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We present a novel framework for finite element particle-in-cell methods based on the
discretization of the underlying Hamiltonian structure of the Vlasov–Maxwell system.
We derive a semi-discrete Poisson bracket, which retains the defining properties of a
bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir
invariants, implying that the semi-discrete system is still a Hamiltonian system. In
order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used
in conjunction with Hamiltonian splitting methods for integration in time. Techniques
from finite element exterior calculus ensure conservation of the divergence of the
magnetic field and Gauss’ law as well as stability of the field solver. The resulting
methods are gauge invariant, feature exact charge conservation and show excellent
long-time energy and momentum behaviour. Due to the generality of our framework,
these conservation properties are guaranteed independently of a particular choice of
the finite element basis, as long as the corresponding finite element spaces satisfy
certain compatibility conditions.
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1. Introduction

We consider a structure-preserving numerical implementation of the Vlasov–
Maxwell system, which is a system of kinetic equations describing the dynamics
of charged particles in a plasma, coupled to Maxwell’s equations, describing
electrodynamic phenomena arising from the motion of the particles as well as
from externally applied fields. While the design of numerical methods for the
Vlasov–Maxwell (and Vlasov–Poisson) system has attracted considerable attention
since the early 1960s (see Sonnendrücker 2017 and references therein), the systematic
development of structure-preserving or geometric numerical methods started only
recently.
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The Vlasov–Maxwell system exhibits a rather large set of structural properties,
which should be considered in the discretization. Most prominently, the Vlasov–
Maxwell system features a variational (Low 1958; Ye & Morrison 1992; Cendra
et al. 1998) as well as a Hamiltonian (Morrison 1980; Weinstein & Morrison 1981;
Marsden & Weinstein 1982; Morrison 1982) structure. This implies a range of
conserved quantities, which by Noether’s theorem are related to symmetries of the
Lagrangian and the Hamiltonian, respectively. In addition, the degeneracy of the
Poisson brackets in the Hamiltonian formulation implies the conservation of several
families of so-called Casimir functionals (see e.g. Morrison 1998 for a review).

Maxwell’s equations have a rich structure themselves. The various fields and
potentials appearing in these equations are most naturally described as differential
forms (Bossavit 1990; Baez & Muniain 1994; Warnick, Selfridge & Arnold 1998;
Warnick & Russer 2006) (see also Darling 1994; Morita 2001; Dray 2014). The
spaces of these differential forms build what is called a deRham complex. This
implies certain compatibility conditions between the spaces, essentially boiling down
to the identities from vector calculus, curl grad = 0 and div curl = 0. It has been
realized that it is of utmost importance to preserve this complex structure in the
discretization in order to obtain stable numerical methods. This goes hand in hand
with preserving two more structural properties provided by the constraints on the
electromagnetic fields, namely that the divergence of the magnetic field B vanishes,
div B= 0, and Gauss’ law, div E=ρ, stating that the divergence of the electromagnetic
field E equals the charge density ρ.

The compatibility problems of discrete Vlasov–Maxwell solvers has been widely
discussed in the particle-in-cell (PIC) literature (Eastwood 1991; Villasenor &
Buneman 1992; Esirkepov 2001; Umeda et al. 2003; Barthelmé & Parzani 2005;
Yu et al. 2013) for exact charge conservation. An alternative is to modify Maxwell’s
equations by adding Lagrange multipliers to relax the constraint (Boris 1970; Marder
1987; Langdon 1992; Munz et al. 1999, 2000). For a more geometric perspective
on charge conservation based on Whitney forms one can refer to Moon, Teixeira &
Omelchenko (2015). Even though it has attracted less interest the problem also exists
for grid-based discretizations of the Vlasov equations and the same recipes apply
there as discussed in Sircombe & Arber (2009), Crouseilles, Navaro & Sonnendrücker
(2014). Note also that the infinite-dimensional kernel of the curl operator has made it
particularly hard to find good discretizations for Maxwell’s equations, especially for
the eigenvalue problem (Caorsi, Fernandes & Raffetto 2000; Hesthaven & Warburton
2004; Boffi 2006, 2010; Buffa and Perugia 2006).

Geometric Eulerian (grid-based) discretizations for the Vlasov–Poisson system have
been proposed based on spline differential forms (Back & Sonnendrücker 2014)
as well as variational integrators (Kraus, Maj & Sonnendruecker in preparation;
Kraus 2013). While the former guarantees exact local conservation of important
quantities like mass, momentum, energy and the L2 norm of the distribution function
after a semi-discretization in space, the latter retains these properties even after the
discretization in time. Recently, also various discretizations based on discontinuous
Galerkin methods have been proposed for both, the Vlasov–Poisson (de Dios, Carrillo
& Shu 2011, 2012; de Dios & Hajian 2012; Heath et al. 2012; Cheng, Gamba &
Morrison 2013; Madaule, Restelli & Sonnendrücker 2014) and the Vlasov–Maxwell
system (Cheng, Christlieb & Zhong 2014a,b; Cheng et al. 2014c). Even though these
are usually not based on geometric principles, they tend to show good long-time
conservation properties with respect to momentum and/or energy.

First attempts to obtain geometric semi-discretizations for particle-in-cell methods
for the Vlasov–Maxwell system have been made by Lewis (1970, 1972). In his
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works, Lewis presents a fairly general framework for discretizing Low’s Lagrangian
(Low 1958) in space. After fixing the Coulomb gauge and applying a simple
finite difference approximation to the fields, he obtains semi-discrete, energy and
charge-conserving Euler–Lagrange equations. For integration in time the leapfrog
method is used. In a similar way, Evstatiev, Shadwick and Stamm performed a
variational semi-discretization of Low’s Lagrangian in space, using standard finite
difference and finite element discretizations of the fields and an explicit symplectic
integrator in time (Evstatiev & Shadwick 2013; Shadwick, Stamm & Evstatiev 2014;
Stamm & Shadwick 2014). On the semi-discrete level, energy is conserved exactly
but momentum and charge are only conserved in an average sense.

The first semi-discretization of the noncanonical Poisson bracket formulation
of the Vlasov–Maxwell system (Morrison 1980; Weinstein & Morrison 1981;
Marsden & Weinstein 1982; Morrison 1982) can be found in the work of Holloway
(1996). Spatial discretizations based on Fourier–Galerkin, Fourier collocation and
Legendre–Gauss–Lobatto collocation methods are considered. The semi-discrete
system is automatically guaranteed to be gauge invariant as it is formulated in terms
of the electromagnetic fields instead of the potentials. The different discretization
approaches are shown to have varying properties regarding the conservation of
momentum maps and Casimir invariants but none preserves the Jacobi identity. It
was already noted by Morrison (1981a) and Scovel & Weinstein (1994) however that
grid-based discretizations of noncanonical Poisson brackets do not appear to inherit
a Poisson structure from the continuous problem and Scovel & Weinstein suggested
that one should turn to particle-based discretizations instead. In fact, for the vorticity
equation it was shown by Morrison (1981b) that using discrete vortices leads to a
semi-discretization that retains the Hamiltonian structure. Such an integrator for the
Vlasov–Ampère Poisson bracket was first presented by Evstatiev & Shadwick (2013),
based on a mixed semi-discretization in space, using particles for the distribution
function and a grid-based discretization for the electromagnetic fields. However, this
work lacks a proof of the Jacobi identity for the semi-discrete bracket, which is
crucial for a Hamiltonian integrator.

The first fully discrete geometric particle-in-cell method for the Vlasov–Maxwell
system has been proposed by Squire, Qin & Tang (2012), applying a fully discrete
action principle to Low’s Lagrangian and discretizing the electromagnetic fields via
discrete exterior calculus (DEC) Hirani (2003), Desbrun, Kanso & Tong (2008),
Stern et al. (2014). This leads to gauge-invariant variational integrators that satisfy
exact charge conservation in addition to approximate energy conservation. Xiao et al.
(2015) suggest a Hamiltonian discretization using Whitney form interpolants for the
fields. Their integrator is obtained from a variational principle, so that the Jacobi
identity is satisfied automatically. Moreover, the Whitney form interpolants preserve
the deRham complex structure of the involved spaces, so that the algorithm is also
charge conserving. Qin et al. (2016) use the same interpolants to directly discretize
the canonical Vlasov–Maxwell bracket (Marsden & Weinstein 1982) and integrate
the resulting finite dimensional system with the symplectic Euler method. He et al.
(2016) introduce a discretization of the noncanonical Vlasov–Maxwell bracket, based
on first-order finite elements, which is a special case of our framework. The system
of ordinary differential equations obtained from the semi-discrete bracket is integrated
in time using the splitting method developed by Crouseilles, Einkemmer & Faou
(2015) with a correction provided by He et al. (2015) (see also Qin et al. 2015).
The authors prove the Jacobi identity of the semi-discrete bracket but skip over the
Casimir invariants, which also need to be conserved for the semi-discrete system to
be Hamiltonian.
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In this work, we unify many of the preceding ideas in a general, flexible and
rigorous framework based on finite element exterior calculus (FEEC) (Monk 2003;
Arnold, Falk & Winther 2006, 2010; Christiansen, Munthe-Kaas & Owren 2011). We
provide a semi-discretization of the noncanonical Vlasov–Maxwell Poisson structure,
which preserves the defining properties of the bracket, anti-symmetry and the Jacobi
identity, as well as its Casimir invariants, implying that the semi-discrete system is still
a Hamiltonian system. Due to the generality of our framework, the aforementioned
conservation properties are guaranteed independently of a particular choice of the
finite element basis, as long as the corresponding finite element spaces satisfy certain
compatibility conditions. In particular, this includes the spline spaces presented in
§ 3.4. In order to ensure that these properties are also conserved by the fully discrete
numerical scheme, the semi-discrete bracket is used in conjunction with Poisson
time integrators provided by the previously mentioned splitting method (Crouseilles
et al. 2015; He et al. 2015; Qin et al. 2015) and higher-order compositions thereof.
A semi-discretization of the noncanonical Hamiltonian structure of the relativistic
Vlasov–Maxwell system with spin and that for the gyrokinetic Vlasov–Maxwell
system have recently been described by Burby (2017).

It is worth emphasizing that the aim and use of preserving the Hamiltonian
structure in the course of discretization is not limited to good energy and momentum
conservation properties. These are merely by-products but not the goal of the effort.
Furthermore, from a practical point of view, the significance of global energy or
momentum conservation by some numerical scheme for some Hamiltonian partial
differential equation should not be overestimated. Of course, these are important
properties of any Hamiltonian system and should be preserved within suitable error
bounds in any numerical simulation. However, when performing a semi-discretization
in space, the resulting finite-dimensional system of ordinary differential equations
usually has millions or billions degrees of freedom. Conserving only a very small
number of invariants hardly restricts the numerical solution of such a large system.
It is not difficult to perceive that one can conserve the total energy of a system in
a simulation and still obtain false or even unphysical results. It is much more useful
to preserve local conservation laws like the local energy and momentum balance
or multi-symplecticity (Reich 2000; Moore & Reich 2003), thus posing much more
severe restrictions on the numerical solution than just conserving the total energy of
the system. A symplectic or Poisson integrator, on the other hand, preserves the whole
hierarchy of Poincaré integral invariants of the finite-dimensional system (Channell
& Scovel 1990; Sanz-Serna & Calvo 1993). For a Hamiltonian system of ordinary
differential equations with n degrees of freedom, e.g. obtained from a semi-discrete
Poisson bracket, these are n invariants. In addition, such integrators often preserve
Noether symmetries and the associated local conservation laws as well as Casimir
invariants.

We proceed as follows. In § 2, we provide a short review of the Vlasov–Maxwell
system and its Poisson bracket formulation, including a discussion of the Jacobi
identity, Casimir invariants and invariants commuting with the specific Vlasov–
Maxwell Hamiltonian. In § 3, we introduce the finite element exterior calculus
framework using the example of Maxwell’s equation, we introduce the deRham
complex and finite element spaces of differential forms. The actual discretization of
the Poisson bracket is performed in § 4. We prove the discrete Jacobi identity and
the conservation of discrete Casimir invariants, including the discrete Gauss’ law. In
§ 5, we introduce a splitting for the Vlasov–Maxwell Hamiltonian, which leads to
an explicit time stepping scheme. Various compositions are used in order to obtain
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higher-order methods. Backward error analysis is used in order to study the long-time
energy behaviour. In § 6, we apply the method to the Vlasov–Maxwell system in
1d2v (one spatial and two velocity dimensions) using splines for the discretization of
the fields. Section 7 concludes the paper with numerical experiments, using nonlinear
Landau damping and the Weibel instability to verify the favourable properties of our
scheme.

2. The Vlasov–Maxwell system
The non-relativistic Vlasov equation for a particle species s of charge qs and mass

ms reads
∂fs

∂t
+ v · ∇xfs + qs

ms
(E+ v×B) · ∇vfs = 0, (2.1)

and couples nonlinearly to the Maxwell equations,

∂E
∂t
− curl B = −J, (2.2)

∂B
∂t
+ curl E = 0, (2.3)

div E = ρ, (2.4)
div B = 0. (2.5)

These equations are to be solved with suitable initial and boundary conditions. Here,
(x, v) denotes the phasespace coordinates, fs is the phase space distribution function
of particle species s, E is the electric field and B is the magnetic flux density (or
induction), which we will refer to as the magnetic field as is prevalent in the plasma
physics literature, and we have scaled the variables, but retained the mass ms and the
signed charge qs to distinguish species. Observe that we use grad, curl, div to denote
∇x, ∇x×, ∇x·, respectively, when they act on variables depending only on x. The
sources for the Maxwell equations, the charge density ρ and the current density J,
are obtained from the distribution functions fs by

ρ =
∑

s

qs

∫
fs dv, J=

∑
s

qs

∫
fsv dv. (2.6a,b)

Taking the divergence of Ampère’s equation (2.2) and using Gauss’ law (2.4) gives
the continuity equation for charge conservation

∂ρ

∂t
+ div J= 0. (2.7)

Equation (2.7) serves as a compatibility condition for Maxwell’s equations, which are
ill posed when (2.7) is not satisfied. Moreover it can be shown that if the divergence
constraints (2.4) and (2.5) are satisfied at the initial time, they remain satisfied
for all times by the solution of Ampère’s equation (2.2) and Faraday’s law (2.3),
which have a unique solution by themselves provided adequate initial and boundary
conditions are imposed. This follows directly from the fact that the divergence of the
curl vanishes and (2.7). The continuity equation follows from the Vlasov equation
by integration over velocity space and using the definitions of charge and current
densities. However this does not necessarily remain true when the charge and current
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densities are approximated numerically. The problem for numerical methods is then
to find a way to have discrete sources, which satisfy a discrete continuity equation
compatible with the discrete divergence and curl operators. Another option is to
modify the Maxwell equations, so that they are well posed independently of the
sources, by introducing two additional scalar unknowns that can be seen as Lagrange
multipliers for the divergence constraints. These should become arbitrarily small when
the continuity equation is close to being satisfied.

