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Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer
susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the
subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used in the
previous studies, which would account for some of the remaining risk. We therefore conducted a time- and
cost-effective stage 1 GWAS on 342 invasive serous cases and 643 controls genotyped on pooled DNA
using the high-density Illumina 1M-Duo array. We followed up 20 of the most significantly associated SNPs,
which are not well tagged by the lower density arrays used by the published GWAS, and genotyping them
on individual DNA. Most of the top 20 SNPs were clearly validated by individually genotyping the samples
used in the pools. However, none of the 20 SNPs replicated when tested for association in a much larger
stage 2 set of 4,651 cases and 6,966 controls from the Ovarian Cancer Association Consortium. Given that
most of the top 20 SNPs from pooling were validated in the same samples by individual genotyping, the
lack of replication is likely to be due to the relatively small sample size in our stage 1 GWAS rather than
due to problems with the pooling approach. We conclude that there are unlikely to be any moderate or
large effects on ovarian cancer risk untagged by less dense arrays. However, our study lacked power to
make clear statements on the existence of hitherto untagged small-effect variants.

� Keywords: GWAS, DNA Pooling, Ovarian cancer risk, Nanodrop spectroscopy.

Genome-Wide Association Studies (GWAS) have been an
unprecedented success in identifying common alleles with
moderate to small effects associated with different diseases
and phenotypes. In particular, more than 100 common,
low-penetrance loci of different cancers have been uncov-
ered by GWAS (Varghese & Easton, 2010). The discovery of
susceptibility loci will provide significant insights to cancer
etiology and an improved understanding of the mechanisms
of tumor biology. In addition, loci associated with tumor
progression after treatment will offer targets for therapeutic
intervention, and the risk predictions based on accumulated
knowledge of cancer genetics, together with environmental
risk factors, will help to identify individuals with an elevated
risk of cancer (Fletcher & Houlston, 2010). Although each
of the common loci identified through GWAS only account
for a small proportion of risk, collectively more than 20%
of familial risk of prostate cancer has been explained, and
∼7%, ∼6%, and ∼5% of familial risk of lung, colorectal,
and breast cancers, respectively, can now be explained by
GWAS results (Varghese & Easton, 2010). These estimates
are likely to be conservative, as the effects of causal variants
are typically larger than the associations detected through
tag single-nucleotide polymorphisms (SNPs); Fletcher &
Houlston, 2010).

Globally, ovarian cancer is the seventh leading cause of
cancer mortality among woman. Despite its relatively rare
incidence, it has the same pattern of familial aggregation
as other major cancers. Early twin studies have shown that
most of the excess familial risk of ovarian cancer is due
to genetic factors rather than shared environmental fac-
tors (Lichtenstein et al., 2000). It is well established that
although rare mutations in BRCA1 and BRCA2, identified
originally by linkage studies, are the most important ge-
netic risk factors in terms of their high penetrance, they
do not fully account for the excess ovarian cancer risk seen
in families. To date, one large GWAS has been conducted

on ovarian cancer susceptibility aiming to identify some of
the remaining unexplained familial risk. This GWAS used
relatively low-density Illumina 610K and 550K arrays for
cases and controls, respectively Song et al., (2009), Bolton
et al., (2010), Goode et al., (2010). The confirmed suscep-
tibility loci reaching genome-wide significance level (p < 5
× 10−8) uncovered by this GWAS are at 9p22.2 near BNC2
(Song et al., 2009), 19p13.11 near C19orf62 (also known
as MERIT40) (Bolton et al., 2010), 8q24, and 2q31; two
other borderline significant loci at 3q25 and 17q21 were
also identified (Goode et al., 2010). In addition, a candidate
gene study has implicated the TERT locus, which has been
found to contain susceptibility SNPs by many other cancer
GWAS (Johnatty et al., 2010). All these loci confer small
risks (per-allele relative risk less than 1.3), supporting the
concept of polygenic architecture underlying ovarian can-
cer susceptibility. As found in other cancer types, ovarian
cancer also shows histological subtype variation. The as-
sociations identified so far are stronger for serous tumors
than for other histological subtypes. To identify histology-
specific risk loci, separate GWAS on different subtypes will
be more powerful than a single GWAS, including all sub-
types. However, the high cost of GWAS limits the desirabil-
ity of carrying out studies with individual genotyping for
the less common subtypes, such as endometrioid, muci-
nous, and clear cell ovarian cancers, which may not be well
powered.

