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Background: Electroconvulsive therapy (ECT) is a highly effective treatment for severe psychiatric
disorders. Despite its high efficacy, the use of ECT would be greater if the risk of cognitive side effects
were reduced. Over the last 20 years, developments in ECT technique, including improvements in the
dosing methodology and modification of the stimulus waveform, have allowed for improved treatment
methods with reduced adverse cognitive effects. There is increasing evidence that the electrode
placement is important for orienting the electrical stimulus and therefore modifying treatment
outcomes, with potential for further improvement of the placements currently used in ECT.
Objective: We used computational modelling to perform an in-depth examination into regional differences
in brain excitation by the ECT stimulus for several lesser known and novel electrode placements, in order to
investigate the potential for an electrode placement that may optimise clinical outcomes.
Methods: High resolution finite element human head models were generated from MRI scans of three
subjects. The models were used to compare regional differences in average electric field (EF) magnitude
among a total of thirteen bipolar ECT electrode placements, i.e. three conventional placements as well as
ten lesser known and novel placements.
Results and conclusion: In this exploratory study on a systemic comparison of thirteen ECT electrode
placements, the EF magnitude at regions of interest (ROIs) was highly dependent upon the position of both
electrodes, especially the ROIs close to the cortical surface. Compared to conventional right-unilateral
(RUL) ECT using a temporo-parietal placement, fronto-parietal and supraorbito-parietal RUL also robustly
stimulated brain regions considered important for efficacy, while sparing regions related to cognitive
functions, and may be a preferrable approach to the currently used placement for RULECT. The simulations
also found that regional average EF magnitude varied between individual subjects, due to factors such as
head size, and results also depended on the size of the defined ROL
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1. Introduction and right unilateral (RUL). Among these, BT represents the original
form of ECT, and has generally been found to have the fastest speed
of response [1]. However, BT ECT has also been shown to cause
greater cognitive side-effects [2,3]. The RUL electrode placement,
initially proposed by d’Elia [4], represents one of the most
commonly applied placements in contemporary ECT due its

superior cognitive side-effect profile [3,5]. The antidepressant

Three main electrode placements are used in conventional
electroconvulsive therapy (ECT): bitemporal (BT), bifrontal (BF)
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effect of RUL ECT is also dose sensitive, with low dose RUL
treatment found to be less effective [6,3]. The BF electrode
placement was initially suggested by Abrams et al [7,8]. Recent
studies have shown that BF ECT has antidepressant outcomes
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comparable to BT ECT, and may also have a relatively low risk of
cognitive side-effects [9-13], though one randomized control trial
failed to find any cognitive advantage with BF compared to both BT
and RUL placements [1]. Thus, while each of these conventional
placements have demonstrated therapeutic efficacy, the clinical
effects mainly differ with regards to speed of therapeutic response
and the magnitude of cognitive side-effects.

Recent computational modelling studies have demonstrated
that the distribution and spatial extent of brain regions directly
stimulated by the electrical current differ as ECT placement is
varied [14-20]. These simulation results concur with those of
neuroimaging studies performed after ECT [21]. Combined with
evidence from clinical trials, this suggests that clinical and
cognitive outcomes are associated with the topographical distri-
bution of the ECT current (which in turn is contingent on the
position of the stimulating electrodes). Other evidence also
supports the importance of the direct effects of the ECT stimulus
itself, rather than the subsequent induced seizure, for the efficacy
of ECT. For example, it is possible to give forms of ECT (e.g. RUL ECT
dosed at the patient’s seizure threshold) which involve a seizure
but have relatively low efficacy [2,5,22]. A recent proof of concept
study further showed that BF ECT given at a subconvulsive dose
had antidepressant effects [23]. Therefore, it is possible to further
optimise current ECT treatment approaches by investigating direct
stimulation effects of different electrode placements using
computational models.

Novel electrode placements have been proposed, most notably
including the bilateral “left anterior right temporal” (LART)
placement [24], fronto-parietal placement for RUL ECT [25] and
focal electrically administered seizure therapy (FEAST), a novel
approach to RUL ECT using asymmetrical electrodes [26]. Swartz
and colleagues in their open trials and double-blind pilot study
reported significant antidepressant efficacy for LART, which was
comparable to BT, with less cognitive side-effects [24,27,28]. The
fronto-parietal RUL placement was first studied in controlled
trials in the 1970s where the cognitive side-effects were
compared to those of standard temporo-parietal RUL placement,
although no significant advantage was found [29,30]. This
placement was revisited recently in a case report which
compared cognitive outcomes between fronto-parietal and
temporo-parietal RUL, finding an overall advantage with
fronto-parietal RUL [25]. Most recently, open label pilot studies
of FEAST suggest that it may have comparable efficacy to
conventional temporo-parietal RUL ECT, with minimal cognitive
side effects [31,32]. These are examples of manipulations of
electrode placement to optimise clinical outcomes, with effects
demonstrated in small clinical trials. Using computational
modelling allows the investigation of multiple variations of
electrode placement, with estimates of electric field (EF)
strengths in key brain regions.

