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COFINAL TYPES BELOW ¥,

ROY SHALEV

Abstract. It is proved that for every positive integer n, the number of non-Tukey-equivalent directed
sets of cardinality < N, is at least ¢, 1, the (n + 2)-Catalan number. Moreover, the class Dy, of directed
sets of cardinality < N, contains an isomorphic copy of the poset of Dyck (n + 2)-paths. Furthermore,
we give a complete description whether two successive elements in the copy contain another directed set in
between or not.

§1. Introduction. Motivated by problems in general topology, Birkhoff[1], Tukey
[15], and Day [2] studied some natural classes of directed sets. Later, Schmidt [9]
and Isbell [4, 5] investigated uncountable directed sets under the Tukey order <.
In [12], Todorcevi¢c showed that under PFA there are only five cofinal types in
the class Dy, of all cofinal types of size < N; under the Tukey order, namely,
{1,0, w1, ® x w1, [w]<*}. In the other direction, Todorcevi¢ showed that under
CH there are 2° many non-equivalent cofinal types in this class. Later in [14] this
was extended to all transitive relations on ;. Recently, Kuzeljevi¢c and Todorcevic
[6]initiated the study of the class Dy, . They showed in ZFC that this class contains at
least fourteen different cofinal types which can be constructed from two basic types
of directed sets and their products: (k. €) and ([x]<?. C). where k € {1, w. w1, w2}
and 0 € {w.w;}.

In this paper, we extend the work of Todorcevi¢ and his collaborators and uncover
a connection between the classes of the Dy,’s and the Catalan numbers. Denote
Vi = {L ok [0 ]~ | 0 <m < k}, Fp = U<, Vk and finally let S, be the set
of all finite products of elements of F,,. Recall (see Section 3) that the n-Catalan
number is equal to the cardinality of the set of all Dyck n-paths. The set IC,, of all
Dyck n-paths admits a natural ordering <1, and the connection we uncover is as
follows.

THEOREM A. The posets (S,/=r. <r) and (K, 2, <) are isomorphic. In particular,
the class Dy, has size at least the (n + 2)-Catalan number.

A natural question which arises is whether an interval determined by two
successive elements of (S, /=7, <7) forms an empty interval in (Dy, . <7). In [6]. the
authors showed that there are two intervals of S, that are indeed empty in Dy,. and
they also showed that consistently, under GCH and the existence of a non-reflecting
stationary subset of E,,2, two intervals of S, that are nonempty in Dy, .
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2 ROY SHALEV
In this paper, we prove:

THEOREM B. Assuming GCH, for every positive integer n, all intervals of S, that
Jorm an empty interval in Dy, are identified, and counterexamples are constructed to
the other cases.

1.1. Organization of this paper. In Section 2 we analyze the Tukey order of
directed sets using characteristics of the ideal of bounded subsets.

In Section 3 we consider the poset (S,/=7. <r) and show it is isomorphic to the
poset of good (n + 2)-paths (Dyck paths) with the natural order. As a corollary
we get that the cardinality of Dy, is greater than or equal to the Catalan number
¢n+2. Furthermore, we address the basic question of whether a specific interval in
the poset (S, /=7, <r) is empty, i.e., considering an element C and a successor of it
E. is there a directed set D € Dy, such that C <y D <7 E? We answer this question
in Theorem 3.5 using results from the next two sections.

In Section 4 we present sufficient conditions on an interval of the poset (S,/
=7. <r) which enable us to prove there is no directed set inside.

In Section 5 we present cardinal arithmetic assumptions, enough to construct on
specific intervals of the poset (S, /=7. <r) a directed set inside.

In Section 6 we finish with a remark about future research.

In the Appendix diagrams of the posets (S,/=r.<r) and (S3/=r.<r) are
presented.

1.2. Notation. For a set of ordinals C, we write acc(C) := {a < sup(C) |
sup(C Na) = a > 0}. For a < y where « is a regular cardinal, denote E}, := {f <
7 | cf(B) = a}. The set of all infinite (resp. infinite and regular) cardinals below  is
denoted by Card(k) (resp. Reg(x)). For a cardinal x we denote by x* the successor
cardinal of x, and by k™" the nth-successor cardinal. Fora function f : X — Y anda
set A C X,wedenote f”A4 := {f(x) | x € A}. Foraset A and a cardinal §, we write
[4] :== {X C 4| |X| = 0} and define [4]=? and [A4]<? similarly. For a sequence of
sets (4; | i € A). let[],c; Di =={f : 1 —= U;c; Di | Vi € I[f(i) € D;]}.

1.3. Preliminaries. A partial ordered set (D, <p) is directed iff for every x,y € D
thereis z € D suchthat x <p z and y <p z. We say that a subset X of a directed set
D is bounded if there is some d € D such that x <p d for each x € X. Otherwise, X’
is unbounded in D. We say that a subset X of a directed D is cofinal if for every d € D
there exists some x € X such thatd <p x. Letcf(D) denote the minimal cardinality
of a cofinal subset of D. If D and E are two directed sets, we say that ' : D — E
is a Tukey function if f”X := {f(x) | x € X} is unbounded in E whenever X is
unbounded in D. If such a Tukey function exists we say that D is Tukey reducible
to E, and write D <7 E. If D <7 F and E £7 D, we write D <y E. A function
g : E — D iscalled a convergent /cofinal map from E to D if for every d € D there is
an e; € E such that for every ¢ > e, we have g(c¢) > d. There is a convergent map
g E — D iff D <y E. Note that for a convergent map g : £ — D and a cofinal
subset Y C E, theset g”Y is cofinal in D. We say that two directed sets D and E are
cofinally /Tukey equivalent and write D =7 E iff D <7 E and D >7 E. Formally,
a cofinal type is an equivalence class under the Tukey order, we abuse the notation
and call every representative of the class a cofinal type. Notice that a directed set D
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is cofinally equivalent to any cofinal subset of D. In [15], Tukey proved that D =1 E
iff there is a directed set (X, <y) such that both D and E are isomorphic to a cofinal
subset of X. We denote by D, the set of all cofinal types of directed sets of cofinality
<k.

Consider a sequence of directed sets (D; | i € I'), we define the directed set which
is the product of them (]_[ ier Di. <) ordered by everywhere-dominance. i.e., for two
elements d. e € [[,., Di weletd < eifand onlyifd(i) <p, e(i) foreach i € I. For
X C[lies Di. let mp, be the projection to the i-coordinate. A simple observation
[12. Proposition 2] is that if # is finite, then D; x --- x D, is the least upper bound
of Dy, .... D, in the Tukey order. Similarly, we define a §-support product ]_[,569, D;;
for each i € I, we fix some element 0p, € D; (usually minimal). Every element
vE ]_[?69, D; is such that | supp(v)| < 6. where supp(v) := {i € I | v(i) # Op, }. The
order is coordinate wise.

§2. Characteristics of directed sets. We commence this section with the following
two lemmas which will be used throughout the paper.

LemMa 2.1 (Pouzet [7]). Suppose D is a directed set such that cf (D) = « is infinite,
then there exists a cofinal directed set P C D of size k such that every subset of size k
of P is unbounded

ProOF. Let X C D be a cofinal subset of cardinality x and let {x, | @ < k} be
an enumeration of X. Let P := {x, | a < x and for all f < a[x, £p xp]}. We claim
that P is cofinal. In order to prove this, fixd € D. As X is cofinal in D, fix a minimal
a < k such that d <p x,. If x, € P, then we are done. If not, then fix some f < «
minimal such that x, <p xg. We claim that x; € P, i.e., thereisno y < f such that
Xg <p X,.Suppose there is some y < f such that xg <p x,. then x, <p x,, which
is a contradiction to the minimality of . Note that d <p xg € P assought. As Pis
cofinalin D, ¢f(D) =k, P C X and |X| = &, we get that |P| = &.

Finally, let us show that every subset of size x of P is unbounded. Suppose on the
contrary that X C P is a bounded subset of P of size . Fix some xz € P above X
and f < o < s such that x, € X, but thisis an absurd as x, <p xgandx, € P. -

Fact 2.2 (Kuzeljevic-Todor&evi¢ [6, Lemma 2.3])._ Let A > w be a regular
cardinal and n < w be positive. The directed set [A*"]~* contains a cofinal subset
Dpim<i of size /1+".wilh the property thaﬂl every subset ofﬁwn]g of size > 1 is
unbounded in [A"1=*. In particular, [A7"1=% belongs to D;n. i.e. cf ([AT"]S4) < A7,

Recall that any directed set is Tukey equivalent to any of its cofinal subsets, hence
Dpmzr =1 [AT54

As part of our analysis of the class Dy,, we would like to find certain traits of
directed sets which distinguish them from one another in the Tukey order. This was
done previously, in [4, 9, 14]. We use that the language of cardinal functions of

ideals.

DeriNITION 2.3, For aset D and an ideal Z over D, consider the following cardinal
characteristics of Z:

eadd(Z) :==min{sk | AC L |Al =k UAEZT}:
enon(Z) :=min{|X|| X C D, X ¢ T}:
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e out(Z) ;== min{f < |D|* | ZN[D]’ = 0}:
ein(Z.x) ={0 <k |VX €[D]*3Y e [X]’ NT}.

Notice that add(Z) < non(Z) < out(Z).

DEFINITION 2.4. For a directed set D, denote by Z,q(D) the ideal of bounded
subsets of D.

