative values for the
distribution function (Cheng & Knorr 1976). An accurate treatment of the phase-space
dynamics is of fundamental importance to a broad range of relativistic plasma physics
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topics including laser-based particle accelerators and radiation sources (Murakami et al.
2008; Esarey, Schroeder & Leemans 2009; Cipiccia et al. 2011). For applications relating
to plasma-based accelerators, the use of a comoving coordinate system results in a
naturally slow evolution of the laser field (much longer then the plasma period) and
implicit methods can be many orders of magnitude faster than explicit ones (Reyes &
Shadwick 2013). In the long-time evolution of a plasma, collisional effects will ultimately
play a role, causing the dynamics to depart from that of the ideal Vlasov system. However,
there are circumstances, for example, ultrafast laser–plasma interaction as encountered in
plasma accelerators (Esarey et al. 2009), where the time scale for collisions to become
important is much longer than the time scale of interest. In such cases, considering the
ideal system is appropriate and thus numerical methods that preserve the structure of the
ideal system are of importance.

With this in mind, here we wish to study implicit methods for the one-dimensional, non-
relativistic Vlasov–Poisson system that can be readily extended to the multidimensional,
electromagnetic, relativistic case. We focus on the Vlasov–Poisson system for simplicity,
computational convenience and ready comparison of numerical performance with the
existing literature. While semi-Lagrangian methods (Cheng & Knorr 1976; Fijalkow 1999;
Sonnendrücker et al. 1999; Mangeney et al. 2002; Crouseilles et al. 2008a,b; Shoucri
2008; Califano & Mangeney 2010) are widely used for non-relativistic studies, in the
relativistic regime they become implicit (due to the relativistic factor γ ) and require
employing iterative methods (Shoucri 2008). Thus we are led to consider finite-difference
methods on a phase-space grid. Various finite difference discretizations, both conservative
and non-conservative, with a variety of conservation properties have previously been
studied (see Arber & Vann (2002) and Filbet & Sonnendrücker (2003) for an overview
of existing methods). Arber & Vann (2002) consider a wide range of methods using
various forms of flux correction to enforce positivity while Filbet & Sonnendrücker (2003)
used central differences but enforced positivity by limiting filamentation by imposing
a collision operator. In both instances, the conservation properties of the differencing
schemes are altered by the methods used to enforce positivity of the distribution function.
In addition, these methods are not time reversible so a path to higher temporal order
is unclear. More recently implicit methods have been developed to conserve charge,
momentum and energy (Taitano & Chacón 2015). There the conservation properties are
tied to the residual of the nonlinear solver, and time advance appears to be non-reversible.
Furthermore, the simultaneous conservation of particle number, momentum and energy
are enforced using a nonlinear constraint as it does not arise naturally from the
discretization.

In this work, we are specifically interested in methods that can be readily extended to
higher order in both time and phase space as a means to moderate the computational
cost of solving the Vlasov equation. For algorithms that are time reversible, composition
methods (Suzuki 1990; Yoshida 1990; Suzuki & Umeno 1993; McLachlan 1995; Hairer,
Lubich & Wanner 2002) can be used to construct algorithms that are higher order in
time. We will see that using central difference approximations for phase-space derivatives
lead to conservation of particle number, momentum and enstrophy with exact energy
conservation possible for a particular time advance. As we will see, the conservation
properties depend only on the central nature of the finite differences and thus hold for
any order approximation.

We consider the Vlasov–Poisson system on a two-dimensional phase space for a mobile
species of charge q and mass m. For simplicity we assume a static, uniform, neutralizing
background with density n0. The distribution function, f , for the mobile species then
satisfies

https://doi.org/10.1017/S0022377821001124 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001124


A time-implicit algorithm for the Vlasov–Poisson system 3

∂f
∂t

+ v
∂f
∂x

+ q
m

E
∂f
∂v

= 0, (1.1a)

where E = −∂Φ/∂x is the electric field and Φ the potential, which is determined through
Poisson’s equation,

∂2Φ

∂x2
= −4πρ = 4πq

(
n0 −

∫
f dv

)
. (1.1b)

We assume the spatial domain is periodic and take the average value of Φ to be zero and
assume f → 0 as |v| → ∞. The energy of the system is given by

1
2

m
∫

dx dv v2f + 1
8π

∫
dxE2 = 1

2
m
∫

dx dv v2f − 1
8π

∫
dxΦ

∂2

∂x2
Φ, (1.2)

where we have integrated by parts in the last term. It is well known that this system
possesses an infinity of Casimir invariants of the form

∫
dx dv C( f ), for any function C.

2. Phase-space discretization

Here we consider a purely Eulerian numerical solution of (1.1), that is, we will solve
(1.1) on a phase-space grid without recourse to characteristics. We construct a regular,
uniform grid of points (xk, vj) over phase space of size Nx × Nv with xk = x1 + (k − 1)�x,
k = 1, . . . , Nx where �x = (xNx − x1)/(Nx − 1) and vj = v1 + (j − 1)�v, j = 1, . . . , Nv

where �v = (vNv
− v1)/(Nv − 1). Periodicity in x is imposed by identifying xNx + �x

with x1 and consequently x1 − �x with xNx . The periodicity length, L, of the spatial domain
is then L = xNx + �x − x1 and �x = L/Nx. The velocity grid is assumed to contain the
support of f , thus we take f (x, v1 − �v, t) = 0 = f (x, vNv

+ �v, t). We first consider
discretizing phase space while leaving time continuous. Approximating the phase-space
derivatives by second-order central difference expressions, we have

ḟkj +
vj

2�x

(
fk+1j − fk−1j

)+ q
m

1
2�v

Ek
(
fkj+1 − fkj−1

) = 0 (2.1a)

and
Nx∑

l=1

KklΦl = 4πq

⎡
⎣n0 − �v

Nv∑
j=1

fkj

⎤
⎦ , (2.1b)

where fkj(t) is the numerical approximation to f (xk, vj, t), the dot signifies differentiation
with respect to t, Ek = (Φk−1 − Φk+1)/(2�x), Φk is the numerical approximation to Φ(xk)
and

Kkl = δkl+1 − 2δkl + δkl−1

�x2
(2.2)

is a second-order accurate approximation to second spatial derivative. To keep the
subsequent algebra manageable, it is convenient to define

Skj(f ) = vj

2�x

(
fk+1j − fk−1j

)
(2.3)

and

Vkj(f , E) = q
m

1
2�v

Ek
(
fkj+1 − fkj−1

)
, (2.4)
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which allows us to write (2.1a) as

ḟkj + Skj(f ) + Vkj(f , E) = 0. (2.1a′)

This discretization has also been applied to the relativistic Vlasov–Maxwell system
(Shiroto, Ohnishi & Sentoku 2019).

All of the invariants of (1.1) will have analogues in (2.1), consistent with the
second-order accuracy of the phase-space discretization, that is, although time remains
continuous, we cannot expect invariants of (2.1) to be constant beyond O(�x2) + O(�v2).
There are four invariants that survive phase-space discretization: particle number,

N = �x�v

Nx∑
k=1

Nv∑
j=1

fkj; (2.5)

momentum,

P = m�x�v

Nx∑
k=1

Nv∑
j=1

vjfkj; (2.6)

energy,

E = 1
2

m�x�v

Nx∑
k=1

Nv∑
j=1

v2
j fkj −

�x
8π

Nx∑
k,l=1

ΦkKklΦl; (2.7)

and enstrophy

F = �x�v

Nx∑
k=1

Nv∑
j=1

f 2
kj. (2.8)

Armed with a collection of identities, (A2)–(A13), demonstrating the invariance of these
quantities is relatively straightforward. Consider

dN

dt
= �x�v

Nx∑
k=1

Nv∑
j=1

ḟkj = −�x�v

Nx∑
k=1

Nv∑
j=1

[
Skj(f ) + Vkj(f , E)

] = 0, (2.9)

where the last step follows from (A2) and (A7) and the assumption that the computational
domain is large enough that no particle flux reaches the boundary of the velocity domain.
Now

dP

dt
= m�x�v

Nx∑
k=1

Nv∑
j=1

vjḟkj

= −�x�v

⎡
⎣ Nv∑

j=1

vj

Nx∑
k=1

Skj(f ) +
Nx∑

k=1

Nv∑
j=1

vjVkj(f , E)

⎤
⎦

= − q
m

�x�v

Nx∑
k=1

Nv∑
j=1

Ekfkj, (2.10)
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where we have used (A2) and (A9) and we have assumed no momentum flux reaches the
boundary of the velocity domain. From Poisson’s equation, we have

�v

Nv∑
j=1

fkj = n0 − 1
4πq

Nx∑
l=1

KklΦl (2.11)

and

�v

Nx∑
k=1

Ek

Nv∑
j=1

fkj

= −�v

�x

Nx∑
k=1

(Φk+1 − Φk−1)

