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COFINAL TYPES BELOW ℵ�

ROY SHALEV

Abstract. It is proved that for every positive integer n, the number of non-Tukey-equivalent directed
sets of cardinality ≤ ℵn is at least cn+2, the (n + 2)-Catalan number. Moreover, the class Dℵn of directed
sets of cardinality ≤ ℵn contains an isomorphic copy of the poset of Dyck (n + 2)-paths. Furthermore,
we give a complete description whether two successive elements in the copy contain another directed set in
between or not.

§1. Introduction. Motivated by problems in general topology, Birkhoff [1], Tukey
[15], and Day [2] studied some natural classes of directed sets. Later, Schmidt [9]
and Isbell [4, 5] investigated uncountable directed sets under the Tukey order <T .
In [12], Todorčević showed that under PFA there are only five cofinal types in
the class Dℵ1 of all cofinal types of size ≤ ℵ1 under the Tukey order, namely,
{1, �,�1, � × �1, [�1]<�}. In the other direction, Todorčević showed that under
CH there are 2c many non-equivalent cofinal types in this class. Later in [14] this
was extended to all transitive relations on �1. Recently, Kuzeljević and Todorčević
[6] initiated the study of the classDℵ2 . They showed in ZFC that this class contains at
least fourteen different cofinal types which can be constructed from two basic types
of directed sets and their products: (κ,∈) and ([κ]<�,⊆), where κ ∈ {1, �,�1, �2}
and � ∈ {�,�1}.

In this paper, we extend the work of Todorčević and his collaborators and uncover
a connection between the classes of the Dℵn ’s and the Catalan numbers. Denote
Vk := {1, �k, [�k]<�m | 0 ≤ m < k}, Fn :=

⋃
k≤n Vk and finally let Sn be the set

of all finite products of elements of Fn. Recall (see Section 3) that the n-Catalan
number is equal to the cardinality of the set of all Dyck n-paths. The set Kn of all
Dyck n-paths admits a natural ordering �, and the connection we uncover is as
follows.

Theorem A. The posets (Sn/≡T ,<T ) and (Kn+2,�) are isomorphic. In particular,
the class Dℵn has size at least the (n + 2)-Catalan number.

A natural question which arises is whether an interval determined by two
successive elements of (Sn/≡T ,<T ) forms an empty interval in (Dℵn , <T ). In [6], the
authors showed that there are two intervals of S2 that are indeed empty in Dℵ2 , and
they also showed that consistently, under GCH and the existence of a non-reflecting
stationary subset of E�2

� , two intervals of S2 that are nonempty in Dℵ2 .
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2 ROY SHALEV

In this paper, we prove:

Theorem B. Assuming GCH, for every positive integer n, all intervals of Sn that
form an empty interval in Dℵn are identified, and counterexamples are constructed to
the other cases.

1.1. Organization of this paper. In Section 2 we analyze the Tukey order of
directed sets using characteristics of the ideal of bounded subsets.

In Section 3 we consider the poset (Sn/≡T ,<T ) and show it is isomorphic to the
poset of good (n + 2)-paths (Dyck paths) with the natural order. As a corollary
we get that the cardinality of Dℵn is greater than or equal to the Catalan number
cn+2. Furthermore, we address the basic question of whether a specific interval in
the poset (Sn/≡T ,<T ) is empty, i.e., considering an element C and a successor of it
E, is there a directed setD ∈ Dℵn such thatC <T D <T E? We answer this question
in Theorem 3.5 using results from the next two sections.

In Section 4 we present sufficient conditions on an interval of the poset (Sn/
≡T ,<T ) which enable us to prove there is no directed set inside.

In Section 5 we present cardinal arithmetic assumptions, enough to construct on
specific intervals of the poset (Sn/≡T ,<T ) a directed set inside.

In Section 6 we finish with a remark about future research.
In the Appendix diagrams of the posets (S2/≡T ,<T ) and (S3/≡T ,<T ) are

presented.