PROPOSITION 2.5. Let D be a directed set. Then:

(1) non(Zpg(D)) is the minimal size of an unbounded subset of D, so every subset
of size less than non(Zypq(D)) is bounded.

(2) If 0 < out(Zpq(D)), then there exists in D some bounded subset of size 0.

(3) If 0 > out(Zpa (D)), then every subset X of size 0 is unbounded in D.

(4) If 0 € in(Zpa(D). k). then for every X € [D]* there exists some B € [X]’
bounded.

(5) For every 0 < add(Zvq(D)) and a family A of size 0 of bounded subsets of D.
the subset | J A is also bounded in D.

Let us consider another intuitive feature of a directed set, containing information
about the cardinality of hereditary unbounded subsets, this was considered
previously by Isbell [4].

DEFINITION 2.6 (Hereditary unbounded sets). For a directed set D, set
hu(D) := {xk € Card(|D|") | 3X € [D]*[VY € [X]" is unbounded]}.

PROPOSITION 2.7. Let D be a directed set. Then:

o If cf(D) is an infinite cardinal, then cf(D) € hu(D).

o Ifout(Zpq(D)) < k < |D|. then k € hu(D).

e For an infinite cardinal k we have that non(Zyy(k)) = cf(k), out(Zpg(D)) = &
andhu(k) = {4 € Card(s™) | 1 = cf(x)}.

o If k = cf(D) = non(Zpg(D)), then D =7 &.

e For two infinite cardinals k > 0 we have that non(Zyq([£]<?)) = cf(0).

e For a regular cardinal k and a positive n < , out(Ibd(Q[KM]gn)) > Kk and
hu(D,em<r) = {0 D) |y < n}.

o Ifk = cf(D) is regular, 0 = out(Zyy(D)) = non(Zypy(D)) and 0" = k for some
n<ow.then D =7 [k]<Y.

In the rest of this section we consider various scenarios in which the traits of a
certain directed set give us information about its position in the poset (D, <7).

LemMA 2.8. Suppose D is a directed set, k is an infinite regular cardinal and X C D
is an unbounded subset of size k such that every subset of X of size < & is bounded.
Then € hu(D).

PrOOF. Enumerate X := {x, | @ < k}, by the assumption, for every a < x we
may fix some z, € D above the bounded initial segment {x; | f < a'}. We show that
Z :={z, | @ < K}, witnesses k € hu(D). First, let us show that | Z| = k. Suppose
on the contrary that Z := {z, | @ < x} is of cardinality < . Then for some & < &,
the element z, is above the subset X, hence X is bounded which is absurd. Now,
let us prove that Z is hereditarily unbounded. We claim that every subset of Z of

https://doi.org/10.1017/js1.2023.32 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.32

COFINAL TYPES BELOW X, 5

cardinality & is also unbounded. Suppose not, let us fix some W € [Z]* bounded by
some d € D, but then d is above X contradicting the fact that X is unbounded. -

LeEMMA 2.9. Suppose D is a directed set and k is an infinite cardinal in hu(D), then
K ST D .

Proor. Fix X C D of cardinality x such that every subset of X of size k is
unbounded and a one-to-one function f : kK — X, notice that f is a Tukey function
from k to D as sought. -

COROLLARY 2.10. Suppose D is directed set, k is regular and X C D is an
unbounded subset of size K such that every subset of X of size < & is bounded, then
K ST D.

The reader may check the following:

e For any two infinite cardinals A and « of the same cofinality, we have 1 =7 k.
o For an infinite regular cardinal k, we have k =7 [k]<".

o hu([[2, @11) = {on | n < 0}.

LEMMA 2.11. Suppose D and E are two directed sets such that for some 0 € hu(D)
regular we have 0 > cf(E), then D 41 E.

PrOOF. By passing to a cofinal subset, we may assume that |E| = cf(E). Fix
0 € hu(D) regular such that ¢f(E) < 6 and X € [D]? witnessing 0 € hu(D). i.e..
every subset of X of size # is unbounded. Suppose on the contrary that there exists a
Tukey function f : D — E. By the pigeonhole principle. there exists some Z € [X]’
and e € E suchthat f”Z = {e}. Asf is Tukey and the subset Z C X is unbounded,
f7Z is unbounded in E which is absurd. -

Notice that for every directed set D, if cf(D) > 1. then cf(D) is an infinite cardinal.

As a corollary from the previous lemma, 4 €7 & for any two regular cardinals
A > k where A is infinite. Furthermore, the reader can check that A £ k, whenever
A < k are infinite regular cardinals.

LeEmMA 2.12. Suppose C and D are directed sets such that C <t D, then cf(C) <
cf(D).

PROOF. Suppose |D| = cf(D) and let f/ : C — D be a Tukey function. As f is
Tukey, foreveryd € D theset{x € C | f(x) = d}isboundedin Cbysomec, € C.
Note that for every x € C, we have x <¢ c¢y(,). hence the set {c; | d € D} is cofinal
in C. So cf(C) < |D| = cf(D) as sought. =

LEMMA 2.13. Let k and 0 be two cardinals such that 0 < k = cf (k).
Suppose D is a directed set such that cf(D) < k and non(Zyq(D)) > 0, then D <r
[£]<0. Furthermore, if 0 € in(Zpnq(D). k). then D <7 [k]<’.

Proor. First, we show that there exists a Tukey function f : D — [k]<?. Let
us fix a cofinal subset X C D of cardinality < s such that every subset of X of
cardinality < 6 is bounded. As |X| < k we may fix an injection f : X — [k]', we
will show f"is a Tukey function. Let Y C X be a subset unbounded in D, this implies
|Y| > 0. As f is an injection, the set | J /7Y is of cardinality > 6. Note that every
subset of [£]<? whose union is of cardinality > @ is unbounded in [£]<’. hence £ Y
is an unbounded subset in [£]<? as sought.
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Assume 0 € in(Zyq(D). k). we are left to show that [£]<? £ D. Suppose on the
contrary that g : [k]<? — D is a Tukey function. We split to two cases:

» Suppose |g”[k]'| < k. As & is regular, by the pigeonhole principle there exists
a set X C [k]' of cardinality . and d € D such that g(x) = d for each x € X.
Notice g” X is a bounded subset of D. As X C [k]' is of cardinality x and & > 0, it
is unbounded in [x]<’. Since g is a Tukey function. we get that g” X is unbounded
which is absurd.

» Suppose |g”[x]'| = &. Let X := g”[k]", by our assumption on D, there exists
a bounded subset B € [X]’. Since B is of size 0, we get that (g"'[B]) N[x]' is of
cardinality > 0, hence unbounded in [£]<’, which is absurd to the assumption g is
Tukey. o

ReMARK 2.14. For every two directed sets, D and E., if non(Zyg(D)) <
non(Zpg(E)). then D «£7 E. For example, § %7 [x]=0.

LEmMA 2.15. Let & be a regular infinite cardinal. Suppose D and E are two directed
sets such that |D| > k and out(Zyq(D)) € in(Zpa(E). k), then D 47 E.

Proor. Let 0 := out(Zyq(D)). By the definition of in(Zpg(E).x), as 60 €
in(Zyq(E). k), we know that 0 < k. Notice that every subset of D of size > 0 is
unbounded in D and every subset of size x of E contains a bounded subset in £ of
size 0.

Suppose on the contrary that there exists a Tukey function f : D — E. We split
to two cases:

» Suppose |f”D| < k, then by the pigeonhole principle there exists some
X € [D]* and e € E such that f”X = {e}. As |X| =& > 6, we know that X is
unbounded in D, but /X is bounded in E which is absurd as f is a Tukey function.

» Suppose |f”D| > x. by the assumption there exists a subset Y € [f”D]’
which is bounded in E. Notice that X := f~!Y is a subset of D of size > 6. hence
unbounded in D. So X is an unbounded subset of D such that f”X = Y is bounded
in E, contradicting the fact that f is a Tukey function. .

LeEMMA 2.16. Suppose & is a regular uncountable cardinal, C and (D, | m < n) are
directed sets such that |C| < k < cf(D,,) and non(Zyg(D,,)) > 0 for every m < n.
Then 6 € in(Zpa(C % [],,c,, D). K)-

Proor. Suppose X C C x [],,., Dm is of size k. we show that X contains a
bounded subset of size 0. As |C| < k, by the pigeonhole principle we can fix some
Y € [X]* and ¢ € C such that z¢”Y = {c¢}. Suppose on the contrary that some
subset Z C Y of'size 0 is unbounded., it must be that for some m < n the set np,,”Z
is unbounded in D,,. but this is absurd as non(Zyq(D,,)) > 0 and |np,”Z| < 0. -

LemMma 2.17. Suppose C, D and E are directed sets such that:

e forevery partition D = | J
X C D, of size k;

o |C| < k;

e non(Zpy4(E)) > &.

Then D L1 C x E.

< Dy there exists an ordinal y < k., and an unbounded
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PrOOF. Suppose on the contrary, that there exists a Tukey function /4 : D —
C x E.Forc e C,letD.:={x € D | Je € E[h(x) = (c, e)]}. Since A is a function,
D :={J,c¢ D.isapartition to < x many sets. By the assumption, there exists ¢ € C
and an unbounded subset X C D, of cardinality x. Enumerate X = {x; | { <k}
and let e € E be such that /1(xz) = (c. ez). for each & < k. As non(Zq(E)) > k.
there exists some upper bound e € E to the set {e: | £ < k}. Since X is unbounded
and £ is Tukey, h”X = {(c.e;) | ¢ < k} must be unbounded, which is absurd as
(c.e) is bounding it. .