Nv∑
j=1

fkj

= − n0

�x

Nx∑
k=1

(Φk+1 − Φk−1)

+ 1
4πq�x3

Nx∑
k=1

(Φk+1 − Φk−1) (Φk+1 − 2Φk + Φk−1)

= − n0

�x

Nx∑
k=1

(Φk+1 − Φk−1)

+ 1
4πq�x3

(
Nx∑

k=1

Φ2
k+1 −

Nx∑
k=1

Φ2
k−1 − 2

Nx∑
k=1

ΦkΦk+1 + 2
Nx∑

k=1

ΦkΦk−1

)
, (2.12)

where we have used (2.2). Since our spatial domain is periodic, we can interpret spatial
indices modulo Nx; shifting the spatial index in sums has no effect. Thus

∑Nx
k=1 Φk+1 =∑Nx

k=1 Φk−1 = 0 due to our normalization of Φ and
∑Nx

k=1 Φ̃2
k+1 =∑Nx

k=1 Φ̃2
k−1, and∑Nx

k=1 Φ̃kΦ̃k+1 =∑Nx
k=1 Φ̃k−1Φ̃k, giving

Nx∑
k=1

Ek

Nv∑
j=1

fkj = 0, (2.13)

which then implies dP /dt = 0. Now

dE

dt
= 1

2
m�x�v

Nx∑
k=1

Nv∑
j=1

v2
j ḟkj −

�x
4π

Nx∑
k,l=1

ΦkKklΦ̇l. (2.14)

From (2.1a′), we have

1
2

m
Nx∑

k=1

Nv∑
j=1

v2
j ḟkj = −1

2
m

Nv∑
j=1

v2
j

Nx∑
k=1

Skj(f ) − 1
2

m
Nx∑

k=1

Nv∑
j=1

v2
j Vkj(f , E)

= q
Nx∑

k=1

Ek

Nv∑
j=1

vjfkj, (2.15)
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where the last step follows from (A2) and (A11) and the assumption that the particle energy
flux vanishes at the velocity boundaries. From (2.1a′), (2.1b) and (A7) we have

Nx∑
l=1

KklΦ̇l = 4πq�v

Nv∑
j=1

Skj(f ), (2.16)

giving
Nx∑

k,l=1

ΦkKklΦ̇l = −4πq�v

Nx∑
k=1

Nv∑
j=1

ΦkSkj(f ) = −4πq�v

Nx∑
k=1

Ek

Nv∑
j=1

vjfkj, (2.17)

where (A5) has been used. Combining (2.16) and (2.17), we see dE/dt = 0. Lastly,

dF

dt
= 2�x�v

Nx∑
k=1

Nv∑
j=1

fkjḟkj

= −2�x�v

Nx∑
k=1

Nv∑
j=1

[
fkjSkj(f ) + fkjVkj(f , E)

]

= −2�x�v

Nv∑
j=1

Nx∑
k=1

fkjSkj(f ) − 2�x�v

Nx∑
k=1

Nv∑
j=1

fkjVkj(f , E)

= 0, (2.18)

where we have used (A4) and (A13). From the reasoning that leads to (A4) and (A13),
it is easy to see that for Casimirs involving higher powers of fkj cancellations, analogous
to those leading to (2.18) will not occur. Thus particle number and enstrophy are the only
Casimirs to survive on a phase-space grid. While we have considered a spatially periodic
system, in an unbounded domain, assuming the distribution function vanishes for large |x|,
these conservation laws continue to hold (in both the continuum and discrete cases). In a
bounded but not periodic system, the validity of the conservation laws will depend on the
details of the spatial boundary conditions. These results all generalize straightforwardly to
higher-order centred differences approximations for the derivatives in in Skj and Vkj.

3. Time integration

To obtain a numerical solution of (2.1) requires the introduction of a discrete time step.
The time integration runs from tI to tF with fixed time step �t and Nt steps, giving
�t = (tF − tI)/Nt. We put tn = t1 + (n − 1)�t, thus t1 = tI and tF = tNt . Without loss
of generality, we may assume t1 = 0. In what follows, we take f n

kj to be the numerical
approximation of f (xk, vj, tn). We consider two related temporal discretizations: (i) the
midpoint rule; and (ii) the midpoint rule combined with operator splitting.

First consider discretizing (2.1) at tn+1/2:

f n+1
kj − f n

kj +
�t
2

Skj(f n+1 + f n) + �t
4

Vkj(f n+1 + f n, En+1 + En) = 0, (3.1a)

where En
k = (Φn

k−1 − Φn
k+1)/2�x,

Nx∑
l=1

KklΦ
n
l = 4πq

⎛
⎝n0 − �v

Nv∑
j=1

f n
kj

⎞
⎠ . (3.1b)
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vj−1

vj

vj+1

xk−1 xk xk+1
tn

tn+1/2

tn+1

f(xk, vj , tn+1/2)

FIGURE 1. The Crank–Nicolson stencil for the Vlasov equation.

Using the linearity of Skj and Vkj, we can write (3.1a) as

f n+1
kj + �t

2
Skj(f n+1) + �t

4
Vkj(f n+1, En+1 + En)

= f n
kj −

�t
2

Skj(f n) − �t
4

Vkj(f n, En+1 + En). (3.2)

There are other possible discretizations of the nonlinear term in (2.1a); this particular
choice is attractive because, as we will see below, it leads to exact energy conservation.1
This discretization is equivalent to applying the Crank–Nicolson time-centred scheme
(Crank & Nicolson 1947) to (1.1) (see figure 1):

∂f
∂t

∣∣∣∣
tn+1/2

xk,vj

= f n+1
kj − f n

kj

�t
+ O(�t2),

∂f
∂x

∣∣∣∣
tn+1/2

xk,vj

= 1
2

(
f n+1
k+1j − f n+1

k−1j

2�x
+ f n

k+1j − f n
k−1j

2�x

)
+ O(�x2) + O(�t2),

∂f
∂v

∣∣∣∣
tn+1/2

xk,vj

= 1
2

(
f n+1
kj+1 − f n+1

kj−1

2�v
+ f n

kj+1 − f n
kj−1

2�v

)
+ O(�v2) + O(�t2),

f |tn+1/2
xk,vj

= 1
2

(
f n+1
kj + f n

kj

)+ O(�t2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

Together, (3.1a) and (3.1b) define a nonlinear systems of equations that, given f n
kj,

must be solved for f n+1
kj . This system is large – Nx × Nv unknowns – and sparse but

with considerable bandwidth, thus any direct solution is impractical. The now-standard
approach to such problems are Jacobian-free Newton–Krylov methods (Knoll & Keyes

1While we have not examined all possibilities, the equally obvious choice �tVkj(f n+1, En+1)/4 + �tVkj(f n, En)/4
does not lead to exact energy conservation.

https://doi.org/10.1017/S0022377821001124 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001124


8 M. Carrié and B.A. Shadwick

2004); while effective, these methods can be computationally intensive. The advantage
of this temporal discretization is that all of the invariants that survive phase-space
discretization, (2.5)–(2.8), are also invariants of the resulting time advance.

We define discrete-time analogues of N , P , E and F in the obvious way:

N n = �x�v

Nx∑
k=1

Nv∑
j=1

f n
kj, (3.4)

Pn = m
Nx∑

k=1

Nv∑
j=1

vjf n
kj, (3.5)

En = 1
2

m�x�v

Nx∑
k=1

Nv∑
j=1

v2
j f n

kj −
�x
8π

Nx∑
k,l=1

Φn
kKklΦ

n
l (3.6)

and

F n = �x�v

Nx∑
k=1

Nv∑
j=1

(
f n
kj

)2
. (3.7)

From (3.2), (A2) and (A7) we readily see N n+1 = N n. Using (3.1a) and (A2), we find

Pn+1 − Pn = �x�v

Nx∑
k=1

Nv∑
j=1

vj
(
f n+1
kj − f n

kj

)

= −1
2
�x�v�t

Nx∑
k=1

Nv∑
j=1

vjVkj(f n+1 + f n, En+1 + En)

= 1
2
�x�v�t

q
m

Nx∑
k=1

Nv∑
j=1

(
En+1

k + En
k

) (
f n+1
kj + f n

kj

)
, (3.8)

where we have used (A9) in the last step. From the linearity of Poisson’s equation, (En+1 +
En)/2 is the field due to the phase-space density ( f n+1 + f n)/2, and thus by same reasoning
that leads to (2.13), we have

Nx∑
k=1

Nv∑
j=1

(
En+1

k + En
k

) (
f n+1
kj + f n

kj

) = 0, (3.9)

and thus Pn+1 = Pn. A direct consequence of momentum conservation is that this
algorithm is free of self-forces. Now from (3.1a) and (A2), we have