2.1. Non-canonical Hamiltonian structure
The Vlasov–Maxwell system possesses a noncanonical Hamiltonian structure. The
system of equations (2.1)–(2.3) can be obtained from the following Poisson bracket,
a bilinear, anti-symmetric bracket that satisfies Leibniz’ rule and the Jacobi identity:

{F , G}[ fs,E,B] =
∑

s

∫
fs

ms

[
δF
δfs
,
δG
δfs

]
dx dv

+
∑

s

qs

ms

∫
fs

(
∇v

δF
δfs
·
δG
δE
−∇v

δG
δfs
·
δF
δE

)
dx dv

+
∑

s

qs

m2
s

∫
fs B ·

(
∇v

δF
δfs
×∇v

δG
δfs

)
dx dv

+
∫ (

curl
δF
δE
·
δG
δB
− curl

δG
δE
·
δF
δB

)
dx, (2.8)

where [ f , g] = ∇xf · ∇vg − ∇xg · ∇vf . This bracket was introduced in Morrison
(1980), with a term corrected in Marsden & Weinstein (1982) (see also Weinstein &
Morrison 1981; Morrison 1982), and its limitation to divergence-free magnetic fields
first pointed out in Morrison (1982). See also Chandre et al. (2013) and Morrison
(2013), where the latter contains the details of the direct proof of the Jacobi identity

{F , {G,H}} + {G, {H,F}} + {H, {F , G}} = 0. (2.9)

The time evolution of any functional F [ fs,E,B] is given by

d
dt
F [ fs,E,B] = {F ,H}, (2.10)

with the Hamiltonian H given as the sum of the kinetic energy of the particles and
the electric and magnetic field energies,

H=
∑

s

ms

2

∫
|v|2 fs(t, x, v) dx dv + 1

2

∫
(|E(t, x)|2 + |B(t, x)|2) dx. (2.11)

In order to obtain the Vlasov equations, we consider the functional

δxv[ fs] =
∫

fs(t, x′, v′) δ(x− x′) δ(v − v′) dx′ dv′ = fs(t, x, v), (2.12)

for which the equations of motion (2.10) are computed as

∂fs

∂t
(t, x, v) =

∫
δ(x− x′) δ(v − v′)

[
1
2

∣∣v′∣∣2, fs(t, x′, v′)
]

dx′ dv′
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− qs

ms

∫
δ(x− x′) δ(v − v′)

(
∇vfs(t, x′, v′)

)
·E(t, x′) dx′ dv′

− qs

ms

∫
δ(x− x′) δ(v − v′)

(
∇vfs(t, x′, v′)

)
·
(
B(t, x′)× v′

)
dx′ dv′

= −v · ∇xfs(t, x, v)− qs

ms
(E(t, x)+ v×B(t, x)) · ∇vfs(t, x, v). (2.13)

For the electric field, we consider

δx[E] =
∫

E(t, x′) δ(x− x′) dx′ =E(t, x), (2.14)

so that from (2.10) we obtain Ampère’s equation,

∂E
∂t
(t, x) =

∫ (
curl B(t, x′)−

∑
s

qsfs(t, x′, v′) v′
)
δ(x− x′) dx′ dv′

= curl B(t, x)− J(t, x), (2.15)

where the current density J is given by

J(t, x)=
∑

s

qs

∫
fs(t, x, v) v dv. (2.16)

And for the magnetic field, we consider

δx[B] =
∫

B(t, x′) δ(x− x′) dx′ =B(t, x), (2.17)

and obtain the Faraday equation,

∂B
∂t
(t, x)=−

∫
(curl E(t, x′)) δ(x− x′) dx=−curl E(t, x). (2.18)

Our aim is to preserve this noncanonical Hamiltonian structure and its features at the
discrete level. This can be done by taking only a finite number of initial positions for
the particles instead of a continuum and by taking the electromagnetic fields in finite-
dimensional subspaces of the original function spaces. A good candidate for such a
discretization is the finite element particle-in-cell framework. In order to satisfy the
continuity equation as well as the identities from vector calculus and thereby preserve
Gauss’ law and the divergence of the magnetic field, the finite element spaces for
the different fields cannot be chosen independently. The right framework is given by
FEEC.

Before describing this framework in more detail, we shortly want to discuss some
conservation laws of the Vlasov–Maxwell system. In Hamiltonian systems, there are
two kinds of conserved quantities, Casimir invariants and momentum maps.

2.2. Invariants
A family of conserved quantities are Casimir invariants (Casimirs), which originate
from the degeneracy of the Poisson bracket. Casimirs are functionals C(fs,E,B) which
Poisson commute with every other functional G(fs, E, B), i.e. {C, G} = 0. For the
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Vlasov–Maxwell bracket, there are several such Casimirs (Morrison 1987; Morrison
& Pfirsch 1989; Chandre et al. 2013). First, the integral of any real function hs of
each distribution function fs is preserved, i.e.

Cs =
∫

hs(fs) dx dv. (2.19)

This family of Casimirs is a manifestation of Liouville’s theorem and corresponds to
conservation of phase space volume. Further we have two Casimirs related to Gauss’
law (2.4) and the divergence-free property of the magnetic field (2.5),

CE =
∫

hE(x)(div E− ρ) dx, (2.20)

CB =
∫

hB(x) div B dx, (2.21)

where hE and hB are arbitrary real functions of x. The latter functional, CB, is not a
true Casimir but should rather be referred to as pseudo-Casimir. It acts like a Casimir
in that it Poisson commutes with any other functional, but the Jacobi identity is only
satisfied when div B= 0 (see Morrison 1982, 2013).

A second family of conserved quantities are momentum maps Φ, which arise
from symmetries that preserve the particular Hamiltonian H, and therefore also the
equations of motion. This means that the Hamiltonian is constant along the flow of
Φ, i.e.

{H, Φ} = 0. (2.22)

From Noether’s theorem it follows that the generators Φ of the symmetry are
preserved by the time evolution, i.e.

dΦ
dt
= 0. (2.23)

If the symmetry condition (2.22) holds, this is obvious by the anti-symmetry of the
Poisson bracket as

dΦ
dt
= {Φ,H} =−{H, Φ} = 0. (2.24)

Therefore Φ is a constant of motion if and only if {Φ,H} = 0.
The complete set of constants of motion, the algebra of invariants, will be discussed

elsewhere. However, as an example of a momentum map we shall consider here the
total momentum

P =
∑

s

∫
msvfs dx dv +

∫
E×B dx. (2.25)

By direct computations, assuming periodic boundary conditions, it can be shown that

dP
dt
= {P,H} =

∫
E(ρ − div E) dx=

∫
E Q(x) dx (2.26)

defining Q(x) := ρ − div E, which is a local version of the Casimir CE. Therefore,
if at t = 0 the Casimir Q≡ 0, then momentum is conserved. If at t = 0 the Casimir
Q 6≡ 0, then momentum is not conserved and it changes in accordance with (2.26). For
a multi-species plasma Q≡ 0 is equivalent to the physical requirement that Poisson’s
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equation be satisfied. If for some reason it is not exactly satisfied, then we have
violation of momentum conservation.

For a single species plasma, say electrons, with a neutralizing positive background
charge ρB(x), say ions, Poisson’s equation is

div E= ρB − ρe. (2.27)

The Poisson bracket for this case has the local Casimir

Qe = div E+ ρe, (2.28)

and it does not recognize the background charge. Because the background is stationary,
the total momentum is

P =
∫

mev fe dx dv +
∫

E×B dx, (2.29)

and it satisfies
dPe

dt
= {Pe,H} =−

∫
E ρB(x) dx. (2.30)

We will verify this relation in the numerical experiments of § 7.5.

3. Finite element exterior calculus
FEEC is a mathematical framework for mixed finite element methods, which

uses geometrical and topological ideas for systematically analysing the stability and
convergence of finite element discretizations of partial differential equations. This
proved to be a particularly difficult problem for Maxwell’s equation, which we will
use in the following as an example for reviewing this framework.

3.1. Maxwell’s equations
When Maxwell’s equations are used in some material medium, they are best
understood by introducing two additional fields. The electromagnetic properties
are then defined by the electric and magnetic fields, usually denoted by E and B, the
displacement field D and the magnetic intensity H. For simple materials, the electric
field is related to the displacement field and the magnetic field to the magnetic
intensity by

D= εE, B=µH, (3.1a,b)

where ε and µ are the permittivity and permeability tensors reflecting the material
properties. In vacuum they become the scalars ε0 and µ0, which are unity in our
scaled variables, while for more complicated media such as plasmas they can be
nonlinear operators (Morrison 2013). The Maxwell equations with the four fields
read

∂D
∂t
− curl H =−J, (3.2)

∂B
∂t
+ curl E= 0, (3.3)

div D= ρ, (3.4)
div B= 0. (3.5)
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The mathematical interpretation of these fields become clearer when interpreting
them as differential forms: E and H are 1-forms, D and B are 2-forms. The charge
density ρ is a 3-form and the current density J a 2-form. Moreover, the electrostatic
potential φ is a 0-form and the vector potential A a 1-form. The grad, curl, div
operators represent the exterior derivative applied respectively to 0-forms, 1-forms
and 2-forms. To be more precise, there are two kinds of differential forms, depending
on the orientation. Straight differential forms have an intrinsic (or inner) orientation,
whereas twisted differential forms have an outer orientation, defined by the ambient
space. Faraday’s equation and div B=0 are naturally inner oriented, whereas Ampère’s
equation and Gauss’ law are outer oriented. This knowledge can be used to define
a natural discretization for Maxwell’s equations. For finite difference approximations
a dual mesh is needed for the discretization of twisted forms. This can already be
found in Yee’s scheme (Yee 1966). In the finite element context, only one mesh is
used, but dual operators are used for the twisted forms. As an implication, the charge
density ρ will be treated as a 0-form and the current density J as a 1-form, instead
of a (twisted) 3-form and a (twisted) 2-form, respectively. Another consequence is
that Ampère’s equation and Gauss’ law are being treated weakly while Faraday’s
equation and div B= 0 are treated strongly. A detailed description of this formalism
can be found, e.g. in Bossavit’s lecture notes (Bossavit 2006).

3.2. Finite element spaces of differential forms
The full mathematical theory for the finite element discretization of differential forms
is due to Arnold et al. (2006, 2010) and is called finite element exterior calculus (see
also Monk 2003, Christiansen et al. 2011). Most finite element spaces appearing in
this theory were known before, but their connection in the context of differential forms
was not made clear. The first building block of FEEC is the following commuting
diagram:

HΛ0(Ω) HΛ1(Ω) HΛ2(Ω) HΛ3(Ω)

V0 V1 V2 V3

Π0

d

Π1

d

Π2 Π3

d

d

d

d

(3.6)

where Ω ⊂ R3, Λk(Ω) is the space of k-forms on Ω that we endow with the inner
product 〈α, β〉 = ∫ α ∧ ?β, ? is the Hodge operator and d is the exterior derivative
that generalizes the gradient, curl and divergence. Then we define

L2Λk(Ω)= {ω ∈Λk(Ω)|〈ω, ω〉<+∞} (3.7)

and the Sobolev spaces of differential forms

HΛk(Ω)= {ω ∈ L2Λk(Ω)|dω ∈ L2Λk+1(Ω)}. (3.8)

Obviously in a three-dimensional manifold the exterior derivative of a 3-form vanishes
so that HΛ3(Ω) = L2(Ω). This diagram can also be expressed using the standard
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vector calculus formalism:

H1(Ω) H(curl, Ω) H(div, Ω) L2(Ω)

V0 V1 V2 V3

Π0

grad

Π1

grad
Π2 Π3

curl

curl

div

div

(3.9)

The first row of (3.9) represents the sequence of function spaces involved in Maxwell’s
equations. Such a sequence is called a complex if at each node, the image of the
previous operator is in the kernel of the next operator, i.e. Im(grad)⊆ Ker(curl) and
Im(curl)⊆Ker(div). The power of the conforming finite element framework is that this
complex can be reproduced at the discrete level by choosing the appropriate finite-
dimensional subspaces V0, V1, V2, V3. The order of the approximation is dictated
by the choice made for V0 and the requirement of having a complex at the discrete
level. The projection operators Πi are the finite element interpolants, which have the
property that the diagram is commuting. This means for example, that the grad of
the projection on V0 is identical to the projection of the grad on V1. As proven by
Arnold, Falk and Winther, their choice of finite elements naturally leads to stable
discretizations.

There are many known sequences of finite element spaces that fit this diagram.
The sequences proposed by Arnold, Falk and Winther are based on well-known finite
element spaces. On tetrahedra these are H1 conforming Pk Lagrange finite elements
for V0, the H(curl) conforming Nédélec elements for V1, the H(div) conforming
Raviart–Thomas elements for V2 and discontinuous Galerkin elements for V3. A
similar sequence can be defined on hexahedra based on the H1 conforming Qk
Lagrange finite elements for V0.

Other sequences that satisfy the complex property are available. Let us in particular
cite the mimetic spectral elements (Kreeft, Palha & Gerritsma 2011; Gerritsma 2012;
Palha et al. 2014) and the spline finite elements (Buffa, Sangalli & Vázquez 2010;
Buffa et al. 2011; Ratnani and Sonnendrücker 2012) that we shall use in this work,
as splines are generally favoured in PIC codes due to their smoothness properties that
enable noise reduction.