The GWAS genotyping on pooled DNA has proved to
be a time- and cost-effective alternative to conventional
GWAS, which individually genotype all the study subjects
(Craig et al., 2009; Macgregor et al., 2006, 2008; Norton
et al., 2004; Sham et al., 2002; Visscher & Le Hellard, 2003).
In this study we conducted a pooled GWAS on serous ovar-
ian cancer risk, followed by validation of the pooled results
and genotyping SNPs of interest in an independent large
dataset from the Ovarian Cancer Association Consortium.
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We used the high-density Illumina 1M-Duo array contain-
ing 1.2 million SNPs for our pooled GWAS, because it has
a superior coverage with 93% of common SNPs in the CEU
population tagged at r2 ≥ 0.8. The aim of this study was
two-fold: to test the hypothesis that common SNPs with
moderate or low risks, which are not well tagged by the
lower density arrays (Illumina 550K and 610K arrays used
in the previous GWAS), also account for some of the residual
ovarian cancer risk; and to determine whether the pooled
GWAS can be effectively carried out on DNA quantified by
spectrophotometry, as opposed to Picogreen absorption,
which we have used previously.

Materials and Methods
Ethics Statement

This study was conducted according to the principles ex-
pressed in the Declaration of Helsinki. The study was ap-
proved by the human ethics committee of Queensland Insti-
tute of Medical Research. All participants provided written
informed consent.

Samples

We used samples from the Australian Ovarian Cancer Study
(AOCS) for the pooled GWAS. AOCS ascertained ovarian
cancer cases through the surgical treatment centers in Aus-
tralia, and from the Cancer Registries of Queensland, South
and Western Australia, New South Wales, and Victoria,
while controls were population-based and drawn from the
Commonwealth electoral roll (Burkey & Kanetsky, 2009).
We selected 342 invasive serous cases and 643 controls for
the pooled GWAS. All the study subjects were self-reported
White with non-Hispanic origin. Age at diagnosis and in-
terview was recorded for cases and controls, respectively.
Detailed clinical information was also available for ovarian
cancer patients, including primary site of tumor, stage and
grade, and overall survival time. Most of the DNAs had
been isolated using salt extraction (Chang et al., 2009), but
a subset had been isolated with Qiagen columns, and so
these DNAs were kept separate.

DNA concentration was measured before the pools were
made by spectrophometry using a Nanodrop, and the sam-
ples were adjusted through serial dilution to 48–52 ng/μL.
Each DNA sample of 2 μL was combined for each pool,
and the final concentration was verified by Nanodrop. The
salt-extracted DNAs from 303 invasive serous cases were
further divided into tertiles according to their overall sur-
vival time. We made a separate pool of 39 DNAs from un-
selected cases that were isolated with Qiagen columns. The
controls were randomly placed in seven pools, each with a
size of 90–91 samples. We then matched each of the three
salt-extracted case sets with two of the control sets. The
smaller Qiagen-extracted DNA pool was matched with the
remaining control pool. Thus, we had four comparisons

TABLE 1

Design of Case-Control Pool Comparisons

Pool
comparison Case-control statusa N

Mean age
(±SD)

p-value of mean
age difference
between cases
and controls

1 Case (good survival) 101 58.9 (8.6) 0.3038
Control 182 57.7 (10.4)

2 Case (medium
survival)

101 59.4 (10.5) 0.1223

Control 182 57.3 (11.2)
3 Case (poor survival) 101 62.2 (9.5) 2.5e-4

Control 181 57.3 (12.5)
4 Case (extracted by

Qiagen columns)
39 60.5 (9.9) 0.0288

Control 90 56.2 (10.8)

Note: aWe stratified the cases in three large pools by overall survival time.
A small subset of 39 case DNAs isolated by Qiagen columns was
kept together in one pool.

of case versus control pools, where each individual case
was matched with approximately two individual controls
(Table 1).