1
2

m
Nx∑

k=1

Nv∑
j=1

v2
j f n+1

kj − 1
2

m
Nx∑

k=1

Nv∑
j=1

v2
j f n

kj = −m
�t
8

Nx∑
k=1

Nv∑
j=1

v2
j Vkj(f n+1 + f n, En+1 + En)
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= q
�t
4

Nx∑
k=1

(
En+1

k + En
k

) Nv∑
j=1

vj
(
f n+1
kj + f n

kj

)

= q
�t
4

Nx∑
k=1

Nv∑
j=1

(
Φn+1

k + Φn
k

)
Skj(f n+1

kj + f n
kj),

(3.10)

where we have used (A5) in the last step. From (3.1a) and (A7) we see

Nv∑
j=1

(
f n+1
kj − f n

kj

)+ �t
2

Nv∑
j=1

Skj(f n+1
kj + f n

kj) = 0 (3.11)

and thus

�t
2

Nx∑
k=1

Nv∑
j=1

(
Φn+1

k + Φn
k

)
Skj(f n+1

kj + f n
kj) = −

Nx∑
k=1

Nv∑
j=1

(
Φn+1

k + Φn
k

) (
f n+1
kj − f n

kj

)
(3.12)

giving

1
2

m
Nx∑

k=1

Nv∑
j=1

v2
j f n+1

kj − 1
2

m
Nx∑

k=1

Nv∑
j=1

v2
j f n

kj = −q
2

Nx∑
k=1

Nv∑
j=1

(
Φn+1

k + Φn
k

) (
f n+1
kj − f n

kj

)
. (3.13)

From (3.1b), we have

�v

Nv∑
j=1

f n
kj = n0 − 1

4πq

Nx∑
l=1

KklΦ
n
l (3.14)

and hence
Nx∑

k=1

Nv∑
j=1

Φm
k f n

kj = n0

�v

Nx∑
k=1

Φm
k − 1

4πq�v

Nx∑
k,l=1

Φm
k KklΦ

n
l . (3.15)

Since we normalize Φk to have zero average value, this becomes

Nx∑
k=1

Nv∑
j=1

Φm
k f n

kj = 1
4πq�v

Nx∑
k,l=1

Φm
k KklΦ

n
l . (3.16)

The right-hand side of (3.16) is symmetric under m ↔ n and we can conclude

Nx∑
k=1

Nv∑
j=1

Φn+1
k f n

kj =
Nx∑

k=1

Nv∑
j=1

Φn
k f n+1

kj (3.17)
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and thus

q
2

Nx∑
k=1

Nv∑
j=1

(
Φn+1

k + Φn
k

) (
f n+1
kj − f n

kj

)

= q
2

Nx∑
k=1

Nv∑
j=1

Φn+1
k f n+1

kj − q
2

Nx∑
k=1

Nv∑
j=1

Φn
k f n

kj

= 1
8π�v

Nx∑
k,l=1

Φn+1
k KklΦ

n+1
l − 1

8π�v

Nx∑
k,l=1

Φn
kKklΦ

n
l . (3.18)

Combining (3.18) and (3.13), we have

1
2

m�v

Nx∑
k=1

Nv∑
j=1

v2
j f n+1

kj − 1
8π

Nx∑
k,l=1

Φn+1
k KklΦ

n+1
l

= 1
2

m�v

Nx∑
k=1

Nv∑
j=1

v2
j f n

kj −
1

8π

Nx∑
k,l=1

Φn
kKklΦ

n
l , (3.19)

which is equivalent to En+1 = En. Finally, consider

F n+1 − F n = �x�v

Nx∑
k=1

Nv∑
j=1

[(
f n+1
kj

)2 − (f n
kj

)2
]

= �x�v

Nx∑
k=1

Nv∑
j=1

(
f n+1
kj + f n

kj

) (
f n+1
kj − f n

kj

)
. (3.20)

Using (3.1a), we can write this as

F n+1 − F n = −1
2
�x�v

Nx∑
k=1

Nv∑
j=1

(
f n+1
kj + f n

kj

)
Skj(f n+1 + f n)

− 1
4
�x�v

Nx∑
k=1

Nv∑
j=1

(
f n+1
kj + f n

kj

)
Vkj(f n+1 + f n, En+1 + En), (3.21)

which, in view of (A4) and (A13), leads to F n+1 = F n. The invariance of F n precludes
numerical solutions with strict exponential growth in time, thus the time advance is
unconditionally stable (Schumer & Holloway 1998). These quantities are also conserved
by methods employing a Hermite basis in velocity (Schumer & Holloway 1998; Bourdiec,
de Vuyst & Jacquet 2006; Delzanno 2015; Camporeale et al. 2016).

We now consider an integration algorithm where we split the discretized Vlasov
equation (2.1a′) into two advection operators

ḟkj + Skj(f ) = 0 (3.22a)

and
ḟkj + Vkj(f , E),= 0 (3.22b)

which has the effect of removing the nonlinearity and removing one independent variable
at each operator; in (3.22a) vj acts as a parameter, while in (3.22b) xk is parametric.
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tn

tn+1/2

tn+1

fn

f̃

U1

f̂

f̃

U2
f̂

fn+1

U1

FIGURE 2. Symmetric Strang splitting where U1 and U2 are the evolution operators associated
with (3.22a) and (3.22b), respectively.

Although E is dependent on f , the charge density, and thus the electric field, is invariant
under the action of (3.22b), and thus (3.22b) is effectively linear in f . This is the same
splitting used by Cheng & Knorr (1976) in their semi-Lagrangian method, by Schumer &
Holloway (1998) in their Hermite spectral algorithm and by Sircombe & Arber (2009)
in constructing explicit Eulerian methods. To second-order accuracy in time, we can
compute the time evolution of (2.1) using the symmetric Strang approach (Strang 1968)
as illustrated in figure 2. Let the operators U1(t,�t) and U2(t,�t) give the evolution of f
from t to t + �t corresponding to (3.22a) and (3.22b), respectively. Provided the Ui are at
least second-order accurate in �t (or first-order accurate and time reversible (Kahan & Li
1997)), the evolution corresponding to (2.1) from t to t + �t is given by

U1(t + �t/2,�t/2)U2(t,�t)U1(t,�t/2)f (t) (3.23)

and is accurate to second order in �t.
Following this prescription and using Crank–Nicholson discretization for (3.22a) and

(3.22b), we arrive at the following set of equations describing the evolution of the
distribution function:

f̃kj +
�t
4

Skj(f̃ ) = f n
kj −

�t
4

Skj(f n), (3.24a)

f̂kj +
�t
2

Vkj(f̂ , Ẽ) = f̃kj −
�t
2

Vkj(f̃ , Ẽ), (3.24b)

f n+1
kj + �t

4
Skj(f n+1) = f̂j,k − �t

4
Skj(f̂ ), (3.24c)

where Ẽk = (Φ̃k−1 − Φ̃k+1)/(2�x) and

Nx∑
l=1

KklΦ̃l = 4πq

⎛
⎝n0 − �v

Nv∑
j=1

f̃kj

⎞
⎠ . (3.24d)

Thus, given f n
kj, we solve (3.24a) to obtain f̃kj and subsequently Φ̃ through (3.24d). We

then solve (3.24b) to obtain f̂kj and finally solving (3.24c) yields f n+1
kj . Not only are all

of these equations linear in the unknowns, the linear systems are tridiagonal and thus
amenable to efficient direct solution. In all cases we use the Thomas algorithm (Thomas
1949) to solve the linear systems, and handle the periodic boundary conditions through the
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Sherman–Morrison formula (Hager 1989). Thus even though the discretization is implicit
in time, reducing the number of independent variables results in low-bandwidth linear
systems.

Since (3.24) is a consistent approximation to (2.1), all invariants of (2.1) will be
approximately conserved to at least O(�t2). It turns out that N , P and F are exactly
conserved by (3.24) while energy is only approximately conserved.

