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Summary

Effectiveness of marker-assisted selection (MAS) and quantitative trait locus (QTL) mapping
using population-wide linkage disequilibrium (LD) between markers and QTLs depends on the
extent of LD and how it declines with distance between markers and QTLs in a population.
Marker–QTL LD can be predicted from LD between markers. Our previous work evaluated LD
measures between multi-allelic markers as predictors of usable LD of multi-allelic markers with
QTLs. Since single nucleotide polymorphisms (SNPs) are the current marker of choice for high-
density genotyping and LD-mapping of QTLs, the objective of this study was to use LD between
multi-allelic markers to predict LD among biallelic SNPs or between SNPs and QTLs. Observable
LD between multi-allelic markers was evaluated using nine measures. These included two pooled
and standardized measures of LD between pairs of alleles at two markers based on Lewontin’s LD
measure, two pooled measures of squared correlations between alleles, one standardized measure
using Hardy–Weinberg heterozygosities, and four measures based on the chi-square statistic for
testing for association between alleles at two loci. The standardized chi-square measure that best
predicted usable LD between multi-allelic markers and QTLs, based on our previous work,
overestimated usable SNP–SNP or SNP–QTL LD. Instead, three other measures were found to be
good predictors of usable SNP–SNP or SNP–QTL LD when LD is generated by drift. Therefore,
the LD measure between multi-allelic markers that is best for predicting usable LD in a population
depends on the type of markers (i.e. multi-allelic or biallelic) that will eventually be used for QTL
mapping or MAS.

1. Introduction

Effectiveness of marker-assisted selection (MAS) and
quantitative trait locus (QTL) mapping using popu-
lation-wide linkage disequilibrium (LD) between
markers and QTLs depends on the extent of LD and
how it declines with distance in a population.
Although marker–QTL LD cannot be observed di-
rectly, it can be predicted from LD between markers.
Zhao et al. (2005) evaluated nine LD measures be-
tween multi-allelic markers as predictors of usable LD
between the same group of markers and biallelic
QTLs. When LD is generated by drift, a standardized
chi-square statistic (x2k) was recommended to quantify

the amount and extent of usable LD in a population
for QTL mapping and MAS based on multi-allelic
markers (Zhao et al., 2005).

While highly polymorphic microsatellite (MS)
markers are still often used in genome-wide linkage
analysis to track inheritance of chromosome regions,
recently biallelic single nucleotide polymorphism
(SNP) markers have been receiving more attention
in genetics research. In addition to the abundance of
SNPs in the genome, recent advances in technology
have made large-scale SNP genotyping rapid, accu-
rate and inexpensive (Kwok, 2001). High-density
SNP maps are now available for both human and
several livestock species. For example, the public
SNP database contains 9.2 million candidate human
SNPs (International HapMap Consortium, 2005),
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and a genetic variation map for the chicken genome
containing 2.8 million SNPs has been constructed
(International Chicken Polymorphism Map Consor-
tium, 2004).

These exciting developments of dense SNP maps
present tremendous opportunities for high-resolution
LD mapping of QTLs. Within a closed breeding
population in livestock, LD is limited to closely linked
loci due to many generations of recombination.
Therefore, high-density SNP genotyping enables de-
tection and fine-mapping of QTLs in outbred popu-
lations using historical LD, and resulting QTLs can
immediately be implemented for MAS (Dekkers &
Hospital, 2002; Grapes et al., 2004; Meuwissen &
Goddard, 2000). A crucial issue in using high-density
SNP maps is the extent of LD among SNPs or be-
tween SNPs and QTLs, which affects the power of
LD mapping and effectiveness of MAS and is
needed to determine the SNP density that is required
to obtain a given power to detect QTLs. However,
since MS markers are still frequently used or MS
genotypes may be available from previous studies
in a population, it is of interest to predict the extent
of LD that exists in a population among SNPs or
between SNPs and QTLs based on LD between
available MS markers, which is the objective of this
study. This research has practical implications be-
cause, before collecting data on SNPs, it is important
to know how many SNPs and what sort of density
will be needed. The genotype data that are available
on MSs in many populations can help us address
this prior to designing SNP panels and collecting
SNP data.