1.2. Notation. For a set of ordinals C, we write acc(C ) := {α < sup(C ) |
sup(C ∩ α) = α > 0}. For α < � where α is a regular cardinal, denote E�α := {� <
� | cf(�) = α}. The set of all infinite (resp. infinite and regular) cardinals below κ is
denoted by Card(κ) (resp. Reg(κ)). For a cardinal κ we denote by κ+ the successor
cardinal ofκ, and byκ+n the nth-successor cardinal. For a functionf : X → Y and a
setA ⊆ X , we denotef”A := {f(x) | x ∈ A}. For a set A and a cardinal �, we write
[A]� := {X ⊆ A | |X | = �} and define [A]≤� and [A]<� similarly. For a sequence of
sets 〈Ai | i ∈ A〉, let

∏
i∈I Di := {f : I →

⋃
i∈I Di | ∀i ∈ I [f(i) ∈ Di ]}.

1.3. Preliminaries. A partial ordered set (D,≤D) is directed iff for every x, y ∈ D
there is z ∈ D such that x ≤D z and y ≤D z. We say that a subset X of a directed set
D is bounded if there is some d ∈ D such that x ≤D d for each x ∈ X . Otherwise, X
is unbounded in D. We say that a subset X of a directed D is cofinal if for every d ∈ D
there exists some x ∈ X such that d ≤D x. Let cf(D) denote the minimal cardinality
of a cofinal subset of D. If D and E are two directed sets, we say that f : D → E
is a Tukey function if f”X := {f(x) | x ∈ X} is unbounded in E whenever X is
unbounded in D. If such a Tukey function exists we say that D is Tukey reducible
to E, and write D ≤T E. If D ≤T E and E �≤T D, we write D <T E. A function
g : E → D is called a convergent/cofinal map from E to D if for every d ∈ D there is
an ed ∈ E such that for every c ≥ ed we have g(c) ≥ d . There is a convergent map
g : E → D iff D ≤T E. Note that for a convergent map g : E → D and a cofinal
subset Y ⊆ E, the set g”Y is cofinal in D. We say that two directed sets D and E are
cofinally/Tukey equivalent and write D ≡T E iff D ≤T E and D ≥T E. Formally,
a cofinal type is an equivalence class under the Tukey order, we abuse the notation
and call every representative of the class a cofinal type. Notice that a directed set D
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COFINAL TYPES BELOW ℵ� 3

is cofinally equivalent to any cofinal subset of D. In [15], Tukey proved thatD ≡T E
iff there is a directed set (X,≤X ) such that both D and E are isomorphic to a cofinal
subset of X. We denote by Dκ the set of all cofinal types of directed sets of cofinality
≤ κ.

Consider a sequence of directed sets 〈Di | i ∈ I 〉, we define the directed set which
is the product of them (

∏
i∈I Di ,≤) ordered by everywhere-dominance, i.e., for two

elements d, e ∈
∏
i∈I Di we let d ≤ e if and only if d (i) ≤Di e(i) for each i ∈ I . For

X ⊆
∏
i∈I Di , let �Di be the projection to the i-coordinate. A simple observation

[12, Proposition 2] is that if n is finite, then D1 × ··· ×Dn is the least upper bound
of D1, ... , Dn in the Tukey order. Similarly, we define a �-support product

∏≤�
i∈I Di ;

for each i ∈ I , we fix some element 0Di ∈ Di (usually minimal). Every element
v ∈

∏≤�
i∈I Di is such that | supp(v)| ≤ �, where supp(v) := {i ∈ I | v(i) �= 0Di }. The

order is coordinate wise.

§2. Characteristics of directed sets. We commence this section with the following
two lemmas which will be used throughout the paper.

Lemma 2.1 (Pouzet [7]). Suppose D is a directed set such that cf(D) = κ is infinite,
then there exists a cofinal directed set P ⊆ D of size κ such that every subset of size κ
of P is unbounded

Proof. Let X ⊆ D be a cofinal subset of cardinality κ and let {xα | α < κ} be
an enumeration of X. LetP := {xα | α < κ and for all � < α[xα �<D x� ]}. We claim
that P is cofinal. In order to prove this, fix d ∈ D. As X is cofinal in D, fix a minimal
α < κ such that d <D xα . If xα ∈ P, then we are done. If not, then fix some � < α
minimal such that xα <D x� . We claim that x� ∈ P, i.e., there is no � < � such that
x� <D x� . Suppose there is some � < � such that x� <D x� , then xα <D x� , which
is a contradiction to the minimality of � . Note that d <D x� ∈ P as sought. As P is
cofinal in D, cf(D) = κ, P ⊆ X and |X | = κ, we get that |P| = κ.