From (3.24a) and (A2) we have

Nx∑
k=1

f̃kj =
Nx∑

k=1

f n
kj (3.25)

and likewise from (3.24c)
Nx∑

k=1

f n+1
kj =

Nx∑
k=1

f̂kj, (3.26)

while (3.24b) and (A7) give
Nv∑
j=1

f̂kj =
Nv∑
j=1

f̃kj. (3.27)

Together these imply N n+1 = N n. From (A2) and (3.24a) and (3.24c), we have, for all j,

Nx∑
k=1

vjf̃kj =
Nx∑

k=1

vjf n
kj (3.28)

and
Nx∑

k=1

vjf n+1
kj =

Nx∑
k=1

vjf̂kj, (3.29)

respectively. From (3.24b) and (A9) we have

Nx∑
k=1

Nv∑
j=1

vjf̂kj −
�t
2

q
m

Nx∑
k=1

Nv∑
j=1

Ẽkf̂kj =
Nx∑

k=1

Nv∑
j=1

vjf̃kj +
�t
2

q
m

Nx∑
k=1

Nv∑
j=1

Ẽkf̃kj. (3.30)

Using (3.27) we can write

Nx∑
k=1

Nv∑
j=1

Ẽkf̂kj +
Nx∑

k=1

Nv∑
j=1

Ẽkf̃kj = 2
Nx∑

k=1

Nv∑
j=1

Ẽkf̃kj = 0, (3.31)

where the last step follows from the same reasoning that leads to (2.13). Thus we have

Nx∑
k=1

Nv∑
j=1

vjf̂kj =
Nx∑

k=1

Nv∑
j=1

vjf̃kj (3.32)
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and hence, with (3.28) and (3.29), Pn+1 = Pn. Now, using (3.24a) and (A4), we have

Nx∑
k=1

(
f̃kj

)2
− (f n

kj

)2 =
Nx∑

k=1

(
f̃kj + f n

kj

) (
f̃kj − f n

kj

)

= −�t
4

Nx∑
k=1

(
f̃kj + f n

kj

)
Skj(f̃ + f n)

= 0 (3.33)

and likewise
Nx∑

k=1

(
f n+1
kj

)2 −
(

f̂kj

)2
= 0. (3.34)

Finally, from (3.24b) and (A13), we have

Nv∑
j=1

(
f̂kj

)2
−
(

f̃kj

)2
=

Nv∑
j=1

(
f̂kj + f̃kj

) (
f̂kj − f̃kj

)

= −�t
2

Nv∑
j=1

(
f̂kj + f̃kj

)
Vkj(f̂ + f̃ , Ẽ)

= 0. (3.35)

Thus we have

Nx∑
k=1

Nv∑
j=1

(
f n+1
kj

)2 =
Nx∑

k=1

Nv∑
j=1

(
f̂kj

)2
=

Nx∑
k=1

Nv∑
j=1

(
f̃kj

)2
=

Nx∑
k=1

Nv∑
j=1

(
f n
kj

)2 (3.36)

and F n+1 = F n. Again, invariance of F implies unconditional stability of the algorithm
(Schumer & Holloway 1998).

4. Benchmarking

Here we consider a variety of test cases that have been used extensively in the literature
(Zaki, Boyd & Gardner 1988; Filbet & Sonnendrücker 2003; Shoucri 2008; Heath et al.
2012) where the numerical results can be compared with analytical solutions or growth
rates. Unless specified otherwise, we use an initial distribution function of the form

f0(x, v) = n0 (1 + A cos kx) feq(v) (4.1)

with

feq(v) = 1√
2πvth

exp
(

−1
2

v2

v2
th

)
, (4.2)

where vth is the thermal velocity, k and A are the wavenumber and amplitude of the
initial disturbance, respectively. When considering the linearized theory, we split the initial
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condition into f0 = f (0)

0 + f (1)

0 with

f (0)

0 = n0feq, (4.3)

f (1)

0 = An0feq cos kx. (4.4)

Periodic boundary conditions in space require the wavenumber to be quantized as k =
2πl/L, with l an integer. We take L = 4πλD, where λD = vth/ωp is the Debye length and
ωp = √4πn0q2/m is the plasma frequency, and thus allowable values of k are given by
kλD = l/2.

4.1. Ballistic Motion
We consider the ballistic transport of uncharged particles corresponding to

∂f
∂t

+ v
∂f
∂x

= 0. (4.5)

Since the distribution function must remain constant along characteristics, the evolution
of the particle density can be calculated analytically

	(x, t) =
∫ +∞

−∞
f (t, x, v) dv − qn0 = q

∫ +∞

−∞
f0 (x − vt, v) dv − qn0

= Aqn0

∫ +∞

−∞
cos k (x − vt) feq(v) dv, (4.6)

which we can integrate to give

	(x, t) = Aqn0 cos(kx) exp
(− 1

2 k2t2v2
th

)
. (4.7)

We solve (4.5) using our split algorithm simply skipping (3.24b); since E = 0, (3.24b)
reduces to f̂kj = f̃kj. In figure 3 we plot the maximum of the particle density as a function
of time for A = 0.1, kλD = 1/2, ωptF = 100, and various values of ωp�t, Nv and Nx on
the velocity domain [−5vth, 5vth]. The numerical and analytical results are in excellent
agreement early in the simulation. The density reaches a plateau due to the periodic
boundary conditions before returning to its original state with the recurrence time defined
by tR = 2π/k�v (Cheng & Knorr 1976). Using the definition of λD, we can write
ωptR = (2π/kλD)(vth/�v). For our parameters, only the coarsest velocity grid (Nv = 61)
yields a recurrence time less than tF: ωptR = 24π ≈ 75.4. The second peak in figure 3
occurs at ωpt = 75.50 in excellent agreement with this estimate.

4.2. Linear Landau damping
Linear Landau damping provides a sensitive test of phase-space dynamics due to the
central role of phase mixing in the damping phenomena and is a convenient benchmark as
the damping rate can be readily calculated. To avoid having nonlinear effects pollute our
numerical result, we solve the linearized Vlasov equation (see Appendix B for details).
We set A = 0.1 and kλD = 1/2, resulting in a single weakly damped mode and take the
velocity domain to be [−8vth, 8vth]. In figure 4 we plot the evolution magnitude of the
dominant (l = 1) spatial Fourier mode of electric field. The decay of the fundamental
mode is sustained over many decades until either a recurrence occurs or the limit of
numerical precision in computing the perturbed charge density is reached. As in Cheng
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FIGURE 3. Evolution of the maximum particle density, normalized to n0, for A = 0.1,
kλD = 1/2 and various grid parameters. The black line corresponds to (4.7).
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ωpt
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10−13
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10−7
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10−3

10−1

Nv = 201
Nv = 401
Nv = 801

275 300 325

10−2

10−8

10−14

FIGURE 4. Magnitude of the spatial Fourier component of the electric field corresponding to
kλD = 1/2 with ωp�t = 0.1 and Nx = 256 and various values of Nv , normalized to ωpmvth/q.
The inset shows the recurrence for Nv = 401.

& Knorr (1976), the recurrences seen in figure 4 agree with the ballistic estimates ωptR =
50π ≈ 157.1 for Nv = 201 and ωptR = 100π ≈ 314.2 for Nv = 401. Shown in figure 5 is
the evolution of perturbed distribution function at x = 0 with Nv = 1601. The effects of
filamentation are clearly evident.

In the linearized case, the perturbations to the particle number and momentum are
exactly conserved in discrete time; the proof is essentially the same as in the nonlinear
case. Our numerical results yield conservation of these quantities to within a small
multiple of machine precision. Additionally, the Kruskal–Oberman energy, (B3), is an
exact invariant (Kruskal & Oberman 1958; Morrison & Pfirsch 1990). The discrete
analogue of (B3) is

En
KO = −1

2
m�x�v

Nx∑
k=1

Nv∑
j=1

vj(f n
kj)

2

f ′
eq(vj)

− �x
8π

Nx∑
k,l=1

Φn
kKklΦ

n
l . (4.8)

As discussed in Appendix B, the error in this invariant is due to temporal discretization
alone. Shown in figure 6 is the absolute value of the relative error in EKO; clearly the
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FIGURE 5. Time evolution of the perturbed distribution function, normalized to n0/vth, for the
parameters of figure 4 and Nv = 1601 at x = 0. The vertical and horizontal scales are the same
for all panels.
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overall scale of the error is dependent only on ωp�t. It seems plausible that an exactly
conservative (Shadwick, Bowman & Morrison 1999) time integration scheme could
be developed; this will be explored in a future publication. van Kampen constructed
an exact solution to the linearized Vlasov equation using singular eigenfunctions (van
Kampen 1955; van Kampen & Felderhof 1967). One particularly interesting aspect of
this construction is that it allows for the electric field to be written in terms of the
initial distribution and various equilibrium quantities. Following van Kampen & Felderhof
(1967) and using the notation of Shadwick (1995) we can write the spatial Fourier
transform of the electric field as

Ek = 4πq
ik

∫ ∞

−∞
du e−ikut εr(ku, k)Fk(u) − εi(ku, k)Fk(u)

εr(ku, k)2 + εi(ku, k)2
, (4.9)

where εr and εi are, respectively, the real and imaginary parts of the plasma dielectric
function corresponding to the equilibrium, (B13), (in the limit ωI → 0+; see Appendix B),
Fk(v) is the spatial Fourier transform of f (1)

