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Understanding abundance and distribution of
weed species within the landscape of an agroeco-
system is an important goal for weed science.
Abundance is a measure of the number or frequency
of individuals in an area. Distribution is a measure
of the geographical range of a weed species. The
study of weed population’s abundance and distri-
bution is helpful in determining how a population
changes over time in response to selective pressures
applied by our agronomic practices. Accurate
estimates, however, of these two key variables are
very important if we are to manage agricultural land
both for productivity and for biodiversity.

Biodiversity is generally thought of in terms of
number of species and their relative proportion
within the plant community. Generally, agronomic
practices, including the use of available technologies
such as herbicides, limit plant diversity within our
cropping systems. Weed species that are able to
survive these agronomic selective pressures are
ecologically well adapted and invariably become
more difficult to manage. In addition, low plant
diversity within an agroecosystem can result in the
agroecosystem becoming more vulnerable to inva-
sion by new species. Thus, in order to address
agronomic or ecological hypotheses regarding weed
species abundance and distribution, field experi-
ments must be carefully designed and analyzed in
order to reduce the possibility of a Type 1 error.
Equally important, however, is an understanding of
the limitations of all experimental designs and
analyses when developing quantitative data based on
field experiments. Limitations such as logistics,
time, and funding invariably will influence the
procedures for data collection, as well as the
geographical scale at which field experiments are
conducted.

The scale at which an experiment is to be
conducted depends on the question being asked.

An experiment to determine the effectiveness of
a herbicide on a selected weed species can be
conducted at a much smaller scale than an
experiment designed to determine if a weed species
can be found on specific soil types. How big does an
experiment have to be in order to provide useful
information? How many samples need to be
collected? If a survey is done, how many locations
need to be included for the data to be relevant and
descriptive? Does the scale of my experiment
account for spatial and temporal heterogeneity of
the species being studied? Decisions about scale are
important; the need to compromise on what would
be ideal vs. what can be done realistically must be
made. These decisions will influence data analyses,
interpretation, and the application of the results.
How one plans to analyse data obtained from field
work is as critically important as choosing the
appropriate experimental design.

In this section we describe and discuss some of
the most popular research techniques employed by
weed scientists to assess weed abundance, distribu-
tion, diversity, and community. We have also
introduced some techniques and concepts com-
monly used in related life science disciplines and
in Geographic Information Systems (GIS). These
include the concept of ‘‘cover,’’ which is popular in
general ecology and forestry, and the techniques
used in GIS to analyze patterns and distributions
of objects or phenomena. The goal here is to
strengthen the arsenal of techniques and methods
used in weed sciences, and more importantly, to
show their applicability in weed sciences through
the use of hypothetical example studies. We have
provided several landmark references and have
drawn realistic illustrations using hypothetical data
to enable weed scientists to use GIS techniques and
statistics when and where appropriate. Based on the
high rate of paper rejections by major scientific
journals, this discussion of methods in weed sciences
would not be complete without a thorough
discussion of the methods of acquisition and
analysis of weed data; hence the section on sampling
techniques applied to weed sciences. Here, the basic
concepts of sample unit and sample size are
integrated with sophisticated sampling methods to
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match the needs of graduate students and profes-
sional researchers. With respect to data analysis, this
section attempts to minimize the hurdle of the
theoretical aspects of multivariate analysis. Most
textbooks and papers on multivariate analysis such
as those of Harville (1997), Rao and Rao (1998),
and Schott (2005) are written for mathematically
advanced readers with academic credits in calculus,
matrix algebra, and statistical theory. In this
chapter, we bridge the gap between those prereq-
uisites and the level of the average reader by
breaking down the matrix algebra concepts that
define multivariate techniques. More importantly,
the section provides weed science-adapted example
studies for illustration, as well as the statistical
procedure using the SAS software commands. Out
of the many ordination methods available in the
literature, we selected two of the most popular in
weed science: principal component analysis and
canonical discriminant analysis. Other ordination
methods (e.g., multidimensional scaling, correspon-
dence analysis) can be found in reference textbooks
written by Gauch (1982), and McCune and Grace
(2002).

Methods for Assessing Weed Abundance

Abundance measures the quantitative significance
of a species in its habitat. It describes the species’
success in terms of numbers. Several different
methods and techniques of measuring abundance
can be used, depending upon the type of species, the
habitat (e.g., forest, field), the objectives of the
study, and the economic resources of the research
team.

Density and Frequency. Density and frequency are
the two simplest and most popular methods of
measuring abundance. Density (D) measures the
number of individuals per unit area, whereas
frequency (F) is the proportion of sampling units
(e.g., quadrat; field) that contains the species. Thus:

Di~ SYið Þ= Sað Þ
and

Fi~ SZið Þ=n

where: Di 5 density of species i; SYi 5 number of
individual plants of species i contained in the
sampling unit (quadrat or field); Sa 5 Surface area
of the sampling unit; Fi 5 frequency value for
species i; SZi 5 number of sampling units with

species i present; and n 5 total number of sampling
units surveyed.

Issues with Density and Frequency. Recording density
is a nondestructive experimental approach. It is very
time consuming to get accurate numbers. Once
achieved, and unlike frequency, it does provide
quantitative information (number of individuals)
on the weed species. Recording frequency is fast
and nondestructive and is less prone to incorrect
estimates than density. In situations where appro-
priate sampling techniques are employed and
sampling points are uniformly distributed across
the sampled area, frequency can be a good indicator
of the spatial distribution of a species within the
sampled area. There are issues associated with using
density and frequency, the most prominent of
which is the identification of individual plants.
Due to the phenomenon of phenotypic plasticity,
individuals of the same species can display pheno-
typic variations and hence appear morphologically
different, depending on their developmental or
phenological stages and the environment in which
they are growing. Thus, measures of density and
frequency might exclude individuals that are
genotypically similar but somewhat phenotypically
different and result in an underestimation of their
abundance. It is also possible that in the absence of
proper taxonomic information, intraspecific pheno-
typic variations of weed traits mislead the researcher,
resulting in an overestimation of the number of
species.

Another issue in using density and frequency as a
measure of population abundance is that they do
not account for differences in size or weight of the
species. Consequently, these measurements might
not reflect accurately the ecological importance of a
species within a community. For example, at equal
density or frequency, larger individuals (such as
trees) can have a greater impact on both the
community and the environment (e.g., through
shading).

Cover and Biomass. Cover is the area of ground
covered or the relative proportion of coverage a
particular plant species, vegetation layer, or plant
form represents when viewed from above. It can be
expressed in absolute or relative terms. Absolute
cover is the proportion of the ground area, expressed
as percent, covered by a particular plant species,
vegetation layer, or plant form. It is typically
categorized as visual estimates, and as such, can be
subjective and relatively inaccurate (Kercher et al.

Nkoa et al.: Weed distribution, diversity, and analysis N 65

https://doi.org/10.1614/WS-D-13-00075.1 Published online by Cambridge University Press

https://doi.org/10.1614/WS-D-13-00075.1


2003). Common categories are: 0%, 1 to 5%, 5 to
10%, 10 to 25%, 25 to 50%, 50 to 75%, and 75 to
100%. Despite its subjective character, absolute cover
is widely used because it provides useful information
with relatively low effort. Relative cover is the
proportion of the total canopy cover that a particular
species, vegetation layer, or plant form represents.
For example the statement ‘‘deciduous species
represent 75% of the canopy cover’’ means deciduous
species make up 75% of the canopy (deciduous
forest). This method of estimation is more frequent
in plant ecology and forestry than in weed biology. As
a measure of the proportion of ground occupied by a
given weed species or weed community, cover might
provide a better indication than density and
frequency about the significance of a weed species
or a community within a given habitat.

Biomass is the variable used to assess the
productivity of a given plant species in a given
environment. It is expressed as dry weight per unit
area. Biomass is determined by collecting the shoots
and/or roots of a species. It is an objective and
accurate method; however, it involves destructive
sampling and is not convenient for larger organisms
such as trees.

Examples of Estimation of Density, Frequency,
and Cover. In the following examples (see Figures 1
and 2), the quadrat is the sampling unit and
estimates of frequency, density, and cover are shown
to be dependent upon the size of the sampling unit
and plant distribution.

Example 1: Influence of quadrat size. The quadrats
are different in size and are distributed randomly
within the population (see Figure 1, used with
permission from Booth et al. 2010). Frequency is
more dependent on quadrat size than other measures
of abundance. Use of large quadrats results in more
species having 100% frequency, whereas in small
quadrats, many frequencies are zero.

Example 2: Influence of plant distribution. Individ-
uals within each population are arranged (a)
regularly, (b) in clumps, or (c) randomly. The
quadrats are the same size and are randomly
distributed within the population (Figure 2, used
with permission from Booth et al. 2010). Estimates
are different, even though the true values of the three
populations are the same. Therefore, under certain
circumstances, mean density, frequency, and cover
might be of limited value because of sampling bias.

Field Sampling Techniques. Field studies can
require sampling across a diverse and large
landscape. To save money and time without
sacrificing the validity of research findings, a proper
sampling method is required. For field sampling,
each experimental field is a ‘‘population’’ whose
mean value is estimated from a sampling distribu-
tion of quadrats. The difference between the
sampling distribution mean and the field mean
constitutes the sampling error. The procedure for
selecting the plants to be identified, measured, and
used for estimating the field mean is called the field
sampling technique. A good field sampling tech-
nique is one that produces a small sampling error.
To develop a field sampling technique to measure
weed abundance and distribution, the research
protocol must specify the sampling unit, sample
size, and sample design.

Sampling Unit. The sampling unit is the unit from
which actual measurements are made. In weed
studies, it is usually the quadrat. Important features
of an appropriate quadrat are:

N Stability and definition. The shape and size of the
quadrat must be constant throughout the study,
and its boundary with the surroundings should be
easily recognized.

N Ease of measurement. The measurement of the
character of interest or the identification of a weed
species should be made easy by the choice of the
quadrat.