Finally, let us show that every subset of size κ of P is unbounded. Suppose on the
contrary that X ⊆ P is a bounded subset of P of size κ. Fix some x� ∈ P above X
and � < α < κ such that xα ∈ X , but this is an absurd as xα <D x� and xα ∈ P. �

Fact 2.2 (Kuzeljević–Todorčević [6, Lemma 2.3]). Let 	 ≥ � be a regular
cardinal and n < � be positive. The directed set [	+n]≤	 contains a cofinal subset
D[	+n ]≤	 of size 	+n with the property that every subset of D[	+n ]≤	 of size > 	 is
unbounded in [	+n]≤	. In particular, [	+n]≤	 belongs to D	+n , i.e. cf([	+n]≤	) ≤ 	+n.

Recall that any directed set is Tukey equivalent to any of its cofinal subsets, hence
D[	+n ]≤	 ≡T [	+n]≤	.

As part of our analysis of the class Dℵn , we would like to find certain traits of
directed sets which distinguish them from one another in the Tukey order. This was
done previously, in [4, 9, 14]. We use that the language of cardinal functions of
ideals.

Definition 2.3. For a set D and an ideal I over D, consider the following cardinal
characteristics of I:

• add(I) := min{κ | A ⊆ I, |A| = κ,
⋃

A /∈ I};
• non(I) := min{|X | | X ⊆ D, X /∈ I};
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4 ROY SHALEV

• out(I) := min{� ≤ |D|+ | I ∩ [D]� = ∅};
• in(I, κ) = {� ≤ κ | ∀X ∈ [D]κ ∃Y ∈ [X ]� ∩ I}.

Notice that add(I) ≤ non(I) ≤ out(I).

Definition 2.4. For a directed set D, denote by Ibd(D) the ideal of bounded
subsets of D.

Proposition 2.5. Let D be a directed set. Then:

(1) non(Ibd(D)) is the minimal size of an unbounded subset of D, so every subset
of size less than non(Ibd(D)) is bounded.

(2) If � < out(Ibd(D)), then there exists in D some bounded subset of size �.
(3) If � ≥ out(Ibd(D)), then every subset X of size � is unbounded in D.
(4) If � ∈ in(Ibd(D), κ), then for every X ∈ [D]κ there exists some B ∈ [X ]�

bounded.
(5) For every � < add(Ibd(D)) and a family A of size � of bounded subsets of D,

the subset
⋃

A is also bounded in D.

Let us consider another intuitive feature of a directed set, containing information
about the cardinality of hereditary unbounded subsets, this was considered
previously by Isbell [4].

Definition 2.6 (Hereditary unbounded sets). For a directed set D, set

hu(D) := {κ ∈ Card(|D|+) | ∃X ∈ [D]κ[∀Y ∈ [X ]κ is unbounded]}.
Proposition 2.7. Let D be a directed set. Then:

• If cf(D) is an infinite cardinal, then cf(D) ∈ hu(D).
• If out(Ibd(D)) ≤ κ ≤ |D|, then κ ∈ hu(D).
• For an infinite cardinal κ we have that non(Ibd(κ)) = cf(κ), out(Ibd(D)) = κ

and hu(κ) = {	 ∈ Card(κ+) | 	 = cf(κ)}.
• If κ = cf(D) = non(Ibd(D)), then D ≡T κ.
• For two infinite cardinals κ > � we have that non(Ibd([κ]<�)) = cf(�).
• For a regular cardinal κ and a positive n < �, out(Ibd(D[κ+n ]≤κ )) > κ and

hu(D[κ+n ]≤κ ) = {κ+(m+1) | m < n}.
• If κ = cf(D) is regular, � = out(Ibd(D)) = non(Ibd(D)) and �+n = κ for some
n < �, then D ≡T [κ]<� .

In the rest of this section we consider various scenarios in which the traits of a
certain directed set give us information about its position in the poset (Dκ,<T ).

Lemma 2.8. Suppose D is a directed set, κ is an infinite regular cardinal andX ⊆ D
is an unbounded subset of size κ such that every subset of X of size < κ is bounded.
Then κ ∈ hu(D).