3.3. Finite element discretization of Maxwell’s equations
This framework is enough to express discrete relations between all the straight (or
primal forms), i.e. E, B, A and φ. The commuting diagram yields a direct expression
of the discrete Faraday equation. Indeed projecting all the components of the equation
onto V2 yields

∂Π2B
∂t
+Π2curl E= 0, (3.10)

which is equivalent, due to the commuting diagram property, to

∂Π2B
∂t
+ curlΠ1E= 0. (3.11)

Denoting with an h index the discrete fields, Bh = Π2B, Eh = Π1E, this yields the
discrete Faraday equation,

∂Bh

∂t
+ curl Eh = 0. (3.12)
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12 M. Kraus, K. Kormann, P. J. Morrison and E. Sonnendrücker

In the same way, the discrete electric and magnetic fields are defined exactly as in the
continuous case from the discrete potentials, thanks to the compatible finite element
spaces,

Eh =Π1E=−Π1gradφ −Π1
∂A
∂t
=−gradΠ0φ − ∂Π1A

∂t
=−gradφh − ∂Ah

∂t
, (3.13)

Bh =Π2B=Π2curl A= curlΠ1A= curl Ah, (3.14)

so that automatically we get
div Bh = 0. (3.15)

On the other hand, Ampère’s equation and Gauss’ law relate expressions involving
twisted differential forms. In the finite element framework, these should be expressed
on the dual complex to (3.9). But due to the property that the dual of an operator
in L2(Ω) can be identified with its L2 adjoint via an inner product, the discrete
dual spaces are such that V∗0 = V3, V∗1 = V2, V∗2 = V1 and V∗3 = V0, so that the
dual operators and spaces are not explicitly needed. They are most naturally used
seamlessly by keeping the weak formulation of the corresponding equations. The weak
form of Ampère’s equation is found by taking the dot product of (2.2) with a test
function Ē ∈ H(curl, Ω) and applying a Green identity. Assuming periodic boundary
conditions, the weak solution of Ampère’s equation (E, B) ∈H(curl, Ω)×H(div, Ω)
is characterized by

d
dt

∫
Ω

E · Ē dx−
∫
Ω

B · curl Ē dx=−
∫
Ω

J · Ē dx ∀Ē ∈H(curl, Ω). (3.16)

The discrete version is obtained by replacing the continuous spaces by their finite-
dimensional subspaces. The approximate solution (Eh, Bh) ∈ V1 × V2 is characterized
by

d
dt

∫
Ω

Eh · Ēh dx−
∫
Ω

Bh · curl Ēh dx=−
∫
Ω

Jh · Ēh dx ∀Ēh ∈ V1. (3.17)

In the same way the weak solution of Gauss’ law with E∈H(curl,Ω) is characterized
by ∫

Ω

E · grad φ̄ dx=−
∫
Ω

ρφ̄ dx ∀φ̄ ∈H1(Ω), (3.18)

its discrete version for Eh ∈ V1 being characterized by∫
Ω

Eh · grad φ̄h dx=−
∫
Ω

ρhφ̄h dx ∀φ̄h ∈ V0. (3.19)

The last step for the finite element discretization is to define a basis for each of the
finite-dimensional spaces V0,V1,V2,V3, with dim Vk=Nk and to find equations relating
the coefficients on these bases. Let us denote by {Λ0

i }i=1...N0 and {Λ3
i }i=1...N3 a basis of

V0 and V3, respectively, which are spaces of scalar functions, and {Λ1
i,µ}i=1...N1,µ=1...3 a

basis of V1 ⊂H(curl, Ω) and {Λ2
i,µ}i=1...N2,µ=1...3 a basis of V2 ⊂H(div, Ω), which are

vector valued functions,

Λk
i,1 =

Λk,1
i
0
0

 , Λk
i,2 =

 0
Λ

k,2
i
0

 , Λk
i,1 =

 0
0
Λ

k,3
i

 , k= 1, 2. (3.20a−c)
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Let us note that the restriction to a basis of this form is not strictly necessary and
the generalization to more general bases is straightforward. However, for didactical
reasons we stick to this form of the basis as it simplifies some of the computations
and thus helps to clarify the following derivations. In order to keep a concise
notation, and by slight abuse of the same, we introduce vectors of basis functions
Λk = (Λk

1,1, Λ
k
1,2, . . . , Λ

k
Nk,3)

T for k = 1, 2, which are indexed by I = 3(i − 1) + µ =
1 . . . 3Nk with i= 1 . . .Nk and µ= 1 . . . 3, and Λk = (Λk

1, Λ
k
2, . . . , Λ

k
Nk
)T for k= 0, 3,

which are indexed by i= 1 . . .Nk.
We shall also need for each basis the dual basis, which in finite element terminology

corresponds to the degrees of freedom. For each basis Λk
i for k = 0, 3 and Λk

I for
k= 1, 2, the dual basis is denoted by Σ k

i and Σ k
I , respectively, and defined by

〈
Σ k

i , Λ
k
j

〉= ∫ Σ k
i (x)Λ

k
j (x) dx= δij, k= 0, 3, (3.21)

for the scalar valued bases Λk
i , and

〈
Σ k

I ,Λ
k
J

〉= ∫ Σ k
I (x) ·Λ

k
J(x) dx= δIJ, k= 1, 2, (3.22)

for the vector valued bases Λk
I , where 〈·, ·〉 denotes the L2 inner product in the

appropriate space and δIJ is the Kronecker symbol, whose value is unity for I = J
and zero otherwise. We introduce the linear functionals L2Λk(Ω)→ R, which are
denoted by σ k

i for k= 0, 3 and by σ k
I for k= 1, 2, respectively. On the finite element

space they are represented by the dual basis functions Σ k
i and Σ k

I and defined by

σ k
i (ω)=

〈
Σ k

i , ω
〉 ∀ω ∈ L2Λk(Ω), k= 0, 3, (3.23)

and
σ k

I (ω)=
〈
Σ k

I ,ω
〉 ∀ω ∈ L2Λk(Ω), k= 1, 2, (3.24)

so that σ k
i (Λ

k
j ) = δij and σ k

I (Λ
k
J) = δIJ for the appropriate k. Elements of the finite-

dimensional spaces can be expanded on their respective bases, e.g. elements of V1
and V2, respectively, as

Eh(t, x)=
N1∑
i=1

3∑
µ=1

ei,µ(t)Λ1
i,µ(x), Bh(t, x)=

N2∑
i=1

3∑
µ=1

bi,µ(t)Λ2
i,µ(x), (3.25a,b)

denoting by e= (e1,1, e1,2, . . . , eN1,3)
T ∈R3N1 and b= (b1,1, b1,2, . . . , bN2,3)

T ∈R3N2 the
corresponding degrees of freedom with ei,µ= σ 1

i,µ(Eh) and bi,µ= σ 2
i,µ(Bh), respectively.

Denoting the elements of e by eI and the elements of b by bI , we have that eI =
σ 1

I (Eh) and bI = σ 2
I (Bh), respectively, and can re-express (3.25) as

Eh(t, x)=
3N1∑
I=1

eI(t)Λ1
I (x), Bh(t, x)=

3N2∑
I=1

bI(t)Λ2
I (x). (3.26a,b)

Henceforth we will use both notations in parallel, choosing whichever is more
practical at any given time.
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14 M. Kraus, K. Kormann, P. J. Morrison and E. Sonnendrücker

Due to the complex property we have that curl Eh ∈V2 for all Eh ∈V1, so that curl Eh
can be expressed in the basis of V2 by

curl Eh =
N2∑
i=1

3∑
µ=1

ci,µΛ
2
i,µ. (3.27)

Let us also denote by c= (c1,1, c1,2, . . . , cN2,3)
T, so that curl Eh can also be written

as

curl Eh =
3N2∑
I=1

cIΛ
2
I . (3.28)

On the other hand

curl Eh = curl

(
3N1∑
I=1

eI Λ
1
I

)
=

3N1∑
I=1

eI curlΛ1
I ,

σ 2
I (curl Eh)=

3N1∑
J=1

eJ σ
2
I (curlΛ1

J).

 (3.29)

Denoting by C the discrete curl matrix,

C= (σ 2
I (curlΛ1

J))16I63N2, 16J63N1, (3.30)

the degrees of freedom of curl Eh in V2 are related to the degrees of freedom of Eh
in V1 by c=Ce. In the same way we can define the discrete gradient matrix G and
the discrete divergence matrix D, given by

G= (σ 1
I (gradΛ0

J))16I63N1, 16J6N0 and D= (σ 3
I (divΛ2

j ))16I6N3, 16J63N2, (3.31a,b)

respectively. Denoting by ϕ = (ϕ1, . . . , ϕN0)
T and a = (a1,1, a1,2, . . . , aN1,3)

T the
degrees of freedom of the potentials φh and Ah, with ϕi = σ 0

i (φh) for 1 6 i 6 N0 and
aI = σ 1

I (Ah) for 16 I 6 3N1, the relation (3.13) between the discrete fields (3.25) and
the potentials can be written using only the degrees of freedom as

e=−Gϕ − da
dt
, b=Ca. (3.32a,b)

Finally, we need to define the so-called mass matrices in each of the discrete spaces
Vi, which define the discrete Hodge operator linking the primal complex with the dual
complex. We denote by (M0)ij =

∫
Ω
Λ0

i (x)Λ0
j (x) dx with 1 6 i, j 6 N0 and (M1)IJ =∫

Ω
Λ1

I (x) ·Λ1
J(x) dx with 1 6 I, J 6 3N1 the mass matrices in V0 and V1, respectively,

and similarly M2 and M3 the mass matrices in V2 and V3. Using these definitions as
well as %= (%1, . . . , %N0)

T and j= ( j1,1, j1,2, . . . , jN1,3)
T with %i= σ 0

i (ρh) for 16 i6N0
and jI = σ 1

I (Jh) for 16 I 6 3N1 (recall that the charge density ρ is treated as a 0-form
and the current density J as a 1-form), we obtain a system of ordinary differential
equations for each of the continuous equations, namely

M1
de
dt
−CTM2b=−j, (3.33)

db
dt
+Ce= 0, (3.34)
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GTM1e= %, (3.35)
Db= 0. (3.36)

It is worth emphasizing that div B= 0 is satisfied in strong form, which is important
for the Jacobi identity of the discretized Poisson bracket (cf. § 4.4). The complex
properties can also be expressed at the matrix level. The primal sequence being

RN0 RN1 RN2 RN3,
G C D (3.37)

with ImG⊆KerC, ImC⊆KerD, and the dual sequence being

RN3 RN2 RN1 RN0,
DT CT GT

(3.38)

with ImDT ⊆KerCT, ImCT ⊆KerGT.

3.4. Example: B-spline finite elements
In the following, we will use so-called basic splines, or B-splines, as bases for the
finite element function spaces. B-splines are piecewise polynomials. The points where
two polynomials connect are called knots. The jth basic spline (B-spline) of degree p
can be defined recursively by

Np
j (x)=wp

j (x)Np−1
j (x)+ (1−wp

j+1(x))Np−1
j+1 (x), (3.39)

where
wp

j (x)=
x− xj

xj+p − xj
, (3.40)

and

N0
j (x)=

{
1 x ∈ [xj, xj+1),

0 else,
(3.41)

with the knot vector Ξ = {xi}16i6N+k being a non-decreasing sequence of points. The
knot vector can also contain repeated knots. If a knot xi has multiplicity m, then the
B-spline is Cp−m continuous at xi. The derivative of a B-spline of degree p can easily
be computed as the difference of two B-splines of degree p− 1,

d
dx

Np
j (x)= p

(
Np−1

j (x)
xj+p − xj

− Np−1
j+1 (x)

xj+p+1 − xj+1

)
. (3.42)

For convenience, we introduce the following shorthand notation for differentials,

Dp
j (x)= p

Np−1
j (x)

xj+p − xj
. (3.43)

In the case of an equidistant grid with grid step size 1x= xj+1− xj, this simplifies to

Dp
j (x)=

Np−1
j (x)
1x

. (3.44)
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Using Dp
j the recursion formula (3.39) becomes

d
dx

Np
j (x)=Dp

j (x)−Dp
j+1(x). (3.45)

In more than one dimension, we can define tensor-product B-spline basis functions,
e.g. for three dimensions as

Np
ijk =Np

i (x1)⊗Np
j (x2)⊗Np

k (x3). (3.46)

The bases of the differential form spaces will be tensor products of the basis functions
Np

i and the differentials Dp
j . The discrete function spaces are given by

Λ0
h(Ω) = span

{
Np

i (x1)Np
j (x2)Np

k (x3)
∣∣ 1 6 i 6 N1, 1 6 j 6 N2, 1 6 k 6 N3

}
, (3.47a)

Λ1
h(Ω) = span


Dp

i (x1)Np
j (x2)Np

k (x3)

0
0

 ,
 0

Np
i (x1)Dp

j (x2)Np
k (x3)

0

 ,
×
 0

0
Np

i (x1)Np
j (x2)Dp

k(x3)

 ∣∣∣∣ 1 6 i 6 N1, 1 6 j 6 N2, 1 6 k 6 N3

, (3.47b)

Λ2
h(Ω) = span


Np

i (x1)Dp
j (x2)Dp

k(x3)

0
0

 ,
 0

Dp
i (x1)Np

j (x2)Dp
k(x3)

0

 ,
×
 0

0
Dp

i (x1)Dp
j (x2)Np

k (x3)

 ∣∣∣∣ 1 6 i 6 N1, 1 6 j 6 N2, 1 6 k 6 N3

, (3.47c)

Λ3
h(Ω) = span

{
Dp

i (x1)Dp
j (x2)Dp

k(x3)
∣∣ 1 6 i 6 N1, 1 6 j 6 N2, 1 6 k 6 N3

}
. (3.47d)

These choices appear quite natural when one considers the action of the gradient on
0-forms, the curl on 1-forms and the divergence on 2-forms. In the following, we
will exemplify this using the potentials and fields of Maxwell’s equations. The semi-
discrete potentials are written in the respective spline basis (3.47) as

φh(t, x)=
∑
i,j,k

ϕijk(t)Np
i (x1)Np

j (x2)Np
k (x3), (3.48)

and

Ah(t, x)=
∑
i,j,k

a1
ijk(t)Dp

i (x1)Np
j (x2)Np

k (x3)

a2
ijk(t)Np

i (x1)Dp
j (x2)Np

k (x3)

a3
ijk(t)Np

i (x1)Np
j (x2)Dp

k(x3)

 . (3.49)

Computing the gradient of the semi-discrete scalar potential φh, we find

gradφh =
∑
i,j,k

ϕijk(t) grad[Np
i (x1)Np

j (x2)Np
k (x3)],

=
∑
i,j,k

ϕijk(t)