0 and the overbar indicates the Hilbert transform
(Tricomi 1985). Here

Fk(v) = A
2

feq(v) (4.10)

and

Fk(v) = A
2

feq(v) = −A
2

√
2

πvth
daw

(
v√
2vth

)
, (4.11)

where daw(x) is Dawson’s integral (Abramowitz & Stegun 1964). Both feq and εr are even
functions while feq and εi are odd functions, allowing us to write

|Ek| = 4πqAn0

k

∣∣∣∣∣
∫ ∞

0
du cos(kut)

εr(ku, k)feq(u) − εi(ku, k)feq(u)

εr(ku, k)2 + εi(ku, k)2

∣∣∣∣∣ . (4.12)

Normalizing the electric field to ωpmvth/q, we have

q|Ek|
ωpmvth

= A
kλD

∣∣∣∣∣
∫ ∞

0
du cos(kut)

εr(ku, k)feq(u) − εi(kuk)feq(u)

εr(ku, k)2 + εi(ku, k)2

∣∣∣∣∣ . (4.13)

We compute Ek directly from (4.13) with SciPy (Jones, Oliphant & Peterson 2001) using
adaptive quadrature. In figure 7(a) we show a comparison between the van Kampen
solution, (4.13), blue line, the finite-difference solution with ωp�t = 0.025, Nx = 512,
and Nv = 401, dashed red line, and a fit to a damped oscillation (see below), dashed black
line. As can be seen from the inset, while a fixed frequency and damping rate does not
describe the behaviour at early time, the finite difference and van Kampen solutions are
in close agreement for all t. Figure 7(b) shows the absolute value of the relative error
between the finite difference and van Kampen solutions evaluated at the local maxima
of |Ek| for ωp�t = 0.025, Nx = 512, Nv = 401 (black squares) and ωp �t = 0.0125,
Nx = 1024, Nv = 401 (red circles). Reducing �t and �x by a factor of two results in a
reduction in the error by an amount consistent with the expected second-order accuracy
of the scheme. Figure 8 shows the L2 norm of the difference between the van Kampen
and finite-difference solutions with ωp�t = 0.2r and Nx = 64/r for 1/16 ≤ r ≤ 1. The
reduction in the L2 norm with r is consistent with the second-order accuracy of the
discretization.
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FIGURE 6. Absolute value of the relative error in the Kruskal–Oberman energy, (4.8), for
various grid parameters. As can be seen, the energy error only depends on the temporal
discretization.
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FIGURE 7. Comparison of the spatial Fourier transform of the electric field from the finite
difference and van Kampen solutions: (a) the van Kampen solution, (4.13) (blue line), the
finite-difference solution with ωp�t = 0.025, Nx = 512 and Nv = 401 (dashed red line), and
a fit to a damped oscillation (see text) (dashed black line), normalized to ωpmvth/q; (b) the
absolute value of the relative error between the finite difference and van Kampen solutions
evaluated at the local maxima of |Ek| for ωp�t = 0.025, Nx = 512, Nv = 401 (black squares)
and ωp�t = 0.0125, Nx = 1024, Nv = 401 (red circles). The inset shows that the solutions agree
at early time but are not well-reproduced by a damped oscillation.
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r
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∝ r2

FIGURE 8. The L2 norm of the difference of the spatial Fourier transform of the electric field,
normalized to ωpmvth/q, from the finite difference and van Kampen solutions with ωp�t = 0.2r,
Nx = 64/r and Nv = 401 (crosses). The results show no meaningful variation with Nv .

Method ω/ωp γ /ωp

Analytical ((B10) and (B12)) 1.4156619 −0.1533595
van Kampen (4.13) 1.4156617 −0.1533590
Numerical (ωp�t = 0.2, Nv = 201, Nx = 64) 1.414442 −0.151334
Numerical (ωp�t = 0.2, Nv = 1601, Nx = 64) 1.414442 −0.151334
Numerical (ωp�t = 0.0125, Nv = 401, Nx = 1024) 1.415657 −0.153351

TABLE 1. Summary of fitting the magnitude of the Fourier transform of the electric field to
(4.14).

To determine the frequency and damping rate, we fit the Fourier transform of the electric
field to

α e−γ t cos(ωt + φ), (4.14)

over the range ωpt = 10 to ωpt = 180. (For Nv = 201, we stop the fit at ωpt = 120 due to
the recurrence.) The results of this fitting along with the analytical values are summarized
in table 1. As can be seen, the analytical results and the fit to the van Kampen solution are
in very good agreement. Both of these results are consistent with previous results (Cheng
& Knorr 1976; Filbet, Sonnendrücker & Bertrand 2001; Heath et al. 2012). Evaluating
the van Kampen solution using (4.13) involves highly oscillatory integrands; a specialized
method was not employed and so it is reasonable to assume the minor difference between
the analytical values and the fit to the van Kampen solution is not meaningful. The
frequency and damping rate inferred from the finite-difference solution agrees quite well
with the van Kampen solution and this agreement improves as the resolution is increases.
Note, for our parameters the frequency and damping rate are remarkably insensitive to �v.
Figure 9 shows the absolute value of the relative error between the analytical frequency
(a, b) and damping rate (c, d) the corresponding values obtained by fitting the finite
difference solution to (4.14). As is to be expected, it is necessary to refine both �t and �x
to improve the accuracy of the solution. We see that the accuracy of the finite-difference
solution is second order in both �t and �x. The plot is identical if instead we compare
with the frequency and damping rate obtained from the van Kampen solution.
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FIGURE 9. Relative error in the frequency (a,b) and damping rate (c,d) for various value of �t
and �x with Nv = 401. The results show no meaningful variation with Nv .

For weak Landau damping with somewhat different parameters we have compared
the full nonlinear solver with a variational macroparticle model using both standard and
symplectic integration and found excellent agreement (Shadwick et al. 2014). In that case
the limit of the comparison was the inability of the macroparticle model to continue to
exhibit damping once the charge density reached the level comparable to that associated
with the fluctuations inherent in representing the initial Maxwellian distribution.

4.3. Nonlinear Landau damping
We now consider the full nonlinear response with A = 0.5, kλD = 1/2, spatial domain
[0, 4πλD] and velocity domain [−10vth, 10vth]. Figure 10 shows the amplitude of the
spatial Fourier transform of the electric field corresponding to kλD = 1/2, 1 and 3/2.
As a consequence of the nonlinear coupling, energy is transferred from the fundamental
mode resulting in a damping rate that well exceeds the value in the linear case. We find
γ ≈ −0.283ωp for the initial decay and γ ≈ 0.081ωp for the subsequent growth which is
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FIGURE 10. Amplitude of the spatial Fourier modes of the electric field, normalized to
ωpmvth/q, for ωp�t = 0.05, Nv = 1001 and Nx = 1024.

in good agreement with previous results (Cheng & Knorr 1976; Zaki et al. 1988; Filbet
et al. 2001; Heath et al. 2012). Figure 11 shows the evolution of the spatial average of the
distribution function; since f is symmetric in v, only v ≥ 0 is shown. These results are in
quantitative agreement with some previous results (Cheng & Knorr 1976; Zaki et al. 1988)
but differ somewhat with Heath et al. (2012), which seems to be related to the dissipation
in their algorithm.

Figure 12 shows the absolute value of the relative error in energy, E , (a); relative error in
particle number, N , and enstrophy, F , (b, c), respectively; and error in momentum, P , (d)
for different grid parameters. As in the linear case, the energy error depends only on �t
which follows from E being an exact invariant of the continuous-time system (2.1). Particle
number, enstrophy and moment are exact invariants of the algorithm but exhibit variation
well beyond typical rounding levels even with using extended precision to calculate these
quantities. Furthermore, their variation does not appear to depend systematically on the
grid parameters. The behaviour of these quantities turns out to be extremely sensitive to
the numerical parameters. Shown in figure 13 are N , F and P for ωp�t = 0.1 and various
values of Nx and Nv. The curves with the solid symbols correspond to a spatial domain
size of L = 12.566370614359172λD, while the curves with the open symbols correspond
to L = 12.5663706144λD. The difference in the domain size between the two cases is
approximately three parts in 1012, yet the behaviour of the invariants is markedly different.
Preservation of the invariants relies on the linear systems in each step of (3.24) being
solved exactly, that is, to machine precision. While we are using direct solution of the linear
systems (the Thomas algorithm (Thomas 1949)), we still expect a non-vanishing residual
from each step. It seems reasonable to conclude that the behaviour seen in figure 13 is due
to the well known numerical sensitivity of direct linear solvers. It may be possible that by
using iterative refinement (Moler 1967) of the solution at each step, the invariants could
be maintained close to machine precision.
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FIGURE 11. Time evolution of the spatial average of the distribution function, normalized
to n0/vth, for nonlinear Landau damping with the parameters of figure 10. The vertical and
horizontal scales are the same for all panels.
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FIGURE 12. Invariant preservation in nonlinear Landau damping: absolute relative error in
particle number, N , total energy, E , enstrophy, F , (a–c), respectively; and error in momentum,
P , normalized to mn0vth, (d) for different grid parameters.