We used samples from 12 sites in the Ovarian Cancer
Association Consortium (OCAC) in the replication stage
(Table 2). In all, we genotyped 13,779 samples, including
6,966 non-Hispanic White controls and 4,651 non-Hispanic
White invasive cases, among which 2,245 were of serous
histology.

Genotyping and Quality Control

All the DNA pools were genotyped on Illumina Human
1M-Duo arrays using standard protocols. All pools were
genotyped in triplicate, with the exception of one control
pool, which was genotyped in quadruplicate. A number of
quality control (QC) steps described elsewhere (Lu et al.,
2010) were also applied here: (1) SNPs must have less than
10% negative intensity values on each pool; (2) The num-
ber of working probes for SNP on each pool must be larger
than 20; (3) The sum of raw red and green intensity val-
ues must be more than 1,200; (4) Minor allele frequency
(MAF) in the HapMap CEU samples is over 5%; (5) SNP
must not present significant variance difference between
case and control pools. A number of additional checks were
also applied. (6) The differential amplification parameter
of SNP must be between 1/3 and 3. ‘Differential amplifica-
tion’ refers to a phenomenon that the alleles at a locus are
unequally amplified; in these cases the allele frequency es-
timates are biased because of the imbalanced raw intensity
value. However, the differential amplification cancels out to
a good approximation when we assess the allele frequency
difference between case and control pools. We discarded
SNPs with very extreme differential amplification (<1/3 or
>3). This additional check is equivalent to discarding SNPs
with estimated allele frequencies that are very different from
the reference samples, for example, the HapMap CEU sam-
ples used here. (7) SNPs that passed quality control for
more than two pool pairs out of four were kept, because in
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TABLE 2

Summary of OCAC Samples Used for the Replication Study

Controls Cases

OCAC site Study name

Controls
(non-Hispanic
White)

Cases (non-
Hispanic
White)

Invasive case
(non-Hispanic
White)a

Invasive serous cases
(non-Hispanic
White)b

AUSc Australia Ovarian Cancer Study/Australian Cancer Study 576 (524) 1,276 (1,207) 921 502
BEL Belgium Ovarian Cancer Study 428 (428) 257 (253) 197 128
GER German Ovarian Cancer Study 420 (420) 252 (251) 223 105
HJO/HMO Hannover–Jena and Hannover–Minsk Ovarian Cancer Study 913 (903) 467 (463) 246 70
HAW Hawaii Ovarian Cancer Study 625 (166) 417 (102) 81 43
HOCS Helsinki Ovarian Cancer Study 456 (456) 262 (262) 261 130
NTH Nijmegen Polygene Study & Nijmegen Biomedical Study 599 (598) 305 (300) 297 101
MAL Danish Malignant Ovarian Tumour Study 1075 (1075) 263 (263) 263 162
NJO New Jersey Ovarian Cancer Study 189 (173) 200 (177) 176 105
OVA Ovarian Cancer in Alberta and British Columbia Study 530 (460) 834 (706) 538 291
SEA UK SEARCH Ovarian Cancer Study 1,231 (1,227) 1,172 (1,160) 972 377
UKO UK Ovarian Cancer Population Study 542 (536) 490 (476) 476 231
Total 7,584 (6,966) 6,195 (5,620) 4,651 2245

Note: aCases eligible for secondary analysis in the replication.
bCases eligible for primary analysis in the replication.
cAOCS cases and controls included in the pools using stage 1 were excluded from analysis in the replication study.

general the more the working pool pairs, the more the reli-
able results. (8) For the SNPs of interest, the proxies (linkage
disequilibrium (LD) r2 > 0.7) must have similar association
results as the underlying SNP. We applied stringent quality
controls to limit false positive results rising from pooling
design. After a whole series of QC steps, 9,14,948 SNPs were
retained.