[Dp
i (x1)−Dp

i+1(x1)]Np
j (x2)Np

k (x3)

Np
i (x1) [Dp

j (x2)−Dp
j+1(x2)]Np

k (x3)

Np
i (x1)Np

j (x2) [Dp
k(x3)−Dp

k+1(x3)]

 . (3.50)
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Assuming periodic boundary conditions, the sums can be re-arranged to give

gradφh =
∑
i,j,k

[ϕijk(t)− ϕi−1jk(t)]Dp
i (x1)Np

j (x2)Np
k (x3)

[ϕijk(t)− ϕij−1k(t)]Np
i (x1)Dp

j (x2)Np
k (x3)

[ϕijk(t)− ϕijk−1(t)]Np
i (x1)Np

j (x2)Dp
k(x3)

 . (3.51)

Similarly the curl of the semi-discrete vector potential Ah is computed as

curlAh =
∑
i,j,k

a3
ijk(t)Np

i (x1) [Dp
j (x2)−Dp

j+1(x2)]Dp
k(x3)

a1
ijk(t)Dp

i (x1)Np
j (x2) [Dp

k(x3)−Dp
k+1(x3)]

a2
ijk(t) [Dp

i (x1)−Dp
i+1(x1)]Dp

j (x2)Np
k (x3)


−
∑
i,j,k

a2
ijk(t)Np

i (x1)Dp
j (x2) [Dp

k(x3)−Dp
k+1(x3)]

a3
ijk(t) [Dp

i (x1)−Dp
i+1(x1)]Np

j (x2)Dp
k(x3)

a1
ijk(t)Dp

i (x1) [Dp
j (x2)−Dp

j+1(x2)]Np
k (x3)

 . (3.52)

Again, assuming periodic boundary conditions, the sums can be re-arranged to give

curlAh =
∑
i,j,k

([a
3
ijk(t)− a3

ij−1k(t)] − [a2
ijk(t)− a2

ijk−1(t)])Np
i (x1)Dp

j (x2)Dp
k(x3)

([a1
ijk(t)− a1

ijk−1(t)] − [a3
ijk(t)− a3

i−1jk(t)])Dp
i (x1)Np

j (x2)Dp
k(x3)

([a2
ijk(t)− a2

i−1jk(t)] − [a1
ijk(t)− a1

ij−1k(t)])Dp
i (x1)Dp

j (x2)Np
k (x3)

 . (3.53)

Given the above, we determine the semi-discrete electromagnetic fields Eh and Bh. The
electric field Eh =−gradφh − ∂Ah/∂t is computed as

Eh(t, x)=
∑
i,j,k

[ϕi−1jk(t)− ϕijk(t)− ȧ1
ijk(t)]Dp

i (x1)Np
j (x2)Np

k (x3)

[ϕij−1k(t)− ϕijk(t)− ȧ2
ijk(t)]Np

i (x1)Dp
j (x2)Np

k (x3)

[ϕijk−1(t)− ϕijk(t)− ȧ3
ijk(t)]Np

i (x1)Np
j (x2)Dp

k(x3)

 , (3.54)

and the magnetic field Bh = curlAh as

Bh(t, x)=
∑
i,j,k

[(a
3
ijk(t)− a3

ij−1k(t))− (a2
ijk(t)− a2

ijk−1(t))]Np
i (x1)Dp

j (x2)Dp
k(x3)

[(a1
ijk(t)− a1

ijk−1(t))− (a3
ijk(t)− a3

i−1jk(t))]Dp
i (x1)Np

j (x2)Dp
k(x3)

[(a2
ijk(t)− a2

i−1jk(t))− (a1
ijk(t)− a1

ij−1k(t))]Dp
i (x1)Dp

j (x2)Np
k (x3)

 .
(3.55)

Now it becomes clear why definitions (3.47) are the natural choice for the spline bases
and it is straightforward to verify that div Bh = 0.

4. Discretization of the Hamiltonian structure
The continuous bracket (2.8) is for the Eulerian (as opposed to Lagrangian)

formulation of the Vlasov equation, and operates on functionals of the distribution
function and the electric and magnetic fields. We incorporate a discretization that
uses a finite number of characteristics instead of the continuum particle distribution
function. This is done by localizing the distribution function on particles, which
amounts to a Monte Carlo discretization of the first three integrals in (2.8) if the
initial phase space positions are randomly drawn. Moreover instead of allowing the
fields E and B to vary in H(curl, Ω) and H(div, Ω), respectively, we keep them in
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the discrete subspaces V1 and V2. This procedure yields a discrete Poisson bracket,
from which one obtains the dynamics of a large but finite number of degrees of
freedom: the particle phase space positions za = (xa, va), where a = 1, . . . , Np, with
Np the number of particles, and the coefficients of the fields in the finite element
basis, where we denote by eI the degrees of freedom for Eh and by bI the degrees
of freedom for Bh, as introduced in § 3. The FEEC framework of § 3 automatically
provides the following discretization spaces for the potentials, the fields and the
densities:

φh, ρh ∈ V0, Ah,Eh, Jh ∈ V1, Bh ∈ V2. (4.1a−c)

Recall that the coefficient vectors of the fields are denoted e and b. In order to also
get a vector expression for the particle quantities, we denote by

X= (x1, . . . , xNp)
T, V = (v1, . . . , vNp)

T. (4.2a,b)

We use this setting to transform (2.8) into a discrete Poisson bracket for the dynamics
of the coefficients e, b, X and V.

4.1. Discretization of the functional field derivatives
Upon inserting (3.25), any functional F [Eh] can be considered as a function F(e) of
the finite element coefficients,

F [Eh] = F(e). (4.3)

Therefore, we can write the first variation of F [E],

δF [E] =
〈
δF [E]
δE

, δE
〉
, (4.4)

as 〈
δF [Eh]
δE

, Ēh

〉
L2

=
〈
∂F(e)
∂e

, ē
〉

RN1

, (4.5)

with

Ēh(t, x)=
3N1∑
I=1

ēI(t)Λ1
I (x), ē= (ē1,1, ē1,2, . . . , ēN1,3)

T ∈R3N1 . (4.6)

Let Σ1
I (x) denote the dual basis of Λ1

I (x) with respect to the L2 inner product (3.24)
and let us express the functional derivative on this dual basis, i.e.

δF [Eh]
δE

=
3N1∑
I=1

f I(t)Σ
1
I (x), f = ( f1,1, f1,2, . . . , fN1,3)

T ∈R3N1 . (4.7)

Using (4.5) for ē= (0, . . . , 0, 1, 0, , 0)T with 1 at the Ith position and 0 everywhere
else, so that Ēh =Λ1

I , we find that

f I =
∂F(e)
∂eI

, (4.8)

and can therefore write

δF [Eh]
δE

=
3N1∑
I=1

∂F(e)
∂eI

Σ1
I (x). (4.9)
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On the other hand, expanding the dual basis in the original basis,

Σ1
I (x)=

3N1∑
J=1

aIJΛ
1
J(x), (4.10)

and taking the L2 inner product with Λ1
J(x), we find that the matrix A= (aIJ) verifies

AM1= I3N1 , where I3N1 denotes the 3N1× 3N1 identity matrix, so that A is the inverse
of the mass matrix M1 and

δF [Eh]
δE

=
3N1∑

I,J=1

∂F(e)
∂eI

(M−1
1 )IJ Λ

1
J(x). (4.11)

In full analogy we find

δF [Bh]
δB

=
3N2∑

I,J=1

∂F(b)
∂bI

(M−1
2 )IJ Λ

2
J(x). (4.12)

Next, using (3.30), we find

curl
δF [Eh]
δE

=
3N1∑

I,J=1

3N2∑
K=1

∂F(e)
∂eI

(M−1
1 )IJCJKΛ

2
K(x). (4.13)

Finally, we can re-express the following term in the Poisson bracket∫
curl

δF [Eh]
δE

·
δG[Bh]
δB

dx

=
3N1∑

I,J=1

3N2∑
K,L,M=1

∂F(e)
∂eI

(M−1
1 )IJCJK

∂G(b)
∂bL

(M−1
2 )LM

∫
Λ2

K(x) ·Λ
2
M(x) dx

=
3N1∑

I,J=1

3N2∑
K=1

∂F(e)
∂eI

(M−1
1 )IJCJK

∂G(b)
∂bK

=
3N1∑
I=1

3N2∑
K=1

∂F(e)
∂eI

(M−1
1 C)IK

∂G(b)
∂bK

. (4.14)

The other terms in the bracket involving functional derivatives with respect to the
fields are handled similarly. In the next step we need to discretize the distribution
function and the corresponding functional derivatives.

4.2. Discretization of the functional particle derivatives
We proceed by assuming a particle-like distribution function for Np particles labelled
by a,

fh(x, v, t)=
Np∑

a=1

wa δ(x− xa(t)) δ(v − va(t)), (4.15)

with mass ma, charge qa, weights wa, particle positions xa and particle velocities
va. Here, Np denotes the total number of particles of all species, with each particle
carrying its own mass and signed charge. Functionals of the distribution function,
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F [f ], can be considered as functions of the particle phase space trajectories, F(X,V),
upon inserting (4.15),

F [ fh] = F(X,V). (4.16)

Variation of the left-hand side and integration by parts gives,

δF [ fh] =
∫
δF
δf
δfh dx dv

= −
Np∑

a=1

wa

∫
δF
δf

(
δ(v − va(t))∇xδ(x− xa(t)) · δxa

+ δ(x− xa(t))∇vδ(v − va(t)) · δva

)
dx dv

=
Np∑

a=1

wa

(
∇x
δF
δf

∣∣∣∣
(xa,va)

· δxa +∇v

δF
δf

∣∣∣∣
(xa,va)

· δva

)
. (4.17)

Upon equating this expression with the variation of the right-hand side of (4.16),

δF(X,V)=
Np∑

a=1

(
∂F
∂xa

δxa + ∂F
∂va

δva

)
, (4.18)

we obtain

∂F
∂xa
=wa∇x

δF
δf

∣∣∣∣
(xa,va)

and
∂F
∂va
=wa∇v

δF
δf

∣∣∣∣
(xa,va)

. (4.19a,b)

Considering the kinetic part of the Poisson bracket (2.8), the discretization proceeds
in two steps. First, replace fs with fh to get

Np∑
a=1

∫
wa

ma
δ(x− xa(t)) δ(v − va(t))

[
δF
δf
,
δG
δf

]
dx dv

=
Np∑

a=1

wa

ma

(
∇x
δF
δf
· ∇v

δG
δf
−∇v

δF
δf
· ∇x

δG
δf

)∣∣∣∣
(xa,va)

. (4.20)

Then insert (4.19) in order to obtain the discrete kinetic bracket.

4.3. Discrete Poisson bracket
Replacing all functional derivatives in (2.8) as outlined in the previous two sections,
we obtain the semi-discrete Poisson bracket

{F,G}[X,V, e, b] =
Np∑

a=1

1
mawa

(
∂F
∂xa
·
∂G
∂va
− ∂G
∂xa
·
∂F
∂va

)

+
Np∑

a=1

3N1∑
I,J=1

qa

ma

(
∂G
∂eI

(M−1
1 )IJ Λ

1
J(xa) ·

∂F
∂va
− ∂F
∂eI

(M−1
1 )IJ Λ

1
J(xa) ·

∂G
∂va

)
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+
Np∑

a=1

3N2∑
I=1

qa

m2
awa

bI(t)Λ2
I (xa) ·

(
∂F
∂va
× ∂G
∂va

)

+
3N1∑

I,J=1

3N2∑
K,L=1

(
∂F
∂eI

(M−1
1 )IJ C

T
JK
∂G
∂bL
− ∂G
∂eI

(M−1
1 )IJ C

T
JK
∂F
∂bL

)
, (4.21)

with the curl matrix C as given in (3.30). In order to express the semi-discrete Poisson
bracket (4.21) in matrix form, we denote by �1(X) the 3Np× 3N1 matrix with generic
term Λ1

I (xa), where 16 a 6Np and 16 I 6 3N1, and by B(X, b) the 3Np× 3Np block
diagonal matrix with generic block

B̂h(xa, t)=
N2∑
i=1

 0 bi,3(t)Λ
2,3
i (xa) −bi,2(t)Λ

2,2
i (xa)

−bi,3(t)Λ
2,3
i (xa) 0 bi,1(t)Λ

2,1
i (xa)

bi,2(t)Λ
2,2
i (xa) −bi,1(t)Λ

2,1
i (xa) 0

 . (4.22)

Further, let us introduce a mass matrix Mp and a charge matrix Mq for the particles.
Both are diagonal Np × Np matrices with elements (Mp)aa =mawa and (Mq)aa = qawa,
respectively. Additionally, we will need the 3Np × 3Np matrices

Mp =Mp ⊗ I3, Mq =Mq ⊗ I3, (4.23a,b)

where I3 denotes the 3× 3 identity matrix. This allows us to rewrite

Np∑
a=1

3N2∑
I=1

qa

m2
awa

bI(t)Λ2
I (xa) ·

(
∂F
∂va
× ∂G
∂va

)

=
Np∑

a=1

N2∑
i=1

3∑
µ=1

qa

m2
awa

bi,µ(t)Λ2
i,µ(xa) ·

(
∂F
∂va
× ∂G
∂va

)

=−
Np∑

a=1

∂F
∂va

qa

ma
·

N2∑
i=1

3∑
µ=1

bi,µ(t)Λ2
i,µ(xa)× 1

mawa

∂G
∂va

=−
Np∑

a=1

∂F
∂va

qawa

mawa
· B̂h(xa, t) ·

1
mawa

∂G
∂va

=−
(
∂F
∂V

)T

M−1
p MqB(X, b)M−1

p

(
∂G
∂V

)
. (4.24)

Here, the derivatives are represented by the 3Np vector

∂F
∂V
=
(
∂F
∂v1

, . . . ,
∂F
∂vNp

)T

=
(
∂F
∂v1

1
,
∂F
∂v2

1
,
∂F
∂v3

1
, . . . ,

∂F
∂v1

Np

,
∂F
∂v2

Np

,
∂F
∂v3

Np

)T

, (4.25)

and correspondingly for ∂G/∂V, ∂F/∂e, ∂F/∂b, etc. Thus, the discrete Poisson
bracket (4.21) becomes
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{F,G}[X,V, e, b] = ∂F
∂X

M−1
p
∂G
∂V
− ∂G
∂X

M−1
p
∂F
∂V

+
(
∂F
∂V

)T

M−1
p Mq�

1(X)TM−1
1

(
∂G
∂e

)
−
(
∂F
∂e

)T

M−1
1 �1(X)MqM−1

p

(
∂G
∂V

)
+
(
∂F
∂V

)T

M−1
p MqB(X, b)M−1

p

(
∂G
∂V

)
+
(
∂F
∂e

)T

M−1
1 CT

(
∂G
∂b

)
−
(
∂F
∂b

)T

CM−1
1

(
∂G
∂e

)
. (4.26)

The action of this bracket on two functions F and G can also be expressed as

{F,G} =DFTJ(u)DG, (4.27)

denoting by D the derivative with respect to the dynamical variables

u= (X,V, e, b)T, (4.28)

and by J the Poisson matrix, given by

J(u)=


0 M−1

p 0 0
−M−1

p M−1
p MqB(X, b)M−1

p M−1
p Mq�

1(X)M−1
1 0

0 −M−1
1 �1(X)TMqM−1

p 0 M−1
1 CT

0 0 −CM−1
1 0

 . (4.29)

We immediately see that J(u) is anti-symmetric, but it remains to be shown that it
satisfies the Jacobi identity.