4.4. Two-stream instability
We now consider the two-stream instability with the equilibrium distribution function
(Cheng & Knorr 1976)

feq(v) = 1√
2π

v2

v3
0

exp(−v2/2v2
0), (4.15)

which mimics two counter-propagating electron beams. For this distribution vth = √
3v0

and λD = √
3v0/ωp. To aid comparison with the existing literature we take, in contrast

to previous sections, v0 and λ̄ = v0/ωp = λD/
√

3 as our velocity and length scales,
respectively. We use the initial condition (4.1) with A = 10−6, kλ̄ = 1/2 with L = 4πλ̄ and
velocity domain [−10v0, 10v0]. Our parameters allow for only a single linearly unstable
mode (see Appendix B). Figure 14 shows the magnitude of the first four spatial Fourier
modes of the electric field. After some initial Landau damping the unstable mode emerges.
The initial behaviour of the l = 1 mode is in good agreement with the linear theory (dashed
purple line) as can been seen from the inset which absolute value of the relative difference
between the linear and nonlinear solutions for l = 1. Since only the l = 1 mode is linearly
unstable, the higher modes seen in figure 14 grow due to nonlinear coupling. Table 2
shows the growth rates for modes 1–4. The logarithm of magnitude of Fourier transform
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FIGURE 13. Invariant preservation in nonlinear Landau damping: relative error in particle
number, N , and enstrophy, F , (a,b), respectively; and error in momentum, P , normalized
to mn0vth, (c) for ωp�t = 0.1 and various values of Nx and Nv . Solid symbols correspond
to a spatial domain size of L = 12.566370614359172λD, while open symbols correspond to
L = 12.5663706144λD.

Mode γ /ωp γA/ωp ωptb ωpte γ ∞/ωp

1 0.2592492 0.2592499 20 45 0.259230 ± 10−6

2 0.5184309 0.5184999 30 45 0.518396 ± 3 × 10−6

3 0.7764048 0.7777498 35 48 0.77635 ± 10−5

4 1.0348888 1.0369997 39 45 1.0351 ± 10−4

TABLE 2. Growth rates, γ , for the two-stream instability and analytical values obtained from
perturbation theory, γA, for the parameters of figure 14. The wavenumber for mode n is given by
kλ̄ = n/2. For each mode the fit was performed over [tb, te].

of electric field was fitted to α + γ t over the interval [tb, te]. To study convergence, we
scale ωp�t ∝ r and Nx and Nv ∝ 1/r; specifically we take ωp�t = 0.125r, Nx = 128/r
and Nv = 125/r with r = 1, 1/2, 1/4, 1/8 and 1/16. For the four modes considered,
we observe nearly perfect second-order convergence of the growth rates with increasing
resolution (decreasing r) but to values that differ somewhat from the predictions of linear
theory. We can exploit the observed convergence to extrapolate to infinite resolution
(r = 0) by fitting the results to γ = γ ∞ + δr2 where γ ∞ is then the estimate of the growth
rate in the limit �t,�x,�v → 0. The result of this extrapolation is given in table 2 in the
column labelled γ ∞/ωp together with error estimates derived from the fit covariance.
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FIGURE 14. Magnitude of the spatial Fourier modes of the electric field, normalized to
mωpv0/q, for the two-stream problem with ωp�t = 0.0625, Nv = 2001 and Nx = 2048 and
initial conditions (4.1) and (4.15). The fundamental mode corresponds to kλ̄ = 1/2. The dashed
purple line shows the magnitude of the electric field obtained from the linearized equations for
the same numerical parameters and initial condition. The inset shows the absolute value of the
relative difference between the linear and nonlinear results for n = 1.

In figure 15 we plot the absolute value of the relative error in energy, E , (a); relative error
in particle number, N , and enstrophy, F , (b,c), respectively; and error in momentum, P ,
(d) for the parameters of figure 14. In figure 16 we plot the distribution function over
the interesting region of phase space for selected values of t. The distribution function
evolves in the expected way through approximately ωpt = 60. It is well known that the
lack of dissipation when using Crank–Nicolson discretization can cause the numerical
solution to overshoot and undershoot in regions of steep gradients (essentially a Gibbs-like
phenomena). By ωpt = 65 (and indeed earlier; see below), the distribution function
begins to exhibit negative values. Since N is conserved, there must be regions that are
‘excessively’ positive to compensate. Empirically, the charge density appears to be largely
unaffected by these unphysical values and thus the electric field appears to remain reliable.
The invariance properties of the algorithm are not dependent on maintaining f ≥ 0 and
thus the structure of phase space away from these regions should be rendered faithfully.
As one would expect, these negative values follow the evolution of the v = 0 trough in the
initial condition. This is evident in figure 17 where we plot the phase-space locations where
f < 0. The topological conservation properties discussed in Heath et al. (2012) are clearly
violated by this behaviour. In addition to being obviously unphysical, negative values of f
are inconsistent with the rearrangement dynamics of the Vlasov equation Gardner (1963).
Furthermore, adjacent to the grid points where f < 0 are grid points where f is erroneously
large. As a result the global maximum of f exceeds the maxima in the initial condition at
v = ±√

2v0. For two-stream initial conditions where the distribution function between
the streams is non-zero (but small enough to be unstable), the topological properties of the
dynamics are more faithfully reproduced.

While there are clear signatures of particle trapping as the distribution evolves, it
does not appear to saturate to a Bernstein–Greene–Kruskal mode prior to the end of the
computation. Ignoring the small number of grid points where f has unphysical values, f
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FIGURE 15. Invariant preservation for the two-stream instability: absolute relative error in
particle number, N , total energy, E , enstrophy, F , (a–c), respectively; and error in momentum,
P , normalized to mn0v0, (d) for the parameters of figure 14.

is not, even approximately, a graph over the particle energy (Heath et al. 2012) as one
would reasonable expect for a saturated Bernstein–Greene–Kruskal mode. The difference
between our results and those of Heath et al. (2012) could be due to the dissipation in the
discontinuous Galerkin method hastening saturation.

We now consider solving (3.1b) and (3.2) without recourse to splitting. To this end,
we have implemented a Jacobian-free Newton–Krylov iterative solver using restarted
generalized minimal residual method (GMRES) (Kelley 2003) without preconditioning
since performance, per se, is not of concern here. The primary difference with the split
algorithm, (3.24), is that we expect to gain exact energy conservation; we do not expect
much effect on the production of regions with f < 0 . We take Nx = 256, Nv = 201 and
ωp�t = 0.01. The absolute stopping tolerance on the residual for the Newton step is set to
10−14. The stopping tolerance for the linear step (GMRES) is set to 10−7 which is of the
order of the displacement used for the forward differencing of the Jacobian-vector product.
We allow a Krylov subspace of 80 vectors before restarting the GMRES iterations. In
figure 18 we show the absolute relative error in particle number, N , total energy, E ,
enstrophy, F , (a–c), respectively; and the error in momentum, P , for both the split and
unsplit algorithms. As expected energy conservation is close to machine precision in the
unsplit method. Had we allowed the iterations to terminate with a larger residual, then
the energy conservation error would also have been larger. This is an important point
regarding general implicit methods: conservation properties often rest on exact solution
of the implicit system and so raising the allowed residual to lower computational cost
will adversely affect the conservation properties. It is reasonable to investigate using the
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FIGURE 16. Distribution function, normalized to n0/v0, for the parameters of figure 14 at
various times.
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FIGURE 17. Location of grid points where f < 0 for the parameters of figure 14. The number
of such points is given in each panel.
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FIGURE 18. Split versus unsplit algorithms for the two-stream instability: absolute relative error
in particle number, N , total energy, E , enstrophy, F , (a–c), respectively; and error in momentum,
P , normalized to mn0v0, (d) for ωp�t = 0.01, Nx = 256 and Nv = 201.

split algorithm as a precondition for the iterative method; this will be taken up in a future
publication.

For the nonlinear examples presented here the central processing unit time in seconds
is accurately estimated as 1.24 × 10−7NtNxNv for a dual Xeon E5520 system running at
2.27 GHz with 15 GB of random access memory. This scaling holds for NtNxNv between
1292800 and 62946017280, i.e. for central processing unit times between 0.139 and 8445
seconds.