Proof. Enumerate X := {xα | α < κ}, by the assumption, for every α < κ we
may fix some zα ∈ D above the bounded initial segment {x� | � < α}. We show that
Z := {zα | α < κ}, witnesses κ ∈ hu(D). First, let us show that |Z| = κ. Suppose
on the contrary that Z := {zα | α < κ} is of cardinality < κ. Then for some α < κ,
the element zα is above the subset X, hence X is bounded which is absurd. Now,
let us prove that Z is hereditarily unbounded. We claim that every subset of Z of
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cardinality κ is also unbounded. Suppose not, let us fix someW ∈ [Z]κ bounded by
some d ∈ D, but then d is above X contradicting the fact that X is unbounded. �

Lemma 2.9. Suppose D is a directed set and κ is an infinite cardinal in hu(D), then
κ ≤T D.

Proof. Fix X ⊆ D of cardinality κ such that every subset of X of size κ is
unbounded and a one-to-one function f : κ → X , notice that f is a Tukey function
from κ to D as sought. �

Corollary 2.10. Suppose D is directed set, κ is regular and X ⊆ D is an
unbounded subset of size κ such that every subset of X of size < κ is bounded, then
κ ≤T D.

The reader may check the following:

• For any two infinite cardinals 	 and κ of the same cofinality, we have 	 ≡T κ.
• For an infinite regular cardinal κ, we have κ ≡T [κ]<κ.
• hu(

∏<�
n<� �n+1) = {�n | n < �}.

Lemma 2.11. Suppose D and E are two directed sets such that for some � ∈ hu(D)
regular we have � > cf(E), then D �≤T E.

Proof. By passing to a cofinal subset, we may assume that |E| = cf(E). Fix
� ∈ hu(D) regular such that cf(E) < � and X ∈ [D]� witnessing � ∈ hu(D), i.e.,
every subset of X of size � is unbounded. Suppose on the contrary that there exists a
Tukey functionf : D → E. By the pigeonhole principle, there exists someZ ∈ [X ]�

and e ∈ E such thatf”Z = {e}. As f is Tukey and the subsetZ ⊆ X is unbounded,
f”Z is unbounded in E which is absurd. �

Notice that for every directed set D, if cf(D) > 1, then cf(D) is an infinite cardinal.
As a corollary from the previous lemma, 	 �≤T κ for any two regular cardinals

	 > κ where 	 is infinite. Furthermore, the reader can check that 	 �≤T κ, whenever
	 < κ are infinite regular cardinals.

Lemma 2.12. Suppose C and D are directed sets such that C ≤T D, then cf(C ) ≤
cf(D).

Proof. Suppose |D| = cf(D) and let f : C → D be a Tukey function. As f is
Tukey, for every d ∈ D the set {x ∈ C | f(x) = d} is bounded in C by some cd ∈ C .
Note that for every x ∈ C , we have x ≤C cf(x), hence the set {cd | d ∈ D} is cofinal
in C. So cf(C ) ≤ |D| = cf(D) as sought. �

Lemma 2.13. Let κ and � be two cardinals such that � < κ = cf(κ).
Suppose D is a directed set such that cf(D) ≤ κ and non(Ibd(D)) ≥ �, thenD ≤T

[κ]<� . Furthermore, if � ∈ in(Ibd(D), κ), then D <T [κ]<� .

Proof. First, we show that there exists a Tukey function f : D → [κ]<� . Let
us fix a cofinal subset X ⊆ D of cardinality ≤ κ such that every subset of X of
cardinality < � is bounded. As |X | ≤ κ we may fix an injection f : X → [κ]1, we
will show f is a Tukey function. LetY ⊆ X be a subset unbounded in D, this implies
|Y | ≥ �. As f is an injection, the set

⋃
f”Y is of cardinality ≥ �. Note that every

subset of [κ]<� whose union is of cardinality ≥ � is unbounded in [κ]<� , hence f”Y
is an unbounded subset in [κ]<� as sought.
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6 ROY SHALEV

Assume � ∈ in(Ibd(D), κ), we are left to show that [κ]<� �≤T D. Suppose on the
contrary that g : [κ]<� → D is a Tukey function. We split to two cases:

� Suppose |g”[κ]1| < κ. As κ is regular, by the pigeonhole principle there exists
a set X ⊆ [κ]1 of cardinality κ, and d ∈ D such that g(x) = d for each x ∈ X .
Notice g”X is a bounded subset of D. As X ⊆ [κ]1 is of cardinality κ and κ > �, it
is unbounded in [κ]<� . Since g is a Tukey function, we get that g”X is unbounded
which is absurd.