To date, it remains unclear which brain regions should be
maximally targeted for therapeutic effects. Computational
modelling of the ECT stimulus using conventional electrode
placements suggests that in addition to causing broad stimulation
of frontal and temporal regions, conventional placements result
in direct stimulation of frontal midline structures [18]. Of these,
the subgenual anterior cingulate cortex (SAC) in particular, as well
as its immediate surrounding structures, has been suggested to
have a key role in the pathophysiology and treatment of
depression [33,34]. Indeed, focalised stimulation of the SAC
using deep brain stimulation has been shown to cause
antidepressant effects [35]. Following a course of ECT, changes
in SAC theta activity have been found to be associated with
reduced psychotic symptoms in MDD patients [36]. Together,
these converging findings suggest that maximising stimulation of
the SAC may be important for antidepressant efficacy.
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Memory related side-effects are the most prominent cognitive
outcomes [37,38], and are generally considered to be associated
with direct stimulation of medial temporal regions [39]. However,
as conventional ECT placements stimulate both frontal and
temporal regions [15-18,20], it remains unclear which specific
memory-related regions are associated with particular side-
effects. While the hippocampus is widely recognised as critical
to memory functions, including encoding, retrieval and working
memory [40], frontal regions, including the inferior and middle
frontal gyri, are also important for memory retrieval [41,42].
Hemispheric dominance additionally plays an important role, with
the left hemisphere known to be dominant for language and verbal
processing in most people [43,44], and hence more critical for
side-effects involving verbal processing (e.g. verbal anterograde
and retrograde memory). Electrode placements which are
associated with reduced stimulation of left-sided memory based
regions (i.e. hippocampus, inferior and medial frontal gyri) could
then be associated with lesser cognitive side-effects.

In this study, we therefore used computational modelling to
perform an in-depth examination into regional differences in brain
excitation by the ECT stimulus for different electrode placements.
We hypothesised that greater stimulation of the SAC region would
be associated with greater treatment efficacy, whilst conversely
reduced stimulation of left-sided memory based regions would be
associated with reduced cognitive side-effects. In addition to
examining stimulation effects from conventional and other lesser
known placements, several novel placements were examined
which were designed for optimal stimulation of the SAC region.
Stimulation effects were investigated in head models derived from
MRI scans of several different subjects to minimise the effects of
inter-individual differences (i.e. head size).

2. Methods
2.1. Computational head model development

Head models of three subjects (SUB1-3) were reconstructed
from their T1-weighted 3T MRI head scans. Detailed methods on
model formulation can be found in our previous studies [45,18]. A
total of thirteen bipolar ECT electrode placements were simulated.
In each placement, an electrical current of 800 mA was delivered
through the scalp over a pair of circular electrodes with a radius of
2.5 cm. These current amplitudes represent typical levels of clinical
ECT currents utilised. The electrode placements for these place-
ments are described as follows, as illustrated in Figs. 1 & 2 :

BT: the centre of each electrode was placed on each side of the
scalp 3 cm superior to the midpoint of a line connecting the
external ear canal with the lateral canthus of the eye.

e BF: the centre of each electrode was placed 5 cm superior to the
lateral canthus of each eye.

temporo-parietal-unilateral: the anterior electrode was placed
on the temporal position (described in BT placement) on the
right side of the scalp, and the posterior was placed just right of
the vertex of the head. This is the most common RUL placement.
temporo-parietal-bilateral: the anterior electrode was placed at
the same position as the temporo-parietal-unilateral placement,
and the posterior electrode was placed just left of the vertex of
the head.