5. Higher-order algorithms

The identities that result in the conservation properties in the both the unsplit and split
cases (i.e. for the updates given by (3.1) or (3.24)) hold for any order central-difference
approximations to the phase-space derivatives. Thus either time-advance algorithm
can be straightforwardly extended to higher order in phase space while retaining the
conservation properties of the second-order methods. While the linear systems in (3.24)
will have greater bandwidth than in the second-order case, efficient direct solution
using band-solvers is possible. We have implemented solver using fourth-order central
differences in space and momentum. As a test case, we consider the two-stream problem
taking the initial condition (4.1) with

feq(v) = 1
2

1√
2πσ

[
exp(−(v − v0)

2/2σ 2) + exp(−(v + v0)
2/2σ 2)

]
, (5.1)

where σ = vth/
√

5, v0 = 2vth/
√

5, A = 10−9, kλD = 1/
√

5 with L = 2
√

5πλD and
velocity domain [−8/

√
5v0, 8/

√
5v0]. Figure 19 shows the convergence of the growth rate
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FIGURE 19. Convergence of the two-stream growth rate for the higher-order solver as the grid
parameters are scaled as Nx = rN0

x , Nv = rN0
v and Nt = r2N0

t for various values of N0
t with

N0
x = 32 and N0

v = 201.

of the two-stream instability as the grid is refined. Since the solver is only second order
in time, the time step must be reduced quadratically while the phase-space grid spacing is
scaled linearly to achieve overall fourth-order convergence.

Furthermore, both updates are time reversible, that is, in both (3.1) and (3.24), with the
replacement �t → −�t, the corresponding algorithms take f n+1

kj to f n
kj. This means that

composition techniques (Suzuki 1990; Yoshida 1990; Suzuki & Umeno 1993; McLachlan
1995; Hairer et al. 2002) can be used to construct algorithms that are higher order in time.
Importantly, the composition will preserve all conservation properties of the basic method.
As a demonstration, we start with the split algorithm and construct various higher-order
methods. Let S(2)(�t) be the operator corresponding to the update (3.24). Composing three
applications of S(2) yields a fourth-order accurate time-update (Yoshida 1990)

S(4)(�t) = S(2)(a1�t)S(2)(a0�t)S(2)(a1�t), (5.2)

where a1 = 1/(2 − 21/3) and a0 = 1 − 2a1. In turn, S(4) can be used in a three-step
composition producing a sixth-order update (Yoshida 1990)

S(6)(�t) = S(4)(b1�t)S(4)(b0�t)S(4)(b1�t), (5.3)

where b1 = 1/(2 − 21/5) and b0 = 1 − 2b1. This sequence can be continued to obtain any
even order. Evidently, a single step of S(4) is three times the work of an S(2) step while a
single step of S(6) is nine times the work. At sixth order, more efficient compositions are
possible; for example (Yoshida 1990)

S(6′) = S(2)(c3�t)S(2)(c2�t)S(2)(c1�t)

× S(2)(c0�t)S(2)(c1�t)S(2)(c2�t)S(2)(c3�t), (5.4)
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FIGURE 20. Absolute relative energy error for weakly nonlinear Landau damping for different
order methods and various values of ωp�t. See text for parameters. The column labelled ‘O’
identifies the method.

where
c1 = −1.17767998417887100695

c2 = 0.23557321335935813368

c3 = 0.78451361047755726382

⎫⎪⎬
⎪⎭ (5.5)

and c0 = 1 − 2(c1 + c2 + c3) only requires seven evaluations of S(2) and has better
truncation error (McLachlan 1995). To illustrate these higher-order methods, we consider
a weakly nonlinear Landau damping example with A = 0.15, kλD = 0.4, spatial domain
[0, 10πλD], velocity domain [−10vth, 10vth], Nx = 1024 and Nv = 2001. Figure 20 shows
the absolute relative energy error in the solutions obtained from these higher-order
methods, as well as from S(2) for comparison. The scaling of the energy error for all
methods is consistent with the order (most easily seen by comparing with scaling for
S(2)). As expected, the higher-order methods outperform lower-order methods as the
accuracy increases. For example, the energy error obtained by S(4) with ωp�t = 0.0625
is comparable to that of S(6′) with ωp�t = 0.25 while the latter method requires 7/12
the computational work of the former. For a given value of �t, the energy error in the
solution from S(6′) is significantly smaller than that from S(6) which is consistent with
the optimization used in construction of S(6′) (McLachlan 1995). The composition rules
used here all rely on the exact reversibility of the underlying update algorithm S(2). In
general, the numerical solution of the linear systems in (3.24) will have a residual larger
than machine precision which implies that the reversibility of the advance will hold only
to some multiple of machine precision. In fact, for the parameters used in this example,
an optimized eighth-order composition (Suzuki & Umeno 1993; McLachlan 1995) (not
shown) did not yield much improvement in error beyond that of S(6′). Thus there will be a
limit on the order than can be obtained by such composition rules. (Presumably through
iterative refinement (Moler 1967) of the linear system solutions this limit could be raised.)
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Further, increasing the discretization accuracy on phase space would be expected to lower
the size of the linear systems in (3.24), leading to lower residuals possibly allowing
even higher-order composition than considered here; this will be the topic of a future
publication.

6. Conclusions

We have developed an implicit, unconditionally stable numerical scheme to solve
the Vlasov–Poisson system in one dimension. This method uses a Crank–Nicolson
discretization scheme for the time discretization, and Strang splitting to effectively remove
the nonlinear coupling between the field and distribution function. The splitting results
in low-bandwidth linear systems that are suitable for direction solution. This algorithm
exactly conserves particle number, enstrophy and momentum; the unsplit form also exactly
conserves energy. This method is essentially non-dissipative and so rapid variations of
the distribution function in phase space can induce oscillations, and positivity of f is not
maintained. However, we have shown that this effect is relatively benign for the systems
consider herein.

We presented a thorough analysis of the algorithm beginning with phase space
discretization and continuous time. We show that the introduction of a phase-space grid
leaves energy and momentum conservation intact but with particle number and enstropy
being the only surviving Casimirs. In the transition to discrete time, we show that the
Crank–Nicolson discretization preserves all of the invariants that survive phase-space
discretization. With the introduction of Strang splitting, exact energy conservation is lost.
The exact conservation of enstrophy guarantees nonlinear numerical stability. The split
form of this algorithm has been extended to the relativistic Vlasov–Poisson system (Carrié
& Shadwick 2016), yielding identical conservation and stability properties.

We considered a number of widely used test cases and demonstrated that the algorithm
is second order in phase space and time. We show that for Landau damping, a linearized
version of the algorithm converges to the van Kampen solution. The results for nonlinear
Landau damping are in good agreement with the existing literature. For the two-stream
problem we show that the fundamental mode agrees very well with the linear theory until
quite close to saturation. Taking advantage of the quadratic convergence of the algorithm
we obtained converged growth rates by extrapolating to infinite resolution.

This method has an obvious extension to higher-order differencing in phase space.
Provided central differences are used, the conservation properties will be unchanged.
We have demonstrated methods using fourth-order central differences in phase space and
higher order in time by using standard composition techniques (Suzuki 1990; Yoshida
1990). In either case, the conservation (and consequently stability) properties persist.
There is no technical limitation on using the composition techniques with higher-order
phase-space differencing.

All code and data used in this manuscript are available from the corresponding author.
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Appendix A. Properties of the phase-space discretization

The advection operators (2.3) and (2.4) have a number of properties that are central the
results of §§ 2 and 3. Consider

Nx∑
k=1

Skj(f ) = vj

2�x

Nx∑
k=1

(
fk+1j − fk−1j

) = vj

2�x

(
Nx+1∑
k=2

fkj −
Nx−1∑
k=0

fkj

)
. (A1)

Our spatial domain is periodic so we can interpret spatial indices modulo Nx and hence the
spatial index can be shifted by any amount without altering the sum. Thus the two sums
in (A1) cancel giving

Nx∑
k=1

Skj(f ) = 0. (A2)

Now

Nx∑
k=1

fkjSkj(f ) = vj

2�x

Nx∑
k=1

fkj

(
fk+1j − fk−1j

) = vj

2�x

(
Nx∑

k=1

fkjfk+1j −
Nx−1∑
k=0

fk+1jfkj

)
. (A3)

Spatial periodicity forces these two sums to cancel and we have

Nx∑
k=1

fkjSkj(f ) = 0. (A4)

Consider

Nx∑
k=1

ΦkSkj(f ) = vj

2�x

Nx∑
k=1

Φk
(
fk+1j − fk−1j

)

= vj

2�x

(
Nx+1∑
k=2

Φk−1fkj −
Nx−1∑
k=0

Φk+1fkj

)

= vj

2�x

Nx∑
k=1

fkj (Φk−1 − Φk+1)

= vj

Nx∑
k=1

Ekfkj, (A5)
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where we have used spatial periodicity to shift the sums. Consider

Nv∑
j=1

Vkj(f , E) = q
m

1
2�v

Ek

Nv∑
j=1

(
fkj+1 − fkj−1

)