2. Materials and methods

The methods in this paper are the same as in Zhao
et al. (2005). Briefly, observable LD between multi-
allelic marker pairs was evaluated using nine alternate
measures. These included two pooled and standard-
ized measures of LD between pairs of alleles at two
markers based on Lewontin’s LD measure (denoted
Dk and Dhap), two pooled measures of squared corre-
lations between alleles (r2 and rhap

2 ), one standardized
measure using Hardy–Weinberg heterozygosities
(D*), and four measures based on the chi-square
statistic for testing for association between alleles at
two loci (x2, xdf

2 , x2k and xtr
2 ). Definitions of these

measures are given in Appendix. For LD between
biallelic markers, Dk=Dhap and

r2=r2hap=D*=x2
df=x2k:

These nine measures of LD between multi-allelic
markers were evaluated for their ability to quantify
LD among biallelic SNPs on a 100 cM chromosome
in simulated populations. In generation 0, MSs with

2, 4, 6, 8 or 10 equi-frequent alleles were simulated at
0, 2, …, 100 cM and SNPs with two equi-frequent
alleles at 1, 3, …, 99 cM. All loci were in
Hardy–Weinberg and linkage equilibrium in gener-
ation 0. LD was generated by drift by 100 generations
of random mating of N parents (N=50, 100, 150 or
200), which was found to be sufficient to reach a
steady-state situation with regard to the level of LD
(Zhao et al., 2005). Data on segregating loci in gen-
eration 100 were used for analysis.

Estimates of SNP–SNP LD were obtained from
LD between a pair of SNPs in our simulation and
measured by r2 and Dk. LD measured by r2 is
equivalent to usable LD between biallelic markers
and QTLs (also assumed biallelic) (Zhao et al., 2005).
Because many studies have used Dk to evaluate multi-
allelic marker LD (Farnir et al., 2000; McRae et al.,
2002; Nsengimana et al., 2004; Tenesa et al., 2003),
we evaluated the ability of multi-allelic Dk to predict
biallelic Dk.

To assess and compare the decline in LD with dis-
tance (f20 cM) for SNP–SNP LD and MS–MS LD,
the function LDd=1/(1+4bd) (Sved, 1971) was fitted
to the LD data that were generated for each replicate,
where LDd is LD at distance d morgans, as measured
by SNP–SNP r2 or Dk or by a MS–MS LD measure,
and b is a parameter that is related to effective popu-
lation size (Ne=actual population size for the ideal-
ized populations that were simulated (Falconer &
Mackay, 1996)). A weighted least squares regression
was used to estimate b for each simulated data set, as
described in Zhao et al. (2005).

Following the same criteria as described in Zhao
et al. (2005), LD curves predicted from different
measures of MS–MS LD were compared with
SNP–SNP LD measured by: (1) r2 to find which
multi-allelic marker measure best predicts usable
SNP–SNP LD, and (2) Dk to find which multi-allelic
marker measure best predicts SNP–SNP LD based
on Dk.

3. Results

(i) Decline of LD with distance

The observed relationships of SNP–SNP LD and
MS–MS LD with distance for a representative repli-
cate with a population size of 100 and 4 alleles per
MS marker are illustrated in Fig. 1. Usable SNP–SNP
LD measured by r2 was relatively high at short dis-
tances and declined rapidly with distance (Fig. 1a).
Similar declines were observed when r2, rhap

2 , D*, x2,
xdf
2 (Fig. 1b), x2k and xtr

2 were used to measure
MS–MS LD. The SNP–SNP LD measured by Dk was
strongly inflated relative to SNP–SNP r2, and high
LD values were obtained even for markers that ap-
proached equilibrium (results not shown). The same
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was true for MS–MS LD measured by Dk and Dhap

(results not shown).
To assess the decline of LD with distance, the

equation LDd=1/(1+4bd) was fitted to the sample
data for the replicate pictured in Fig. 1. Estimates
were b̂=86.8 for SNP–SNP r2 and 3.3 for SNP–SNP
Dk, and 5.4, 5.4, 92.0, 89.8, 93.5, 110.4, 42.6 and 24.1
for MS–MS LDmeasured byDk,Dhap, r

2, rhap
2 ,D*, xdf

2 ,
x2k and xtr

2 , respectively. Measure x2 was not used to
estimate b because of its non-standardized scale. The
LD curve predicted from SNP–SNP r2 was very close
to LD curves predicted from MS–MS LD measured
by r2, rhap

2 , D* and xdf
2 (Fig. 1b). The LD curve pre-

dicted from SNP–SNP Dk was close to LD curves
predicted from MS–MS LD measured by Dk and Dhap

(results not shown). Based on mean LD at a given
distance (Fig. 1), the estimated curves appeared to
provide a good fit to the data for all LD measures

except for Dk and Dhap due to their inflated values at
larger distances.