supraorbito-parietal-unilateral: the anterior electrode was
placed above the supraorbital ridge of the right eye, and the
posterior was placed just right of the vertex of the head.
supraorbito-parietal-bilateral: the anterior electrode was placed
at the same position as the supraorbito-parietal-unilateral
placement, and the posterior electrode was placed just left of
the vertex of the head.
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Fig.1. Cross-sectional plots of EF magnitude in the brain. The leftmost column shows the electrode placements simulated (bifrontal, bitemporal, left anterior right temporal,
temporo-parietal-unilateral, temporo-parietal-bilateral, supraorbito-parietalunilateral, supraorbito-parietal-bilateral); the second column shows the coronal slice across
medial and inferior frontal gyri; the third column shows the horizontal slice across the hippocampi; the rightmost column shows the sagittal slice across the SAC region.
Yellow arrows on the top row of the third column indicate the boundaries of the hippocampi. (For interpretation of the references to colour in the text, the reader is referred to
the web version of this article.)
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Fig. 2. Cross-sectional plots of EF magnitude in the brain (continued).The leftmost column shows the electrode placements simulated (fronto-parietal-unilateral, fronto-
parietalbilateral, midfronto-occipital, fronto-occipital-medial, fronto-occipital-unilateral, frontooccipital bilateral); the second column shows the coronal slice across medial and
inferior frontal gyri; the third column shows the horizontal slice across hippocampi; the rightmost column shows the sagittal slice across the SAC region. Yellow arrows on the top
row of the third column pointout the boundaries of the hippocampi. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.)

e midfronto-occipital: the anterior electrode was placed just above the posterior electrode was placed just left of the vertex of the
the nasion, and the posterior was placed just over the occiput. head.

o LART: the left electrode was placed at the same location as in BF, o fronto-occipital-medial: the anterior electrode was placed in the
and the right electrode was at the same location as in BT. frontal position (described in BF placement) on the right side of

o fronto-parietal-unilateral: the anterior electrode was placed on the scalp, and the posterior electrode was placed just over the
the frontal position (described in BF placement) on the right side occiput. This placement was inspired by the tDCS placements
of the scalp, and the posterior electrode was placed just right of SO—O0CC [45] and F—O [46].
the vertex of the head. o fronto-occipital-unilateral: the anterior electrode was placed at

o fronto-parietal-bilateral: the anterior electrode was placed at the the same position as the fronto-occipital-medial placement, and
same position as in the fronto-parietal-unilateral placement, and the posterior electrode was placed just right of the occiput.
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o fronto-occipital-bilateral: the anterior electrode was placed at
the same position as the fronto-occipital-medial placement, and
the posterior electrode was placed just left of the occiput.

2.2. Data analysis

All simulations were carried out using the COMSOL Multi-
physics v5.0 (COMSOL AB, Sweden) finite-element software
package running on a Windows 64-bit Precision workstation
(Dell, TX) with 24 GB RAM. To solve the stationary equations, a
direct linear solver was utilised with an absolute error tolerance set
to 107>, It took 30 min to solve for each simulation, each with
approximately 5 x 10° degrees of freedom.

Simulation results were analysed in MATLAB R2014b (Math-
Works, MA) by comparing the average EF magnitude E in several
ROIs in the brain, calculated using:

[ |E|dvV
|4

-t (1)

v
where |E| is the average EF magnitude in the ROl in question, and [
Vv

is the volume integral over this region. Note that the denominator
is simply the volume of the ROI. Analysis of results was based on
the “quasi-uniform” assumption, namely that the degree of
activation in a target region is proportional to the local EF
magnitude [47].

3. Results

The EF magnitude on slices across the key ROIs of this study is
illustrated in Figs. 1 & 2 for all electrode placements, and the
average EF magnitude in these ROIs is plotted in Fig. 3, including
the medial and inferior frontal gyri, hippocampi and thalamus of
both hemispheres, as well as the SAC region. As is expected, the EF
magnitude at ROIs was highly dependent upon the position of
both electrodes, especially ROIs close to the cortical surface. For
instance, the EF at the left frontal gyri differed substantially
depending on whether the placement was bilateral or unilateral
(where both electrodes were on the right side of the head): when
there was a left electrode, the EF reached as high as 123.11V/m
(e.g. SUB2 with BF), whereas it dropped to as low as 55.67 V/m
where both electrodes were on the right side (e.g. SUB2 with
temporo-parietal-unilateral). On the other hand, the EF magni-
tude at the SAC regions depended on how close the electrodes
were positioned to the midline, and thus the longitudinal fissure
between two hemispheres: for SUB 1, the EF with midfronto-
occipital, i.e. the midline placement, reached to 107.19V/m,
whereas it was only 48.81V/m with BF. The EF at the
hippocampus, located in the temporal lobe, had a significantly
larger magnitude when an electrode was placed at the ipsilateral
temporal position (e.g. BT, both temporo-parietal placements and
LART for the right hippocampus) or along the midline (e.g.
midfronto-occipital and all fronto-occipital placements). As for
the thalamus, deep inside the brain tissue, this received the least
amount of influence from the electrode position: the EF
magnitude was moderately elevated when the electrodes were
located close to the midline.