Note that the lemma is also true when the partition of D is of size less than «.

§3. The Catalan structure. The sequence of Catalan numbers (¢, | n < w) =
(1.1,2,5,14,42, ...) is an ubiquitous sequence of integers with many characteriza-
tions, for a comprehensive review of the subject, we refer the reader to Stanley’s
book [11]. One of the many representations of ¢,, is the number of good n-
paths (Dyck paths), where a good n-path is a monotonic lattice path along the
edges of a grid with n x n square cells, which do not pass above the diagonal. A
monotonic path is one which starts in the lower left corner, finishes in the upper
right corner, and consists entirely of edges pointing rightwards or upwards. An
equivalent representation of a good n-path, which we will consider from now on,
is a vector p of the columns’ heights of the path (ignoring the first trivial column),
i.e., a vector p = (po. ..., pua) of length n — 1 of <-increasing numbers satisfying
0 < pr <k+1, forevery 0 < k < n— 2. We consider the poset (C,. <lwhere Knis
the set of all good n-paths and the relation < is defined such that @ <1 4 if and only
if the two paths are distigct and for every k with 0 < k < n -2 we have b, < ay,
in other words. the path b is below the path a (gllovzing overlaps). Notice that for
two distinct good n-paths d and b. either @ £ b or b # a. A good n-path b is an
immediate successor of a good n-path @ if @ <1 b and @ — b is a vector with value 0
at all coordinates except one of them which gets the value 1.

Suppose @ and b are two good n-paths where b is an immediate successor of a.
Let i < n — 2 be the unique coordinate on which @ and b are different angl a; be
the value of @ on this coordinate. i.e.. a; = b; + 1. We say that the pair (@.b) is on
the k-diagonal if and only if i + 1 — a; = k and b is an immediate successor of a
(Figure 1).

In this section we show the connection between the Catalan numbers and cofinal
types. Let us fix n < w. Recall that for every k < @, we set V. := {1, o, [ ]<“" |
0<m<k} F,:=Ui<, Vi and let S, be the set of all finite products of elements
in F,. Our goal is to construct a coding which gives rise to an order-isomorphism
between (S, /=7. <r) and (K,;2. <).

To do that, we first consider a “canonical form” of directed sets in S,,. By Lemma
2.13 the following hold:

(a) Forall0 <I/<m <k <wwehave l <7 w; <7 [0]"%" <1 [wk].
(b) For all 0</<t<m<k<w with (I.k)# (t.m) we have [w,]<” <r
[wr]°”" and @, <7 [0r]=1.

Notice that (a) implies (¥}, <7) is linearly ordered. A basic fact is that for two
directed sets C and D such that C <7 D, we have C x D =p D. Hence, for every
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FIGURE 1. The good 4-path (1,1, 3).

D € S, we can find a sequence of elements (D* | k < n), where D* € V} for every
k <n, such that D = ]_[k <n D*. As we are analyzing the class Dy, under the
Tukey relation <7, two directed sets which are of the same =7-equivalence class are
indistinguishable, so from now on we consider only elements of this form in S,,.
We define a function § : S, — S, as follows: Fix D € S, where D =[], _, D*.
Next, we construct a sequence (Dy | k < n) by reverse recursion on k < n. At the
top case. set D, := D". Next, for 0 < k < n. If by (b), we get that DX <7 D™
for some k < m < n, then set D, := 1. Else, let D; := D*. Finally, let F(D) :=
[Ti<, Dr. Notice that we constructed F(D) such that F(D)=r D. We define

7o = Im(F).

The coding. We encode each product D € 7, by an (n + 2)-good path vp :=
(vo. ....vy). Recall that D := [], ., Di. where D, € V) for every k < n. We define
by reverse recursionon 0 < k < . the elements of the vector vp such thatv, < k + 1
as follows: Suppose one of the elements of ([wi]<“, ..., [wk]<?F1, wy) is equal to
Dy, then let v, be its coordinate (starting from 0). Suppose this is not the case, then
ifk =n, weletv, :=n+ 1else vy :=min{vg, 1.k + 1},

Notice that by (b). if 0 < i < j < n, then v; < v;. Hence, every element D € 7,
is encoded as a good (n + 2)-path.

To see that the coding is one-to-one, suppose C, D € 7T, are distinct. Let k :=
max{i < n | C; # D;}. We split to two cases:

» Suppose both C; and Dy are not equal to 1, then clearly the column height of
vc and vp are different at coordinate k + 1.

» Suppose one of them is equal to 1. say Cy. then Dy # 1. Let v¢ := (v ....v5)
and Up = (vf....vP). Suppose k = n. then clearly v? < v¢. Suppose k < n, then
vP = wf for k <i < n. By the coding. v < k + 1 and by (b) vP <v? =vf,,.
but v¢ := min{k 4 1.v{,,}. Hence vP < vf as sought.

To see that the coding is onto, let us fix a good (n + 2)-path v := (v, ..., v,). We
construct (Dy | k < n) by reverse recursion on k < n. At the top case, set D, to be
the v, element of the vector ([w,]<?, ..., [0, ]<?*!, Wy, 1). Fork < n,if vy = vjyq, let
Dy := 1. Else, let Dy, be the kth element of the vector ([w;]<?, ..., [wi ]!, w, 1).
Let D =[], ., Dk. notice that as ¢ represents a good (n + 2)-path we have D =
$(D), hence D € 7,. Furthermore, ¥p = 9, hence the coding is onto as sought. As
a Corollary we get that |T,| = ¢42.

In Figure 2 we present all good 4-paths and the corresponding types in 7, they
encode.

LemMA 3.1. Suppose C.D € T, and vp < v¢c, then D <t C.
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(1) 1 (4) w2

(5) w X ws (6) wx w2 (8) [wa] <

(9) wx w1 X we (10) [wi]=* (11) w X [w2] <t (12) [wi]=% X wa

(13) fwn] = X [wo] = (14) fwo] =
FIGURE 2. All good 4-paths and the corresponding types in 7 they encode.

Proor. Let D =[], ., Dy and C =[], ., C. Note that if D; <7 C for every
k <n,thenD <7 C as sTought. Fixk <n, if_Dk = 1, then clearly D, < C. Suppose
D;. # 1. we split to two cases:

» Suppose C; # 1. Asvf < v and by (a) we have Dy <r C; <7 C as sought.

» Suppose G = 1. letm :=max{i <n |k <i, vf =vf}. AsvS <i+ 1. bythe
coding m is well-defined and v§ = v < k < m. Notice that C,, = [w,,]<“» where
p =S and Dy =7 [ ]<“?. So by (b), D; <7 C,, <7 C as sought. 4

LemMA 3.2. Suppose C.D € T, and Up 4 vc. then D 47 C.

Proor. Let D =], Dk. C =[licp Ck. Uc:=(v§.....vf) and ¥p =
(. ....vP7) As Up # vc. we can define i = min{k <n |vS > vP}.

Let p:=v? and r = max{k <n|v” =vP}. notice that p <i. We define a
directed set F such that F <p D.

» Suppose p =i and let F = w;. If r =i, then clearly F = D; and F <7 D as
sought. Else, by the coding D, = [w,]<“?. By Lemma 2.13, we have F <7 D as
sought.

» Suppose p < iandlet F =2

(b), we have F <7 D as sought.

j<op . By the coding D, = [w,]<*7 and by Clause

[w;
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Notice that out(Zy4(F)) = @, and cf (F) = w;. As F <7 D, itis enough to verify
that F £ C.

As vc is a good (n + 2)-path, we know that vkc > p for every k > i. Consider
A:={i <k <n|C# 1}. We split to two cases:

» Suppose A4 = (). Then cf([, ., Cx) < w;. As cf(F) = w;, by Lemma 2.12 we
have that F £7 [], ., Ck as sought.

» Suppose 4 # 0. Let E :=[],.; Ck % [[4c4 Cx Notice that cf([],.; Ci) <
@i, [li<k<n Ck =1 [l4es Cx and C =7 E. Furthermore. for each k € 4. we
have non(Z,;(Cy)) > @,. By Lemma 2.16, we have w, € in(Zpq(E). ;). Recall
out(Zya(F)) = w,. By Lemma 2.15, we get that F <7 E, hence F £r C as
sought. -

THEOREM 3.3. The posets (T,. <r) and (K, 2. <) are isomorphic.

Proor. Define f from (7,, <7) to (K,42. <), where for C € T, we let f(C) :=
vc. By Lemmas 3.1 and 3.2, this is indeed an isomorphism of posets.

Furthermore, we claim that 7, contains one unique representative from each
equivalence class of (S,.=r). Recall that the function § is preserving Tukey
equivalence classes. Consider two distinct C, D € 7,. As the coding is a bijection,
vc and vp are different. Notice that either v¢ 4 ¥p or Up 4 Uc. hence by Lemma
3.2, C #r D as sought. -

Consider the poset (7,,<r), clearly 1 is a minimal element and by Lemma
2.13, [w,]=* is a maximal element. By the previous theorem, the set of immediate
successors of an element D in the poset (7,. <7 ). is the set of all directed sets C € 7T,
such that ¥ is an <-immediate successor of Up.