(ii) Comparison of LD curves predicted from
SNP–SNP and MS–MS LD

Results in this section are based on analysing 100 rep-
licates for each of the 20 combinations of population
size and number of marker alleles. All LD measures
were evaluated except x2.

The mean b̂ across 100 replicates obtained from
SNP–SNP and MS–MS LD for each simulated scen-
ario is shown in Table 1. The mean b̂ for MS–MS LD
measured by r2,D* and xdf

2 was very close to the mean
b̂ for SNP–SNP r2, and they all provided good esti-
mates of Ne (Table 1). With more than two alleles per
MS marker in generation 0, the mean estimates of b̂
obtained from MS–MS x2k were much lower than the
mean b̂ for SNP–SNP r2 (Table 1). Because of the
relationship between LD at a given distance and b
based on the equation LDd=1/(1+4bd), this implies
that measure x2k overestimated usable SNP–SNP LD.
The mean b̂ for MS–MS LD measured byDk andDhap

was very close to the mean b̂ for SNP–SNP Dk
(Table 1).

The relationship between MS–MS LD and
SNP–SNP LD for a given population was further
analysed using estimates b̂ obtained from each repli-
cate. Table 2a illustrates the relationship of b̂ for
SNP–SNP LD measured by r2 with b̂ for MS–MS LD
across the 20 simulated cases with varying population
sizes and numbers of MS marker alleles. A good lin-
ear relationship was observed for MS–MS LD
measured by r2, D* and xdf

2 , with a correlation of 0.93,
0.93, 0.94 and slope of 1.0, 1.0, 0.8, respectively
(Table 2a). Corresponding relationships were poorer
for x2k and for the other MS–MS LD measures
(Table 2a). The mean of the squared difference (MSE)
averaged over 100 replicates between LD predicted
based on SNP–SNP r2 and MS–MS LD measured by
r2, D* and xdf

2 was low for all 20 simulated cases
(Table 3). Therefore, usable SNP–SNP LD is best
predicted by MS–MS LD measured by r2, D* and xdf

2 ,
but not by x2k.

Corresponding relationships of b̂ for SNP–SNP
LD measured by Dk with b̂ for MS–MS LD are
in Table 2b. The relationship appeared to be linear
for MS–MS LD measured by Dk and Dhap. Corre-
lations were 0.79 and 0.83 and slopes were 0.90 and
0.83 for Dk and Dhap, respectively (Table 2b), while
slopes ranged from 0.02 to 0.16 for the other MS–MS
LD measures (Table 2b). The MSE between LD
predicted based on SNP–SNP Dk and MS–MS LD
measured by Dk and Dhap was much lower than the
other MS–MS LD measures for all 20 simulated
cases (results not shown). This implies that Dk and
Dhap between multi-allelic markers, although not
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Fig. 1. Observed relationships of SNP–SNP LD measured
by r2 (a) and microsatellite–microsatellite (MS–MS) LD
measured by xdf

2 (b) against map distance for a
representative replicate with a population size of 100 and
four alleles per MS marker in generation 0. LD at
a distance d morgans was predicted from LD̂d=1/(1+b̂d )
where b̂ was obtained from the simulated data for each
LD measure.
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recommended for measuring LD, can predict
SNP–SNP LD based on Dk.

4. Discussion and conclusions

Before collecting data on SNPs for high-density geno-
typing and LD-mapping of QTLs, it is important to
know how many SNPs and what sort of SNP density
are needed to obtain a given power to detect QTLs,
which depends on the extent of LD that exists in a

population among SNPs. Our study shows that LD
between available MS markers measured by r2, D*
and xdf

2 are good predictors of usable SNP–SNP LD
when LD is generated by drift. Although the focus

Table 1. Mean estimates of the decline of LD with distance ( b̂) over 100 replicates based on SNP–SNP LD
and microsatellite–microsatellite (MS–MS) LD for simulated data based on different combinations of number of
MS marker alleles in generation 0 and population size

No. of MS alleles
in generation

Population
size

SNP–SNP LD MS–MS LD

0 100 Dk r2 Dk r2 D* x2
df x2k

2 2 50 2.6 55.0 2.5 55.7 55.7 55.7 55.7
2 100 4.1 101.9 4.2 101.5 101.5 101.5 101.5
2 150 6.9 146.4 6.6 148.6 148.6 148.6 148.6
2 200 10.1 190.0 9.9 193.0 193.0 193.0 193.0