4.4. Jacobi identity
The discrete Poisson bracket (4.26) satisfies the Jacobi identity if and only if the
following condition holds (see e.g. (Morrison 1998, § IV) or (Hairer, Lubich & Wanner
2006, § VII.2, Lemma 2.3)):∑

l

(
∂Jij(u)
∂ul

Jlk(u)+ ∂Jjk(u)
∂ul

Jli(u)+ ∂Jki(u)
∂ul

Jlj(u)
)
= 0 for all i, j, k. (4.30)

Here, all indices i, j, k, l run from 1 to 6Np + 3N1 + 3N2. To simplify the verification
of (4.30), we start by identifying blocks of the Poisson matrix J whose elements
contribute to the above condition. Therefore, we write

J(u)=

J11(u) J12(u) J13(u) J14(u)
J21(u) J22(u) J23(u) J24(u)
J31(u) J32(u) J33(u) J34(u)
J41(u) J42(u) J43(u) J44(u)

=
 0 J12 0 0

J21 J22(X, b) J23(X) 0
0 J32(X) 0 J34
0 0 J43 0

 .
(4.31)

The Poisson matrix J only depends on X and b, so in (4.30) we only need to sum
l over the corresponding indices, 1 6 l 6 3Np and 6Np + 3N1 < l 6 6Np + 3N1 + 3N2,
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respectively. Considering the terms Jli(u), Jlj(u) and Jlk(u), we see that in the
aforementioned index ranges for l, only J12 = M−1

p and J43 = −M−1
2 CM−1

1 are
non-vanishing, so that we have to account only for those two blocks, i.e. for
1 6 l 6 3Np we only need to consider 3Np < i, j, k 6 6Np and for 6Np + 3N1 <
l6 6Np+ 3N1+ 3N2 we only need to consider 6Np < i, j, k 6 6Np+ 3N1. Note that J12
is a diagonal matrix, therefore (J12)ab = (J12)aaδab with 1 6 a, b 6 Np. Further, only
J22, J23 and J32 depend on b and/or X, so only those blocks have to be considered
when computing derivatives with respect to u. In summary, we obtain two conditions.
The contributions involving J22 and J12 are

3Np∑
a=1

(
∂(J22(X, b))bc

∂Xa
(J12)ad + ∂(J22(X, b))cd

∂Xa
(J12)ab

+ ∂(J22(X, b))db

∂Xa
(J12)ac

)
= 0, (4.32)

for 16 b, c, d 6 3Np, which corresponds to (4.30) for 3Np < i, j, k 6 6Np. Inserting the
actual values for J12 and J22 and using that Mp is diagonal, equation (4.32) becomes

∂(M−1
p MqB(X, b)M−1

p )bc

∂Xd
(M−1

p )dd +
∂(M−1

p MqB(X, b)M−1
p )cd

∂Xb
(M−1

p )bb

+ ∂(M
−1
p MqB(X, b)M−1

p )db

∂Xc
(M−1

p )cc = 0. (4.33)

All outer indices of this expression belong to the inverse matrix M−1
p . As this matrix

is constant, symmetric and positive definite, we can contract the above expression with
Mp on all indices, to obtain

∂(MqB(X, b))bc

∂Xd
+ ∂(MqB(X, b))cd

∂Xb
+ ∂(MqB(X, b))db

∂Xc
= 0, 16 b, c, d 6 3Np. (4.34)

If in the first term of (4.34) one picks a particular index k, then this selects the σ
component of the position xa of some particle. At the same time, in the second and
third terms, this selects a block of (4.22), which is evaluated at the same particle
position xa. This means that the only non-vanishing contributions in (4.34) will be
those indexed by b and c with Xb and Xc corresponding to components µ and ν of
the same particle position xa. Therefore, the condition (4.22) reduces further to

qa

(
∂B̂µν(xa)

∂xσa
+ ∂B̂νσ (xa)

∂xµa
+ ∂B̂σµ(xa)

∂xνa

)
= 0, 1 6 a 6 Np, 1 6µ, ν, σ 6 3, (4.35)

where B̂µν denotes the components of the matrix in (4.22). When all three indices
are equal, this corresponds to diagonal terms of the matrix B̂h(xa, t) which vanish.
When two of the three are equal, it cancels because of the skew symmetry of the
same matrix and for all three indices distinct, this condition corresponds to div Bh= 0.
Choosing initial conditions such that div Bh(x, 0) = 0 and using a discrete deRham
complex guarantees div Bh(x, t)= 0 for all times t. Note that this was to be expected,
because it is the discrete version of the div B= 0 condition for the continuous Poisson
bracket (2.8) (Morrison 1982). Further note that in the discrete case, just as in the
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continuous case, the Jacobi identity requires the magnetic field to be divergence free,
but it is not required to be the curl of some vector potential. In the language of
differential forms this is to say that the magnetic field as a 2-form needs to be closed
but does not need to be exact.

From the contributions involving J22, J23, J32 and J43 we have

3Np∑
a=1

(
∂(J23(X, b))cI

∂Xa
(J12)ab + ∂(J32(X, b))Ib

∂Xa
(J12)ac

)

+
N2∑

J=1

∂(J22(X, b))bc

∂bJ
(J43)JI = 0, (4.36)

for 16 b, c6 3Np and 16 I 6 3N1, which corresponds to (4.30) for 3Np < i, j6 6Np <
k 6 6Np + 3N1. Writing out (4.36) and using that Mp is diagonal gives

∂(M−1
1 �1(X)TMqM−1

p )Ib

∂Xc
(M−1

p )cc −
∂(M−1

p Mq�
1(X)M−1

1 )cI

∂Xb
(M−1

p )bb

=
N2∑

J=1

∂(M−1
p MqB(X, b)M−1

p )bc

∂bJ
(CM−1

1 )JI. (4.37)

Again, we can contract this with the matrix Mp on the indices b and c, in order to
remove M−1

p , and with M1 on the index I, in order to remove M−1
1 . Similarly, Mq can

be removed by contracting with M−1
q , noting that this matrix is constant and therefore

commutes with the curl. This results in the simplified condition

∂�1
bI(X)
∂Xc

− ∂�
1
cI(X)
∂Xb

=
N2∑

J=1

∂Bbc(X, b)
∂bJ

CJI. (4.38)

The bJ derivative of B results in the 3Np × 3Np block diagonal matrix �2
J(X) with

generic block

Λ̂2
J(xa)=

 0 Λ
2,3
J (xa) −Λ2,2

J (xa)

−Λ2,3
J (xa) 0 Λ

2,1
J (xa)

Λ
2,2
J (xa) −Λ2,1

J (xa) 0

 , (4.39)

so that (4.38) becomes

∂(�1(X)TMq)Ib

∂Xc
− ∂(Mq�

1(X))cI

∂Xb
=

N2∑
J=1

CT
IJ (Mq�

2
J(X))bc. (4.40)

This condition can be compactly written as

curl�1(X)=�2(X)C. (4.41)

That the charge matrices Mq can be eliminated can be seen as follows. Similarly as
before, picking a particular index c in the first term selects the ν component of the
position xa of some particle. At the same time, in the second term, this selects the ν
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component of �1, evaluated at the same particle position xa. The only non-vanishing
derivative of this term is therefore with respect to components of the same particle
position, so that Xb denotes the µ component of xa. Hence, condition (4.40) simplifies
to

qa

(
∂Λ

1,µ
I (xa)

∂xνa
− ∂Λ

1,ν
I (xa)

∂xµa

)
= qa

N2∑
J=1

CT
IJ (Λ̂

2
J(xa))µν, (4.42)

for 16 a6Np, 16µ, ν6 3 and 16 I 6 3N1. The charge qa is the same on both sides
and can therefore be removed. This conditions states how the curl of the 1-form basis,
evaluated at some particle’s position, is expressed in the 2-form basis, evaluated at the
same particle’s position, using the curl matrix C. For spaces which build a deRham
complex, this is always satisfied. This concludes the verification of condition (4.30)
for the Jacobi identity to hold for the discrete bracket (4.26).

4.5. Discrete Hamiltonian and equations of motion
The Hamiltonian is discretized by inserting (4.15) and (3.25) into (2.11),

H(V, e, b) ≡ H[ fh,Eh,Bh]

= 1
2

∫
|v|2

Np∑
a=1

mawa δ(x− xa(t)) δ(v − va(t)) dx dv

+ 1
2

∫ [∣∣∣ 3N1∑
I=1

eI(t)Λ1
I (x)

∣∣∣2 + ∣∣∣ 3N2∑
J=1

bJ(t)Λ2
J(x)

∣∣∣2] dx, (4.43)

which in matrix notation becomes

H = 1
2 VTMpV + 1

2 eTM1e+ 1
2 bTM2b. (4.44)

The semi-discrete equations of motion are given by

Ẋ= {X,H}, V̇ = {V,H}, ė= {e,H}, ḃ= {b,H}, (4.45a−d)

which are equivalent to
u̇= J(u)DH(u). (4.46)

With DH(u)= (0, MpV, M1e, M2b)T, we obtain

Ẋ = V, (4.47a)
V̇ = M−1

p Mq(�
1(X)e+B(X, b)V), (4.47b)

ė = M−1
1 (C

TM2b(t)−�1(X)TMqV), (4.47c)

ḃ = −Ce(t), (4.47d)

where the first two equations describe the particle dynamics and the last two equations
describe the evolution of the electromagnetic fields. Note that Mp and Mq are diagonal
matrices and that M−1

p Mq is nothing but the factor qa/ma for the particle labelled by a.
The purpose of introducing these matrices is solely to obtain a compact notation and
to display the Poisson structure of the semi-discrete system. However, these matrices
are neither explicitly constructed nor is there a need to invert them.
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4.6. Discrete Gauss’ law

Multiplying (4.47c) by GTM1 on the left, we get

GTM1ė(t)=GTCTM2b(t)−GT�1(X(t))TMqV(t). (4.48)

As CG= 0 from (3.37), the first term on the right-hand side vanishes. Observe that

�1(X)Gψ = grad�0(X)ψ ∀ψ ∈RN0, (4.49)

and using dxa/dt= va we find that

dΨh(xa(t))
dt

= dxa(t)
dt
· gradΨh(xa(t))= va(t) · gradΨh(xa(t)), (4.50)

for any Ψh ∈ V0 with gradΨh ∈ V1, so that we obtain

GTM1ė=−GT�1(X)TMqV =−(grad�0(X))TMq
dX
dt
=−d�0(X)T

dt
Mq1Np, (4.51)

where 1Np denotes the column vector with Np terms all being unity, needed for the
sum over the particles when there is no velocity vector. This shows that the discrete
Gauss’ law is conserved,

GTM1e=−�0(X)TMq1Np . (4.52)

Moreover, note that (4.51) also contains a discrete version of the continuity
equation (2.7),

d%
dt
+GTj= 0, (4.53)

with the discrete charge and current density given by

%=−�0(X)TMq1Np, j=�1(X)TMqV. (4.54a,b)

The conservation of this relation in the fully discrete system depends on the choice
of the time stepping scheme.

4.7. Discrete Casimir invariants
Let us now find the Casimir invariants of the semi-discrete Poisson structure. In order
to obtain the discrete Casimir invariants, we assume that the discrete spaces in (3.9)
not only form a complex, so that Im(grad)⊆ Ker(curl) and Im(curl)⊆ Ker(div), but
that they form an exact sequence, so that Im(grad)=Ker(curl) and Im(curl)=Ker(div),
i.e. at each node in (3.9), the image of the previous operator is not only a subset of
the kernel of the next operator but is exactly equal to the kernel of the next operator.
We will then see that this requirement is not necessary for the identified functionals to
be valid Casimir invariants. However, it is a useful assumption in their identification.

The Casimir invariants of the semi-discrete system are functions C(X,V, e, b) such
that {C, F} = 0 for any function F. In terms of the Poisson matrix J, this can be
expressed as J(u)DC(u)= 0. Upon writing this for each of the lines of J of (4.29),
we find for the first line

M−1
p DVC= 0. (4.55)
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This implies that C does not depend on V, which we shall use in the sequel. Then
the third line simply becomes

M−1
1 CTDbC= 0⇒DbC ∈Ker(CT). (4.56)

Then, because of the exact sequence property, there exists b̄ ∈ RN3 such that DbC =
DTb̄. Hence all functions of the form

C(b)= bTDTb̄= b̄TDb, b̄ ∈RN3 (4.57)

are Casimirs, which means that Db, the matrix form of div Bh, is conserved.
The fourth line, using that C does not depend on V, becomes

CM−1
1 DeC= 0 ⇒ M−1

1 DeC ∈Ker(C). (4.58)

Because of the exact sequence property there exists ē ∈RN1 , such that DeC =M1Gē.
Finally, the second line couples e and X and reads, upon multiplying by Mp,

DXC=Mq�
1(X)M−1

1 DeC=Mq�
1(X)Gē=Mqgrad�0(X)ē, (4.59)

using the expression for DeC derived previously and (4.49). It follows that all
functions of the form

C(X, e)= 1T
NMq�

0(X)ē+ eTM1Gē= ēT�0(X)TMq1N + ēTGTM1e, ē ∈RN0, (4.60)

are Casimirs, so that GTM1e+�0(X)TMq1N is conserved. This is the matrix form of
Gauss’ law (4.52).

