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Transition aluminas are heavily used in catalytic applications, both as catalysts and catalytic supports [1]. 

While much research interest in transition aluminas is naturally directed towards understanding of surfaces 

and catalytic properties, more basic questions regarding the crystallographic nature of transition aluminas 

remain a subject of ongoing debate [2-4]. Due to the high degree of structural disorder, and limitation 

associated with the synthesis of transition aluminas (γ-Al2O3, δ-Al2O3, θ-Al2O3) in isolated forms, the 

conventional diffraction approaches cannot be used for crystallography analysis. 

In the current study we present a crystallographic analysis of complex structures of δ-Al2O3 and θ-Al2O3 

based on quantitative real-space interpretation of HAADF STEM images in combination with electron 

diffraction. The HAADF STEM observations were performed with an aberration corrected FEI Titan 80-

300. 

In the case of δ-Al2O3, we identified the structure as a complex planar intergrowth of four variants. The 

complexity of intergrowth arises due to the presence of two distinct intergrowth modes, which differ by 

intergrowth direction and variants selection [4]. An example of the two intergrowth modes, denoted as 

δ1,2-Al2O3 and δ2,3,4-Al2O3, is shown in Figure.1. The first type consists of δ1-Al2O3 and δ2-Al2O3 and 

the second type consists of δ2-Al2O3,δ3-Al2O3 and δ4-Al2O3. The challenges associated with 

crystallographic analysis come from the difficulty of identifying suitable orientations that are not affected 

by crystal overlap, and naturally from derivation of full crystallographic parameters from a limited number 

of zone axis measurements. It will be shown how quantitative analysis of image intensities, local 

symmetries and phase relationship between the zones enabled us to unambiguously derive the Al and O 

coordinates in the above described structures. Ab-initio DFT methods have been used for structural 

refinement. Examples of simulated HAADF images and corresponding crystal structures (only Al are 

displayed) are included in Figure.1. 

The structure of θ-Al2O3 has been found to accommodate a different type of structural disorder. It contains 

a high density of interlinked lattice disorder sites, which break crystallographic periodicity along two 

principal directions, as shown in Figure 2. The presence of disorder in θ-Al2O3 is recognized as a series 

of high intensity spots in HAADF images. It will be shown that the overall structure can be rationalized 

as an intergrowth of “β-Ga2O3” structural type, which was previously considered exclusively for θ-Al2O3, 

with δ3-Al2O3 motifs that share the periodicity of β-Ga2O3 phase. The structural interpretation together 

with HAADF simulations of the intergrowth are shown in Figure 2. 

As a part of this work we will show how the derived structural models of δ-Al2O3 and θ-Al2O3 can be 

used for ensemble level analysis of transition aluminas using recursive stacking XRD approaches [5]. 
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Figure 1. (a) Structural intergrowth of δ1- and δ2-Al2O3 as revealed along the cube [100]FCC_O.  (b) 

Structural intergrowth of δ2- and δ3-Al2O3 as revealed along the cube [100]FCC_O. (c,d,e) 

Corresponding HAADF simulations of δ1-Al2O3 and δ2-Al2O3 and  δ3-Al2O3. (f) Crystal projections 

of δ1-Al2O3, δ2-Al2O3 and δ3-Al2O3 (only Al displayed). 

 
Figure 2. (a,b) HAADF observations of microstructural disorder in θ-Al2O3. (c) HAADF image 

simulation of θ-Al2O3 assuming β-Gal2O3 structural type. (d) HAADF image simulation of θ-Al2O3 

with the intergrowth of δ3-Al2O3. (e) Crystallographic interpretation of θ-Al2O3 structure. 
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