N High precision and low cost. Precision is deter-
mined by the reciprocal of the variance of the
quadrat estimate. The smaller the variation among
quadrat estimates within a given field, the more
precise the estimate is, and the size of the quadrat
influences the estimate of the character of interest
(see ‘‘Examples of Estimation of Density, Frequency,
and Cover’’)

Cost is primarily based on time spent making
measurements in the quadrat: the faster the
measurement process, the lower the cost. The goal
is to maintain a high degree of precision at a
reasonable cost, while keeping the variability small
among quadrats within a given field.

Sampling Size. The number of quadrats distributed
throughout the plot or field is the sampling size.
The required number of quadrats for a particular
experiment is determined by: (1) The size of the
variability among quadrats within the same plot or
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field (sampling variance), and (2) The degree of
precision desired for the measurement.

In practice, the amount of variance per sample is
generally not known initially. The desired level of
precision can, however, be set a priori. The common
practice is for the researcher to prescribe the desired
level of precision in terms of the margin of error,
either of the treatment mean (case of planned
replicated experiments) or field/site mean (weed
surveys). For example, one might prescribe that the
sample estimate should not deviate from the true
value by more than 5 or 10%. In the following

discussions, we illustrate the procedure for using
previously collected data to estimate sample size.

Case Study 1: Estimation of the number of quadrats
necessary to estimate weed density in a planned weed
management experiment. A weed scientist might wish
to evaluate the effect of different weed management
strategies on the abundance of weeds. Selection of
the proper sampling size (number of quadrats)
requires information on the variability of one of
the independent variables that best describes weed
abundance (density, frequency, cover, and biomass).

Figure 1. Estimation of frequency, density, and cover in relation to quadrat size (modified from Booth et al., 2010).
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There are three possible sources of data from which
the required information can be obtained: data from
previous experiments, additional data from ongoing
experiments, and data from specifically planned
sampling studies. Using data generated from a
previous experiment, we demonstrate one method
used to calculate the number of quadrats required to
meet a set of a priori conditions (see Table 1). Two
other methods are described thoroughly in Gomez
and Gomez (1984).

The information of primary interest in this case is
the treatment mean, that is, the mean weed density
(the average weed density across all plots on which
the same weed management strategy was applied).
Thus, the desired degree of precision will be
specified in terms of treatment mean or weed
density mean. In such a case, the sample size or the
number of quadrats required at a level of
significance is computed as shown in Equation 1:

n~
Za=2

� �2
vsð Þ

r D2ð Þ �Y 2ð Þ{ Za=2

� �2
vp

� � ½1�

where n is the required number of quadrats (sample
size); Za is the value of the standardized normal variate
corresponding to the level of significance a (the value Za

can be obtained from the table of normal curve area); vs

is the sampling variance (i.e., sampling error 5 variance
among quadrats); r is the number of repetitions; D is
the prescribed margin of error expressed as a fraction of
the treatment mean; Ȳ is the mean value of the character
of interest; and vp is the variance between plots of the
same treatment (i.e., experimental error).

To illustrate, consider for example an experiment
with four replications. Weed densities were recorded
on eight different plots on which eight different
weed control methods were applied. The researcher
wishes to determine the number of quadrats that
can achieve an estimate of the treatment mean
within 10% of the true value, at 5% significance
level. Using data from previous experiments
(Table 1) the steps are as follows:
Step 1. Compute the analysis of variance of data
from plot sampling based on a randomized
complete block design. The results are shown in
Table 2.

Figure 2. Estimation of frequency, density, and cover in relation to plant distribution (modified from Booth et al., 2010).
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Step 2. Compute the estimates of sampling variance
S2

1 (Equation 2) (i.e., the variance between quadrats
within a plot) and of experimental error S2

2
(Equation 3) (i.e., the variance between plots of
the same treatment) as:

S2
1~MS1 ½2�

S2
2~

MS2{MS1

n
½3�

where MS1 is the sampling error mean square; MS2

is the experimental error mean square in the analysis
of variance computed in step 1; and n is the sample
size, that is, the number of quadrats per plot.

Using the results of the analysis of variance
(Table 2), the estimates of sampling variance (S2

1)
and experimental error (S2

2) are computed as:

S2
1~5:0429

S2
2~

7:3993{5:0429

12
~0:1964

If given the average number of weed plants per
quadrat Ȳ 5 8; Za/2 5 1.96; vs 5 5.0429; vp 5
0.1964; D 5 0.1; and r 5 4; the required number
of quadrats, at 5% level of significance and 10%
margin of error, is then computed from Equation 1
as:

n~
1:96ð Þ2 5:0429ð Þ

4 0:1ð Þ2 8ð Þ2{ 1:96ð Þ2 0:1964ð Þ

n~10:7&11 quadrats=plot

Case Study 2: Weed surveys. Now, consider that
the weed scientist wishes to determine the abun-
dance of weeds within an ecological land unit
comprising f selected fields. Equation 1 can be
written as shown in Equation 4:

n~
Za=2

� �2
vsð Þ

f D2ð Þ �Y 2ð Þ{ Za=2

� �2
vf

� � ½4�

where n is the required number of quadrats (sample
size); Za is the value of the standardized normal
variate corresponding to the level of significance a;
vs is the sampling variance (i.e., sampling error 5
variance among quadrats); f is the number of
selected fields; D is the prescribed margin of error
expressed as a fraction of the treatment mean; Ȳ is
the mean value of the character of interest (e.g.,
weed density); and vf is the variance between fields.

In the case where the survey involves a single
field, then f 5 1 and vf 5 0; Equation 4 becomes
Equation 5:

Table 1. Data on weed density per quadrat obtained from a simple random sample of 12 quadrats per plot in a weed management
strategies trial (WMS) involving eight weed control methods and three replications (Rep). (Adapted for illustration purposes only from
Gomez and Gomez 1984.)

Weed
control
methods Rep I

Number of weeds per quadrat

Rep II Rep III

WMS1 5, 8, 12, 14, 10, 10, 6, 10, 8, 11, 11, 8 10, 13, 10, 13, 11, 11, 12, 5, 10, 7, 14, 5 7, 6, 11, 10, 7, 8, 8, 8, 10, 10, 6, 11
WMS2 11, 11, 11, 12, 4, 12, 8, 14, 8, 7, 9, 9 13, 4, 4, 7, 5, 7, 11, 8, 7, 8, 10, 9 8, 7, 9, 10, 5, 5, 9, 10, 4, 9, 12, 11
WMS3 4, 5, 8, 5, 8, 4, 5, 9, 6, 6, 7, 10 6, 8, 4, 5, 6, 10, 8, 3, 7, 8, 7, 11, 8, 7, 6, 5, 6, 7, 6, 8, 6, 6, 5, 4
WMS4 8, 10, 9, 7, 9, 7, 9, 13, 13, 5, 7, 5 9, 7, 9, 5, 8, 9, 8, 10, 6, 5, 6, 5 8, 10, 7, 6, 7, 6, 9, 8, 6, 4, 5, 7
WMS5 7, 12, 7, 11, 12, 7, 7, 6, 5, 9, 8, 9 9, 7, 6, 8, 4, 8, 8, 9, 8, 9, 6, 7, 9, 3, 4, 6, 5, 3, 9, 7, 9, 6, 6, 7
WMS6 7, 7, 6, 11, 7, 8, 8, 8, 9, 6, 4, 14 8, 10, 7, 6, 8, 8, 10, 5, 7, 5, 8, 7 7, 6, 9, 7, 11, 8, 12, 7, 8, 9, 8, 9,
WMS7 8, 9, 12, 7, 7, 3, 10, 10, 8, 7, 9, 8 8, 6, 7, 8, 9, 9, 14, 8, 9, 11, 6, 7, 10, 4, 8, 9, 4, 6, 7, 4, 3, 4, 4, 6
WMS8 5, 5, 10, 9, 7, 5, 10, 9, 6, 12, 8, 13 8, 8, 8, 3, 13, 13, 7, 12, 9, 9, 8, 11 5, 12, 10, 9, 7, 9, 8, 7, 5, 8, 10, 7

Table 2. Analysis of variance (randomized complete block design) of data from Table 1. (Source: Gomez and Gomez 1984).

Source of variation Degree of freedom Sum of squares Mean square

Replication 2 53.5208 26.7604
Variety 7 191.0556 27.2937
Experimental error 14 103.5903 7.3993
Sampling error 264 1,331.3333 5.0429
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n~
Za=2

� �2
sð Þ

D2 �Y 2
½5�

where n is the required number of quadrats (sample
size); Za is the value of the standardized normal
variate corresponding to the level of significance a;
s is the field variance (i.e., population variance); D
is the prescribed margin of error expressed as a
fraction of the treatment mean; and Ȳ is the mean value
of the character of interest (e.g., weed density). The
value of s is usually unknown. However, it can also be
estimated by the standard deviation, s, from a prior or
preliminary sample: s 5 s, when n $ 30. (McClave
and Dietrich 1988).

Sampling Designs. A field sampling design
specifies the manner in which the n quadrats are
to be selected from the whole plot or field. An
appropriate sampling design must satisfy the
following requirements: (1) the precision of the
estimate must match the precision needed to fulfill
the experimental goal; and (2) the cost of its
implementation must be within the financial,
human, and logistic resources available to the
researcher.

There are four commonly used sampling designs:
simple random sampling, stratified random sam-
pling, systematic sampling, and timed-meander
sampling.

Simple Random Sampling. This is a method of
selecting n quadrats from each plot or field
consisting of a total of N quadrats. The selection
of the n quadrats is done in such a way that each of
the N quadrats in the plot or field is given the same
chance of being drawn. In practice, two of the most
commonly used procedures for selecting n quadrats
per plot/field are the random-number technique
and the random-pair technique.
Random-number technique. This technique is most
useful in cropped experiments, when the plot/field can
be divided into N distinct quadrats. We illustrate the
process used to apply the random-number technique
with the case of an experimental plot.