� Suppose |g”[κ]1| = κ. Let X := g”[κ]1, by our assumption on D, there exists
a bounded subset B ∈ [X ]� . Since B is of size �, we get that (g–1[B]) ∩ [κ]1 is of
cardinality ≥ �, hence unbounded in [κ]<� , which is absurd to the assumption g is
Tukey. �

Remark 2.14. For every two directed sets, D and E, if non(Ibd(D)) <
non(Ibd(E)), then D �≤T E. For example, � �≤T [κ]≤� .

Lemma 2.15. Let κ be a regular infinite cardinal. Suppose D and E are two directed
sets such that |D| ≥ κ and out(Ibd(D)) ∈ in(Ibd(E), κ), then D �≤T E.

Proof. Let � := out(Ibd(D)). By the definition of in(Ibd(E), κ), as � ∈
in(Ibd(E), κ), we know that � ≤ κ. Notice that every subset of D of size ≥ � is
unbounded in D and every subset of size κ of E contains a bounded subset in E of
size �.

Suppose on the contrary that there exists a Tukey function f : D → E. We split
to two cases:

� Suppose |f”D| < κ, then by the pigeonhole principle there exists some
X ∈ [D]κ and e ∈ E such that f”X = {e}. As |X | = κ ≥ �, we know that X is
unbounded in D, but f”X is bounded in E which is absurd as f is a Tukey function.

� Suppose |f”D| ≥ κ, by the assumption there exists a subset Y ∈ [f”D]�

which is bounded in E. Notice that X := f–1Y is a subset of D of size ≥ �, hence
unbounded in D. So X is an unbounded subset of D such thatf”X = Y is bounded
in E, contradicting the fact that f is a Tukey function. �

Lemma 2.16. Suppose κ is a regular uncountable cardinal, C and 〈Dm | m < n〉 are
directed sets such that |C | < κ ≤ cf(Dm) and non(Ibd(Dm)) > � for every m < n.
Then � ∈ in(Ibd(C ×

∏
m<n Dm), κ).

Proof. Suppose X ⊆ C ×
∏
m<n Dm is of size κ, we show that X contains a

bounded subset of size �. As |C | < κ, by the pigeonhole principle we can fix some
Y ∈ [X ]κ and c ∈ C such that �C ”Y = {c}. Suppose on the contrary that some
subsetZ ⊆ Y of size � is unbounded, it must be that for somem < n the set �Dm”Z
is unbounded in Dm, but this is absurd as non(Ibd(Dm)) > � and |�Dm”Z| ≤ �. �

Lemma 2.17. Suppose C,D and E are directed sets such that:

• for every partitionD =
⋃
�<κ D� , there exists an ordinal � < κ, and an unbounded

X ⊆ D� of size κ;
• |C | ≤ κ;
• non(Ibd(E)) > κ.

Then D �≤T C × E.
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Proof. Suppose on the contrary, that there exists a Tukey function h : D →
C × E. For c ∈ C , letDc := {x ∈ D | ∃e ∈ E[h(x) = (c, e)]}. Since h is a function,
D :=

⋃
c∈C Dc is a partition to≤ κmany sets. By the assumption, there exists c ∈ C

and an unbounded subset X ⊆ Dc of cardinality κ. Enumerate X = {x
 | 
 < κ}
and let e
 ∈ E be such that h(x
) = (c, e
), for each 
 < κ. As non(Ibd(E)) > κ,
there exists some upper bound e ∈ E to the set {e
 | 
 < κ}. Since X is unbounded
and h is Tukey, h”X = {(c, e
) | 
 < κ} must be unbounded, which is absurd as
(c, e) is bounding it. �

Note that the lemma is also true when the partition of D is of size less than κ.