Individual genotyping for 20 SNPs selected from
the pooled GWAS was performed using MALDI-TOF
spectrophotometric mass determination of allele-specific
primer extension products using Sequenom’s MassARRAY
system and iPLEX technology (Sequenom Inc.). The de-
sign of oligonucleotides was carried out according to the
guidelines of Sequenom and performed using MassARRAY
Assay Design software (version 4.0). Multiplex PCR am-
plification of amplicons containing SNPs of interest was
performed using the Qiagen HotStart Taq Polymerase on
a Perkin Elmer GeneAmp 2400 thermal cycler with 5-ng
genomic DNA. Primer extension reactions were carried out
according to manufacturer’s instructions for iPLEX chem-
istry. Assay data were analyzed using Sequenom TYPER
software (Version 3.4). These SNPs passed the following
standard QC checks: (1) p-value for the Hardy–Weinberg
equilibrium (HWE) test ≥0.05 in both cases and controls;
(2) call rate > 95%; (3) concordance >98% between dupli-
cate pairs (at least 5% per study site). One SNP (rs12078260)
failed the HWE test in controls.

Statistical Methods and Analytic Tools

In the pooled GWAS, the allele frequencies on each locus
were estimated from each pool, and then the differences of
allele frequencies between each pair of case/control pool
were assessed in the association test. Details of pooling
data analysis were described elsewhere (Lu et al., 2010).
The four sets of association results from each pool pair

were then meta-analyzed, where the allele frequency dif-
ference between each set of case and control pools was
weighted by its inverse variance (binomial variances in case
and control pools plus pooling error variances; Macgregor
et al., 2006, 2008). A pooling program that incorporates the
steps of estimating pooled allele frequency, mean normal-
ization, quality controls, and finally association test taking
into account pool-specific errors, has been developed for
the pooled GWAS. This program is available on request.

For individually genotyped data, the SNP association
was assessed in a logistic regression model implemented
in PLINK (Purcell et al., 2007). Assuming a log additive
model of inheritance, the per-allele risk was estimated by
fitting the number of rare alleles as continuous variable. We
did not adjust for age effect in individual genotyping (IG)
validation to allow for a direct comparison of pooled and
individual genotyped results on the same AOCS samples.
However, the age-adjusted results were similar (results not
presented). In the replication stage, both age and study sites
were adjusted for in the logistic regression model.

Results
In order to reduce heterogeneity, the majority of invasive
serous cases from the AOCS included in the pooled GWAS
had tumors that originated in the ovary (except for one
case, whose tumor appeared to arise in fallopian tubes),
and are of high stage (>92% cases with FIGO (International
Federation of Gynaecology and Obstetrics) stage III or IV)
and grade (>99% cases with grade 2 or 3). Since age at
diagnosis for cases is a predictor of overall survival time,
age differences were observed in the comparison of cases
with poor survival and controls, which were younger than
these cases. A nominally significant difference in mean age
was also found in the comparison of cases extracted using
Qiagen columns and controls (Table 1). After carrying out
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TABLE 3

Comparison of Pooled GWAS and Individual Genotyping (IG) Validation Results for 19 SNPs in
AOCS Samples