N First, divide the plot into N distinctly differentia-
ble quadrats, and assign a number from 1 to N to
each quadrat in the plot. For our example, the plot
is divided into N 5 35 quadrats, each of which
is assigned a unique number from 1 to 35
(Figure 3).

N Next, randomly select n distinctly different
numbers, either by means of a table of random

numbers (Snedecor and Cochran 1967) or by
means of a computer program that produces such
a table. For our example, n 5 5 random numbers
(each within the range of 1 to 35) are selected
from the table of random numbers. The five
random numbers selected might be: 15, 6, 28, 17,
and 24.

N Finally, use, as the sample, all the quadrats whose
assigned numbers (step 1) correspond to the
random numbers selected in step 2. For our
example (Figure 3), the five quadrats in the plot
whose assigned numbers are 15, 6, 28, 17, and 24
are used as the sample.

Random-pair sampling technique. This technique is
applicable whether or not the plot/field can be
divided into N quadrats, which makes this
technique more popular than the random-number
method. We illustrate the procedure with the typical
case involving weeds where the field cannot be
divided into N distinct quadrats. Consider a case in
which a sample of ten 1- by 1-m quadrats is to be
selected at random from a field measuring 50 by
100 m. The steps involved in applying the random-
pair technique to select a random sample of n 5 10
quadrats are:

N First, specify the width (W) and length (L) of the
field, using the same measurement unit as that of
the quadrat. For our example, the meter is used as
the measurement unit because the quadrat is
defined in that scale. Thus, the field width (W)
and length (L) are specified as 50 m and 100 m.

N Second, select n (5 10) random pairs of numbers
from the table of random numbers, with the first

Figure 3. Plot location of five randomly selected quadrats
(Bold number), using the random-number technique.
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number of the pair lying between 1 and W (5 50)
and the second number lying between 1 and L
(5100). For our example, the 10 random pairs of
numbers might be: (15, 22);(5, 85); (41, 40); (28,
69); (17, 81); (40, 98); (34, 94); (6, 30); (47; 64);
(24; 17).

N Third, use the point of intersection of each of the
random pairs of numbers to represent the center
of each selected quadrat. For our example, the first
random pair of (15, 22) is the first selected 1- by
1-m quadrat whose center is at the intersection of
15 m along the width of the field and the 22 m
along the length of the field (Figure 4). The rest of
the selected quadrats can be identified in the
similar manner. Points that fall beyond the
delineation of the field are discarded and
substituted by new ones that fall within the field.

Stratified Random Sampling. In this technique, an
ecological land unit or a field population is first
divided into relatively homogeneous, nonoverlap-
ping k subpopulations called strata (Figure 5) before
a set of mk sampling units are selected randomly
from each stratum. Thus, the total number n of
sampling units per field is: n 5 m1 + m2 + … + mk.

The technique is useful where there is a large
variation between sampling units and where
environmental and anthropogenic factors such as
climate change, soil, landscape, cropping systems
management induce a consistent pattern of vari-
ability across the landscape. In weed science,
stratification can be very convenient for sampling.
The reasons for this include the following:

N If information of known precision is needed for
certain strata of the ecological land unit (for
instance, weed richness within a farmland com-
prising fields cropped with different species and a
natural system such as a woodland), then it is
advisable to treat each stratum as a ‘‘population’’
in its own right.

N When strata are not apparent, it might be more
effective to create your own strata boundaries in
order to carry out a weed survey, because different
teams can work simultaneously on different strata.

N Sampling issues might differ from one stratum to
another. For example, sampling in a cropland
would offer a different kind of challenge than
sampling in a natural system.

N Stratification can improve the precision of the
estimates of the population parameters. If vari-
ability within each stratum is minimal, that is, if
the measurements vary little from one unit to
another, then a precise estimate of any stratum
mean can be obtained from a small sample in that
stratum. A precise estimate of the whole popula-
tion can then be obtained by combining estimates
of individual strata.

Systematic Sampling. In systematic sampling, a field
or plot is divided into N units that are numbered 1
to N in some order. To select a sample of n units, a
unit is taken at random from the first k units and
every kth unit thereafter. For instance, if k 5 4 and
if the first unit drawn is number 2, then the
subsequent units are numbers 6, 10, 14, and so on
(Figure 6). The selection of the first unit determines
the whole sample. This type of sample is termed
‘‘every kth systematic sample.’’ The apparent
advantages of the systematic method over simple
random sampling and stratified random sampling
are: (1) it is easier to draw a sample and speedier to
execute without mistakes; and (2) the fact that a
systematic sample is spread more evenly over the

Figure 4. Field location of 10 randomly selected 1- by 1-m-
quadrats, using the random-pair technique for a field measuring
50 by 100 m.

Figure 5. Hypothetical example of stratified random sampling
in a farmland comprising four strata: a woodland, a rangeland, a
corn field, and soybean field.
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population has sometimes made it considerably
more precise than random sampling and stratified
random sampling.

Timed-meander Sampling. This method entails
thoroughly following a meandering walk through
a delineated field to tally weed species (Figure 7).
Every 10 (or fewer) min, species and time are
recorded on a field data form as they are
encountered, until the number of new species listed
equals zero in the last 10 min of walking. If the
number of new species listed does not decrease to
zero in the last 10 min of walking, additional time is
added. The procedure divides the species list into
sets of species recorded or collected during each
time interval.

This method samples 100% of the field, and thus
there are no designated plots per se, and as such, any
variable based on surface area cannot be analyzed.
However, the timed-meander technique is very
effective in studies where it is deemed to be the best
approach to maximizing coverage and the potential
for identifying rare or invasive weed species (Goff et
al. 1982; Huebner 2007; Penskar 1991).

In this section, we have discussed the key
elements of field sampling techniques (sampling
unit, sample size, sample design). The researcher
must bear in mind that there is an abstract
component to field sampling that is of importance:
the researcher’s judgement. For instance, the
selection of sampling points through random
numbers does not guarantee an even distribution
of samples across the field. Common sense should
therefore guide the researcher to discard numbers
that lead to clumped sampling points. Another
example that merits special consideration, especially
in the case of floristic studies, is the timing of
sampling. Some weed species might not be fully
identifiable at the time of sampling. The weed
biologist might need to consider resampling each
field unit several times during the growing season to
account for differential emergence timing and
growth and development.

Methods for Estimating and Mapping

Weed Distribution

A weed species’ distribution is its natural
geographic range. It is the description of where
the species naturally occurs, or where it has been
recorded (Gaston 1991). Because a species might
not always occupy all possible sites in which it can
survive, it is therefore important to distinguish
among three basic concepts: the extent of occur-
rence, the area of occupancy, and the potential
distribution. The extent of occurrence is the entire
area that lies within the outer boundaries of a range
(Gaston and Fuller 2009). The area of occupancy is
that area within the extent of occurrence where the
species actually occurs. The potential distribution
is the area in which abiotic factors would allow
a species to survive. A species’ distribution is a
dynamic phenomenon; it changes over time as the
result of such factors as climatic (e.g., climatic
change), anthropogenic (e.g., land use change), or
ecological (e.g., succession change, disease out-
breaks). Changes in a species’ distribution can
provide critical information such as: species’
expansion or contraction, predictability of occur-
rence, effectiveness of control measures, habitat
preferences, and dispersal mechanisms. The delin-
eation of the spread of a weed species is achieved
through data collection and mapping.

Data Collection. Data on the actual distribution of
a weed species can be collected directly from the
field or indirectly from public records, such as
government documents, herbaria, and academic and
research publications.

Direct methods involve data collection, analysis,
and representation by the researcher conducting the
study. Thanks to the technological revolution in the
development of GIS, it is now possible to map data,

Figure 6. Example of systematic sampling on a plot for N 5
36; k 5 4; first draw 5 2.

Figure 7. An example of a meander itinerary in a sampled field.
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and above all, to spatially and temporally analyze
maps with a relative ease (see next section). Four
main steps can be distinguished: site identification,
field reconnaissance, field survey, and mapping (see
Figure 8).

Indirect methods, such as consultation of public
records are inexpensive and allow for construction
of historical distributions (Forcella and Harvey
1988; Pearman et al. 2008; Thomson et al. 1987).
However, this method of data collection can suffer
several setbacks, including: (1) few data from public
records are digitized, which make them difficult to
collect and organize; (2) collection bias resulting
from different sources of data with different
sampling accuracies and precisions (for instance,
some sites or species might be more intensively
sampled over time and space than others, making
them overrepresented on a map); and (3) public
records do not guarantee time continuity and thus,
there could be time gaps when no samples were
collected, making it difficult to follow the floristic
process.

Geographic Information System. GIS is a com-
puter-based system specially designed to manage
geospatial data and to use this data to solve spatial
problems (Lo and Yeung 2007). The field or
landscape upon which a survey is to be conducted

can be geographically referenced and then used to
create geospatial data based upon information
gathered from the survey. This information can
then be used to map the abundance and distribution
of a specific weed species or population in order to
determine dispersal routes of an invasive species, or
the effectiveness of specific weed control measures
to limit the invasiveness of a particular weed species.
In the past, geospatial data were not easily
accessible. Today, thanks to advances in computer
sciences and the internet, GIS users can take
advantage of the huge number of databases in
existence from different organizations. Specifically,
the researcher has several options for acquiring or
digitally converting spatial data for use in computer
systems: digitizing existing maps; purchasing digi-
tized data from government agencies or commercial
data suppliers; or collecting new data using GPS-
based attribute data loggers and photogrammetric
and remote sensing methods.

In-House Digitizing. Once the survey data has
transcribed onto a hard-copy map, the map can be
converted into digital format using data-capture
devices, such as a digitizer or a scanner. Map
digitizing is the conventional method; although its
importance has diminished considerably in recent
years. This method, however, is still the most

Figure 8. Schematic representation of the process for estimating and mapping weed distribution.
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convenient way to create a geospatial database ‘‘in-
house.’’ It is particularly suitable for GIS applica-
tions that require project-specific data (i.e., data
unlikely to be available from external sources).