Having identified the discrete Casimir invariants (4.57) and (4.60), it is easy to see
by plugging them into the discrete Poisson bracket (4.26) that they are valid Casimir
invariants, even if the deRham complex is not exact, because all that is needed for
J(u)DC(u)= 0 is the complex property ImDT ⊆KerCT and grad�0(X)=�1(X)G.

5. Hamiltonian splitting

Following Crouseilles et al. (2015), He et al. (2015), Qin et al. (2015), we split the
discrete Hamiltonian (4.44) into three parts,

H =Hp +HE +HB, (5.1)

with
Hp = 1

2 VTMpV, HE = 1
2 eTM1e, HB = 1

2 bTM2b. (5.2a−c)

Writing u= (X,V, e, b)T, we split the discrete Vlasov–Maxwell equations (4.47) into
three subsystems,

u̇= {u,Hp}, u̇= {u,HE}, u̇= {u,HB}. (5.3a−c)

The exact solution to each of these subsystems will constitute a Poisson map.
Because a composition of Poisson maps is itself a Poisson map, we can construct
Poisson structure-preserving integration methods for the Vlasov–Maxwell system by
composition of the exact solutions of each of the subsystems.
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5.1. Solution of the subsystems
The discrete equations of motion for HE are

Ẋ = 0, (5.4a)
MpV̇ = Mq�

1(X)e, (5.4b)
ė = 0, (5.4c)
ḃ = −Ce(t). (5.4d)

For initial conditions (X(0),V(0), e(0), b(0)) the exact solutions at time 1t are given
by the map ϕ1t,E defined as

X(1t) = X(0), (5.5a)
MpV(1t) = MpV(0)+1tMq�

1(X(0))e(0), (5.5b)
e(1t) = e(0), (5.5c)
b(1t) = b(0)−1tCe(0). (5.5d)

The discrete equations of motion for HB are

Ẋ = 0, (5.6a)
V̇ = 0, (5.6b)

M1ė = CTM2b(t), (5.6c)
ḃ = 0. (5.6d)

For initial conditions (X(0),V(0), e(0), b(0)) the exact solutions at time 1t are given
by the map ϕ1t,B defined as

X(1t) = X(0), (5.7a)
V(1t) = V(0), (5.7b)

M1e(1t) = M1e(0)+1tCTM2b(0), (5.7c)
b(1t) = b(0). (5.7d)

The discrete equations of motion for Hp are

Ẋ = V, (5.8a)
MpV̇ = MqB(X, b)V, (5.8b)

M1ė = −�1(X)TMqV, (5.8c)

ḃ = 0. (5.8d)

For general magnetic field coefficients b, this system cannot be exactly integrated (He
et al. 2015). Note that each component V̇µ of the equation for V̇ does not depend on
Vµ, where Vµ = (v1,µ, v2,µ, . . . , vNp,µ)

T, etc., with 1 6 µ6 3. Therefore we can split
this system once more into

Hp =Hp1 +Hp2 +Hp3, (5.9)

with
Hpµ = 1

2 VT
µMpVµ for 1 6µ6 3. (5.10)
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For concise notation we introduce the Np × N1 matrix Λ1
µ(X) with generic term

Λ1
i,µ(xa), and the Np × Np diagonal matrix Λ2

µ(b, X) with entries
∑N2

i=1 bi(t)Λ2
i,µ(xa),

where 1 6µ6 3, 1 6 a 6 Np, 1 6 i 6 N1, 1 6 j 6 N2. Then, for Hp1 we have

Ẋ1 = V1(t), (5.11a)
MpV̇2 = −MqΛ

2
3(b(t),X(t))T V1(t), (5.11b)

MpV̇3 = MqΛ
2
2(b(t),X(t))T V1(t), (5.11c)

M1ė = −Λ1
1(X(t))

TMqV1(t), (5.11d)

for Hp2 we have

Ẋ2 = V2(t), (5.12a)
MpV̇1 = MqΛ

2
3(b(t),X(t))T V2(t), (5.12b)

MpV̇3 = −MqΛ
2
1(b(t),X(t))T V2(t), (5.12c)

M1ė = −Λ1
2(X(t))

TMqV2(t), (5.12d)

and for Hp3 we have

Ẋ3 = V3(t), (5.13a)
MpV̇1 = −MqΛ

2
2(b(t),X(t))T V3(t), (5.13b)

MpV̇2 = MqΛ
2
1(b(t),X(t))T V3(t), (5.13c)

M1ė = −Λ1
3(X(t))

TMqV3(t). (5.13d)

For Hp1 and initial conditions (X(0), V(0), e(0), b(0)) the exact solutions at time 1t
are given by the map ϕ1t,p1 defined as

X1(1t) = X1(0)+1t V1(0), (5.14a)

MpV2(1t) = MpV2(0)−
∫ 1t

0
MqΛ

2
3(b(0),X(t))V1(0) dt, (5.14b)

MpV3(1t) = MpV3(0)+
∫ 1t

0
MqΛ

2
2(b(0),X(t))V1(0) dt, (5.14c)

M1e(1t) = M1e(0)−
∫ 1t

0
Λ1

1(X(t))
TMqV1(0) dt, (5.14d)

for Hp2 by the map ϕ1t,p2 defined as

X2(1t) = X2(0)+1t V2(0), (5.15a)

MpV1(1t) = MpV1(0)+
∫ 1t

0
MqΛ

2
3(b(0),X(t))V2(0) dt, (5.15b)

MpV3(1t) = MpV3(0)−
∫ 1t

0
MqΛ

2
1(b(0),X(t))V2(0) dt, (5.15c)

M1e(1t) = M1e(0)−
∫ 1t

0
Λ1

2(X(t))
TMqV2(0) dt, (5.15d)

and for Hp3 by the map ϕ1t,p3 defined as

X3(1t) = X3(0)+1t V3(0), (5.16a)
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MpV1(1t) = MpV1(0)−
∫ 1t

0
MqΛ

2
2(b(0),X(t))V3(0) dt, (5.16b)

MpV2(1t) = MpV2(0)+
∫ 1t

0
MqΛ

2
1(b(0),X(t))V3(0) dt, (5.16c)

M1e(1t) = M1e(0)−
∫ 1t

0
Λ1

3(X(t))
TMqV3(0) dt, (5.16d)

respectively, where all components not specified are constant. The only challenge
in solving these equations is the exact computation of line integrals along the
trajectories (Campos Pinto et al. 2014; Squire et al. 2012; Moon et al. 2015).
However, because only one component of the particle positions xa is changing in each
step of the splitting and, moreover, the trajectory during one sub step of the splitting
is approximated by a straight line, this is not very complicated. Compared to standard
particle-in-cell methods for the Vlasov–Maxwell system, the exact integration causes
slightly increased computational costs. These are, however, comparable to existing
charge-conserving algorithms like that of Villasenor & Buneman (1992) or the Boris
correction method (Boris 1970).

5.2. Splitting methods

Given initial conditions u(0)= (X(0), V(0), e(0), b(0))T, a numerical solution of the
discrete Vlasov–Maxwell equations (4.47a)–(4.47d) at time 1t can be obtained by
composition of the exact solutions of all the subsystems. A first-order integrator can
be obtained by the Lie–Trotter composition (Trotter 1959),

ϕ1t,L = ϕ1t,p3 ◦ ϕ1t,p2 ◦ ϕ1t,p1 ◦ ϕ1t,B ◦ ϕ1t,E. (5.17)

A second-order integrator can be obtained by the symmetric Strang composition
(Strang 1968),

ϕ1t,S2 = ϕ1t/2,L ◦ ϕ∗1t/2,L, (5.18)

where ϕ∗1t,L denotes the adjoint of ϕ1t,L, defined as

ϕ∗1t,L = ϕ−1
−1t,L. (5.19)

Explicitly, the Strang splitting can be written as

ϕ1t,S2 = ϕ1t/2,E ◦ ϕ1t/2,B ◦ ϕ1t/2,p1 ◦ ϕ1t/2,p2 ◦ ϕ1t/2,p3

◦ϕ1t/2,p3 ◦ ϕ1t/2,p2 ◦ ϕ1t/2,p1 ◦ ϕ1t/2,B ◦ ϕ1t/2,E. (5.20)

Let us note that the Lie splitting ϕ1t,L and the Strang splitting ϕ1t,S2 are conjugate
methods by the adjoint of ϕ1t,L (McLachlan & Quispel 2002), i.e.

ϕ1t,S2 = (ϕ∗1t/2,L)
−1 ◦ ϕ1t,L ◦ ϕ∗1t/2,L = ϕ−1t/2,L ◦ ϕ1t,L ◦ ϕ∗1t/2,L = ϕ1t/2,L ◦ ϕ∗1t/2,L. (5.21)

The last equality holds by the group property of the flow, but is only valid when
the exact solution of each subsystem is used in the composition (and not some
general symplectic or Poisson integrator). This implies that the Lie splitting shares
many properties with the Strang splitting which are not found in general first-order
methods.
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Another second-order integrator with a smaller error constant than ϕ1t,S2 can be
obtained by the following composition,

ϕ1t,L2 = ϕα1t,L ◦ ϕ∗(1/2−α)1t,L ◦ ϕ(1/2−α)1t,L ◦ ϕ∗α1t,L. (5.22)

Here, α is a free parameter which can be used to reduce the error constant. A
particularly small error is obtained for α = 0.1932 (McLachlan 1995). Fourth-order
time integrators can easily be obtained from a second-order integrator like ϕ1t,S by
the following composition (Suzuki 1990; Yoshida 1990),

ϕ1t,S4 = ϕγ11t,S2 ◦ ϕγ21t,S2 ◦ ϕγ11t,S2, (5.23)

with

γ1 = 1
2− 21/3

, γ2 =− 21/3

2− 21/3
. (5.24a,b)

Alternatively, we can compose the first-order integrator ϕ1t,L together with its adjoint
ϕ∗1t,L as follows (McLachlan 1995),

ϕ1t,L4 = ϕa51t,L ◦ ϕ∗b51t,L ◦ . . . ◦ ϕa21t,L ◦ ϕ∗b21t,L ◦ ϕa11t,L ◦ ϕ∗b11t,L, (5.25)

with

a1 = b5 = 146+ 5
√

19
540

, a2 = b4 = −2+ 10
√

19
135

, a3 = b3 = 1
5
,

a4 = b2 = −23− 20
√

19
270

, a5 = b1 = 14−√19
108

.

 (5.26)

For higher-order composition methods see e.g. Hairer et al. (2006) and McLachlan &
Quispel (2002) and references therein.

5.3. Backward error analysis
In the following, we want to compute the modified Hamiltonian for the Lie–Trotter
composition (5.17). For a splitting in two terms, H = HA + HB, the Lie–Trotter
composition can be written as

ϕ1t = ϕ1t,B ◦ ϕ1t,A = exp(1t XA) exp(1t XB)= exp(1t X̃), (5.27)

where XA and XB are the Hamiltonian vector fields corresponding to HA and HB,
respectively, and X̃ is the modified vector field corresponding to the modified
Hamiltonian H̃. Following Hairer et al. (2006, Chapter IX), the modified Hamiltonian
H̃ is given by

H̃ =H +1tH̃1 +1t2H̃2 +O(1t3), (5.28)

with

H̃1 = 1
2 {HA,HB}, (5.29)

H̃2 = 1
12 [{{HA,HB},HB} + {{HB,HA},HA}]. (5.30)

In order to compute the modified Hamiltonian for splittings with more than two terms,
we have to apply the Baker–Campbell–Hausdorff formula recursively. Denoting by XE
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the Hamiltonian vector field corresponding to HE, that is XE = J(·,DHE), and similar
for XB and Xpi , the Lie–Trotter splitting (5.17) can be expressed in terms of these
Hamiltonian vector fields as

ϕ1t,L = exp(1t XE) exp(1t XB) exp(1t Xp1) exp(1t Xp2) exp(1t Xp3). (5.31)

Let us split ϕ1t = exp(1t X̃) into

exp(1t XE) exp(1t XB) = exp(1t X̃EB),

exp(1t Xp1) exp(1t Xp2) = exp(1t X̃p1,2),

exp(1t X̃p1,2) exp(hXp3) = exp(1t X̃p1,2,3),

exp(1t X̃EB) exp(1t X̃p1,2,3) = exp(1t X̃),

 (5.32)

where the corresponding Hamiltonians are given by

H̃EB = HE +HB + 1t
2
{HE,HB} +O(1t2),

H̃p1,2 = Hp1 +Hp2 +
1t
2
{Hp1,Hp2} +O(1t2),

H̃p1,2,3 = H̃p1,2 +Hp3 +
1t
2
{H̃p1,2,Hp3} +O(1t2)

= Hp1 +Hp2 +Hp3 +
1t
2
{Hp1,Hp2} +

1t
2
{Hp1 +Hp2,Hp3} +O(1t2).


(5.33)

The Hamiltonian H̃ corresponding to X̃ is given by

H̃ =HE +HB +Hp1 +Hp2 +Hp3 +1t H̃1 +O(1t2), (5.34)

with the first-order correction H̃1 obtained as

H̃1 = 1
2({HE,HB} + {Hp1,Hp2} + {Hp1 +Hp2,Hp3} + {HE +HB,Hp}). (5.35)

The various Poisson brackets are computed as follows,

{HE,HB} = eTCTb,
{HE,Hp} = −eT�1(X)TMqV,
{HB,Hp} = 0,
{Hp1,Hp2} = V1MqB3(b,X)T V2,

{Hp2,Hp3} = V2MqB1(b,X)T V3,

{Hp3,Hp1} = V3MqB2(b,X)T V1,


(5.36)

where Bµ(X, b) denotes Np × Np diagonal matrix with elements Bh,µ(xa). The Lie–
Trotter integrator (5.17) preserves the modified energy H̃ = H + 1t H̃1 to O(1t2),
while the original energy H is preserved only to O(1t).