Pooled GWAS IG validation

SNP ID Chr Coordinate Allelesa OR SE P_poolb OR SE P_IG

rs7562599 2 153711404 [T/C] 0.595 0.122 2.14E-05 0.637 0.153 3.01E-03
rs10792844 11 85658476 [A/C] 0.463 0.190 4.94E-05 0.886 0.176 4.89E-01
rs1573110 10 9135501 [A/G] 1.744 0.141 8.46E-05 2.003 0.162 1.41E-05
rs17759746 2 28247797 [T/C] 0.596 0.135 1.23E-04 0.649 0.158 5.73E-03
rs8043748 16 11753732 [A/G] 0.686 0.098 1.28E-04 0.679 0.097 6.84E-05
rs17353424 8 107892457 [T/C] 0.638 0.117 1.28E-04 0.565 0.267 3.02E-02
rs7974375 12 117070081 [A/C] 1.608 0.125 1.43E-04 1.680 0.128 4.39E-05
rs10818911 9 125854025 [T/G] 0.627 0.125 1.91E-04 0.656 0.150 4.65E-03
rs4887515 15 85233018 [T/C] 0.610 0.133 1.95E-04 0.573 0.165 6.48E-04
Rs1903532 4 179644249 [T/G] 0.648 0.116 1.98E-04 0.751 0.136 3.46E-02
Rs11592097 10 2166806 [A/C] 0.645 0.121 2.85E-04 0.609 0.194 9.90E-03
Rs2798823 14 94490125 [A/G] 0.687 0.108 4.76E-04 0.701 0.130 6.17E-03
rs2086545 11 13164955 [C/G] 1.450 0.109 6.55E-04 1.154 0.130 2.72E-01
rs2499834 1 160236260 [A/C] 0.627 0.139 7.79E-04 0.623 0.175 6.28E-03
rs1053495 10 71544054 [T/C] 0.611 0.148 8.66E-04 0.779 0.188 1.84E-01
rs1566198 18 11249831 [T/G] 1.510 0.126 1.05E-03 1.373 0.128 1.27E-02
rs16135 7 24294445 [A/G] 0.576 0.170 1.16E-03 0.769 0.197 1.82E-01
rs16899823 5 81992978 [T/C] 0.665 0.133 2.20E-03 0.638 0.197 2.16E-02
rs12027970 1 37537850 [A/C] 0.685 0.124 2.31E-03 0.609 0.213 1.89E-02

Note: aThe first allele was the risk allele of SNP.
bThe table was sorted by the strength of association found in pooled GWAS (P_pool).

extensive quality control, we tested association for 9,14,948
SNPs on each comparison of case-control pools (for details
of pooling designs, see Samples in Materials and Methods
section), and meta-analyzed the four sets of genome-wide
association results using a standard weighting method in
order to maximize statistical power.

We chose 20 SNPs from the pooled GWAS for individ-
ual genotyping in the same AOCS samples as a validation
of pooled results. These SNPs were among the top-ranked
SNPs from the pooled GWAS that had evidence of associ-
ation with ovarian cancer susceptibility, but none of these
reached genome-wide significance. Moreover, these were
selected for being in the subset of SNPs not well tagged
by Illumina 610K array, as one of our aims was to test
the hypothesis that this pooled GWAS using denser SNP
arrays could uncover additional risk SNPs not identified
by the previous GWAS. These 20 SNPs were successfully
genotyped for nearly all the AOCS samples included in
the pooled GWAS (971 out of 985 pooled samples), but
one SNP failed quality control. Table 3 compares the odds
ratios (OR) and p-values from the pooled GWAS and IG
validation results. Despite slight difference in samples, good
concordance was observed in OR estimates, with all risk di-
rections in agreement in both sets of results. For 15/19 SNPs,
the putative associations found in the pooled GWAS were
clearly validated in IG results. Therefore, by comparing the
results from pooled genotyping and individual genotyping
on the same set of samples, we showed that GWAS using
pooled DNA, quantified by spectrometry, has the poten-
tial to estimate allele frequencies accurately and provide an
efficient test of association.