Scanning, on the other hand, is often referred to
as ‘‘screen digitizing’’ or ‘‘heads-up digitizing’’ to
distinguish it from conventional table digitizing.
Significant advances in hardware and software
technologies and reduced hardware costs have
made scanning readily accessible and affordable to
computer users. Scanning is now the most widely
used technology for converting hard-copy maps into
digital formats (Flanagan et al. 1994; Mayo 1994).
Both map-digitizing and scanning procedures are
thoroughly described by Lo and Yeung (2007).

GIS Implementation in Weed Science. Most weed
science studies have used GIS to geographically
locate specific weed species and populations of
interest. GIS can also be used for analyses to address
questions such as why weeds are where they are and
how their distribution and abundance are related to
climatic, environmental, or anthropogenic factors.
Resources needed to implement such analyses using
GIS can be found at the Environmental Systems
Research Institute (ESRI): geodatabases, softwares
(ArcGIS), online GIS courses, GIS guide books
(Mitchell 1999; 2009), and GIS tutorials books
(Allen 2009; Gorr and Kurland 2008). Specifically,
tools in ArcGIS can help weed scientist’s measure
geographic distributions, identify patterns and
clusters, and analyze geographic relationships.

Measuring Geographic Distributions. Measuring weed
distribution using GIS allows the weed scientist
to calculate and display characteristics of the weed
distribution such as its center (i.e., the average 3
coordinate and average y coordinate for the sampling
point in the study area), compactness (clustering or
dispersion around the center), or orientation (trend in
a particular direction) (Figure 9). These distribution

characteristics can shed light, for example, on the
point of entrance of an invasive species, and the most
suitable abiotic and biotic environment for growth
and development, as well as possible dispersal routes.

Identifying Patterns. Identifying distribution pat-
terns of specific weed species or populations can
provide insights into the habitat requirements and
enable the researcher to compare and track changes
over time. For instance, weed species A can be
found to be dispersed along the coastal line,
suggesting that its preferential habitat is determined
by the sea environment; however, species B forms
clusters inland, suggesting that this species avoids
the sea environment and prefers a drier range of
habitats (Figure 10). GIS statistics such as the k-
statistic, or nearest-neighbour index (see Mitchell
1999; 2009) can be used to measure and display
patterns. These statistics can be used to compare the
actual weed distribution (observed distribution) to
a hypothetical random distribution of the same
number of sampling points over the same area. The
extent to which the observed distribution deviates
from the random distribution is the extent to which
the pattern is more clustered or more dispersed than
the random distribution. The validity of the analysis

Figure 9. Illustration of weed distribution characteristics (center, compactness, and directional trend) of an invasive weed species in a
surveyed area.

Figure 10. The patterns of weed species A (red) dispersed
along the costal line, and species B (green) clustered inland.
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is expressed by the probability that a pattern isn’t
simply due to chance.

Analyzing Geographic Relationships. Using GIS, one
can also analyze relationships describing weed
presence/absence, distribution, abundance, frequen-
cy, and with abiotic and biotic variables in order
to better understand spatial relationships at the
landscape level. Thus, for example, GIS can use
statistics such as the Pearson’s or the Spearman’s
rank correlation coefficient to measure, test, and
map the spatial relationship between weed distri-
bution and tillage systems. In this hypothetical case
(Figure 11), a spatial analysis can show that weeds
are more abundant in areas where conventional
tillage is practised as opposed to areas where
conservation tillage has been adopted.

Methods for the Evaluation of Diversity

Diversity can be explored at several different
scales from number of species per unit area to
genetic diversity. For this discussion, we focus on
species diversity. Species diversity is described by
two components: richness and evenness. Richness is
the number of species present in an area or in a
community, whereas evenness specifies the abun-
dance of each species in a community. Evenness
provides information on whether a community is
dominated by one or more species or whether the
species within the community are represented by
approximately equal numbers (Booth et al. 2010).

Measurement of Diversity. Several methods of
measuring diversity, with varying advantages and
disadvantages, can be found in the literature
(Conroy and Noon 1996; Cousins 1991; Magurran
1988; Schlesinger et al. 1994; Stiling 1999; Wilson
et al. 1999; Yorks and Dabydeen 1998). Diversity
can be estimated within a given community (alpha-
diversity) or between communities (beta-diversity).

Within-Community Diversity. Three indices are
commonly used to estimate the within-communi-
ty-diversity: the Margalef’s Diversity Index (DMg),
the Shannon–Wiener Diversity Index (H9), and the
Simpson’s Dominance Index (D). The Margalef ’s
Diversity Index is a quick method of estimating the
species diversity based on richness. It is sensitive to
the sampling technique (sampling unit, sampling
size, and sampling design). The Shannon–Wiener
Diversity Index, unlike the Margalef’s index,
specifies both species richness and evenness (Mag-
nussen and Boyle 1995; Magurran 1988). This
method is moderately sensitive to sample size.
Lastly, the Simpson’s Dominance Index measures
the state of dominance within the community. This
method is less sensitive to sample size; however, it
does not provide an assessment of species richness,
but is useful when describing evenness.

In the following discussion, we show how to
calculate three within-community diversity indi-
ces: the Margalef’s Diversity Index (DMg), the
Shannon–Wiener Diversity Index (H9), and the
Simpson’s Dominance Index (D), for two com-
munities located within the same meadow but
with a different soil type (a cultural mineral soil
habitat and a cultural high organic soil habitat
within the same meadow), both dominated by
invasive species. We use the following symbols:

N n 5 population density or number,
N ni 5 density or number of the ith species,
N N 5 total number of individuals of all species in

the community,
N S 5 species richness (i.e., total number of species),
N S means: sum of all the factors that follow, and
N pi 5 proportional abundance or relative frequency

of the ith species,

The set of data given in Table 3 is used for all the
calculations:

Margalef ’s Diversity Index (DMg). The formula
(Equation 6) and calculations follow.

DMg~ S{1ð Þ=ln Nð Þ ½6�

DMg mineral meadowð Þ~ S{1ð Þ=ln Nð Þ

~ 9{1ð Þ=ln 278ð Þ

~8=5:628

~1:421

Figure 11. Hypothetical relationship between tillage method
and weed density.
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DMg organic meadowð Þ~ S{1ð Þ=ln Nð Þ

~ 6{1ð Þ=ln 316ð Þ

~5=5:756

~0:869

Margalef’s Diversity Index calculations indicate
that the mineral meadow is more diverse than its
counterpart organic meadow. This can be intuitively
obvious when the size of the data is not large.

The Shannon–Wiener Diversity Index (H9). The
formulas for H9 (Equation 7) and evenness (E,
Equation 8), and calculations follow:

H ’~S {pi ln pið Þ½ � ½7�
The values of H9 are calculated by summing all the
2pi(ln pi) values for each meadow community

(Table 4). Then, using the calculated values of H9,
calculate evenness (E):

E~H ’=ln S ½8�
Evenness (E) can now be calculated using the
calculated values of H9 from Table 4:

E~H ’=ln S

E mineral meadowð Þ~H 0mineral meadowð Þ= ln S mineral meadowð Þ

~2:075=ln 9~2:075=2:197~0:944

E organic meadowð Þ~H 0organic meadowð Þ= ln S organic meadowð Þ

~1:753=ln 6~1:753=1:792~0:978

Overall, these calculations indicate that
H9(mineral meadow) 5 2.075, and H9(organic meadow)

5 1.753; and that E(mineral meadow) 5 0.944, and
E(organic meadow) 5 0.978.

Table 3. Hypothetical weed populations identified within a meadow consisting of two distinct habitats: cultural mineral soil
meadow and cultural high organic soil meadow. Data were collected using a systematic random sampling method. (Source: Fictitious
data, for illustration purposes only).

Weed species Common name Mineral meadow ni Organic meadow ni

Polygonum convolvulus L. Wild buckwheat 53 0
Amaranthus retroflexus L. Redroot pigweed 11 41
Chenopodium album L. Common lambsquarters 15 58
Brassica kaber (DC.) L. C. Wheeler (Sinapis arvensis L.) Wild mustard 16 48
Taraxacum officinale G. H. Weber ex Wiggers Common dandelion 36 59
Stellaria media (L.) Vill. Common chickweed 26 78
Agropyron repens (L.) Beauv. [Elymus repens (L.) Gould] Quack grass 40 0
Medicago sativa L. Alfalfa 27 32
Avena fatua L. Wild oat 54 0
Na 278 316
Sa 9 6

a Abbreviations: N, total number of all species in the community; S, species richness (total number of species).

Table 4. A hypothetical example of how to calculate the Shannon-Wiener Diversity Index (H9). This example compares the weed
species found in two portions of the same habitat: the cultural mineral soil meadow and the cultural high organic soil meadow. (Source:
Fictitious data, for illustration purposes only).

Weed species

Mineral meadowa Organic meadowa

ni pi lnpi 2pi(lnpi) ni pi lnpi 2p(lnpi)

Polygonum convolvulus L. 53 0.191 21.655 0.316 0 0.000
Amaranthus retroflexus L. 11 0.040 23.219 0.129 41 0.130 22.042 0.265
Chenopodium album L. 15 0.054 22.919 0.158 58 0.184 21.695 0.311
Brassica kaber (DC.) L. C. Wheeler 16 0.058 22.847 0.165 48 0.152 21.885 0.286
Taraxacum officinale G. H. Webber

ex Wiggers 36 0.129 22.048 0.264 59 0.187 21.678 0.313
Agropyron repens (L.) Beauv. 40 0.144 21.938 0.279 0 0.000
Stellaria media (L.) Vill. 26 0.093 22.375 0.220 78 0.247 21.399 0.345
Medicago sativa L. 27 0.097 22.333 0.226 32 0.101 22.291 0.232
Avena fatua L. 54 0.194 21.640 0.318 0 0.000
S (sum of the columns) 278 1.00 H9 5 2.075 316 1.000 H9 5 1.753

a Abbreviations: ni, density or number of the ith species; pi, proportional abundance of the ith species.
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The values of these diversity indices are relative,
in the sense that there is no predetermined value of
H9 that determines whether or not a community is
diverse; rather, these calculated values serve to
compare diversities among communities. Thus, in
the case above, the mineral meadow has greater
species richness than the organic meadow. Richness
can be visually estimated from a small set of data; a
large sample requires the calculation of diversity
indices.