6. Example: Vlasov–Maxwell in 1d2v
Starting from the Vlasov equation for a particle species s, charge qs, and mass ms

given in (2.1), we reduce by assuming a single species and

x= (x, 0, 0) and v = (v1, v2, 0) (6.1a,b)
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as well as

E(x, t)= (E1, E2, 0), B(x, t)= (0, 0, B3), f (x, v, t)= f (x, v1, v2, t), (6.2a−c)

so that the Vlasov equation takes the form

∂f (x, v, t)
∂t

+ v1
∂f (x, v, t)

∂x
+ qs

ms

[
E(x, t)+ B3(x, t)

(
v2
−v1

) ]
· ∇vf (x, v, t)= 0, (6.3)

while Maxwell’s equations become

∂E1(x, t)
∂t

= −J1(x), (6.4)

∂E2(x, t)
∂t

= −∂B(x, t)
∂x

− J2(x), (6.5)

∂B(x, t)
∂t

= −∂E2(x, t)
∂x

, (6.6)

∂E1(x, t)
∂x

= ρ + ρB, (6.7)

with sources given by

ρ = qs

∫
f dv, J1 = qs

∫
fv1 dv, J2 = qs

∫
fv2 dv. (6.8a−c)

Note that div B= 0 is manifest.

6.1. Non-canonical Hamiltonian structure
Under the assumptions of (6.1) and (6.2), the bracket of (2.8) reduces to

{F , G} = 1
m

∫
f
[
δF
δf
,
δG
δf

]
dx dv1 dv2

+ q
m

∫
f
(
∂

∂v1

δF
δf

δG
δE1
+ ∂

∂v2

δF
δf

δG
δE2
− ∂

∂v1

δG
δf
δF
δE1
− ∂

∂v2

δG
δf
δF
δE2

)
× dx dv1 dv2

+ q
m2

∫
f B
(
∂

∂v1

δF
δf

∂

∂v2

δG
δf
− ∂

∂v2

δF
δf

∂

∂v1

δG
δf

)
dx dv1 dv2

+
∫ (

δG
δE2

∂

∂x
δF
δB
− δF
δE2

∂

∂x
δG
δB

)
dx, (6.9)

where now
[ f , g] := ∂f

∂x
∂g
∂v1
− ∂f
∂v1

∂g
∂x
. (6.10)

The Hamiltonian (2.11) becomes

H= m
2

∫
f (x, v1, v2) (v

2
1 + v2

2) dx dv1 dv2 + 1
2

∫
(E2

1 + E2
2 + B2) dx. (6.11)

The bracket of (6.9) with Hamiltonian (6.11), generates (6.4), (6.5) and (6.6), with the
J of (6.8).
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6.2. Reduced Jacobi identity
The bracket of (6.9) can be shown to satisfy the Jacobi identity by direct calculations.
However since (2.8) satisfies the Jacobi identity for all functionals, it must also satisfy
it for all reduced functionals. Here we have closure, i.e. if F and G are reduced
functionals, then {F , G} is a reduced functional, where the bracket is the full bracket
of (2.8).

More specifically, to understand this closure, observe that the reduced functionals
have the form

F [E1, E2, B, f ] =
∫

F(x,E,B, f ,DE,DB,Df , . . . ) dx dv

=
∫

F(x, E1, E2, B, f ,DE1,DE2,DB,Df , . . . ) dx dv

=
∫

F̄(x, E1, E2, B, f ,DE1,DE2,DB,Df , . . . ) dx dv1 dv2, (6.12)

where in (6.12) we assumed (6.1) and (6.2). In the second equality of (6.12)
the integrations over x2, x3 and v3 are easily performed because the integrand is
independent of these variables or it has been performed with an explicit dependence
on x2, x3 and v3 that makes the integrals converge. Any constant factors resulting
from the integrations are absorbed into the definition of F̄ . The closure condition on
{F , G} amounts to the statement that given any two functionals F , G of the form
of (6.12), their bracket is again a reduced functional of this form. This follows from
the fact that the bracket of two such functionals reduces (2.8) to (6.9), which of
course is reduced.

That not all reductions of functionals have closure can be seen by considering ones
of the form F [E, f ], i.e. ones for which dependence on B is absent. The bracket of
two functions of this form gives the bracket of (2.8) with the absence of the last term.
Clearly this bracket depends on B and thus there is no closure. A consequence of this
is that the bracket (2.8) with the absence of the last term does not satisfy the Jacobi
identity. We note, however, that adding a projector can remedy this, as was shown in
Chandre et al. (2013).

6.3. Discrete deRham complex in one dimension
Here, we consider the components of the electromagnetic fields separately and we
have that E1 is a 1-form, E2 is a 0-form and B3 is again a 1-form. We denote the
semi-discrete fields by Dh, Eh and Bh respectively, and write

Dh(x, t)=
N1∑
i=1

di(t)Λ1
i (x),

Eh(x, t)=
N0∑
i=1

ei(t)Λ0
i (x),

Bh(x, t)=
N1∑
i=1

bi(t)Λ1
i (x).


(6.13)

Next we introduce an equidistant grid in x and denote the spline of degree p with
support starting at xi by Np

i . We can express the derivative of Np
i as follows

d
dx

Np
i (x)=

1
1x

(
Np−1

i (x)−Np−1
i+1 (x)

)
. (6.14)
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In the finite element field solver, we represent Eh by an expansion in splines of degree
p and Dh, Bh by an expansion in splines of degree p− 1, that is

Dh(x, t) =
N1∑
i=1

di(t)Np−1
i (x),

Eh(x, t) =
N0∑
i=1

ei(t)Np
i (x),

Bh(x, t) =
N1∑
i=1

bi(t)Np−1
i (x).


(6.15)

6.4. Discrete Poisson bracket
The discrete Poisson bracket for this reduced system reads

{F,G}[X,V1,V2, d, e, b]
= ∂F
∂X1

M−1
p
∂G
∂V1
− ∂G
∂X1

M−1
p
∂F
∂V1

+
(
∂F
∂V1

)T

M−1
p Mq�

1(X)TM−1
1

(
∂G
∂d

)
−
(
∂F
∂d

)T

M−1
1 �1(X)MqM−1

p

(
∂G
∂V1

)
+
(
∂F
∂V2

)T

M−1
p Mq�

0(X)TM−1
0

(
∂G
∂e

)
−
(
∂F
∂e

)T

M−1
0 �0(X)MqM−1

p

(
∂G
∂V2

)
+
(
∂F
∂V1

)T

M−1
p MqB(X, b)M−1

p

(
∂G
∂V2

)
−
(
∂F
∂V2

)T

M−1
p B(X, b)MqM−1

p

(
∂G
∂V1

)
+
(
∂F
∂e

)T

M−1
0 CT

(
∂G
∂b

)
−
(
∂F
∂b

)T

CM−1
0

(
∂G
∂e

)
. (6.16)

Here, we denote by Mp = Mp and Mq = Mq the Np × Np diagonal matrices holding
the particle masses and charges, respectively. We denote by �0(X) the Np×N0 matrix
with generic term Λ0

i (xa), where 16 a6Np and 16 i6N0, and by �1(X) the Np×N1
matrix with generic term Λ1

i (xa), where 1 6 a 6 Np and 1 6 i 6 N1. Further, B(X, b)
denotes the Np ×Np diagonal matrix with entries

Bh(xa, t)=
N1∑
i=1

bi(t)Λ1
i (xa). (6.17)

The reduced bracket can be shown to satisfy the Jacobi identity by direct proof in
full analogy to the proof for the full bracket shown in § 4.4. However, one can also
follow along the lines of § 6.2 in order to arrive at the same result.

6.5. Discrete Hamiltonian and equations of motion
The discrete Hamiltonian is given in terms of the reduced set of degrees of freedom
u= (X,V1,V2, d, e, b) by

H = 1
2 VT

1MpV1 + 1
2 VT

2MpV2 + 1
2 dTM1d+ 1

2 eTM0e+ 1
2 bTM1b. (6.18)
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and the equations of motion are obtained as

Ẋ = V1,

V̇1 = M−1
p Mq(�

1(X)d+B(X, b)V2),

V̇2 = M−1
p Mq(�

0(X)e−B(X, b)V1),

ḋ = −M−1
1 �1(X)TMqV1,

ė = M−1
0 (CTM1b(t)−�0(X)TMqV2),

ḃ = −Ce(t),


(6.19)

which is seen to be in direct correspondence with (6.3)–(6.7).

6.6. Hamiltonian splitting
The solution of the discrete equations of motion for HD +HE at time 1t is

MpV1(1t) = MpV1(0)+1tMq�
1(X(0)) d(0),

MpV2(1t) = MpV2(0)+1tMq�
0(X(0)) e(0),

b(1t) = b(0)−1tCe(0).

 (6.20)

The solution of the discrete equations of motion for HB is

M0e(1t)=M0e(0)+1tCTM1b(0). (6.21)

The solution of the discrete equations of motion for Hp1 is

X(1t) = X1(0)+1t V1(0),

MpV2(1t) = MpV2(0)−
∫ 1t

0
MqB(X(t), b(0))V1(0) dt,

M1d(1t) = M1d(0)−
∫ 1t

0
�1(X(t))TMqV1(0) dt,


(6.22)

and for Hp2 it is

MpV1(1t) = MpV1(0)+
∫ 1t

0
MqB(X(0), b(0))V2(0) dt,

M0e(1t) = M0e(0)−
∫ 1t

0
�1(X(0))TMqV2(0) dt,

 (6.23)

respectively.

7. Numerical experiments
We have implemented the Hamiltonian splitting scheme as well as the Boris–Yee

scheme from appendix A as part of the SeLaLib library (http://selalib.gforge.inria.fr/).
In this section, we present results for various test cases in 1d2v, comparing the
conservation properties of the total energy and of the Casimirs for the two schemes.
We simulate the electron distribution function in a neutralizing ion background. In
all experiments, we have used splines of order three for the 0-forms. The particle
loading was done using Sobol numbers and antithetic sampling (symmetric around
the middle of the domain in x and around the mean value of the Gaussian from
which we are sampling in each velocity dimension). We sample uniformly in x and
from the Gaussians of the initial distribution in each velocity dimension.
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7.1. Weibel instability

We consider the Weibel instability studied in Weibel (1959) in the form simulated in
Crouseilles et al. (2015). We study a reduced 1d2v model with a perturbation along x1,
a magnetic field along x3 and electric fields along the x1 and x2 directions. Moreover,
we assume that the distribution function is independent of v3. The initial distribution
and fields are of the form

f (x, v, t= 0)= 1
2πσ1σ2

exp
(
−1

2

(
v2

1

σ 2
1
+ v

2
2

σ 2
2

))
(1+ α cos(kx)) , x ∈ [0, 2π/k),

(7.1)
B3(x, t= 0)= β cos(kx), (7.2)

E2(x, t= 0)= 0, (7.3)

and E1(x, t= 0) is computed from Poisson’s equation. In our simulations, we use the
following choice of parameters, σ1 = 0.02/

√
2, σ2 =

√
12σ1, k= 1.25, α = 0 and β =

−10−4. Note that these are the same parameters as in Crouseilles et al. (2015) except
for the fact that we sample from the Maxwellian without perturbation in x1.

The dispersion relation from Weibel (1959) applied to our model reads

D(ω, k)=ω2 − k2 +
(
σ2

σ1

)2

− 1−
(
σ2

σ1

)2

φ

(
ω

σ1k

)
ω

σ1k
, (7.4)

where φ(z) = exp(−1/2z2)
∫ z
−i∞ exp(1/2ξ 2) dξ . For our parameter choice, this gives

a growth rate of 0.02784. In figure 1, we show the electric and magnetic energies
together with the analytic growth rate. We see that the growth rate is verified in the
numerical solution. This simulation was performed with 100 000 particles, 32 grid
points, splines of degree 3 and 2 and 1t = 0.05. Note that we have chosen a very
large number of particles in order to obtain a solution of very high quality. In practice,
the Weibel instability can also be simulated with much fewer particles (cf. § 7.5).

In table 1, we show the conservation properties of our splitting with various orders
of the splitting (cf. § 5.2) and compare them also to the Boris–Yee scheme. The other
numerical parameters are kept as before.

We can see that Gauss’ law is satisfied in each time step for the Hamiltonian
splitting. This is a Casimir (cf. § 2.2) and therefore naturally conserved by the
Hamiltonian splitting. On the other hand, this is not the case for the Boris–Yee
scheme.

We can also see that the energy error improves with the order of the splitting;
however, the Hamiltonian splitting method as well as the Boris–Yee scheme are not
energy conserving. The time evolution of the total energy error is depicted in figure 2
for the various methods.

7.2. Streaming Weibel instability

As a second test case, we consider the streaming Weibel instability. We study the same
reduced model as in the previous section, but following Califano, Pegoraro & Bulanov
(1997), Cheng et al. (2014c) the initial distribution and fields are prescribed as
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FIGURE 1. Weibel instability: the two electric and the magnetic energies together with
the analytic growth rate.

FIGURE 2. Weibel instability: difference of total energy and its initial value as a function
of time for various integrators.

Propagator Total energy Gauss’ law

Lie 4.9× 10−7 1.4× 10−15

Strang 6.3× 10−7 1.2× 10−15

2nd, 4 Lie 9.8× 10−11 1.4× 10−15

4th, 3 Strang 2.1× 10−9 1.2× 10−15

4th, 10 Lie 2.1× 10−13 1.0× 10−15

Boris 3.4× 10−10 4.4× 10−5

TABLE 1. Weibel instability: maximum error in the total energy and Gauss’ law until time
500 for simulation with various integrators: Lie–Trotter splitting from (5.17) (Lie), Strang
splitting from (5.18) (Strang), second-order splitting with 4 Lie parts defined in (5.22) (2nd,
4 Lie), fourth-order splitting with 3 Strang parts defined in (5.23) (4th, 3 Strang) and 10
Lie parts defined in (5.25) (4th, 10 Lie).
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Propagator Total energy Gauss’ law

Lie 6.4× 10−5 3.1× 10−16

Strang 1.4× 10−6 3.7× 10−16

2nd, 4 Lie 1.5× 10−8 4.4× 10−16

4th, 3 Strang 1.7× 10−10 4.7× 10−16

4th, 10 Lie 5.7× 10−13 5.4× 10−16

Boris 1.1× 10−7 5.1× 10−4

TABLE 2. Streaming Weibel instability: maximum error in the total energy and Gauss’
law until time 200 for simulation with various integrators.

f (x, v, t= 0) = 1
2πσ 2

exp
(
− v2

1

2σ 2

)(
δ exp

(
− (v2 − v0,1)

2

2σ 2

)
+ (1− δ) exp

(
− (v2 − v0,2)

2

2σ 2

))
, (7.5)

B3(x, t= 0) = β sin(kx), (7.6)
E2(x, t= 0) = 0, (7.7)

and E1(x, t= 0) is computed from Poisson’s equation.
We set the parameters to the following values σ = 0.1/

√
2, k = 0.2, β = −10−3,

v0,1 = 0.5, v0,2 = −0.1 and δ = 1/6. The parameters are chosen as in the case 2 of
Cheng et al. (2014c). The growth rate of energy of the second component of the
electric field was determined to be 0.03 in Califano et al. (1997). In figure 3, we show
the electric and magnetic energies together with the analytic growth rate. We see that
the growth rate is verified in the numerical solution. This simulation was performed on
the domain x∈ [0, 2π/k) with 20 000 000 particles, 128 grid points, splines of degree
3 and 2 and 1t= 0.01. Observe that the energy of the E1 component of the electric
field starts to increase at times earlier than in Califano et al. (1997), which is caused
by particle noise.