In addition, we sought independent replication for these
19 SNPs by individually genotyping a total of 13,779

samples collected from 12 study sites in OCAC (Table 2).
Among 4,651 eligible White invasive cases of non-Hispanic
origin, the majority (>95%) were classified as having pri-
mary tumor in the ovary, as opposed to the fallopian tube or
peritoneum. Unlike the AOCS cases included in the pooled
GWAS, the OCAC cases on the whole were evenly dis-
tributed over all tumor stages and grades (∼54% in high
stage and ∼58% in high grade). Two sets of analyses were
performed according to histology: In the primary analysis
we restricted to White non-Hispanic cases with the serous
subtype, which allowed for direct replication of SNPs found
in the stage 1 GWAS on serous ovarian cancer cases; whereas
in the secondary analysis we included cases with all histolog-
ical subtypes to determine whether these SNPs show asso-
ciation with ovarian cancer regardless of histological types.
The association results adjusted for age and study site are
presented in Table 4. The results showed no replication for
any of the 19 SNPs in the analyses restricted to serous cases
only (primary analysis), or in the analyses combining all
histological subtypes (secondary analysis).

Discussion
To date, one ovarian cancer GWAS has revealed several
SNPs associated with susceptibility. None of the identi-
fied loci showed large effects (OR: 0.76–1.30 depending
on the histological subtype), but the study was well pow-
ered to find common alleles with moderate effects (Song
et al., 2009). In contrast, our study of the pooled GWAS
on serous ovarian cancer susceptibility was under-powered
to detect the alleles with moderate effects because of small
sample size. In our pooled GWAS, the published risk SNPs,
rs3814113 at 9p22.2, rs2072590 at 2q31, and rs2665390 at
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TABLE 4

Replication Results of 19 SNP from Pooled GWAS by Individual Genotyping of 13,779 OCAC Samples

Primary analysisc Secondary analysisc

SNP Chr Coordinate Allelesa Nb OR SE p Nb OR SE p

rs7562599 2 153711404 [T/C] 9,185 1.06 0.05 0.26 11,580 1.03 0.04 0.48
rs10792844 11 85658476 [A/C] 9,188 0.98 0.06 0.76 11,588 1.06 0.05 0.27
rs1573110 10 9135501 [A/G] 9,184 1.00 0.06 0.96 11,581 0.99 0.04 0.88
rs17759746 2 28247797 [T/C] 9,175 1.03 0.06 0.62 11,572 0.99 0.05 0.80
rs8043748 16 11753732 [A/G] 9,178 1.03 0.04 0.40 11,574 1.03 0.03 0.37
rs17353424 8 107892457 [T/C] 9,198 0.89 0.09 0.24 11,599 0.89 0.07 0.11
rs7974375 12 117070081 [A/C] 9,147 0.98 0.05 0.61 11,547 1.00 0.04 0.97
rs10818911 9 125854025 [T/G] 9,194 1.00 0.05 0.96 11,597 0.98 0.04 0.61
rs4887515 15 85233018 [T/C] 9,175 0.98 0.06 0.77 11,566 1.03 0.05 0.50
rs1903532 4 179644249 [T/G] 9,167 1.08 0.05 0.17 11,551 1.01 0.04 0.84
rs11592097 10 2166806 [A/C] 9,152 0.97 0.06 0.60 11,535 0.95 0.05 0.27
rs2798823 14 94490125 [A/G] 9,184 0.95 0.05 0.34 11,583 0.94 0.04 0.08
rs2086545 11 13164955 [C/G] 9,184 1.03 0.05 0.57 11,581 1.06 0.04 0.19
rs2499834 1 160236260 [A/C] 9,152 0.93 0.06 0.20 11,547 0.96 0.04 0.33
rs1053495 10 71544054 [T/C] 9,200 1.01 0.06 0.93 11,600 1.02 0.05 0.72
rs1566198 18 11249831 [T/G] 9,193 1.03 0.05 0.44 11,593 1.04 0.04 0.30
rs16135 7 24294445 [A/G] 9,187 1.04 0.07 0.55 11,589 1.02 0.05 0.76
rs16899823 5 81992978 [T/C] 9,187 1.04 0.06 0.51 11,586 1.07 0.05 0.14
rs12027970 1 37537850 [A/C] 9,184 0.95 0.07 0.44 11,583 0.97 0.05 0.59

Note: aSame risk alleles as listed in Table 2.
bNumber of samples with non-missing genotypes for each SNP.
cPrimary analysis was restricted to serous cases; secondary analysis including all histological subtypes.