= q
m

1
2�v

Ek

⎛
⎝Nv+1∑

j=2

fkj −
Nv−1∑
j=0

fkj

⎞
⎠

= q
m

1
2�v

Ek
(
fkNv

+ fkNv+1 − fk0 − fk1

)
. (A6)

Our boundary conditions in v imply fkNv+1 = 0 = fk0 and we have

Nv∑
j=1

Vkj(f , E) = q
m

1
2�v

Ek
(
fkNv

− fk1

)
. (A7)

Now consider

Nv∑
j=1

vjVkj(f , E) = q
m

1
2�v

Ek

Nv∑
j=1

vj
(
fkj+1 − fkj−1

)

= q
m

1
2�v

Ek

⎛
⎝Nv+1∑

j=2

vj−1fkj −
Nv−1∑
j=0

vj+1fkj

⎞
⎠

= q
m

1
2�v

Ek

⎡
⎣ Nv∑

j=1

(
vj−1 − vj+1

)
fkj

+ vNv
fkNv+1 − v0fk1 + vNv+1fkNv

− v1fk0

⎤
⎦ . (A8)

Using our boundary conditions in v and the fact that velocity grid has uniform spacing
�v, this becomes

Nv∑
j=1

vjVkj(f , E) = − q
m

Ek

Nv∑
j=1

fkj +
q
m

Ek

2�v

(
vNv+1fkNv

− v0fk1

)
. (A9)

Now

Nv∑
j=1

v2
j Vkj(f , E) = q

m
1

2�v
Ek

Nv∑
j=1

v2
j

(
fkj+1 − fkj−1

)

= q
m

1
2�v

Ek

⎛
⎝Nv+1∑

j=2

v2
j−1fkj −

Nv−1∑
j=0

v2
j+1fkj

⎞
⎠
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= q
m

1
2�v

Ek

⎡
⎣ Nv∑

j=1

(
vj−1 − vj+1

) (
vj−1 + vj+1

)
fkj

+ v2
Nv

fkNv+1 − v2
0 fk1 + v2

Nv+1fkNv
− v2

1 fk0

⎤
⎦ , (A10)

taking into account the boundary conditions and uniform v grid, we find

Nv∑
j=1

v2
j Vkj(f , E) = −2

q
m

Ek

Nv∑
j=1

vjfkj +
q
m

Ek

2�v

(
v2

Nv+1fkNv
− v2

0 fk1

)
. (A11)

Lastly consider

Nv∑
j=1

fkjVkj(f , E) = q
m

1
2�v

Ek

Nv∑
j=1

fkj

(
fkj+1 − fkj−1

)

= q
m

1
2�v

Ek

⎛
⎝ Nv∑

j=1

fkjfkj+1 −
Nv−1∑
j=0

fkj+1fkj

⎞
⎠

= q
m

1
2�v

Ek
(
fkNv+1fkNv

− fk1fk0

)
, (A12)

which, given our boundary conditions, becomes

Nv∑
j=1

fkjVkj(f , E) = 0. (A13)

These results all generalize straightforwardly to higher-order centred-difference approxi-
mations for the derivatives in Skj and Vkj.

Appendix B. Linearization

Linearizing about a spatially uniform equilibrium f (0)

0 , we have

ḟkj + Skj(f ) + Vkj(f
(0)

0 , E) = 0. (B1)

where f now represents the first-order departure of the distribution function from f (0)

0 and
E is the linearized electric field. Since the spatial domain is periodic,

∑Nx
k=1 Ek = 0 and

thus
Nx∑

k=1

Vkj(f
(0)

0 , E) = 0 (B2)

leading to conservation of particle number and momentum in the continuous-time case.
In the linearized case, the correct energy expression is the Kruskal–Oberman energy
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(Kruskal & Oberman 1958; Morrison & Pfirsch 1990):

− 1
2

m
∫

vf 2

f ′
eq

dv dx + 1
8π

∫
E2 dx. (B3)

With the introduction of a phase-space grid this becomes

EKO = −1
2

m�x�v

Nx∑
k=1

Nv∑
j=1

vj
(
fkj

)2

f ′
eq(vj)

− �x
8π

Nx∑
k,l=1

ΦkKklΦl (B4)

and

dEKO

dt
= −m�x�v

Nx∑
k=1

Nv∑
j=1

vjfkjḟkj

f ′
eq(vj)

− �x
4π

Nx∑
k,l=1

ΦkKklΦ̇l. (B5)

Using (2.17) and (B1) we have

dEKO

dt
= m�x�v

Nx∑
k=1

Nv∑
j=1

vjfkjSkj(f )

f ′
eq(vj)

+ q�x�v

Nx∑
k=1

Nv∑
j=1

vjfkjEk

− q�x�v

Nx∑
k=1

Ek

Nv∑
j=1

vjfkj. (B6)

From (A4), we see that dEKO/dt = 0.
We solve the linearized equations with our split-step algorithm, (3.24), where we replace

(3.24b) with

f̂kj +
�t
2

Vkj(f
(0)

0 , Ẽ) = f̃kj −
�t
2

Vkj(f
(0)

0 , Ẽ) (B7)

and (3.24d) with
Nx∑

l=1

KklΦ̃l = −4πq�v

Nv∑
j=1

f̃kj. (B8)

As in the nonlinear case, this algorithm exactly conserves particle number and momentum,
while the Kruskal–Oberman energy is only approximately conserved.

Assuming temporal and spatial dependencies of the form e−iωt and eikx, respectively,
leads, in the usual way (Krall & Trivelpiece 1973), to the plasma dielectric function,
defined for ωi > 0 as

ε(k, ω) = 1 + ω2
p

k2

1
n0

∫
dv

df (0)

0

dv

1
ω/k − v

. (B9)

For ωi < 0, ε can be obtained from the relationship ε(k, ω)∗ = ε(k, ω∗). Zeros of ε

correspond to normal modes of the system. In addition to such modes, in the asymptotic
limit, the initial value problem can also give rise to wave-like solutions (Landau 1946; van
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FIGURE 21. Growth rate of the two-stream instability. The maximum growth rate occurs at
k ≈ 0.43ωp/v0.

Kampen & Felderhof 1967). This asymptotic behaviour is governed by roots in the lower
half-plane of the analytic continuation of ε, Ξ . Following Gakhov (1990), we have

Ξ(k, ω) =

⎧⎪⎨
⎪⎩

ε(k, ω) ωi > 0,

ε(k, ω) − 2πi
ω2

p

k2

1
n0

df (0)

0

dv

∣∣∣∣∣
v=ω/k

ωi < 0.
(B10)

For the Maxwellian equilibrium (4.2), the dielectric function becomes

ε(k, ω) = 1 − 1√
2π

ω2
p

k2v3
th

∫
dv

1
ω/k − v

v exp
(

− v2

2v2
th

)
. (B11)

While this can be expressed in terms of the plasma dispersion function (Fried & Conte
1961), it is more convenient to write ε, for ωi > 0, as

ε(k, ω) = 1 + ω2
p

k2v2
th

{
1 + i

√
π

2
ω

kvth
exp
(

−1
2

ω2

k2v2
th

)[
1 + erf

(
iω√
2kvth

)]}
. (B12)

For real ω, we have

ε(k, ω) = 1 + ω2
p

k2v2
th

[
1 −

√
2ω

kvth
daw

(
ω√
2kvth

)]
± i
√

π

2

ω2
pω

k3v3
th

exp
(

−1
2

ω2

k2v2
th

)
, (B13)

where ωi → 0± and daw(x) is Dawson’s integral (Abramowitz & Stegun 1964).
For the two-stream equilibrium (4.15), the dielectric function becomes

ε(k, ω) = 1 + ω2
p

k2v4
0

{(ω

k

)2
− v2

0

+i
√

π

2
ω

kv0

[(ω

k

)2
− 2v2

0

]
exp
(

−1
2

ω2

k2v2
0

)[
1 + erf

(
i√
2

ω

kv0

)]}
(B14)

for ωi > 0. For real ω, we have
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ε(k, ω) = 1 + ω2
p

k2v4
0

{(ω

k

)2
− v2

0 −
√

2
ω

kv0

[(ω

k

)2
− 2v2

0

]
daw

(
1√
2

ω

kv0

)

± i
√

π

2

ω2
pω

k3v5
0

[(ω

k

)2
− 2v2

0

]
exp
(

−1
2

ω2

k2v2
0

)
, (B15)

where ωi → 0±. The Penrose condition (Penrose 1960) shows that this equilibrium is
unstable for any v0. The spectrum of unstable modes is found by solving ε = 0 with ω
in the upper half-plane. Figure 21 shows ωi for the two-stream problem; ωr = 0 for all
unstable modes. The largest value of k giving an instability is ωp/v0 = √

3/λD.
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