As for the Weibel instability, we compare the conservation properties in table 2
for various integrators. Again we see that the Hamiltonian splitting conserves Gauss’
law as opposed to the Boris–Yee scheme. The energy conservation properties of the
various schemes show approximately the same behaviour as in the previous test case
(see also figure 4 for the time evolution of the energy error).

7.3. Strong Landau damping
Finally, we also study the electrostatic example of strong Landau damping with initial
distribution

f (x, v)= exp
1

2πσ 2

(
−v

2
1 + v2

2

2σ 2

)
(1+ α cos(kx)), x ∈ [0, 2π/k), v ∈R2. (7.8)

The physical parameters are chosen as σ = 1, k = 0.5, α = 0.5 and the numerical
parameters as ∆t = 0.05, nx = 32 and 100 000 particles. The fields B3 and E2 are
initialized to zero and remain zero over time. In this example, we essentially solve
the Vlasov–Ampère equation with results equivalent to the Vlasov–Poisson equations.
In figure 5 we show the time evolution of the electric energy associated with E1.
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FIGURE 3. Streaming Weibel instability: the two electric and the magnetic energies
together with the analytic growth rate.

FIGURE 4. Streaming Weibel instability: difference of total energy and its initial value as
a function of time for various integrators.

Integrator γ1 γ2

GEMPIC −0.286 +0.087
viVlasov1D (Kraus, Maj & Sonnendruecker in preparation) −0.286 +0.085
Cheng & Knorr (1976) −0.281 +0.084
Nakamura & Yabe (1999) −0.280 +0.085
de Dios & Hajian (2012) −0.292 +0.086
Heath et al. (2012) −0.287 +0.075
Cheng et al. (2013) −0.291 +0.086

TABLE 3. Damping and growth rates for strong Landau damping.

We have also fitted a damping and growth rate (using the marked local maxima
in the plot). These are in good agreement with other codes (see table 3). Again
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FIGURE 5. Landau damping: electric energy with fitted damping and growth rates.

FIGURE 6. Landau damping: total energy error.

the energy conservation for the various method is visualized as a function of time
in figure 6. And again we see that the fourth-order methods give excellent energy
conservation.

7.4. Backward error analysis

For the Lie–Trotter splitting, the error in the Hamiltonian H is of order 1t. However,
using backward error analysis (cf. § 5.3), modified Hamiltonians can be computed,
which are preserved to higher order. Accounting for first-order corrections H̃1, the
error in the modified Hamiltonian,

H̃ =H +1tH̃1 +O(1t2), (7.9)

is of order (1t)2. For the 1d2v example, this correction is obtained as

H̃1 = 1
2 [{HD +HE,HB} + {Hp1,Hp2} + {HD +HE +HB,Hp1 +Hp2}], (7.10)
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FIGURE 7. Weibel instability: error (maximum norm and `2 norm) in the total energy for
simulations with 1t= 0.01, 0.02, 0.05.

with the various Poisson brackets computed as

{HD,HB} = 0,
{HE,HB} = eTCTb,
{Hp1,Hp2} = V1MqB(b,X)T V2,

{HD,Hp1} = −dT�1(X)TMqV1,

{HD,Hp2} = 0,
{HE,Hp1} = 0,
{HE,Hp2} = −eT�0(X)TMqV2,

{HB,Hp1} = 0,
{HB,Hp2} = 0.


(7.11)

In figure 7, we show the maximum and `2 error of the energy and the corrected energy
for the Weibel instability test case with the parameters in § 7.1. The simulations were
performed with 100 000 particles, 32 grid points, splines of degree 3 and 2 and 1t=
0.01, 0.02, 0.05. We can see that the theoretical convergence rates are verified in the
numerical experiments. Figure 8 shows the energy as well as the modified energy for
the Weibel instability test case simulated with a time step of 0.05.

7.5. Momentum conservation
Finally, let us discuss conservation of momentum for our one species 1d2v equations.
In this case, equation (2.30) becomes

dPe,1,2

dt
=−

∫
E1,2(x, t) dx. (7.12)

For Pe,1(t) from (6.4) we get

d
dt

∫
E1(x, t) dx=−

∫
j1(x, t) dx. (7.13)
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FIGURE 8. Weibel instability: energy and first-order corrected energy for simulation with
1t= 0.05.

Since in general
∫

j1(x, t) dx 6= 0, momentum is not conserved. As a means of testing
momentum conservation, Crouseilles et al. (2015) replaced (6.4) by

∂E1(x, t)
∂t

=−j1(x, t)+
∫

j1(x, t) dx. (7.14)

Thus, for this artificial dynamics, momentum will be conserved if
∫

E1(x, 0) dx = 0.
Instead, we do not modify the equations but check the validity of (7.12). We define
a discrete version of (7.12), integrated over time, in the following way:

P̃n
e,1 = P0

e,1 −
1t
2

n∑
m=1

(∫
Dm−1

h (x) dx+
∫

Dm
h (x) dx

)
, (7.15)

P̃n
e,2 = P0

e,2 −
1t
2

n∑
m=1

(∫
Em−1

h (x) dx+
∫

Em
h (x) dx

)
. (7.16)

Our numerical scheme does not conserve momentum exactly. However, the error in
momentum can be kept rather small during the linear phase of the simulation. Note
that in all our examples,

∫
j1,2(x, t) dx = 0. For a Gaussian initial distribution, the

antithetic sampling ensures that
∫

j1,2(x, t) dx= 0 holds in the discrete sense. Figure 9
shows the momentum error in a simulation of the Weibel instability as considered in
§ 7.1, but up to time 2000 and with 25 600 particles sampled from pseudo-random
numbers and Sobol numbers, for both plain and antithetical sampling. For the plain
sampling, momentum error is a bit smaller for Sobol numbers compared to pseudo-
random numbers during the linear phase. For the antithetic sampling, we can see
that the momentum error is very small until time 200 (linear phase). However, when
nonlinear effects start to dominate, the momentum error slowly increases until it has
reached the same level as the momentum error for plain Sobol number sampling. The
level depends on the number of particles (cf. table 4). Note that the sampling does
not seem to have an influence on the energy conservation as can be seen in figure 10
that compares the energy error for the various sampling techniques. The curves show
that the energy error is related to the increase in potential energy during the linear
phase but does not further grow during the nonlinear phase.
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FIGURE 9. Weibel instability: error in the first component of the momentum for plain and
antithetic Sobol sampling.

FIGURE 10. Weibel instability: total energy error for plain and antithetic Sobol sampling.

Np Pe,1 Pe,2

320 1.92× 10−2 1.44× 10−2

3 200 7.17× 10−3 8.96× 10−3

25 600 4.45× 10−4 1.49× 10−3

100 000 1.72× 10−4 9.02× 10−4

TABLE 4. Weibel instability: maximum error in both components of the momentum for
simulations until time 2000 with various numbers of particles and 32 grid cells.

For the streaming Weibel instability on the other hand, we have a sum of two
Gaussians in the second component of the velocity. Since in our sampling method
we draw the particles based on Sobol quasi-random numbers, the fractions drawn
from each of the Gaussians are not exactly given by δ and 1− δ as in (7.5). Hence∫

j2(x, t) dx is small but non-zero. Comparing the discrete momentum defined by (7.16)
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with the discretization of its definition (2.25),

Pn
e,2 =

∑
a

vn
a,2mawa −

∫
Dn

h(x)B
n
h(x) dx, (7.17)

we see a maximum deviation over time of 1.6× 10−16 for a simulation with Strang
splitting, 20 000 000 particles, 128 grid points and 1t = 0.01. This shows that our
discretization with a Strang splitting conserves (7.12) in the sense of (7.16) to very
high accuracy.

8. Summary
In this work, a general framework for geometric finite element particle-in-cell

methods for the Vlasov–Maxwell system was presented. The discretization proceeded
in two steps. First, a semi-discretization of the noncanonical Poisson bracket was
obtained, which preserves the Jacobi identity and important Casimir invariants, so
that the resulting finite-dimensional system is still Hamiltonian. Then, the system was
discretized in time by Hamiltonian splitting methods, still retaining exact conservation
of Casimirs, which in practice means exact conservation of Gauss’ law and div B= 0.
Therefore the resulting method corresponds to one of the rare instances of a genuine
Poisson integrator. Energy is not preserved exactly, but backward error analysis
showed that the energy error does not depend on the degrees of freedom, the number
of particles or the number of time steps. The favourable properties of the method were
verified in various numerical experiments in 1d2v using splines as basis functions for
the electromagnetic fields. One of the advantages of our approach is that conservation
laws such as those for energy and charge are not manufactured into the scheme ‘by
hand’ but follow automatically from preserving the underlying geometric structure of
the equations.

The basic structure and implementation strategy of the code is very similar to
existing finite element particle-in-cell methods for the Vlasov–Maxwell system. The
main difference is the use of basis functions of mixed polynomial degree for the
electromagnetic fields. The particle pusher is very similar to usual schemes, such as
the Boris scheme, the only additional complexity being the exact computation of some
line integrals. The cost of the method is comparable to existing charge-conserving
algorithms like the method of Villasenor & Buneman or the Boris correction method.
It is somewhat more expensive than non-charge-conserving methods, but such
schemes are known to be prone to spurious instabilities that can lead to unphysical
simulation results. Even though only examples in 1d2v were shown, there are no
conceptional differences or difficulties when going from one to two or to three
spatial dimensions. The building blocks of the code are identical in all three cases
due to the tensor-product structure of the Eulerian grid and the splitting in time.
Details on the implementation of a three-dimensional version of the code as well as
a comparison with existing methods will be disseminated in a subsequent publication.

The generality of the framework opens up several new paths for subsequent
research. Instead of splines, other finite element spaces that form a deRham complex
could be used, e.g. mimetic spectral elements or Nédélec elements for 1-forms
and Raviart–Thomas elements for two-forms. Further, it also should be possible to
apply this approach to other systems like the gyrokinetic Vlasov–Maxwell system
(Burby et al. 2015; Burby 2017), although in this case the necessity for new splitting
schemes or other time integration strategies might arise. Energy-preserving time
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stepping methods might provide an alternative to Hamiltonian splitting algorithms,
where a suitable splitting cannot be easily found. This is a topic currently under
investigation. So is the treatment of the relativistic Vlasov–Maxwell system, which
follows very closely along the lines of the non-relativistic system. This is a problem of
interest in its own right, featuring an even larger set of invariants one should attempt
to preserve in the discretization. Another extension of the GEMPIC framework under
development is the inclusion of non-ideal, non-Hamiltonian effects, most importantly
collisions. An appropriate geometric description for such effects can be provided
either microscopically by stochastic Hamiltonian processes or macroscopically by
metriplectic brackets (Morrison 1986).
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Appendix A. The Boris–Yee scheme
As an alternative discretization scheme, we consider a Boris–Yee scheme (Yee 1966;

Boris 1970) with our conforming finite elements. The scheme uses a time staggering
working with the variables Xn+1/2=X(tn+1t/2), dn+1/2= d(tn+1t/2), en+1/2= e(tn+
1t/2), Vn=V(tn), and bn= b(tn) in the nth time step tn= t0+ n1t. The Hamiltonian
at time tn is defined as

H = 1
2 (V

n
1)

TMpVn
1 + 1

2 (V
n
2)

TMpVn
2 + 1

2 (d
n−1/2)TM1dn+1/2

+ 1
2 (e

n−1/2)TM0en+1/2 + 1
2 (b

n)TM1bn. (A 1)

Given Xn−1/2, dn−1/2, en−1/2, Vn−1, bn−1 the Vlasov–Maxwell system is propagated by
the following time step:

(i) Compute bn according to

bn
i = bn−1

i −
1t
1x

(
en−1/2

i − en−1/2
i−1

)
. (A 2)

and bn−1/2 = (bn−1 + bn)/2.
(ii) Propagate vn−1→ vn by equation

v−a = vn−1
a +

1t
2

qs

ms
En−1/2(xn−1/2

a ), (A 3)
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v+a,1 =
1− α2

1+ α2
v−a,1 +

2α
1+ α2

v−a,2, (A 4)

v+a,2 =
−2α

1+ α2
v−a,1 +

1− α2

1+ α2
v−a,2, (A 5)

vn
a = v+a +

1t
2

qs

ms
En−1/2(xn−1/2

a ), (A 6)

where α = qa/ma1t/2Bn−1/2(xn−1/2).
(iii) Propagate xn−1/2→ xn+1/2 by

xn+1/2
a = xn−1/2

a +1t vn
a,1 (A 7)

and accumulate jn
1, jn

2 by

jn
1 =

Np∑
a=1

wav
n
a,1�

1((xn−1/2
a + xn+1/2

a )/2), (A 8)

jn
2 =

Np∑
a=1

wav
n
a,2�

0((xn−1/2
a + xn+1/2

a )/2). (A 9)

(iv) Compute dn+1/2 according to

M1dn+1/2 =M1dn−1/2 −1t jn
1, (A 10)

and en+1/2 according to

M0en+1/2 =M0en−1/2 + 1t
1x

CTbn −1t jn
2. (A 11)

For the initialization, we sample X0 and V0 from the initial sampling distribution,
set e0, b0 from the given initial fields and solve Poisson’s equation for d0. Then, we
compute X1/2, d1/2 and e1/2 from the corresponding equations of the Boris–Yee scheme
for a half time step, using b0, V0 instead of the unknown values at time 1t/4. Note
that the error in this step is of order (1t)2. But since we only introduce this error in
the first time step, the overall scheme is still of order two.
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