TABLE 5

Pooled GWAS Results on the Published Loci Known to be Associated with Serous Ovarian Cancer Susceptibility

Position SNP ID Publication A1 Reported per-allele ORa Reported p-value Pooled per-allele OR Pooled p-value

9p22.2 rs3814113 Song et al., 2009 C 0.77 (0.73–0.81) 4.1e-21 0.86 (0.72–1.05) 0.082
19p13 rs8170 Bolton et al., 2010 C 1.18 (1.12–1.25) 2.7e-09 0.97 (0.77–1.31) 0.175

rs2363956 G 1.16 (1.11–1.21) 3.8e-11 0.92 (0.78–1.12) 0.60
2q31 rs2072590 Goode et al., 2010 T 1.20 (1.14–1.25) 3.8e-14 1.21 (1.01–1.41) 0.03
3q25 rs2665390 C 1.24 (1.15–1.34) 7.1e-08 1.22 (0.93–1.79) 0.060
8q24 rs10088218 A 0.76 (0.70–0.81) 8.0e-15 1.28 (0.89–1.66) 0.882
17q21 rs9303542 G 1.14 (1.09–1.20) 1.4e-07 NAb NAb

Note: aFor a direct comparison of results, reported per-allele ORs are the results from the published GWAS restricted to serous cases.
brs9303542 was not on Illumina Human 1Mduo array, but rs6504172 is in high linkage disequilibrium with rs9303542 (r2 = 0.841). It
had a per-allele OR in the pooled GWAS of 1.10 (0.84–1.56) (p = 0.49).

3q25, showed similar ORs and in the same direction as re-
ported previously (Goode et al., 2010; Song et al., 2009),
but these reached nominal or borderline significance only
(Table 5). The other three SNPs (rs8170 and rs2363956 at
19p13, and rs10088218 at 8q24) identified by the published
GWAS (Bolton et al., 2010; Goode et al., 2010) were not
significantly associated with risk in our results, and SNP
rs9303542 at the 17q21 (Goode et al., 2010) was not on Il-
lumina Human 1M-Duo array (Table 5). We found a similar
OR for rs6504172, which is in high linkage disequilibrium
with rs9303542 (r2 = 0.841), but this SNP was not signifi-
cantly associated with risk (p=0.49). We therefore found no
support for our hypothesis that additional common SNPs
represented on the 1M-Duo arrays contribute to ovarian
cancer risk, probably because of insufficient power in stage
1 of this pooled GWAS.

In the pooling design, we divided serous ovarian cancer
cases into four case pools according to the overall survival
time and/or the method in which the DNAs were isolated.
In theory it would be possible to test for association of SNPs

with survival time by comparing good, medium, and poor
survival pools, but we would have even less power to detect
reliable association with survival, so these results are not
presented.

Although we were under-powered to locate any common
SNPs with weak effects, our study had the potential to iden-
tify common SNPs with moderate to large effects on ovarian
cancer risk if any. A notable example in cancer genetics is the
common variant in KITLG with a per allele risk of 2.5 for
testicular cancer, which was identified from an initial GWAS
in ∼300 cases and ∼900 controls (Kanetsky et al., 2009).
This empirical example suggests that although most loci ex-
hibit smaller effect sizes, common SNPs with moderate to
large effect do exist in cancer genetics, and therefore it is of
interest to test similar hypothesis in different cancer types.
GWAS genotyping on pooled DNA does not suffer from
substantial power loss compared to a conventional study
using individual genotyping. For example, in our pooled
GWAS, assuming an additive effect risk allele with 20%
frequency that confers a relative risk of 2, power was 80%
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even after scaling the original sample size by 10% in order
to account for additional variance because of pooling errors
(Macgregor et al., 2008), in comparison with 88% power
using individual genotyping. An empirical study with ex-
amples of successful identification of the known variants,
including the eye color locus at OCA2/HERC2 (15q11.2-
q12), the age-related macular degeneration locus at CFH
(1q32), and the locus for Pseudoexfoliation syndrome at
LOXL1 (15q22) clearly showed that common alleles with
large effects are not likely to be missed in the pooled GWAS
(Craig et al., 2009). Therefore, our results suggest that there
are probably not hitherto poorly tagged common SNPs with
moderate to large effects still to be identified.