4 2.2 50 2.6 53.7 2.7 49.1 49.3 51.1 35.5
2.8 100 4.2 102.2 5.5 92.6 93.8 104.6 46.2
3.3 150 6.3 146.5 8.7 130.3 133.0 156.1 56.0
3.6 200 9.9 190.6 11.3 176.4 178.9 207.0 69.0

8 2.4 50 2.4 56.5 2.7 46.9 47.2 49.8 29.8
3.5 100 4.2 103.5 5.7 87.3 89.6 107.5 33.1
4.4 150 6.3 146.6 7.4 128.3 131.7 162.6 37.3
5.2 200 10.0 190.6 8.3 170.8 175.5 219.0 41.5

The number of MS alleles in generation 100 is the average of the mean number of alleles across MS markers still segregating
in generation 100 over 100 replicates. Results for MS–MS LD measured by Dhap, rhap

2 and xtr
2 (not shown) can be found in

Zhao et al. (2005).

Table 2. Correlation and slope of the regression of the
decline of LD with distance ( b̂) estimated from each
replicate for (a) SNP–SNP r2 and (b) SNP–SNP Dk
on b̂ estimated for different measures of
microsatellite–microsatellite (MS–MS) LD

MS–MS LD

Dk Dhap r2 r2hap D* x2df x2k x2tr

(a) SNP–SNP r2

Correlation 0.86 0.89 0.93 0.88 0.93 0.94 0.35 0.76
Slope 16.82 15.25 1.01 1.08 1.00 0.82 0.43 2.99

(b) SNP–SNP Dk
Correlation 0.79 0.83 0.87 0.82 0.87 0.87 0.34 0.72
Slope 0.90 0.83 0.05 0.06 0.05 0.04 0.02 0.16

Data are based on 100 replicates simulated for each of
the 20 combinations of population size (50, 100, 150 or 200)
and number of MS marker alleles (2, 4, 6, 8 or 10) in gen-
eration 0.

Table 3. The mean of the squared difference (MSE )
between LD predicted based on SNP–SNP r2 and
different measures of microsatellite–microsatellite
(MS–MS) LD at 1, 2, …, 20 cM for simulated data
generated from different combinations of population
size and number of MS marker alleles in generation 0

No. of MS
alleles in
generation 0

Population
size

MS–MS LD

Dk r2 x2k x2tr

2 50 244.2 0.6 0.6 31.4
100 168.2 0.1 0.1 15.8
150 114.4 0.0 0.0 7.6
200 74.7 0.0 0.0 3.5

4 50 216.5 0.4 1.8 29.3
100 127.0 0.1 3.0 13.2
150 80.5 0.0 2.9 8.1
200 61.8 0.0 2.3 5.5

8 50 216.0 0.5 3.8 31.7
100 121.7 0.1 7.4 16.8
150 96.6 0.0 7.9 14.0
200 89.9 0.0 7.7 12.5

Values are the average MSE over 100 replicates multiplied
by 1000 for each combination. Results for MS–MS
LD measured by Dhap (not shown) were similar to those for
Dk, and results for rhap

2 , D* and xdf
2 were similar to those

for r2.
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was on predicting SNP–SNP LD using LD between
MSs, our conclusions also apply to relating LD
between other multi-allelic markers to LD among
SNPs or between SNPs and QTLs.

Assuming a drift model, the decline of LD with
distance estimated from SNP–SNP r2 provides good
estimates of Ne. Hence, in order to predict usable LD
between SNPs, the observed LD between MSs should
be measured by a statistic that approximately esti-
mates Ne, regardless of the number of alleles left at a
MS marker after drift. Such a measure was found by
our simulation studies to be r2,D* and xdf

2 , which were
invariant to the number of MS marker alleles re-
maining in generation 100; all provided good esti-
mates of Ne (Table 1).

Zhao et al. (2005) showed that x2k, a measure
of LD between multi-allelic markers, is the best pre-
dictor of usable LD of multi-allelic markers with
QTLs for the purpose of QTL detection and MAS.
However, as demonstrated here, x2k overestimates
usable LD among SNPs or between SNPs and QTLs,
because it reflects not only Ne but also the number
of marker alleles that remain in the generation
under consideration (Zhao et al., 2005). Therefore,
the LD measure between multi-allelic markers that is
best for predicting usable LD in a population depends
on the type of markers (i.e. multi-allelic or biallelic)
that will eventually be used for QTL mapping or
MAS.