LeEMMA 3.4. Suppose G, H € T,, H is an immediate successor of G in the poset
(T,.<7) and (Vg. vy ) are on the I-diagonal. Then there are C, E, M, N directed sets
such that:

eG=r CxMxFEand H =7 C x N x E;
o for some k < n, cf(N) = wy, |C| < wy and either E =7 1 or non(Zpq(E)) >
Wfe_j .

Furthermore,

o [fl=0,then M =1 and N = wy.
o Ifl =1,thenk >1and M = wj, and N = [cw; <@k,
o If1> 1, thenk > [ and M = [ ]<P+! and N = [} <@k

ProoFr. As H is an immediate successor of G in the poset (7,. <7), we know that
Uy is an immediate successor of ¥y in (K, 2. <1). Let k be the unique k < n such
that v, = vk, + 1.

Let 4 := (v%.....v%) be a good (n + 2)-path coded by G. We construct (M; |
i < n) by letting M; be the ith element of the vector ([w;]<?, ..., [@;]<?!, w;, 1) for
every i < n. Notice that G =7 [[,, M,. Similarly, we may construct (N; | i < n)
such that H =7 [[,, N;. Clearly. M; = N; for every i # k.

Let C :=[],., M; and E := [],., M;. Notice that |C| = ¢f(C) < wy and either
E =71 or non(Zyg(E)) > wy_;. Moreover, G =7 C x My x E and H =7 C x
Ni x E. We split to cases:
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o If/ :O,thenvlgl =k + 1, hence M;. =1 and N; = wy.
e If/ =1, then 1)1]‘{ = k. hence M} = w; and Ny = [w;]<?k1.
o If /> 1, then v}, = k — I + 1. hence My, = [w;]<?¢'+1 and Ny = [y ]<“k.
_|

THEOREM 3.5. Suppose G, H € T,, H is an immediate successor of G in the poset
(Tn. <7) and (g, Uy ) are on the I-diagonal.

o If| = 0, then there is no directed set D € Dy, such that G <r D <t H.
o If [ > 0, then consistently there exist a directed set D € Dy, such that G <t
D<r H.

Proor. LetC, E, M, N beasinthe previouslemma.soG =7 C x M x E,H =7
C x N x E and for some k < n, |C| < w and either E =7 1 or non(Zy4(E)) >
wy—;. We split to three cases:

e Suppose / =0, then G =7 C x E and H =7 C x wj x E, by Theorem 4.1
there is no directed set D such that G <7 D <p H.
e Suppose/ = 1,thenk > 1and N = [w;]<?1! and M = wy.
— Suppose k = 1, then under the assumption b = w1, by Theorem 5.9 there
exists a directed set D such that G <7 D <p H.
— Suppose k > 1. then under the assumption 282 = X;_; and 281 = X,
by Corollary 5.1 there exists a directed set D such that G <7 D <7 H.
e Suppose / > 1. then k > 2. Let 0 = wy_; and 4 = wj_;. Notice N = [wy]
and M = [w;]<Y. In Corollary 5.11, we shall show that under the assumption
10 <t and &71(S.1) for some stationary set S C Eg]", there exists a
directed set D such that G <7 D < H. =

<0

§4. Empty intervals in Dy . Consider two successive directed sets in the poset
(7., <7), we can ask whether there exists some other directed set in between in the
Tukey order. The following theorem give us a scenario in which there is a no such
directed set.

THEOREM 4.1. Let k be a regular cardinal. Suppose C and E are two directed sets
such that cf(C) < k and either E =7 1 or k € in(Tpq(E). &) and k < cf(E). Then
there is no directed set D such that C x E <r D <r C x k X E.

Proor. By the upcoming Lemmas 4.2 and 4.3. -

LemMa 4.2. Let & be a regular cardinal. Suppose C is a directed set such that
cf(C) < k., then there is no directed set D such that C <r D <1 C X k.

ProoF. Suppose D is a directed set such that C <7 D <7 C x k. Let us assume
Dis adirected set of size ¢f (D) such that every subset of D of size c¢f (D) is unbounded
in D. By Lemma 2.12 we get that ¢f(C) < cf(D) < k. We split to two cases:

» Suppose cf(C) < cf(D) < k. Let g: D — C x k be a Tukey function. As
|D| = cf(D) < k and & is regular there exists some a < & such that g”D C C x a.
We claim that z¢ o g is a Tukey function from D to C, hence D <; C which is
absurd. Suppose X C D is unbounded in D, as g is a Tukey function, we know
that g” X is unbounded in C x k. But as (7, o g)”X is bounded by o, we get that
(rc 0 g)”X is unbounded in C as sought.
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» Suppose cf(D) = «, notice that x € hu(D) is regular so by Lemma 2.9 we get
that k <7 D. We also know that C <7 D, thus k x C <7 D which is absurd. -

Note that non(Zpq(E)) > & implies that x € in(Zpq(E). &).

LemmaA 4.3. Let k be a regular cardinal. Suppose C and E are two directed sets
such that cf(C) < k < cf(E) and k € in(Zyg(E). k). Then there is no directed set D
such that C X E<y D <y C x Kk X E.

Proor. Suppose D is a directed set such that C x E <7 D <7 C x k X E, we
will show that either D =7 C x E or D =7 C x k x E. We may assume that every
subset of D of size cf(D) is unbounded and |C| = ¢f(C). By Lemma 2.12, we have
that cf(E) = cf(D).

Suppose first there exists some unbounded subset X' € [D]" such that every subset
Y € [X]<* is bounded. By Corollary 2.10, this implies that k <7 D. But as C x
E <y Dand D <7 C x k x E, this implies that C x k x E =7 D as sought.

Hereafter, suppose for every unbounded subset X € [D]” there exists some subset
Y € [X]<® unbounded. Let g : D — C X sk X E be a Tukey function. Define /1 :=
ncx e © g. Now, there are two main cases to consider:

» Suppose every unbounded subset X C D of size 4 > k which contain no
unbounded subset of smaller cardinality is such that 2”X is unbounded in
C x E.

We show that 4 is Tukey, it is enough to verify that for every cardinal
o < u < k and every unbounded subset X C D of size u which contain no
unbounded subset of smaller cardinality is such that 2”X is unbounded in
C x E.

As g is Tukey, the set g” X is unbounded in C x k x E. Notice that if the
set e g © g7 X is unbounded, then we are done. Assume that 7gxg 0o g” X is
bounded, then 7z, o g” X is unbounded.

»» Suppose |X| < k. As |g”X| < k, we have that 7, o g”X is bounded.
which is absurd.

»» Suppose | X| = &, by the case assumption there exists some Y € [X]<*
unbounded in D. But this is absurd as the assumption on X was that X contains
no subset of size smaller than | X' | which is unbounded.

»» Suppose | X| > k, by the case assumption, 47X is unbounded in C x E
as sought.

» Suppose for some unbounded subset X C D of size 1 > k which contains no
unbounded subset of smaller cardinality is such that #” X is bounded in C x E.
As g is Tukey. 7, o g” X is unbounded.

Let X, := X Ng'(C x {a} x E)and U, := Up<a X forevery o < k. As
g is Tukey and g” U, is bounded, we get that U, is also bounded by some
Ya €D. Let Y :={y, | @ < k}. We claim that Y is of cardinality x. If it
wasn’t, then by the pigeonhole principle as k is regular there would be some
a < k such that y, bounds the set X in D and that is absurd. Similarly, as X is
unbounded, the set Y and also every subset of it of size x must be unbounded.

Next, we aim to get Z € [Y]* such that n¢cxg 0 g”Z is bounded by some
(c,e) € C x E.Thiscan be done as follows: As |C| < k and & is regular, by the
pigeonhole principle, there exists some Zy € [Y]* and ¢ € C such that g”Z, C
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{c} x k x E. Similarly, if |ng 0 g”Z)| < k. by the pigeonhole principle, there
exists some Z € [Zy]® and e € E such that g”Z C {c} x k x {e}. Else, if
|ne”Zy| = Kk, thenas k € in(Zpg(E), k) for some B € [np 0 g”Zy]"and e € E,
Bis bounded in E by e. Fix some Z € [Z]® such that g”Z C {c¢} x k X B.
Note that Z is a subset of Y of size x, hence, unbounded in D. By the
assumption, there exists some subset W € [Z]<* unbounded in D. Note that
as k 1s regular, for some a < k, 7, 0 g”W C a. As g is Tukey, the subset
g”W C{c} x k x E isunbounded in C x k x E, but this is absurd as g” W
is bounded by (¢, . e). 4

§5. Non-empty intervals. In this section we consider three types of intervals in
the poset (7,, <7) and show each one can consistently have a directed set inside.

5.1. Directed set between 0 x 0+ and [0 T+]<¢. In[6. Theorem 1.1]. the authors
constructed a directed set between w; x w; and [w>]=” under the assumption 280 =
Ny, 281 = R, and the existence of an X,-Souslin tree. In this subsection we generalize
this result while waiving the assumption concerning the Souslin tree. The main
corollary of this subsection is:

COROLLARY 5.1. Assume 0 is an infinite cardinal such that 2° = 07, 207 — g+t
Suppose C and E are directed sets such that cf(C) < 07 and either non(Zyq(E)) > 0+
or E =7 1. Then there exists a directed set D such that C x 07 x 07" x E <r C x
D xE<y Cx[0T]=Y x E.

The result follows immediately from Theorems 5.3 and 5.4. First, we prove the
following required lemma.