This dependency of EF magnitude on the electrode placement
also appeared to be moderately influenced by inter-subject
variability (e.g. head size and brain volume) or ROI size. The
inter-subject differences among the three subjects are listed in
Table 1.1t can be observed in the table, that the largest difference in
head sizes occurred between SUB1 and SUB2. Regarding the EF

https://doi.org/10.1016/j.eurpsy.2019.05.006 Published online by Cambridge University Press

magnitude at the left hippocampus, the difference between BT and
temporo-parietal-unilateral in SUB1 and SUB2 was 47.36 V/m and
78.85 V/m respectively, whereas that between temporo-parietal-
bilateral and supraorbito-parietal-bilateral in SUB1 and SUB2 was
10.98 V/m and 1.34 V/m respectively.

In order to examine the influence of ROl size on the EF magnitude,
a sphere was overlayed with the SAC region, centred at the SAC with
five different radii. Fig. 4b demonstrates the resulting SAC volume
within the spheres, and Fig. 4al, a2 and a3 respectively compare the
average EF magnitude in regards to different SAC volume in SUBT,
SUB2 and SUB3. As expected, the inter-subject variability also
played arolein this situation. For SUB1, the changes among different
SAC volume were small; however for SUB2 and SUB3, the changes
were comparably larger for some placements — although the general
shape of “curve of placements” remained mostly the same, the
significance of inter-placement difference became smaller with an
increasing SAC volume.

4. Discussion

We investigated the direct stimulation effects of ten alternative
and novel ECT electrode placements relative to conventional
electrode placements (i.e., BT, RUL, BF). Specifically, we examined
stimulation effects in brain regions hypothesised to be associated
with antidepressant efficacy as well as those considered to have a
critical role in memory side-effects with the aim of identifying
promising alternative methods for administering ECT for MDD.

4.1. Alternative compared to conventional placements

Fronto-parietal RUL ECT has been proposed as an alternative to
temporo-parietal RUL that may have similar efficacy but less
memory side effects [29,30,25]. Simulations support this hypoth-
esis, finding similar EF in the SAC region, but less hippocampal
stimulation, particularly in the right hemisphere. We investigated
whether moving the anterior electrode more medially may confer
additional advantages (the supraorbito-parietal-unilateral place-
ment). Indeed, we found that the supraorbito-parietal-unilateral
placement had similarly low EF in hippocampal regions as the
fronto-parietal-unilateral placement, but higher EF in the SAC
region, suggesting that moving the anterior electrode medially
from the lateral forehead to a supraorbital position may further
optimise ECT stimulation. Conversely, moving the posterior
electrode to the other hemisphere (fronto-parietal-bilateral,
supraorbito-parietal-bilateral), i.e. “bilateral” versions correspond-
ing to fronto-parietal-unilateral and supraorbito-parietal-unilat-
eral placements, resulted in higher EF in the left inferior and
middle frontal gyri and hippocampi, i.e. areas likely to mediate
greater cognitive side effects.

Moving the electrodes further apart while maintaining a
unilateral placement (i.e. fronto-occipital) resulted in more diffuse
stimulation, with greater stimulation of cognitive centres than
standard RUL (temporo-parietal) ECT, i.e. may actually increase
cognitive side effects. Stimulating down the midline (midfronto-
occipital), in an attempt to strongly active the SAC region, resulted in
the most diffuse stimulation of all placements. While EF was high in
the SAC region, it was also relatively high in the frontal gyri and
hippocampi, i.e. this placement is unlikely to improve on conven-
tional BT and BF placements. LART may confer advantages to
conventional BT ECT: our simulations showed stronger activation of
the SAC region, with less hippocampal activation on the left.