For evenness, values of zero indicate that the
community is extremely uneven (dominated by
one species), whereas a value of one indicates that
the community is absolutely even (maximum
diversity exists, no one species dominates). The
example above shows that the organic meadow
has greater species evenness than the mineral
meadow, even though the latter has greater
species richness. The mineral meadow is domi-
nated by one forb and two grass species: wild
buckwheat (Erigonum spp.), quack grass [Agropy-
ron repens (L.) Beauv.] and wild oat (Avena fatua
L.); whereas the organic meadow is occupied
evenly by forbs.

Simpson’s Dominance Index (D). The formula
(Equation 9) and calculations follow.

D~S ni ni{1ð Þ½ �= N N{1ð Þ½ �f g ½9�
where: ni 5 density or number of the ith species;
and N 5 total number of individuals of all species
in the community. By convention, Simpson’s
Dominance Index is usually written as the reciprocal
value D21. The higher the index value, the more
species evenness there is. A worked example is
provided below (Table 5).

D mineral meadowð Þ~0:130, therefore:

D{1
mineral meadowð Þ~1=0:130~7:69

Following similar calculations,

D organic meadowð Þ~0:132, therefore:

D{1
organic meadowð Þ~1=0:132~7:58

In the example above, no one species dominates
in either meadow, hence the values of D-1 are
relatively high. They are corroborated by the
Shannon–Weiner Diversity Index and Evenness
calculations.

Between-Community Diversity. Between-community
diversity, also known as ‘‘beta-diversity,’’ is a
measure of similarity or distinctiveness between
communities within the landscape. It is meant to be
used to compare communities from different areas
or habitats within the defined landscape area.
Similarity indices such the Sørensen and Steinhaus
(Sørensen 1948) indices are used frequently to
calculate between-community diversity. The Sør-
ensen Coefficient Index is a function of the number
of individuals of species common to communities
that are evaluated: it is a similarity index. The
Steinhaus Coefficient Index, on the other hand, is a
function of abundance: it estimates the smallest
abundance for each species established in different
communities as a proportion of the average
community abundance.

The Sørensen Coefficient Index (Ss). This index (Ss) is
expressed as follows in Equation 10.

SS~ 2J= azbð Þ½ �|100 ½10�

Table 5. Calculation of Simpson’s Dominance Index (D21) using weed species from the mineral soil meadow habitat.

Weed species

Mineral meadowa

ni ni 2 1 ni(ni 2 1) N N 2 1 N(N 2 1) ni(ni 2 1)/N(N 2 1)

Polygonum convolvulus L. 53 52 2756 278 277 77006 0.036
Amaranthus retroflexus L. 11 10 110 278 277 77006 0.001
Chenopodium album L. 15 14 210 278 277 77006 0.003
Brassica kaber (DC.) L. C. Wheeler 16 15 240 278 277 77006 0.003
Taraxacum officinale G. H. Weber ex Wiggers 36 35 1260 278 277 77006 0.016
Agropyron repens (L.) Beauv. 26 25 650 278 277 77006 0.008
Stellaria media (L.) Vill. 40 39 1560 278 277 77006 0.020
Medicago sativa L. 27 26 702 278 277 77006 0.009
Avena fatua L. 54 53 2862 278 277 77006 0.037
S (sum of the columns) 278 D 5 0.130

a Abbreviations: ni, density or number of the ith species; N, total number of individuals of all species.
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where: J 5 the number of species common to each
community; and a + b 5 the sum of the total
number of species in each community.

The Steinhaus Coefficient Index (SA). This index (SA)
is shown in Equation 11:

SA~W = AzBð Þ=2½ �~2W = AzBð Þ ½11�
where: W 5 the sum of the lower of the two
abundances of each species in the community; A 5
total number of individuals in population A; and B
5 total number of individuals in population B.

To calculate both indices, we will use the same set
of data from Table 3 and assume that mineral and
organic meadows are two distinct weed communi-
ties (Table 6). For both indices, we interpret their
values on a scale from 0 (complete dissimilarity) to
1 (complete similarity).

The Sørensen Index suggests that the mineral and
the organic meadow communities are quite (80%)

similar (a value of 100% would indicate absolute
similarity). A visual assessment, however, is possible
in this case, and it shows that the two communities
do differ; grasses and forbs are found in the mineral
meadow, whereas the organic meadow is inhabited
exclusively by forbs. This is why the Steinhaus Index
is used. It accounts for differences in abundance,
and hence is more accurate that the Sørensen Index.
Other methods such as the Mountford’s Index of
Similarity (Mountford 1962; see also Wolda 1981)
can resolve this issue as well. Note that one reason
the Sørensen Index can be a bit misleading is its
sensitivity to small samples, and in the above
example, the sample size is small.

Methods to Evaluate Weed Associations

and Composition: Multivariate Analysis

Statistical procedures in agricultural experiments
generally entail highly controlled systems of exper-

Table 6. Indices used to calculate similarity between communities: the Sørensen Coefficient Index (Ss) and the Steinhaus Index (SA).
This hypothetical example compares the weed species found in two communities: the mineral soil meadow and the high organic
soil meadow.a

Mineral meadow
abundance

Organic meadow
abundance

Minimum abundance
value

Weed species

Polygonum convolvulus L. 53 0 0
Amaranthus retroflexus L. 11 41 11
Chenopodium album L. 15 58 15
Brassica kaber (DC.) L. C. Wheeler 16 48 16
Taraxacum officinale G. H. Weber ex Wiggers 36 59 36
Agropyron repens (L.) Beauv. 26 78 26
Stellaria media (L.) Vill. 40 0 0
Medicago sativa L. 27 32 27
Avena fatua L. 54 0 0

Total no. of individuals 278 316 131
Total no. of species 9 6
No. of common species (J) 6
Sum of the lower of the two abundances (W) 131

Sørensen Coefficient Index (Ss):

Ss 5 [2J/(a + b)] 3 100
Ss 5 [(2 3 6)/(9 + 6)] 3 100
Ss 5 [(12)/(15)] 3 100
Ss 5 0.8 3 100
Ss 5 80%

Steinhaus Index (SA)
SA 5 2W/(A + B)
SA 5 (2 3 131)/(278 + 316)
SA 5 262/(594)
SA 5 0.441

a Abbreviations: J, number of common species; W, sum of the lower of the two abundances; a, total number of individuals in
community a; b, total number of individuals in community b; A, total number of individuals in population A; B, total number of
individuals in population B.
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iments. Here, a reduced number of factors, at
limited ranges, are allowed to affect the subject
(crops, weeds) being tested. Consequently, the range
of responses, the variation of uncontrolled factors,
and the experimental error are kept relatively small.
In this context, statistical theory can be used to
describe the pattern of response through a mathe-
matical approximation of the distribution (e.g., a
normal distribution).

In contrast, weed community data rarely fit
model assumptions of normality even when they are
obtained from planned experiments. Typical exam-
ples are weed surveys that entail hundreds of weed
species across several sites and years. These types of
studies assess responses of weed species to environ-
mental and/or managerial factors. In these cases,
weed species display a wider range of genetic
diversity. As a consequence, the range of responses
of weed species is far larger than the diversity found
when dealing with major crop species. Moreover,
the interactions that invariably occur among species
or between weed species and environment or
management variables can be very complex. For
these types of data, the standard statistical proce-
dures are clearly inappropriate. Consequently, given
such a level of data complexity, it is of interest to
try to structurally simplify the data set (i.e., reduce
the dimensionality of the complexity), to identify
similarities among species (classification), or among
variables (grouping) in order to build and test
hypotheses. Multivariate analysis is the statistical
methodology that can elicit such information from
complex data. It is the field of statistics that deals
with the relationships among p variables measured
on n objects or individuals. There are several
multivariate techniques that can be used, depending
upon the goal of the study and the type of data,
such as principal component analysis, cluster
analysis, canonical correlation, discriminant analy-
sis, and factor analysis.

The basic observational unit for this type of data
is usually a two-way table (matrix) of, for instance,
weed species by sites or weed species by weed
control methods. To avoid unnecessary complexity
in describing the various numerical operations, the
concise notation of matrix algebra is used. In this
section, we only provide a brief review of concepts
from matrix algebra that we use in our case studies.
Summary details about matrix algebra are presented
by Digby and Kempton (1987), and Khattree and
Naik (2000), whereas further details with statistical
viewpoints can be found in books by Harville
(1997), Rao and Rao (1998), and Schott (2005).

Concepts from Matrix Algebra. Observational
Matrix. Consider, for example, a case in which we
have n weed species and on each of them are
observed (same) p different characteristics (vari-
ables), or the species are measured at the same p
different locations, say x1, x2, … xp. Then these data
can be presented as an n by p matrix X:

X~

x11 x12 . . . x1p

x21 x22 . . . x2p

..