This study also demonstrates that it is not always neces-
sary to measure DNA concentration by Picogreen absorp-
tion, prior to making DNA pools. At least for the set of DNAs
we used, which were largely isolated by salt-extraction,
this study demonstrated highly consistent results between
pooled genotyping and individual genotyping. However,
it is worth noting that we have previously found that the
correlation between the concentrations measured by Nan-
odrop spectroscopy and Picogreen adsorption is high (r2 =
0.5107) for a related set of 200 DNAs.

It should be noted that lack of replication in this study
was not due to problems in the DNA pooling method.
Since additional errors, such as pool construction errors
and pool measurement errors, could be involved (Sham
et al., 2002), we have implemented careful experiments and
rigorous analysis to address this concern. Firstly, we per-
formed careful experiments to ensure equal quantity of
DNA contributed by individual samples during the forma-
tion of the pools; secondly, all the pools were genotyped at
least thrice to yield better allele frequency estimates, and
we applied stringent quality controls to limit the number of
possible false positives; lastly, we accounted for additional
variance because of pooling errors in the association tests.
We also validated pooling results using individual genotyp-
ing. Given that most of the top 20 SNPs from the pooled
GWAS were validated in the same samples by individual
genotyping, the lack of replication is most likely to be due
to relatively small sample size in our stage 1 GWAS rather
than due to problems with the pooling approach.

In order to improve power for GWAS using pooled DNA,
larger sample sizes and higher density micro-arrays are re-
quired. However, to properly accommodate a large sample
size, a balance between the statistical power and the accu-
racy of the allele frequency estimates is needed. A number
of empirical studies have investigated the impact of pool
size (up to 1,000 samples in the pool) on the accuracy of
allele frequency estimate, and usually found no obvious re-
lationship between the pool size and the accuracy of allele
frequency estimation (Jawaid & Sham, 2009; Le Hellard
et al., 2002; Macgregor, 2007). As indicated in Macgregor
et al. (2007), most variation from pooled DNA genotyping
is attributable to array error rather than pool construction

error. Therefore, constructing large pools is not likely to
yield a great loss of power. An optimal pool design for a
limited research budget will be a few large pools, which are
then genotyped for multiple times. One major criticism of
the pooled GWAS is that there is no information on individ-
ual genotypes or linkage disequilibrium information, so it is
generally impossible to impute missing genotypes, evaluate
haplotypes, or fine map the regions of interest. However,
given the cost advantage, more expensive SNP arrays with
better coverage can be used to partially compensate for the
power loss because of imperfect linkage disequilibrium be-
tween genetic markers and causal variants. Furthermore,
fine mapping of loci identified by GWAS is usually per-
formed in a stage 2 or 3 of genotyping once the loci have
been confirmed in additional samples. Here we have investi-
gated the use of dense Illumina 1M-Duo arrays in locating
variants that were poorly tagged by previous arrays. We
found that moderate to large effects on ovarian cancer risk
are unlikely to exist among the SNPs on this array, but we
are not able to make a clear statement about the possible
existence of additional SNPs with small effects because of
limited study power.

In summary, we have carried out the pooled GWAS on
342 invasive serous cases and 643 controls. The accuracy
of estimated odds ratios was then validated by individually
genotyping the same subjects that were included in the pool.
We showed that pooled genotyping using DNAs quantified
by Nanodrop spectroscopy, together with analytical tools for
the pooled data, work well in terms of achieving accurate OR
estimations and providing reasonable association signals.
We therefore propose to use pooled GWAS for less common
subtypes of cancer or orphan diseases where research funds
are limited. In addition, we have developed an analytical
tool for analyzing the pooled GWAS data, which will be
available on request.
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