LEmMMA 5.2. Suppose 0 is a infinite cardinal and D, J, E are three directed sets such
that:

ecf(D)=cf(J)=0"";

e 07 € in(Zpg(D), 07 ) and out(Zyy(J)) < 67
enon(Zyy(E)) > 0" or E =7 1;

e DX E<rJXxE.

ThenJ x E L7 D x E. In particular, D x E <7 J X E.

ProoF. Notice that D is a directed set such that every subset of size " contains
a bounded subset of size 0. Let us fix a cofinal subset 4 C J of size 07" such that
every subset of 4 of size > 0 is unbounded in J.

Suppose on the contrary that J x E <7y D x E. AsD x E <p J x E we get that
D x E =7 J x E, hence there exists some directed set X such that both D x E and
J x E are cofinal subsets of X.

We may assume that D has an enumeration D := {d, | @ < 7"} such that for
every f < o < 0" we have d, £ dg. Fix some e € E. Now, for each a € 4 take a
unique x, € D and some e, € E such that (a,e) <y (x,.e,). To do that, enumerate
A ={a, | @« < 07" }. Suppose we have constructed already the increasing sequence
(vg | B < a) of elements in 7. Pick some £ < 67+ above {vs | f< a}. AsD x E
is a directed set we may fix some (x,,.¢,) := (d,,.e,) € D x E above (a,.e) and
(dg s e).
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Set T ={x, | a € A},since A x E is cofinal in X, the set T x FE is also cofinal in
Xand D x E.As|T| = 01" we get that there exists some subset B € [T]0+ bounded
in D. Let ¢ € D be such that b < ¢ for each b € B. Consider the set K = {a € 4 |
X, € B}.Since either non(Zpg(E)) > 0+ or E =1 1.as{e, | a € K}isofsize < 07,
itisbounded in E bysome é € E.So P := {(x,.e,) | a € K} is bounded in X. Since
B is of size > 0, the set K is also of size > 6. Thus, by the assumption on A4, the
set K x {e} isunbounded in J x E, but also in X because J x E is a cofinal subset
of X. Then, for each a € K we have (a,e) <y (x,.e,) <x (c.é), contradicting the
unboundedness of K x {e}inJ x E. .

THEOREM 5.3. Suppose 0 is an infinite cardinal and C, D, E are directed sets such
that:

(1) cf(D) =6+,
(2) Forevery partition D = U;r<9+ D,. thereisanordinal y < 0", and an unbounded
K C D, of size 6%.
(3) 0t e il’l(Ibd(D), 0++) andnon(Ibd(D)) =0".
(4) non(Zpg(E)) > 0% or E =7 1.
(5) Cis a directed set such that cf(C) < 07,
Then C x 07 x 07" x E<7y C xD x E<7 C x[07F]S% x E.

ProOOF. As cf(D) = 07, we may assume that every subset of D of size 07 is
unbounded. 4

Cram 5.3.1. 0T x 07" <r D.

PrROOF. As cf(D) = 07", we get by Lemma 2.9 that 67+ <7 D. Let K be an
unbounded subset of D of size 0, as every subset of size 6 is bounded, by Corollary
2.10 we get that 07 <7 D. Hence, 6 x 07 <7 D as sought. -

Cramnm 5.3.2. D <7 [07F]=0.
PrOOF. Ascf(D) = 0% and non(Zpq(D)) = 0, by Lemma2.13, D <7 [0FF]=¢

as sought. —
Notice this implies that Cx0"x0"" xE<r CxD xE <7 C x
[0++]=0 x E.

By Lemma 2.17, as |C x 07| < 6%, non(Zpg(0™" x E)) > 0" and Clause (2) we
getthat D £ C x Ot x 01" X E.

Cramm 5.3.3. Cx[07F ]S x E £ C x D x E.

Proor. Recall that Dy+11<0 =7 [0F+]=Y. Notice that following:

(] Cf(C X D) = Cf(C X @[9++]§9) = 0++.

e By Clause (3) we have that 0% € in(Zyq(C x D).07") and out(Zpy(C x
5‘3[0++]§0)) <0t

e non(Zpy(E)) > 0T or E = 1.
oC><D><E§TC><ZD[6++]§9><E.

So by Lemma 5.2 we are done. -

We are left with proving the following theorem, in which we define a directed set
D, using a coloring c.
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THEOREM 5.4. Suppose 0 is an infinite cardinal such that 20 = 0+ and 20" = 6++.
Then there exists a directed set D such that:

(1) cf(D) =0+,

(2) Forevery partition D = U}, <o+ Dy. thereisan ordinal y < 0. and an unbounded

K C D, of size 0.

(3) 0+ e in(Ibd(D), 9++> andnon(Ibd(D)) =0,

The rest of this subsection is dedicated to proving Theorem 5.4. The arithmetic
hypothesis will only play a role later on. Let 8 be an infinite cardinal. For two sets
of ordinals 4 and B, we denote 4 ® B := {(a, ) € A x B | @ < }. Recall that by
[3. Corollary 7.3], onto(S. JY[07+], 0+) holds for S := [07+]" . This means that
we may fix a coloring ¢ : [0*+]*> — 07 such that for every S € S and unbounded
B C 0", there exists § € S such that ¢”({0} ® B) = 0.

We fix some S € S. For our purpose, it will suffice to assume that S is nothing
but the whole of 6. Let

Dei={X €[00 | Vs € S[{c(8.8) | f€ X\ (6 + 1)} € NSy:]}.

Consider D, ordered by inclusion, and notice that D, is a directed set since NS+ is
an ideal.

PrOPOSITION 5.5.  The following hold:

. [9++]§9 g D(? g [0++]§9+.

e non(Zpq(D.)) > add(Zyg(D.)) > 07, i.e.. every family of bounded subsets of D,
of size < 07 is bounded.

o If20" = 0+ then |D.| = 0F. and hence D, € Dys++.

LEMMA 5.6. For every partition D, = U,/ <o+ Dy. there is an ordinal y < 0", and
an unbounded E C D, of size 0.

PrROOF. As [07"]" is a subset of D, the family {D, | y < 0"} is a partition of
the set [0+ ]! to at most §F many sets. As 07 < 07+ = cf(0**), by the pigeonhole
principle we get that for some y < 6+ and b € [0+1°", we have [b]! C D,. Notice
that by the assumption on the coloring c, there exists somed € S andd < b’ € [b]’ "
such that ¢”(6 ® b') = 0*. Clearly the set E := [b']" is a subset of D, of size
which is unbounded in D.. =

LemMA 5.7. Suppose 20 = 0% then 0% € in(Zpg(D.). 0F7).

Proor. We follow the proof of [6, Lemma 5.4].

Let D’ be a subset of D, of size 0" we will show it contains a bounded subset of
size 0, let us enumerate it as {7}, | y < 0" *}. Let, foreach X € D, andy € S, N}
denote the non-stationary set {c(y. #) | f € X \ (y +1)}. and let G;¥ denote a club
in 6 disjoint from N,*.

As 2’ = 0" we may fix a sufficiently large regular cardinal y. and an elementary
submodel M < H, of cardinality 6 containing all the relevant objects and such that
MY C M.Denoted = M N O, noticed € E OF. Fix an increasing sequence (y: |
£ < 0%) in o such that sup{y: | ¢ < 87} =0. Enumerateo NS = {s: | < 61}. In
order to simplify notation, let Gg denote the set GS? foreachy < 07" and & < 07.
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We construct by recursion on & < 67 three sequences (0: | £ < 01), (T | £ < 67)
and (5: | £ < 67) with the following properties:

(1) (0 | £ < 67) is an increasing sequence converging to J.

(2) (T | € < 07) is a decreasing C-chain of stationary subsets of " each one
containing 0 and definable in M.

(3) ne1¢< H*} is an increasing sequence of ordinals below 0.

4) Gy = G" Ny, for{ < u<0F.
» Base case: Let 7y be the first limit point of Gg . Notice that Gg N 7o 1s an infinite
set of size < 6 below J, hence it is inside of M. Let
To={y< 0t | GSnn= Gy nno}.

Since § € Iy, the set Iy is stationary in 0. Let &y := min(T).
» Suppose & < 6T, and that Je, I and 7 have been constructed for each & < &.
Let 77, be the first limit point of Ggo \ sup{7e

Tey ={y € [ Te | V& < &IGE Mgy = GL N, 1}
£<do
Since I, belongs to M, and since d € I'¢,. it must be that I'¢ is stationary in o+,
Since Iy, is cofinal in §** and belongs to M., the set N I, is cofinal in J. Define

J¢, be the minimal ordinal in 6 N I, greater than both sup{d¢ | & < &} and y¢,. It
is clear from the construction that conditions (1 — 4) are satisfied. -

The following claim gives us the wanted result.

Cramv 5.7.1. The set {Ty, | ¢ < 0%} is a subset of D' of size 0 which is bounded
inD,.

PrOOF. As the order on D, is C, it suffices to prove that the union 7 =
Ue<o+ Ts. € Dc. Since, for each ¢ < 0. both e and (T, | y < 07) belong to M., it
must be that T;. € M.Since 0" € M and M = [T;.| < 07, wehave T;, C M. Thus
T C M and furthermore T C 6. This means that, in order to prove that T € D,,
it is enough to prove that for each 7 € S N4, the set {c(¢,B) | € T\ (t+1)} is
non-stationary in 0. Fix some ¢ € S NJ. Let { < 07 be such that s; = 7. Define

G:=a6n() G Aé<9+G ).
&<
Since the intersection of < #*-many clubs in 0% is a club, and since diagonal
intersection of # many clubs is a club, we know that G is a club in 6.