.

xnl xn2 . . . xnp

2
666664

3
777775

where X is the observation matrix, and the
individual observations or measured variables are
listed on each row. Each weed species can be viewed
as a multivariate observation. The observations or
measured variables are often correlated. It is a
common practice to express each variable in such a
way that it has zero mean and, optionally, unit
variance: the process is called standardization. Thus,
if xi. is the mean and si

2 the variance of the ith
variable, xij can be standardized to:

yij~ xij{xi:

� �
,

to set each variable to have zero mean, or as:

yij~ xij{xi:

� �
=si,

so that each variable also has unit variance,

where:

xi:~1=n
Xn

j~1

xij j is any of the n weed speciesð Þ ½12�

Covariance Matrix. A large data set made of several
variables, observed on several weed species (often
hundreds), must be summarized in order to be
understood. For univariate data, this is done
through the use of basic descriptive statistics such
as the mean and the variance. Likewise, for
multivariate analysis, the population mean and the
population covariance between variables can be
determined. The description, however, is dramati-
cally simplified by the use of matrix notations.
Thus, for instance, suppose xi was a random variable
for which x1, … xp are possibly dependent. The
covariance between any two variables xi and xj,
denoted sij 5 cov (xi, xj) is calculated as:
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cov xi,xj

� �
~1=n

Xn

k~1

xik{xi:ð Þ xjk{xj:

� �
½13�

and the population of variances (var) and covari-
ances (cov) is displayed as a matrix S:

S~

var x1ð Þ cov x1,x2ð Þ . . . cov x1,xp

� �

cov x2,x1ð Þ var x2ð Þ . . . :cov x2,xp

� �

..

. ..
. ..

.

cov xp,x1

� �
cov xp,x2

� �
var xp

� �

2
666664

3
777775

It should be noted that cov (xi, xi) 5 var (xi), and
the term cov (xi, xj) is the (i, j)th entry in matrix S.
The variance of the ith variable is at the ith diagonal
place, whereas all the covariances are placed on the
nondiagonal places. For this reason, matrix S is
referred to as the variance–covariance matrix, or
simply as the covariance matrix, and sometimes as
the dispersion matrix.

The sum of the diagonal elements of S (read
‘‘trace’’ of S), written tr(S), is called the ‘‘total
variance’’ and the determinant of S (|S|) is referred
to as the ‘‘generalized variance.’’ Both are often
taken as the overall measures of variability among
the set of variables.

Correlation Matrix. It is advisable to start a
multivariate analysis with a correlation matrix,
instead of a covariance matrix, when the measure-
ments recorded on the various variables are not on
the same scale and variances are not of similar
magnitude. If indeed the scale and variable variances
are similar, it is suggested to use a covariance matrix
(see Everitt 1989; and Jolliffe 2002, for discussion
regarding the choice of correlation matrix over
covariance matrix). An example of differing scales,
for example, is the measurement of seed, root, and
shoot weights of a weed species, which are likely to
be in the order of milligrams, grams, and kilograms,
respectively.

There is a relationship between the correlation
(rij) and the covariance between two variables xi and
xj as calculated with Equation 14:

rij~cov xi,xj

� �
= var xið Þvar xj

� �� �1=2 ½14�

where rij is the Pearson’s population correlation
coefficient between xi and xj. The population
correlation matrix is then defined as:

r~ rij

� �
~

r11 r12 � � � r1p

r21 r22 � � � r2p

..

. ..
. ..

.

rp1 rp2 � � � rpp

2
6666664

3
7777775
~

1 r12 � � � r1p

r21 1 � � � r2p

..

. ..
. ..

.

rp1 rp2 � � � 1

2
6666664

3
7777775

Transpose, Diagonal, Vector, Orthogonal, and
Identity Matrices. Let A be a (m by n) matrix; its
‘‘transpose,’’ noted A9, is the matrix B (n by m)
whose elements bij are defined as: bij 5 aji. A
‘‘diagonal matrix’’ is a symmetric (xij 5 xji) matrix
with xij 5 0 for all i ? j; its only nonzero elements
occur on the leading diagonal. A ‘‘vector’’ is a
matrix with only one row (row vector) or one
column (column vector). Finally, a matrix A (n by
n) is said to be an ‘‘orthogonal’’ matrix if:

A’A~AA’~In ½15�
where In is the identity matrix, a diagonal matrix
with all diagonal elements equal to 1.

Matrix Decomposition. Many of the multivariate
techniques use matrix decomposition, which is the
expression of a matrix as the product of two or more
matrices. One of the two decomposition methods
often used is the ‘‘spectral decomposition’’ of a
symmetric matrix. Let A be a symmetric matrix of
order n [A (n by n)]. It is demonstrated that A can
be written as:

A~PLP’

Where P is an orthogonal matrix of order n, and
L is a diagonal matrix with diagonal elements
l1 $ l2 $ … $ ln $ 0. The scalars (algebraic
numbers) are called the ‘‘eigenvalues’’ (or ‘‘latent
roots’’) of A. Each column of P is an ‘‘eigenvector
(or ‘‘latent vector’’) of A.

Principal Component Analysis. Principal compo-
nent analysis (PCA) is one of the oldest and most
widely used multivariate methods. It mainly serves
as an exploratory investigative tool. The purpose of
multivariate analysis is to lessen the complexity of
large data set by reducing its dimensionality. This is
often achieved by reducing the number of variables
or creating new variables that are functions of the
original variables. In the case of PCA, the new
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uncorrelated variables are linear combinations of the
original ones. These new functions are called
‘‘principal components,’’ and the statistical proce-
dure of finding them without sacrificing most of the
information contained in a data set is called
‘‘principal component analysis.’’

Determination of the Principal Components. Let’s
suppose S is the covariance matrix of p variables x1,
… , xp measured on n weed species. According to
Equation 13, S can be ‘‘spectrally’’ decomposed as:

S~PLP’

In full, this can be written as:

S

c11 c12 � � � c1p

c21 c22 � � � c2p

..

. ..
. ..

.

cp1 cp2 � � � cpp

2
6666666664

3
7777777775

~

P

l11 l12 � � � l1p

l21 l22 � � � l2p

..

. ..
. ..

.

lp1 lp2 � � � lpp

2
6666666664

3
7777777775

|

L

l1

l2

P

lp

2
666666664

3
777777775

P0

l11 l21 � � � lp1

l12 l22 � � � lp2

..

. ..
. ..

.

l1p lpp � � � lpp

2
6666666664

3
7777777775

0

The scalars l1; l2; … ; ln are the eigenvalues (or
latent roots) of the covariance or correlation matrix;
whereas each column of P is an eigenvector (or
latent vector) of the covariance or correlation
matrix. The elements of each eigenvector represent
the coefficients of the corresponding principal
component, which is a linear combination of the
original variables. From the example above, the
eigenvalue l1 has for corresponding eigenvector p19

5 (l11, l21, … lp1) which drives the first principal
component j1:

j1~l11x1zl21x2z . . . zlp1xp

The variance of the first principal component j1 is
equal to l1 [var (j1) 5 l1] and its contribution to
the total variance represented by the sum of the
eigenvalues is given by the ratio l1/S li.

The eigenvalue lk (k # p) has for corresponding
eigenvector pk9 5 (l1k, l2k, … lpk) which drives the
kth principal component jk:

jk~l1kx1zl2kx2z . . . zlpkxp

Interpretations. The variance of the kth principal
component jk is equal to lk [var (jk) 5 lk] and its
contribution to the total variance represented by the
sum of the eigenvalues is given by the ratio lk/S li.

The first principal component j1 has the highest
variance among all linear combinations. The second
principal component j2 has the second highest
variance and is uncorrelated to the first. Similarly,
the kth principal component jk has the kth highest
variance and is uncorrelated with all the other (p 2
1) principal components. Thus, l1 $ l2 $ …
$ lp . 0 and var (j1) 5 l1 … var (jp) 5 lp. In
summary, the eigenvalues of the covariance or
correlation matrices represent the variances of the
corresponding principal components. The sum of
all eigenvalues is equal to the sum of all the diagonal
elements of the covariance matrix (tr S), which
represents the total variance. Hence, the set of
principal components cumulatively accounts for the
total variance displayed by the data.

Like the eigenvalues, eigenvectors, namely their
elements lij, which are the coefficients of the
principal components, that is, the linear relation-
ships between p variables, can have some interesting
interpretations. Let xi and yj be the ith variable
and the jth principal component, respectively. The
correlation corr (xi, yj) between xi and yj is:

corr xi,yj

� �
~lji lj l var xið Þ

� �1=2

where lji is the coefficient of the ith variable of the
the jth principal component, and lj represents the
eigenvalues associated with the jth principal com-
ponent. Equation 14 shows that the degree of
association between a given variable in a principal
component and that principal component is
proportional to the coefficient associated with that
variable. The higher the coefficient, the greater is
the association between the variable and the
principal component. In other words, the magni-
tude of a given coefficient is proportional to the
contribution of the associated variable to the
principal component.

Selection of the Number of Principal Components.
The appropriate number of principal components
to be selected and the choice of either covariance or
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correlation matrix as the starting point for principal
component analysis are the two issues that have
been debated extensively in the literature without a
real consensus. General guidance about the second
issue has been provided above (Correlation Matrix).
Regarding the selection of the number of principal
components, three methods are commonly used: the
‘‘scree diagram’’ (graphical method); ‘‘the size of the
variance of the principal components’’ (when the
correlation matrix is the starting point); and the
‘‘cumulative proportion of total variance.’’ The
latter, the most commonly used criterion, can be
used irrespective of the type of matrix (covariance or
correlation). The common practice in the literature

is that a minimum percentage of total variation
desired to be explained by the principal component
analysis is predetermined, and the smallest number
of principal components that satisfies this criterion
is selected. In general, that minimum percentage is
set at 90%.

Example Study. Suppose a weed scientist wishes to
study the biology of the five most important weed
species across a landscape that is the habitat of 10
weed species (n 5 10) in total. A survey on weed
abundance is carried out over 10 locations in the
landscape (p 5 10). A statistical method is required
to measure the differences in weed density across the

Table 7. SAS output showing correlation matrix.
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landscape. A table of weed mean densities will not
be sufficient, because it will not report the
interrelations among locations and it will not tell
how weed density covaries among locations. In
other words, the table of means cannot account for
the distribution of weed species across the land-
scape. The principal component analysis procedure
might help meet the weed scientist’s goal.