The definitions of xdf
2 and x2k suggest that they

are proportional to each other, with a ratio of
[max(k, m)x1], where k and m are the numbers of
alternate alleles at two MS markers (see Appendix).
For a large Ne and k=m, this implies a constant ratio
of (kx1), and the estimate of the decline of LD with
distance (b) should reflect this ratio. Because the
number of alleles remaining in generation 100 varied
across MS markers, this is approximately what is ob-
served in Table 1. For Ne=200, the ratio of b̂ for xdf

2

versus x2k was 3 for k=m=4 in generation 0, and the
ratio was 5 for k=m=8, because on average a num-
ber of alleles are lost due to drift (Table 1).

Because many previous studies have used Dk to
evaluate multi-allelic marker LD (Farnir et al., 2000;
McRae et al., 2002; Nsengimana et al., 2004; Tenesa
et al., 2003), we also evaluated its ability to predict Dk
for biallelic loci. We found that SNP–SNP LD based
on Dk can be predicted from LD between multi-allelic
markers measured by Dk and Dhap. However, they are
not recommended to quantify LD due to their inflated
LD estimates (Zhao et al., 2005).

In our simulation, the smallest distance between
SNPs is 2 cM, but we see no reason that we can not
extrapolate our results to SNPs at shorter distances.
Although our study is based on simulated populations
where LD was generated by drift alone, the con-
clusions are expected to hold for populations that are

under selection or subject to mutation, as reasoned by
Zhao et al. (2005).

Appendix. Definitions of nine LD measures

between multi-allelic markers

The first two measures are based on Lewontin’s nor-
malized LD measure (Lewontin, 1964) weighted by
the product of allele frequencies :

Dk= g
k

i=1
g
m

j=1
p(Ai) p(Bj)

Dij

Dmax
ij

�
�
�
�
�

�
�
�
�
�

(Hedrick, 1987), or weighted by haplotype fre-
quencies :

Dhap= g
k

i=1
g
m

j=1
p(AiBj)

Dij

Dmax
ij

�
�
�
�
�

�
�
�
�
�

(Karlin & Piazza, 1981), where k and m are the num-
bers of alternate alleles at locus A and B, respectively,
p(Ai) is the frequency of allele Ai at locus A, p(Bj) the
frequency of allele Bj at locus B, p(Ai Bj) the frequency
of haplotype AiBj, and

Dij=p(AiBj)xp(Ai)p(Bj),

Dmax
ij =min[ p(Ai) p(Bj), (1xp(Ai)) (1x p(Bj)) ]

when Dij<0,

and

Dmax
ij =min [ p(Ai) (1xp(Bj)), (1xp(Ai)) p(Bj) ]

when Dijo0:

The next two measures are based on pooling the
square of the correlation between Ai and Bj, denoted
by rij

2 , based on allele frequencies :

r2= g
k

i=1
g
m

j=1
p(Ai) p(Bj) r

2
ij,

or based on haplotype frequencies :

r2hap= g
k

i=1
g
m

j=1
p(AiBj) r

2
ij,

where r2ij=
D2

ij

p(Ai) (1xp(Ai)) p(Bj) (1xp(Bj))
(Hill &

Robertson, 1968).
Using Hardy–Weinberg heterozygosities at two

loci, the fifth measure is

D*=
D2

HAHB
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(Maruyama, 1982; Hedrick & Thomson, 1986;
Hedrick, 1987), where

D2= g
k

i=1
g
m

j=1
D2

ij,HA=1x g
k

i=1
p2(Ai)

and

HB=1x g
m

j=1
p2(Bj):

The final four measures are related to the chi-
square statistic to test for independence between
alleles at two loci. The chi-square statistic is

x2=2N g
k

i=1
g
m

j=1

D2
ij

p(Ai) p(Bj)
,

where N is the sample size and 2N is the number of
haplotypes that occurs in the sample. Three standard-
ized measures of x2 with values between 0 and 1 are:

x2
df=

x2

2N (kx1)(mx1)

(Hedrick & Thomson, 1986; Hedrick, 1987), where
(k – 1)(m – 1) is equal to the degrees of freedom of x2 ;

x2k=
x2

2N (lx1)

(Yamazaki, 1977), where l=min(k, m) ; and

x2
tr=

x2

x2
max

(Zhao et al., 2005), where xmax
2 is a sharp upper

bound for the maximum of x2. Note that xdf
2 and x2k

are proportional to each other, with a ratio of
[max(k, m)x1].
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