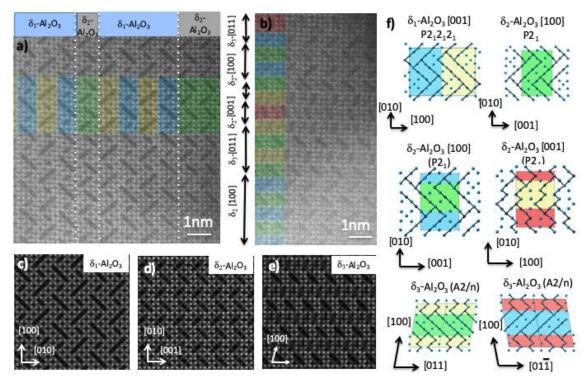
Crystallographic Analysis of Transition Al₂O₃ Phases Under the Constrains of Complex Intergrowth and Disorder

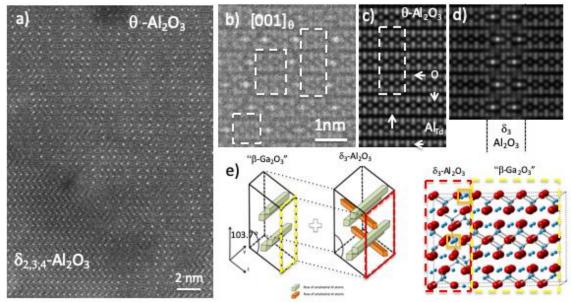
Libor Kovarik, Mark Bowden and Janos Szanyi

Pacific Northwest National Laboratory, Richland, Washington, United States

Transition aluminas are heavily used in catalytic applications, both as catalysts and catalytic supports [1]. While much research interest in transition aluminas is naturally directed towards understanding of surfaces and catalytic properties, more basic questions regarding the crystallographic nature of transition aluminas remain a subject of ongoing debate [2-4]. Due to the high degree of structural disorder, and limitation associated with the synthesis of transition aluminas (γ -Al₂O₃, δ -Al₂O₃, θ -Al₂O₃) in isolated forms, the conventional diffraction approaches cannot be used for crystallography analysis.


In the current study we present a crystallographic analysis of complex structures of δ -Al₂O₃ and θ -Al₂O₃ based on quantitative real-space interpretation of HAADF STEM images in combination with electron diffraction. The HAADF STEM observations were performed with an aberration corrected FEI Titan 80-300.

In the case of δ -Al₂O₃, we identified the structure as a complex planar intergrowth of four variants. The complexity of intergrowth arises due to the presence of two distinct intergrowth modes, which differ by intergrowth direction and variants selection [4]. An example of the two intergrowth modes, denoted as $\delta_{1,2}$ -Al₂O₃ and $\delta_{2,3,4}$ -Al₂O₃, is shown in Figure.1. The first type consists of δ_1 -Al₂O₃ and δ_2 -Al₂O₃ and the second type consists of δ_2 -Al₂O₃, δ_3 -Al₂O₃ and δ_4 -Al₂O₃. The challenges associated with crystallographic analysis come from the difficulty of identifying suitable orientations that are not affected by crystal overlap, and naturally from derivation of full crystallographic parameters from a limited number of zone axis measurements. It will be shown how quantitative analysis of image intensities, local symmetries and phase relationship between the zones enabled us to unambiguously derive the Al and O coordinates in the above described structures. Ab-initio DFT methods have been used for structural refinement. Examples of simulated HAADF images and corresponding crystal structures (only Al are displayed) are included in Figure.1.


The structure of θ -Al₂O₃ has been found to accommodate a different type of structural disorder. It contains a high density of interlinked lattice disorder sites, which break crystallographic periodicity along two principal directions, as shown in Figure 2. The presence of disorder in θ -Al₂O₃ is recognized as a series of high intensity spots in HAADF images. It will be shown that the overall structure can be rationalized as an intergrowth of " β -Ga₂O₃" structural type, which was previously considered exclusively for θ -Al₂O₃, with δ ₃-Al₂O₃ motifs that share the periodicity of β -Ga₂O₃ phase. The structural interpretation together with HAADF simulations of the intergrowth are shown in Figure 2.

As a part of this work we will show how the derived structural models of δ -Al₂O₃ and θ -Al₂O₃ can be used for ensemble level analysis of transition aluminas using recursive stacking XRD approaches [5].

Figure 1. (a) Structural intergrowth of $\delta 1$ - and $\delta 2$ -Al2O3 as revealed along the cube [100]FCC_O. (b) Structural intergrowth of $\delta 2$ - and $\delta 3$ -Al2O3 as revealed along the cube [100]FCC_O. (c,d,e) Corresponding HAADF simulations of $\delta 1$ -Al2O3 and $\delta 2$ -Al2O3 and $\delta 3$ -Al2O3. (f) Crystal projections of $\delta 1$ -Al2O3, $\delta 2$ -Al2O3 and $\delta 3$ -Al2O3 (only Al displayed).

Figure 2. (a,b) HAADF observations of microstructural disorder in θ-Al2O3. (c) HAADF image simulation of θ-Al2O3 assuming β-Gal2O3 structural type. (d) HAADF image simulation of θ-Al2O3 with the intergrowth of δ3-Al2O3. (e) Crystallographic interpretation of θ-Al2O3 structure.

References

- [1] Busca, G. (2013), Catalysis Today, 1–12.
- [2] Kovarik, L., Bowden, M., Genc, A., Szanyi, J., Peden, C. H. F., & Kwak, J. H. (2014). *The Journal of Physical Chemistry C*, 118(31), (2014), p.18051–18058.
- [3] Kovarik, L., Bowden, M., Shi, D., Washton, N. M., Andersen, A., Hu, J. Z., et al., *Chemistry of Materials*, 27(20), 7042–7049. (2015)
- [4] Kovarik, L., Bowden, M., Shi, D., Szanyi, J., & Peden, C. H. F., *The Journal of Physical Chemistry C*, *123*(14), 9454–9460. (2019).
- [5] This research was performed at Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. It was supported by PNNL's LDRD program and the U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences.