Structural Analysis of MoS₂ Layers in a 3D Assembly

J. Enrique Samaniego-Benitez¹, J. Jesús Velázquez-Salazar², Rubén Mendoza-Cruz², Lourdes Bazán-Diaz², José Eduardo Ortega², Germán Plascencia-Villa², M. Josefina Arellano-Jiménez², Alejandra Garcia-Garcia³, J. Willars-Rodriguez⁴, J. Francisco Perez⁴, Sarai E. Favela-Camacho⁵ and Miguel José-Yacamán².

^{1.} Catedras Conacyt - Instituto Politécnico Nacional - CICATA Unidad Legaria. Calz Legaria 694, Col. Irrigación, Ciudad de México, México.

² Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA.

^{3.} Centro de Investigación en Materiales Avanzados Unidad Monterrey. Laboratory of synthesis and modification of nanostructures and two dimensional materials; Alianza norte 202, Parque de Investigación e Innovación Tecnológica, Monterrey, Nuevo Leon, México.

⁴ Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro. Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Querétaro, Qro, México.

^{5.} Universidad Tecnológica de Manzanillo. Camino hacía Las Humedades, Salagua, Manzanillo, Colima. México.

Two-dimensional transition metal dichalcogenides (TMDs) are a versatile family of nanomaterials composed by more than forty different layered composites. They have the general formula MX₂ where M is a transition metal of the groups 4-10 and X represents the respective chalcogenide; molybdenum (IV) disulfide (MoS₂), titanium disulfide (TiS₂) and tungsten sulfide (WS₂) are examples of such compounds [1]. These 2D materials have attracted research interest due to their novel layer-dependent electronic and optical properties. For instance, MoS₂ monolayers exhibit a semiconductor behavior with a direct band gap of 1.8 eV, compared with its band gap in bulk, of about 1.29 eV[2]. MoS₂ has been extensively studied as an electrocatalyst for hydrogen production and has been considered as a potential alternative to Pt. Effective production of MoS₂ with specific arrangement at the nanoscale is of particular interest for its applications in catalysis. In this work, the formation of MoS₂ microstructures in pyramidal form was studied using electronic microscopy techniques, such as SEM, FIB-SEM, and aberration-corrected STEM, to understand the organization and growth of these microstructures.

The synthesis process was carried out in a chemical vapor deposition (CVD) reactor; molybdenum trioxide (MoO₃) powder was placed on a SiO₂ substrate and then introduced in an alumina boat. This boat was placed in the center of the reactor. Sulfur powder was placed on a second alumina boat and positioned in the inlet of the furnace, 15 cm away from the center. The full system was heated at 900°C for 20 minutes and then cooled down to room temperature.

Optical microscopy and scanning electron microscopy images show the formation of MoS_2 pyramidal microstructures with a size of 3.8 micrometers per side (Figure 1b). Raman spectroscopy revealed the characteristic signals of MoS_2 , peaks centered at 383 cm⁻¹ (E¹_{2g}) and 407 cm⁻¹ (A_{1g}). FIB-SEM analysis reveals the layers of the pyramidal microstructures (Figure 1b), the results show a combination of triangular and hexagonal arrangement, due to a complex growth that includes two dislocations that share a common core[3]. High-resolution TEM (Figure 1a) and SADP (Figure 1c) confirm the hexagonal structure of MoS_2 .

References:

- [1] F Haque et al., Nano-Micro Lett. 10 (2018), p. 1.
- [2] KF Mak et al., Phys. Rev. Lett. 105 (2010), p. 2.
- [3] MJ Shearer et al., J. Am. Chem. Soc. 139 (2017), p. 3496.

Figure 1. a) High-resolution TEM micrograph of the MoS_2 layers organized in pyramidal microstructures (b). c) Selected area electron diffraction of MoS2 layers show hexagonal structure of MoS_2 in [001] direction.