We will prove that G N {c(¢,B) | € T\ (t+ 1)} = 0. Suppose a < 0" is such
thata € GN{c(t.B) | p € T\ (¢ + 1)}. This means that « € G and that for some

T.
u<0%and pecTs, \(t+1) we have a = ¢(z, f). So a € N, °* Note that this
implies that o ¢ Gf". Let us split to three cases:
» Suppose u < (., thensincea € i<t G?é, we have that o € G?" which is clearly

contradicting o ¢ G(S"
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» Suppose 4 > { and a < 77,. Then by (4). we have that Gg NNy = Gf" N7, As
a ¢ G?" and a < 7, it must be that o ¢ Gg. Recall that a € G. but this is absurd
angGgandagéGg. ‘

» Suppose u > { and o > 1, > u. As o € G, we have that o € A g+ ch_ As
a > u, we get that o € G?" which is clearly contradicting o ¢ G?". -

5.2. Directed set between « x w; and [w;]<®. As mentioned in [8], by the results
of Todorcevi¢ [13], it follows that under the assumption b = w; there exists a
directed set of size w; between the directed sets @ x wy and [w;]<*. In this subsection
we spell out the details of this construction.

For two functions f, g € “w, we define the order <* by f <* g iff the set {n <
w | g(n) > f(n)}isfinite. Furthermore, by f* <1 g we means that there exists m < w
such that foralln < mwehave f(n) < g(n)and f (k) < g(k) wheneverm < k < w.
Assuming f <* g, welet A(f. g) :=min{m < w | Vn > m[f(n) < g(n)]}.

The following fact is a special case of [13, Theorem 1.1] in the case n = 0, for
complete details we give the proof as suggested by the referee.

FacT 5.8 (Todor&evi¢ [13, Theorem 1.1]). Suppose A is an uncountable sequence
of “w of increasing functions which are <*-increasing and <*-unbounded, then there
are f,g € Asuchthat f Qg.

PrOOF. Let 4 :={g,| @ <w;} be an uncountable sequence of increasing
functions of “w which are <*-increasing and <*-unbounded.

Let us fix a countable elementary sub-model M < (H,,.€) with 4 € M. Let
d:=w NM,B:=w\(©+1)and write B, := {f € B | A(gs.gs) =n}. As B =
U, <o Bn- let us fix some n < @ such that B, is uncountable. As {g, | o € B, } is
unbounded. we get that the set K := {m < w | sup{gg(m) | p € B,} = w} is non-
empty, so consider the minimal element, m := min(K). For ¢ € "w, denote B =
{p € B, |t C gg}. By minimality of m, the set {r € " | B}, # 0} is finite, so we can
easily find some ¢ € "w such that sup{gs(m) | p € B}} = w.

Note that theset {# < w; | ¢ C g} is a non-empty set that is definable from 4 and
t, henceitisin M. Let us fix some o € M N w; such that ¢ C g,. Putk := A(g.. g5).
and then pick # € B/ such that gz(m) > go(k + n). Of course. & < 6 < . We claim
that g, <1 gg as sought.

Let us divide to three cases:

o If i < m. then go(i) = (i) = gg(i).

o If m <i <k+n.then g,(i) < ga(k +n) < gg(m) < gp(i) recall that every
function in A4 is increasing.

oIf k+n<i<w, then Algy.gs) =k <i and go(i) < g5(i), as well as
A(gs.gp) = n < iand g5(i) < gg(i). Altogether. g, (i) < gg(i). 4

THEOREM 5.9. Assumeb = w. Suppose E is a directed set such thatnon(Zpqg(E)) >
w or E =7 1. Then there exists a directed set D such that

o xw xE<rDxE<7[w] xE.
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PrOOF. Let F:=(fo|a<w;) C“w witness b =w;. Recall F is a <*-
increasing and unbounded sequence, i.e., for every g € “w, there exists some a <
such that 3 £* g. whenever o < f < ;.

For a finite set of functions F C “w, we define a function / := max(F) which is
<-above every function in F by letting 4(n) := max{ f (n) | /' € F}. We consider the
directed set D := {max(F) | F C F, |F| < ¥y}, ordered by the relation <, clearly
D is a directed set. .

Cramm 5.9.1. Every uncountable subset X C D contains a countable B C X which
is unbounded in D.

Proor. Let X be an uncountable subset of D. As F is a <*-increasing and
unbounded, also X contains an uncountable <*-unbounded subset ¥ C X. As no
function g : @ — w is <*-bounding the set Y, we can find an infinite countable subset
B C Y and n < w such that {f(n) | f € B} is infinite. Clearly B is <-unbounded
in D as sought. -

CLamM 5.9.2. w € in(Zypg(D), w1).

Proor. We show that every uncountable subset of D contains a countable infinite
bounded subset. Let 4 C D be an uncountable set, we may refine 4 and assume that
it is <*-increasing and unbounded. We enumerate 4 := {g, | @ < w;} and define
a coloring ¢ : [@;]*> — 2. letting for a < f < w, the color c(a. ) = 1 iff g, < gp-
Recall that Erdés and Rado showed that w; — (w;.w + 1)2, so either there is an
uncountable homogeneous set of color 0 or there exists an homogeneous set of
color 1 of order-type w + 1. Notice that Fact 5.8 contradicts the first alternative,
so the second one must hold. Let X C w; be a set such that otp(X) = w + 1 and
¢”[X]? = {1}, notice that {g, | @ € X} is an infinite countable subset of 4 which is
<I-bounded by the function gy,.x(x) € 4 as sought.here .

Note that cf(D) = w;. hence D x E <7 [w1]<® x E.
CLammM 5.93. o xw; x E <y D x E.

PROOF. As every subset of D of size w; is unbounded, we get by Lemma 2.9 that
w1 <7 D. As D is adirected set, every finite subset of D is bounded. By Claim 5.9.1,
D contains an infinite countable unbounded subset, so by Corollary 2.10 we have
o <7 D.Finally, w x w; <r D as sought. =

Cram 5.94. D £r o x E.

ProOF. Recall that either non(Zpg(E)) > w or E =7 1. Note that if E =7 1,
then as cf (D) = w; > cf(w). we have by Lemma 2.12 that D £7 @ x E as sought.
Note that for every partition D = [ J{D, | n < w} of D, there exists some n < ®
such that D, is uncountable, and by Claim 5.9.1, there exists some X C D, infinite
and unbounded in D. As non(Zpg(E)) > w, by Lemma 2.17 we have D £7 @ x E
as sought. -

Cram 5.9.5. [o1]%” £7 D x E.

Proor. By Claim 5.9.2, every uncountable subset of D contains an infinite
countable bounded subset and every countable subset of E is bounded, we get
that w € in(Zpg(D % E), w1). As out(Zpq([w1]°?)) = w by Lemma 2.15 we get that
[01]°” £7 D x E as sought. -
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5.3. Directed set between [1]<¢ x [A1]= and [A1]<C. In [6. Theorem 1.2], the
authors constructed a directed set between [01]%? x [@,]=” and [w>]<® under the
assumption 2% = X;, 2% =X, and the existence of a non-reflecting stationary
subset of Eg>*. In this subsection we generalize this result while waiving the
assumption concerning the non-reflecting stationary set.

We commence by recalling some classic guessing principles and introducing a
weak one, named &g(S, 1), which will be useful for our construction.

DEerFINITION 5.10. For a stationary subset S C k:

(1) &(S) asserts the existence of a sequence (C, | @ € S) such that:
eforalla e S, C, C a;
o for every B C k. theset {a € S | BN a = C,} is stationary.
(2) &(S) asserts the existence of a sequence (C, | @ € S) such that:
o foralla € S Nacc(k), C, is a cofinal subset of « of order type cf («):
o for every cofinal subset B C &, the set {a € S | C, C B} is stationary.
(3) &/ (S.1) asserts the existence of a sequence (C, | a € S) such that:
e for all @ € S Nacc(k), C, is a cofinal subset of « of order type cf (a):
e for every partition (A4 | f < u) of k there exists some f# < u such that the
set {a € S | sup(C, N Ag) = a} is stationary.

Recall that by a Theorem of Shelah [10], for every uncountable cardinal 4 which
satisfy 2 = 1" and every stationary S C E j;f( ;- ©(S) holds. Ttis clear that O(S) =
&(S) = &ﬁ(S, 1). The main corollary of this subsection is:

COROLLARY 5.11. Let 0 < 2 be two regular cardinals. Assume .0 < 2+ and &)j(S, 1)
holds for some stationary S C E Zf. Suppose C and E are two directed sets such that

cf(C) < A* and non(Zpg(E)) > 0 or E =71 1. Then there exists a directed set D¢
such that:

CxI xS xE<y C x5 x De x E <7 C x[21]% x E.

In the rest of this subsection we prove this result.

Suppose C := (C, | @ € §) is a C-sequence for some stationary set S C E§+,
i.e., C, is a cofinal subset of « of order-type 6., whenever o € S. We define the
directed set D¢ := {Y € [A*]=Y | Va € S[|Y N C,| < 0]} ordered by C. Notice that
nOIl(Ibd(Dc)) =6 and [}.+]<9 - Dc.