4.2. Role of interindividual differences in stimulation effects

Unexpectedly, our simulations showed substantial differences
in stimulation outcomes between the three subjects, suggesting


https://doi.org/10.1016/j.eurpsy.2019.05.006

76 S. Bai et al. / European Psychiatry 60 (2019) 71-78
140+ a ——SUB1 |
—+—SUB2
—A—-SUB3 |
100+ -
60+ -
20 r
140! -
£ 100| i
2
= L L
Q
LT 60t 3
L
20+ 3
140+ € L f
100+ -
60+ r
20t &~ - a
L AR PO RVO0 & DO QD DR K AR RN RO & DO Q0 D MR
CECLEETILELOE ¥ oy F L@

ECT Electrode Configurations

Fig. 3. Average EF magnitude in several ROIs across all three subjects, including the a left and b right medial and inferior frontal gyri, c left and d right hippocampus, as well as
the e left and fright lobe of thalamus. On the x-axis from left to right, BF, BT, TP, TP-B, SP-U, SP-B, MO, LART, FP-U, FP-B, FO-U, FO-M, FO-B respectively represent bitemporal,
bifrontal, temporo-parietal-unilateral, temporo-parietal-bilateral, supraorbito-parietal-unilateral, supraorbito-parietal-bilateral, midfronto-occipital, left anterior right
temporal, fronto-parietal-unilateral, fronto-parietal-bilateral, fronto-occipitalmedial, fronto-occipital-unilateral and fronto-occipital-bilateral.

that head size may be an important determinant of ECT clinical
outcomes, even under the same electrode placement. For example,
stimulation of the bilateral hippocampi, considered relevant to
memory related side-effects, indicated that SUB2, who had the

Table 1

Inter-subject differences among the three subjects. The head size was characterised
by the anterior-posterior (A-P) and left-right (L-R) straight-line distances. The brain
volume included volumes of the cerebellum and brain stem.

Head size

A-P distance (mm) L-R distance (mm) Brain volume (mm?)

SUB1 199.9 166.3 1293.8
SUB2 185.4 139.9 863.4
SUB3 202.8 161.1 1259.7

https://doi.org/10.1016/j.eurpsy.2019.05.006 Published online by Cambridge University Press

smallest head, exhibited higher levels of stimulation (>25V/m)
with conventional BT and BF electrode placements compared to
the other two subjects. Head size (nasium to inion distance and
head circumference) has previously been identified as a relevant
factor affecting ECT convulsive threshold [48], with larger heads
requiring greater stimulus charge, potentially due to greater
resistance from the skull dimensions and/or greater diffusion of
the current in regions important for seizure propagation. These
findings together highlight the importance of individual seizure
titration with ECT, as the use of fixed dosing methods in smaller
heads may lead to disproportionately greater cognitive side-effects
due to greater direct stimulation of memory-related regions.
Future research into the association between ECT treatment dose,
head size and memory side-effects is warranted to confirm this
association.
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Fig. 4. Panels al, a2 and a3 respectively show the influence of SAC region volume on the EF magnitude for SUB1, SUB2 and SUB3. “r” refers to the radius of the SAC spherical
region modelled. On the x-axis from left to right, BF, BT, TP, TP-B, SP-U, SP-B, MO, LART, FP-U, FP-B, FO-U, FO-M, FO-B respectively represent bitemporal, bifrontal, temporo-
parietal-unilateral, temporo-parietal-bilateral, supraorbito-parietal-unilateral, supraorbito-parietal-bilateral, midfronto-occipital, left anterior right temporal, fronto-
parietal-unilateral, fronto-parietal-bilateral, fronto-occipitalmedial, fronto-occipital-unilateral and fronto-occipital-bilateral. b shows SAC volume inside a sphere, centred at

the centre of SAC, with five different radii.

4.3. Limitations

As discussed above, it is hypothesized that stimulation at the
SAC region is important for the efficacy of ECT, and that minimal
stimulation of known memory-related regions would reduce the
cognitive side effects of ECT. These hypotheses are based on
associated sources of information about the roles of these brain
regions. However, to date a direct link between stimulation or
avoidance of these regions, and outcomes of ECT, is yet to be
proven. It is also possible that minimising stimulation in some
regions may be important for efficacy and increased stimulation in
other regions may be important for improved cognitive outcomes,
but this is speculative. The simulations were done in three
individual subjects, who covered a range of head sizes, demon-
strating the importance of inter-individual differences, and it is
likely that a larger number of subjects would further demonstrate
the principle of inter-individual differences. Future research
utilising modelling and clinical outcomes will be important to
confirm hypotheses regarding stimulation and clinical effects.

4.4, Conclusions

Compared to conventional RUL ECT using a temporo-parietal
placement, fronto-parietal and supraorbito-parietal RUL also
robustly stimulated brain regions considered important for efficacy,
while sparing regions related to cognitive functions, and may be a

https://doi.org/10.1016/j.eurpsy.2019.05.006 Published online by Cambridge University Press

preferrable approach to the currently used placement for RUL ECT.
Clinical trials comparing these approaches would be warranted. The
simulations also found considerable inter-individual differences in
stimulation effects due to factors such as head size.
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