Computer programs such as SPSS and SAS can
be used to perform multivariate computations and
tasks. For instance, in the case above, a SAS data set,
designated as WEED, containing the raw data on
the location variables x1 to x10 can be created; and
the PROC PRINCOMP statement can follow to
achieve the PRINcipal COMponent analysis. With
SAS, the default matrix is the correlation matrix; the
covariance matrix is obtained by adding the option
‘‘COV’’ to the proc princomp statement. The
detailed SAS program is as follows:

Title1 ‘‘Output Weed Survey’’;
data weed;
input x1 - x10 @@;
datalines;
x11 x12 x13 x14 x15 x16 x17 x18 x19 x110

x21 { { { { { { { { x210

{ { { { { { { { { {

x101 x102 { { { { { { { x1010

;
proc princomp data 5 weed;
var x1 2 x10;
title2 ‘PCA using Correlation Matrix’;
run;
OR:
proc princomp data 5 weed cov;
var x1 2 x10;
title2 ‘PCA using Covariance Matrix’;
run;

For the sake of illustration, let’s assume SAS
output displays the following correlation matrix,

eigenvalues, and eigenvectors information (Tables 7,
8, and 9).

Interpretation
Case scenario 1. The goal of this study was to assess
the significance of a weed infestation sampled across
10 locations within a defined landscape. These
locations are surveyed for 10 weed species (variables
xi in this case). Species x1, x2, and x6–x10 are
dicotyledons; x3–x5 are monocotyledons; x1, x2, x6,
and x7 are cooler-temperature-species, and x3, x4, x5,
x8, x9, and x10 are warmer-temperature species.

By examining the cumulative proportion of the
variation explained by the principal components
displayed in the output above, we see that three
principal components are needed to account for at
least 90% of the total variability. Further examination
of the coefficients of the variables in these principal
components show the first principal component j1

with all its coefficients positive, that is, 0.458345,
0.481190, 0.392150, 0.366378, 0.345601, 0.401029,
0.465323, 0.312865, 0.432765, 0.289755 (see eigen-
vectors in Table 9). Thus, j1 is given by:

j1~0:46x1z0:48x2z0:39x3z0:37x4

z0:35x5z0:40x6z0:47x7z0:31x8

z0:43x9z0:29x10

½16�

The first principal component j1, which accounts
for 53% of the total variation, seems to measure the
index of weed species significance across the 10
locations in the landscape. That is, j1 would be an
indicator of the level of infestation by the 10 weed
species at each surveyed site of the landscape. All the
coefficients are of similar magnitude, which suggests
that abundances of the 10 weed species are in the
same range across the landscape. The 10 surveyed
sites can then be arranged in order according to the
magnitude of the 10 scores derived from Equation
16.

Table 8. Eigenvalues of the correlation matrix.

Eigenvalue Difference Proportion Cumulative

1 5.334 3.112 0.5334 0.5334
2 2.222 1.099 0.2222 0.7556
3 1.823 0.399 0.1823 0.9379
4 0.523 1.300 0.0523 0.9902
5 0.0187 0.5043 0.00187 0.9920
6 0.0180 0.0007 0.00180 0.9938
7 0.0177 0.0003 0.00177 0.9955
8 0.0166 0.0011 0.00166 0.9972
9 0.0155 0.0011 0.00155 0.9988
10 0.0115 0.004 0.00115 0.99995
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The second principal component with the coeffi-
cients 0.056792, 0.114800, 20.517139, 20.450765,
20.663735; 0.285014, 0.543067, 0.123459, 0.456432,
and 0.143259 seems to measure a difference
between dicotyledons and monocotyledons. The
coefficient for the variable x1 (weed species 1) is as
small as 0.056792; hence, this variable can be
ignored in the definition of the second principal
component. The third component seems to
measure the difference between cool-temperature
and warm-temperature weed species. Species 3 and
6 can be ignored from the definition of the third
principal component.
Case scenario 2. The goal of this study was to assess
the relative abundance of weed species in a given
landscape in order to determine the three most
important weed species in the landscape. In this
case, the previous 2-way data matrix (n by p) would
be reverted into a (p by n) data matrix, that is, the
sites now become the variables and the weed species
become the objects. Let’s assume the 10 weed
species’ abundances are evaluated at 10 sites. Sites
x1, x2, and x6–x10 are located at a higher latitude;
x3–x5 are located at a lower latitude; conventional
tillage is the common practice in sites x1, x2, x6, and
x7; and conservation tillage is the norm in sites x3,
x4, x5, x8, x9, and x10. If we further assume, for the
sake of illustration, that the results of the principal
component analysis are the same as above, then the
interpretation of the result would be slightly
different.

The first principal component j1, would measure
the index of weed species abundance and distribu-
tion across the landscape. That is, j1 would be an
indicator of the importance of each weed species in
the whole landscape. The second principal compo-
nent would measure the difference between sites
located at higher and lower altitudes, and the third
principal component would measure the difference

between sites in which conventional and conserva-
tion tillage are respectively practiced.

Canonical Discriminant Analysis. Canonical Dis-
criminant Analysis (CDA) is a statistical technique
similar to Principal Component Analysis and
Canonical Correlation Analysis in its ability to
reduce the dimensionality of a large data set. This
technique is however specialized in ‘‘discriminat-
ing’’, that is, simultaneously studying the differences
between two or more groups of objects with respect
to several variables. Thus, CDA can be used to for
interpreting the group differences or for classifying
objects into groups. It can be particularly suited
to weed community research. For instance, weed
species can be used as variables to test whether a
significant difference exists among predetermined
groups such as tillage systems, weed control
methods, ecosystems, etc. For the results to be
statistically a good reflection of reality, certain
assumptions need to be satisfied: (1) groups must be
mutually exclusive; (2) a variable should not be a
linear combination of other discriminating vari-
ables; (3) there should be similar group covariance
matrices; and (4) each group is drawn from a
population which has a multivariate normal
distribution. This happens when each variable has
a normal distribution about fixed values on all the
others (Blalock 1979).

Deriving the Canonical Discriminant Functions. The
nature of group differences can be studied through
the use of canonical discriminant functions, which
are linear combination of discriminating variables
and have the following mathematical form:

fkm~uozu1X1kmzu2X2kmz . . . zupXpkm

where: fkm 5 the value (score) on the canonical
discriminant function for object m in the group k; k

Table 9. Eigenvectors.a (Values for Prin4–Prin10 were insignificant in this hypothetical case; i.e. close to zero or negative).

Prin1 Prin2 Prin3 Prin4 — Prin10

x1 0.458345 0.056792 20.597743 — — —
x2 0.481190 0.114800 20.221805 — — —
x3 0.392150 20.517139 0.069759 — — —
x4 0.366378 20.450765 0.565571 — — —
x5 0.345601 20.663735 0.551112 — — —
x6 0.401029 0.285014 20.001528 — — —
x7 0.465323 0.543067 20.145267 — — —
x8 0.312865 0.123459 0.234857 — — —
x9 0.432765 0.456432 0.289746 — — —
x10 0.289755 0.143259 0.124789 — — —

a Abbreviations: Prin, principal component function; x, weed species.
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5 {1; 2; ….g}; Xikm 5 the value on discriminating
variable Xi for object m in group k; and ui 5 the ith
coefficient on the canonical discriminant function.
When there are p discriminating variables and g groups,
the maximum number of unique canonical discrimi-
nant functions that can be analyzed is the smaller of the
two numbers p and (g 2 1). These discriminant
functions are automatically derived by various comput-
erized statistical programs (e.g., SAS, SPSS).

Interpreting the Canonical Discriminant Functions.
Once the canonical discriminant functions have
been determined, their meaning can be interpreted
by: (1) examining the relative positions of the
objects and their group centroids (a group centroid
being an imaginary point whose coordinates are
the group’s mean on each of the variable); and
(2) studying the individual contribution of each
discriminating variable to the discriminant func-
tion. When there is more than one discriminant
function, the question of whether all of them are
needed to describe the variability of the data set is
examined as well.

Graphical separation of groups: the two-function plot.
The location of group centroids and the observed
objects can be plotted easily in a system of two axes
(vertical and horizontal) represented respectively by
two discriminant functions (Figure 12). Groups are
distinct when their centroids are well-separated and
there is no obvious overlap of the individual objects.

Standardized coefficients. Unstandardized coeffi-
cients in Equation 16 are obtained from original

data. They indicate the absolute contribution of a
variable in determining the discriminant score. This
estimate of variable contribution, however, can be
misleading in situations where the meaning of one
unit change in the value of a variable is not the same
from one variable to another, which is the case when
the standard deviations of the various variables are
not the same. To have a better idea about the
relative contribution of each variable, it might be
necessary to standardize the coefficient. This is
achieved by subtracting the grand mean of the
variable from each individual value and dividing the
result by the standard deviation, so that the adjusted
mean and standard deviation become zero and one,
respectively. By examining the magnitude of the
standard coefficient (ignoring the sign), the contri-
bution of each variable to the score of the canonical
discriminant function can be determined: the larger
the magnitude, the greater is that variable’s
contribution.

Total structure coefficients. Although the standard-
ized coefficients provide a way to estimate the
variable’s contribution to calculating the discrimi-
nant score, they can display a serious limitation in
situations where two or more variables are highly
correlated. In these cases, the variables share their
contribution to the score. Their standardized
coefficients might therefore be smaller than when
only one of the correlated variables is used. Or, the
contribution of one variable is partially cancelled by
the opposite contribution of the other when the
standardized coefficients of correlated variables are
of opposite signs. One way to get around this
limitation is to use total structure coefficients
instead.

Structure coefficients are simple bivariate corre-
lations between a single variable and a discriminant
function. As such, they are not affected by the
relationships with the other variables. A structure
coefficient indicates how closely a variable is related
to a canonical discriminant function. When the
absolute value of the coefficient is close to or equal
to one (+1 or 21), it means the function holds
nearly the same information as the variable. When
the structure coefficient is near zero, it means the
variable and the function have very little in
common.