Recall that by Hausdorff’s formula (A7) = max{i*, A%}, so if 2% < A*, then
(4F)% = A*. So we may assume |D¢| = A*.

Cramv 5.11.1. Suppose |Dc| = . then [A7]=% <r De.

Proor. Fix a bijection ¢: Dc — AT. Denote X :={xU{¢(x)}|x € Dc}.
clearly X is cofinal subset of D¢. Let us fix some injective function g : [A*]<¢ — X.
We claim that g is a Tukey function. which witness that [A7]=? <; D¢. Fix some
B C [4*]= unbounded in [AT]=Y, note that |B| > 0. As g is injective, we get that
g7 B is a set of size > 6. Notice that there exists Z € [ﬁ]"+ such that Z C | Jg”B.
Assume that g” B is bounded by d € D¢ in D¢. As De is ordered by C, we get that
Z Cd,so|d| > 0. But this is a absurd as every set in D¢ is of size < 0. =
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Notice that by Lemma 2.13 and Claim 5.11.1, as (1*)? =% we have
210 x 1120 <7 [A10 x De <r [#]<°. Hence. C x [A<? x [AT]50 x E <r
Cx[AY xDexE <7 Cx[A]< x E.

Cram 5.11.2. SupposeC is a &ﬁ(S, 1)-sequence and.

(i) Cis a directed set such that |C| < AT;
(ii) E is a directed set such that non(Zyg(E)) > 0 and cf(E) > A*.

Then C x D¢ L7 C X E.

ProoOF. Supposethat /' : C x D¢ — C x E isa Tukey function. Fix someo € C
and for each ¢ < AT, denote (c¢, x¢) := f (0, {¢}). Consider the set {(cz. x¢) | & <
At} Forevery ¢ € C, we define A, :={& < A" | ce =c}.clearly (4, | c € C)isa
partition of A" to less than AT many sets.

As C is a &% (S, 1)-sequence, there exists some ¢ € C and a € S such that |C, N
A.| = 0. Let us fix some B € [C, N 4.]°. Notice that the set G := {(0,{¢}) | ¢ €
B} is unbounded in C x D¢, hence as f is Tukey, f”G is unbounded in C x E.
The subset {x: | ¢ € B} of E is of size 6, hence bounded by some e. Note that
f7G ={(c.x:) | £ € B} is bounded by (¢, e) in C x E which is absurd. 4

By the previous claim, as A’ < 2*, we get that C x D¢ x [A]<? x E £ C x
[A]<¢ x [4*]=? x E. The following claim gives a negative answer to the question of
whether there is a C-sequence C such that D¢ =7 [A7]<.

In the following claim we use the fact that the sets in the sequence C are of a
bounded cofinality.

Cramv 5.11.3. Assume 70 < A*. Suppose S C E(’f is a stationary set and C :=
(Cy | @ € S) is a C-sequence, then D¢ #1 [AT]<0.

PrOOF. Let S C EZ)'+ and C := (C, | @ € S) be a C-sequence. Suppose we have
[27]1< <7 Dec.let f : [A*]<? — D¢ be a Tukey function and Y := f”[A*]'. Let us
split to two cases:

» Suppose | Y| < A*. By the pigeonhole principle. we can find a subset Q C [A]'
of size # such that f”Q = {x} for some x € D¢. As f is Tukey and Q is unbounded
in [A7]<Y, the set £ Q is unbounded which is absurd.

» Suppose | Y| = AT. As f is Tukey, every subset of Y of size 6 is unbounded
which is absurd to the following claim. o

SuBcram 5.11.3.1. There is no subset Y C D¢ of size A" such that every subset of
Y of size 6 is unbounded.

PROOF. Assume towards a contradiction that Y issuch a set. As 1 < AT, we may
refine Y and assume that ¥ = {y, | @ < A1} is a A-system with a root R separated
by a club C C 1%, i.e., such that for every oo < f < A", yo \ R <5 < yp \ R for
someyn € C.

We define an increasing sequence of ordinals (8, | v < 0%) where for each v < 02
we let f, :=sup{y: | £ <v}. As Cis a club, we get that f., € C foreachv < 6.

We aim to constructasubset X = {x; | j < 0} of Y, wesplit to two cases: Suppose
Py2 € S. Recall that otp(C/;()z) = 0 and sup(Cﬂoz) = Py2. so for every j < 0 we have

that the interval [fy.;. fy.(;11)) contains < 0 many elements of the ladder C By let us
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fix some x; € Y such that x; \ R C [By.;. Bp.(;41)) and x; \ R is disjoint from C .
If o ¢ S. define X := {x; | j < 0} where x; := yy.;.

Let us show that X ={x; | j <0} is a bounded subset of Y. which is a
contradiction to the assumption. It is enough to show that for every a € S, we
have that |(J X) N Cy| < 0. Leta € S.

» Suppose a > f2. as C, is a cofinal subset of o of order-type 6 and | J X is
bounded by S, it is clear that |(|J X) N Cu| < 6.

» Suppose a < fi;2. As C, if cofinal in o and of order-type 0, there exists some
J < @suchthatforall j < p < 6.wehave (x, \ R) N Co = 0. Asx, € D¢, for every
p < 0 and 0 is regular, we get that |(|J X) N C,| < 0 as sought.

» Suppose a = fi;2. Notice this implies that we are in the first case of the
construction of the set X. Recall that the A-system {x;|j < 0} is such that
(x; \R)N Cy =0. hence (IJX)N C, = RN C,. Recall that as xg € D¢, we get
that R N C, is of size < 6, hence also (| X) N C, is as sought. —

CLamv 5.11.4. Assume 2P < ™. Suppose C and E are two directed sets such that
|C| < AT and either non(Zpq(E)) > 6 or E =7 1. Then for every C-sequence C on a

stationary S C E}', C x [A*]< x E £7 C x D¢ x E.

PrOOF. LetC := (C, | o € S) be a C-sequence where S C E(’)ﬁ. Suppose on the
contrary that C x [A*]<Y x E <7 C x D¢ x E.Hence,[AT]<? <7 C x D¢ x E.let
us fix a Tukey function f : [A11]<? — C x D¢ x E witnessing that. Consider X =
Zagle

By the pigeonhole principle, there exists some ¢ € C and some set Z C X of size
A" suchthat f”Z C {c¢} x D¢ x E. Let Y :=np,(f”Z). Let us split to two cases:

» Suppose | Y| < AT. By the pigeonhole principle, we can find a subset Q C Z
of size 0 such that f”Q = {c¢} x {x} x E for some x € D¢. As f is Tukey and
Q is unbounded, we must have that f”Q is unbounded, but this is absurd as
non(Zpq(E)) > 0.

» Suppose | Y| = A". As f is Tukey and either non(Zpq(E)) > 6 or E = 1, every
subset of Y of size 6 is unbounded which is impossible by Claim 5.11.3.1. -

5.4. Structure of Dy. In [12, Lemmas 1, 2], Todorcevi¢ defined for every
regular and S C & the directed set D(S) := {C C [S]=? | Va < w[sup(C Na) €
C1} ordered by inclusion; and studied the structure of such directed sets. In this
section we follow this line of study but for directed sets of the form D¢, constructing
a large <r-antichain and chain of directed sets using 0-support product.

5.4.1. Antichain

THEOREM 5.12. Suppose 2* = i+, 9 < J*. then there exists a family F of size 2%
of directed sets of the form D¢ such that every two of them are Tukey incomparable.

PrOOF. As?2* = A" holds, by Shelah’s Theorem we get that {>(S) holds for every
SCE f stationary subset. Let us fix some stationary subset S C F f and a partition
of S into A*-many stationary subsets (S, | o < A™). For each S, we fix a &(S,)
sequence (Cp | f € Sq).

Let us fix a family F of size 24" of subsets of S such that for every two
R, T € F there exists some S, such that R\ T O S,. For each T € F let us define
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a C-sequence Cr := (C, | @ € T'). Clearly the following lemma shows the family
{D¢, | T € F}isassought. o

Cramv 5.12.1. Suppose Cr :=(Cy | p € T) and Cg := (Cp | p € R) are two C-

sequences such that T,R C E, f are stationary subsets. Then if (Cy | f € T\ R) is a
&-sequence, then D¢, 1 Dep.

ProoF. Suppose f : D¢, —+ D¢, is a Tukey function. Fix a subset W C [AF]' C
D¢, of size AT, we split to two cases:

» Suppose f W C [a]’ forsomea < At. AsA? < AT, by the pigeonhole principle
we can find a subset X C W of size A" such that f”X = {z} forsome z € D¢,. As
(Cp | peT\R)isad-sequence and |J X € [4]*". there exists some f € T \ R
such that Cy C J X. So X is an unbounded subset of Cr such that X is bounded
in Cr which is absurd.

> As|f”W| = 2", using A’ < A" wemayfixasubset Y = {y; | f< AT} C "W
which forms a A-system with a root R;. In other words, for a < f < AT we have
Yo \ R1 < yp\ Ry and y, N yg = R;. For each a < A", we fix x, € W such that
f(x4) = yo. Finally, without loss of generality we may use the A-system lemma
again and refine our set Y to get that there exists a club £ C At such that, for all
a < f < AT we have:

® xo Nxg =0

® yaNyp =Ry

e there exists some y € E such that xo <y < xgand yo \ R| <y < yg\ Ry:

o f(xa) = ya-
Furthermore, we may assume that between any two elements of ¢ < # in E there
exists a unique a < A" such that £ < x, U (yo \ R1) < 7.

As (Cs | p€ T\ R) is a d-sequence, there exists some f € (7 \ R) Nacc(E)
such that Cp C (J{xa | @ < AT}. Construct by recursion an increasing sequence
(By|v<0)CCsp and a sequence (z,|v<0)C {xq|a<Ai"} such that

By €z, <p.
Clearly, {z, | v < 0} is unbounded in De,.. so the following claim proves f"is not
a Tukey function. 4

SuBcLAM 5.12.1.1. The subset {f (z,) | v < 0} is bounded in D¢,

Proor. Let Y :={J f(z,) and Cg := (Cy | p € R). we will show that for every
a € R, we have | Y N C,| < 6. By the refinement we did previously it is clear that
{f(z,) \ Ri | v < 0} is a pairwise disjoint sequence, where for each v < 6 we have
some element y, € E such that f(z,) \ Ry <y, < f(z,41) \ Ri < 8. Leta € R.

» Suppose a > . As C, is cofinal in & and of order-type 0, then | Y N C,| < 6.

» Suppose a < fi. As C, is cofinal in « and of order-type 6, there exists some
v < 0 such that for all v < p < 0. we have (f(z,) \ R1) N Co = 0. As f(z,) € D¢,
for every p < 6 and 0 is regular, we get that |Y N C,| < € as sought.

As f ¢ R there are no more cases to consider. -

COROLLARY 5.13. Suppose 2" = 27,0 < A" and S C Ef is a stationary subset.

Then there exists a family F of directed sets of the form D¢ x [A]<0 of size 24" such
that every two of them are Tukey incomparable.
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Proor. Clearly by the same arguments of Theorem 5.12 the following lemma is
suffices to get the wanted result. -

Cramv 5.13.1. Suppose Cr := (Cg | p € T) and Cr := (Cy | p € R) are two C-
sequences such that TR C E g;'+ are stationary subsets such that T \ R is stationary.
Thenif (Cp | B € T \ R) is a &-sequence, then D¢, x [2]<¢ 1 D¢, x [4]<’.

PrOOF. Suppose [ : De, x [A]<Y — D¢, x [A]<? is a Tukey function. Consider
0 = (411" x {0}). let us split to two cases:

» If |Q| < 4", then by the pigeonhole principle, there exists x € D¢,. F € [A]<
and a set W C [A*]! of size 2" such that /(W x {0}) = {(x.F)}. As (Cs | B €
T\ R) is a &-sequence and |J W € [/l+]*+, we may fix some f € T \ R such that
Cy C|UW. Hence W x {0} is unbounded in D¢, x [A]<? but /(W x {0}) is
bounded in D¢, x [A]<Y which is absurd as /" is Tukey.

» If |Q| = A", then by the pigeonhole principle there exists some F € [A]<¢
and a set W C[A"]' of size A" such that, f”(W x {0}) C D¢, x {F}. Let
Y :=no(f”(W x {0})). Next, we may continue with the same proof as in
Lemma 5.12.1. "

5.4.2. Chain
THEOREM 5.14. Suppose 2+ = )*. A% < J*. Then there exists a family F = {De. |

& < At} of Tukey incomparable directed sets of the form D¢ such that (]_[ngé De, |
& < AT is a <r-increasing chain.

Proor. Asin Theorem 5.12, we fix a partition (S; | { < AT) of E 5’+ to stationary
subsets such that there exists a &(S;)-sequence C; for { < A*. Note that for every

A € [AF]%*", we have |]—[?€0A Dc,| = A*. Note that for every 4. B € [2F1<*" such
that 4 C B. we have ]_[fg 4Dc. <t ]_[(Sg 5 Dc.. The following claim gives us the
wanted result. ) ) .

CLAM 5.14.1. Suppose A € [271* and & € i+ \ 4. then D¢, £ ]_[CSEHA De,. In
particular, ]_[fg 4 De, <r ]_[fg 4 Dc. x De,.

PROOF. Let D := D, and E := ]_[EEHA D¢, . Note that as 2% = 1", then (A")* =

J*.so |E| = A*. Suppose f : D — E is a Tukey function. Consider Q = f[A*]'.
let us split to cases:

» Suppose | Q| < A, then by pigeonhole principle, there exists ¢ € E and a subset
X C D of size AT such that f”X = {e}. As (Cp | f € S¢) is a &-sequence, there
exists some f € S¢ such that Cy C J X. So X is an unbounded subset of D such
that /X is bounded in £ which is absurd.

» Suppose |Q| = AT. Let us enumerate Q := {q, | @ < A" }. Recall that for every
{€A.De, CUMS Ltz == U{qa(0) x {{} | € 4. qa(0) # Och},notice that
Zo € [AF x A]=Y. We fix a bijection ¢ : AT x 4 — AT,

As {¢7z, | @ < A7} is a subset of [A7]=0 of size ™ and A’ < A*, by the A-system
lemma, we may refine our sequence Q and re-index such that {¢”z, | « < AT} will
be a A-system with root R’.

For each a <A™ and { € 4, let y,r == {Bf< A" | B € qa({)}. We claim that
for each { € A4, the set {yar|{ € A} is a A-system with root R; :={f <A™ |
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(B.C) € ¢7'[R']}. Let us show that whenever a < < A", we have y,: Nyp; =
R;. Notice that§ € yoc Nype <= 0 € qa(()Ngp(l) < 0.0) €zaNzp —
$(0.0) € $7(za Nzp) = ¢"24 NP"z5 = R < (5.{) €¢p'R' < 6 € R;. For
each a < A*, we fix x, € [A7]! such that £ (x4) = ¢4,.

We use the A-system lemma again and refine our sequence such that there exists

aclubC C A" and for all & < B < A" we have:

(1) forevery { € A. wehave yor Nyg: = Re:
(2) Xo N x[)’ = 0
(3) there exists some y € C such that xo U (U;cy(Var \ Ry)) <7 < xpU

(Urearpe \ Re)).

Furthermore, we may assume that between any two elements of y < ¢ in C there
exists some a < A* such that y < x4 U (U 4(Vaz \ Rr)) <J. We continue in the
spirit of Claim 5.11.3.1.

As (Cy | p € Se) is a d-sequence, there exists some f € S Nacc(C) such that
Cp C |U{xa | @ < 2"}. Construct by recursion an increasing sequence (f, | v <
0) C Cp and a sequence (w, | v < 0) C {x, | @ < A"} such that g, € w, < .

Clearly, {w, | v < 6} is unbounded in D¢, . so the following Claim proves /" is not
a Tukey function. 4

SuBcLAM 5.14.1.1. The subset { f (w,) | v < 0} is bounded in E.

Proor. Foreach( € A.let W; =,y /(w,)((). We will show that W; € Dc, .
as [{( € A | W # 0} <0 this will imply that ]_[?EH W is well defined and an

element of E. Clearly 1 (w,) <g ]_[feeA W forevery v < 0,sotheset {f(w,) | v < 0}
is bounded in F as sought.

LetCr := (Cy | @ € S¢). we will show that for every o € Sy, we have |W: N C,| <
6. By the refinement we did previously it is clear that {f (w,)({) \ R; | v< 6} isa
pairwise disjoint sequence, where for each v < 6 we have some element y, € C such
that f (w,)({) \ R: <y < f(wy11)() \ Re. Furthermore, f (w,)({) C f for every
v<0. LetaeS;.

» Suppose a > f. As C, if cofinal in & and of order-type 6, then |IW: N C,| < 6.

» Suppose a < f5. As C, if cofinal in @ and of order-type 0, there exists some v < 0
such that for all v < p < 0, we have (f (w,)(() \ R;) N Co = 0. As f(w,)({) € D,
for every p < 0, we get that |V, N C,| < 6 as sought.

As B ¢ S there are no more cases to consider. -

§6. Concluding remarks. A natural continuation of this line of research is
analysing the class D, for cardinals k > N,. As a preliminary finding we notice
that the poset (P(w),C) can be embedded by a function § into the class Dy,
under the Tukey order. Furthermore, for every two successive elements 4, B in the
poset (P(w),C), i.e., 4 C B and |B \ 4| = 1, there is no directed set D such that
§(4) <7 D <7 F(B). The embedding is defined via F(A) := [[re, w41 and the
furthermore part can be proved by Lemma 4.3. As a corollary, we get that in ZFC
the cardinality of Dy, is at least 2%0.
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COFINAL TYPES BELOW R,

[wZ]<w

wy X [w]<¥ w X [wa]S¥
e e o
wy] <@ W X Wy X W wo] =¥

[ewn] = O e

FIGURE 4. Tukey ordering of (73.<7).
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A. Appendix: Tukey ordering of simple elements of the class Dy, and Dy, We
present each of the posets (75, <7) and(73, <7) in a diagram. In both diagrams
below, for any two directed sets 4 and B, an arrow4 — B, represents the fact that
A <7 B. If the arrow is dashed, then under GCH there exists a directed set in
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between. If the arrow is not dashed, then there is no directed set in between A4
and B. Every two directed sets 4 and B such that there is no directed path (in the
obvious sense) from 4 to B, are such that 4 £7 B. Note that this implies that any
two directed sets on the same horizontal level are incompatible in the Tukey order
(Figures 3 and 4).
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