The eigenvalues. In discriminant analysis, the
canonical discriminant function with the largest
eigenvalues (defined earlier) is the most powerful
discriminator, that is, it is the function that will give

Figure 12. Hypothetical two-function plot of group centroids
(stars) and individual objects (1, 2, 3, 4). The horizontal axis
represents function 1, and the vertical dimension represents
function 2.
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the best separation of the groups. Conversely, the
function with the smallest eigenvalues is the weakest
discriminator.

The relative percentage. The absolute numbers
representing the eigenvalues cannot be interpreted
directly. Their relative magnitudes when there is
more than one function can help determine how
much of the total discriminating power each
function has. Such comparisons are obtained by
converting the eigenvalues into relative percentages,
that is, by dividing the sum of all eigenvalues (total
discriminating power) into each individual eigen-
value. The proper interpretation of the relative
percentage is that a function is strong or weak
relative to others, that it is likely or unlikely to add
further to the understanding of the differences
between groups. However, the ‘‘relative power’’ of
the first discriminant function does not necessarily
translate into a strong association with the groups.
For this reason, the canonical correlation is useful,
because it tells how well a discriminant function is
doing.

The canonical correlation coefficient. This coefficient
measures the degree of association between the
groups and the discriminant function. A value of
zero denotes no relationship, whereas the maximally
valued one indicates a perfect association. If the
groups are distinct in the variables being analyzed,
then all the correlation coefficients will be high.
Both canonical correlation and relative percentage
can be used to determine how many discriminant
functions are meaningful and how useful they are in
explaining group differences. The hypothetical
statistics in Table 10 indicate that the first discrim-
inant function contains 86.65% of the total
discriminating power in this system of functions.
Both the relative percentage and the correlation
coefficient of the third function are very small,
which suggests that function 3 is so unimportant
that it lacks any research utility.

When data are from a population, then the
number of functions and their importance are
derived from the relative percentage and the cano-
nical correlation. These two statistics completely

characterize the degree of discrimination between
the groups and the discriminating variables. When
the data are from a sample, however, the question of
statistical significance of the discriminant functions
arises. The Wilks’s lambda statistic can be used to
settle this question.

Wilks’s lambda statistic. The significance of discrim-
inant functions is commonly tested indirectly
through the examination of ‘‘residual discrimina-
tion.’’ A given function is not tested directly, but the
residual discriminating power present in the system
prior to the extraction of the function is examined.
If, for instance, the residual discrimination is too
small, then it is meaningless to extract more
functions even when they mathematically exist.
Wilks’s lambda is a statistic (also known as the U
statistic) that can be used to measure residual
discrimination. It can also be converted to a test of
significance of discriminant functions. There are
several ways to calculate Wilks’s lambda (L), one of
which is:

L~

a

P

i~kz1

1

1zli

Where k is the number of function already derived;
li the eigenvalue of the ith function; a the total
number of eigenvalues; and the symbol P indicates
that the individual terms are to be multiplied in
order to get the final product. Values of Wilks’s
lambda that are near zero indicate high discrimina-
tion. Values close to or equal to 1.0 indicate less or
no discrimination.

The significance of Wilks’s lambda can be tested
by expressing it as a function of chi-square or F
distributions (Klecka 1980). Thus, the chi-square
formula can be written as follows:

x2~{ n:{
pzg

2

� �
{1

h i
logeLk

with (p 2 k) (g 2 k 2 1) degrees of freedom; where:
n. 5 total number of individuals overall groups; g 5
number of groups; and p 5 number of variables.
Example study. For illustrative purposes, let’s
imagine that a weed scientist wants to explore

Table 10. Eigenvalues and measures of importance.

Canonical discriminant function Eigenvalue Relative percentage Canonical correlation

1 10.65925 86.65 0.965
2 1.57915 12.83 0.874
3 0.06358 0.52 0.211
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whether the choice of tillage systems affects the
biology of weeds (morphology and physiology),
which would suggest that tillage practices affect the
competitiveness or aggressiveness of weed species.
The objective of the study would be to develop a set
of coefficients for certain morphological (shoot
biomass, leaf area index) and physiological (growth
rate, sucrose–phosphate synthase activity) traits,
which could then be used to discriminate between
three tillage systems: zero-, minimum-, and con-
ventional-tillage. The study includes m weed species
on which four discriminating variables, shoot
biomass (SB), leaf area index (LAI), growth rate
(GR), and sucrose–phosphate synthase activity
(SPS) are to be measured.

If using the SAS program, the procedure to used
would be PROC CANDISC, and the three tillage
systems would be the CLASS variable TILLTYPE.
The data file is named WEED. The following SAS
program would perform the statistical analysis:

data weed;
Input tilltype $ sb lai gr sps;
if tilltype 5 ‘zero tillage’ then mark 5 ‘Z’;
if tilltype 5 ‘minimum tillage’ then mark 5 ‘M’;
if tilltype 5 ‘conventional tillage’ then mark 5 ‘C’;
proc candisc data 5 weed out 5 outcan bsscp pcov

pcorr;
class tilltype;
var sb lai gr sps;
Title1 ‘Canonical Discriminant Analysis: Weed

Science Society Data’;
proc sort data;
by mark;
proc print data 5 outcan;
var tilltype mark can1 can2;
Title2 ‘Scores on Canonical Variables: Weed Science

Society Data’;
run;
symbol1 value 5 C;
symbol2 value 5 M;
symbol3 value 5 Z;
proc gplot data 5 outcan;
where mark 5 ‘‘C’’ or mark 5 ‘‘M’’ or mark 5 ‘‘Z’’;
plot can2*can1 5 mark;
title1 h 5 1.2 ‘Plot of the two Canonical

Discriminant Function’;
run;

Output and interpretation. The number of canonical
discriminant functions is the smaller of the two
numbers (g 2 1) and p; where g 5 group number

and p 5 number of variables. In this case, there are
(3 2 1) 5 2 canonical discriminant functions.

The options bsscp, pcov, and pcorr stand for
‘‘between sum of squares and cross-products,’’ ‘‘pooled
variance-covariance,’’ and ‘‘pooled correlation,’’ re-
spectively. They result in respective matrices. In the
absence of actual data, let’s focus on hypothetical
outputs of correlation coefficients, eigenvalues, and
total structure coefficients (Tables 11 and 12).

Results from the pooled correlation matrix
(PCORR) would have indicated the likelihood of
correlation among the four discriminating variables:
shoot biomass, leaf area index, growth rate, and SPS
activity. Because growth rate is by definition the
production of biomass per unit of time, shoot
biomass is likely correlated to growth rate. Conse-
quently, the total structure coefficient would be
more appropriate as they are not affected by the
relationships with the other variables (see paragraph
‘‘Total structure coefficients:, above).

The canonical correlation table displays the
correlation coefficient between the two canonical
discriminant functions (dependent variables) and
the three tillage systems (independent variables).
They are high for both functions (0.98 and 0.95),
which would indicate a strong relationship between
the three tillage systems and the two discriminant
functions.

Next is the output of eigenvalues, which are the
estimated variances of respective canonical discrim-
inant functions. It can be observed that the first
discriminant function can explain 76% of the total
variance, and the remaining variance (24%) is
explained by the second discriminant function. This
does suggest that the two canonical discriminant
functions should describe the data accurately,
provided that their significance is confirmed by
statistical tests under the assumption of multivariate
normality. These tests are performed in the next
table of the SAS output. The significance level of
0.0001 tells us that both canonical discriminant
functions are highly significant.

From the table of structure coefficients, the two
canonical discriminant functions f1 and f2 can be
expressed as follows:

f1~0:776548 � SBz0:443273 � LAI

z0:558943 � GRz0:0254398 � SPS

f2~0:127549 � SBz0:20054 � LAI

z0:501325 � GR{0:009874 � SPS
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The first canonical discriminant function f1,

dominated by the discriminating variable shoot
biomass (SB), appears to represent growth and
development of individual weed plant. The second
canonical discriminant function f2, largely influ-
enced by the discriminating variable growth rate
(GR), seems to represent a contrast between
morphological traits and the physiological trait of
SPS activity. In both functions, the coefficients for
SPS are near zero, which means that the SPS activity
and the discriminant functions have very little in
common; as a result, the variable SPS activity could
be dropped from both discriminant functions.

To see how effective the separation of the three
tillage systems is, using the two canonical discrim-
inant functions, a plot of the score on these two
canonical discriminant functions was obtained using
the SAS statements (Figure 13):

proc gplot data 5 outcan;
where mark 5 ‘‘C’’ or mark 5 ‘‘M’’ or mark 5 ‘‘Z’’;
plot can2*can1 5 mark;

where the variable MARK takes values C, M,
Z for the three tillage systems (conventional-,

Table 12. Total structure coefficients.a

Variable Can1 Can2

sb 0.776548 0.127549
lai 0.443273 0.20054
gr 0.558943 0.501325
sps 0.0254398 20.009874

a Abbreviations: Can, canonical discriminant function; sb,
shoot biomass; lai, leaf area index; gr, growth rate; sps, sucrose–
phosphate synthase activity.

Figure 13. Plot of the two canonical discriminant functions f1
and f2.T
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minimum-, and zero-tillage, respectively). The
resulting plot presented above would suggest that
the conventional-tillage system can be discriminated
from the two conservation tillage practices (zero-
and minimum-tillage). Additionally, the first ca-
nonical discriminant function would probably
suffice to discriminate between conventional and
the rest. Neither of the two functions or both,
concomitantly, is able to separate between the two
reduced-tillage methods.

Conclusions

Exploring how plant populations change over
time in response to imposed selection pressures can
be challenging. In this paper we have presented our
views on field experiments and their analyses. We
do not claim to have presented the one and only
approach, but we hope that we have introduced
you, the reader, to the critical topics that must be
thought through carefully as you plan for a study in
this area. By following the suggestions and
information contained in this chapter, it is our
hope that you will be successful in describing weed
communities, species distributions and changes in
plant diversity within the agroecosystem.
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