§3. The Catalan structure. The sequence of Catalan numbers 〈cn | n < �〉 =
〈1, 1, 2, 5, 14, 42, ... 〉 is an ubiquitous sequence of integers with many characteriza-
tions, for a comprehensive review of the subject, we refer the reader to Stanley’s
book [11]. One of the many representations of cn, is the number of good n-
paths (Dyck paths), where a good n-path is a monotonic lattice path along the
edges of a grid with n × n square cells, which do not pass above the diagonal. A
monotonic path is one which starts in the lower left corner, finishes in the upper
right corner, and consists entirely of edges pointing rightwards or upwards. An
equivalent representation of a good n-path, which we will consider from now on,
is a vector �p of the columns’ heights of the path (ignoring the first trivial column),
i.e., a vector �p = 〈p0, ... , pn–2〉 of length n – 1 of ≤-increasing numbers satisfying
0 ≤ pk ≤ k + 1, for every 0 ≤ k ≤ n – 2. We consider the poset (Kn,�) where Kn is
the set of all good n-paths and the relation � is defined such that �a � �b if and only
if the two paths are distinct and for every k with 0 ≤ k ≤ n – 2 we have bk ≤ ak ,
in other words, the path �b is below the path �a (allowing overlaps). Notice that for
two distinct good n-paths �a and �b, either �a �� �b or �b �� �a. A good n-path �b is an
immediate successor of a good n-path �a if �a � �b and �a – �b is a vector with value 0
at all coordinates except one of them which gets the value 1.

Suppose �a and �b are two good n-paths where �b is an immediate successor of �a.
Let i ≤ n – 2 be the unique coordinate on which �a and �b are different and ai be
the value of �a on this coordinate, i.e., ai = bi + 1. We say that the pair (�a, �b) is on
the k-diagonal if and only if i + 1 – ai = k and �b is an immediate successor of �a
(Figure 1).

In this section we show the connection between the Catalan numbers and cofinal
types. Let us fix n < �. Recall that for every k < �, we set Vk := {1, �k, [�k]<�m |
0 ≤ m < k}, Fn :=

⋃
k≤n Vk and let Sn be the set of all finite products of elements

in Fn. Our goal is to construct a coding which gives rise to an order-isomorphism
between (Sn/≡T ,<T ) and (Kn+2,�).

To do that, we first consider a “canonical form” of directed sets in Sn. By Lemma
2.13 the following hold:

(a) For all 0 ≤ l < m < k < � we have 1 <T �k <T [�k]<�m <T [�k]<�l .
(b) For all 0 ≤ l ≤ t < m ≤ k < � with (l, k) �= (t, m) we have [�m]<�t <T

[�k]<�l and �m <T [�k]<�l .

Notice that (a) implies (Vk,<T ) is linearly ordered. A basic fact is that for two
directed sets C and D such that C ≤T D, we have C ×D ≡T D. Hence, for every
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Figure 1. The good 4-path 〈1, 1, 3〉.

D ∈ Sn we can find a sequence of elements 〈Dk | k ≤ n〉, where Dk ∈ Vk for every
k ≤ n, such that D ≡T

∏
k≤n D

k . As we are analyzing the class Dℵn under the
Tukey relation<T , two directed sets which are of the same ≡T -equivalence class are
indistinguishable, so from now on we consider only elements of this form in Sn.

We define a function F : Sn → Sn as follows: Fix D ∈ Sn where D =
∏
k≤n D

k .
Next, we construct a sequence 〈Dk | k ≤ n〉 by reverse recursion on k ≤ n. At the
top case, set Dn := Dn. Next, for 0 ≤ k < n. If by (b), we get that Dk <T Dm

for some k < m ≤ n, then set Dk := 1. Else, let Dk := Dk . Finally, let F(D) :=∏
k≤n Dk . Notice that we constructed F(D) such that F(D) ≡T D. We define

Tn := Im(F).

The coding. We encode each product D ∈ Tn by an (n + 2)-good path �vD :=
〈v0, ... , vn〉. Recall that D :=

∏
k≤n Dk , where Dk ∈ Vk for every k ≤ n. We define

by reverse recursion on 0 ≤ k ≤ n, the elements of the vector �vD such that vk ≤ k + 1
as follows: Suppose one of the elements of 〈[�k]<�, ... , [�k]<�k–1 , �k〉 is equal to
Dk , then let vk be its coordinate (starting from 0). Suppose this is not the case, then
if k = n, we let vk := n + 1 else vk := min{vk+1, k + 1}.

Notice that by (b), if 0 ≤ i < j ≤ n, then vi ≤ vj . Hence, every element D ∈ Tn
is encoded as a good (n + 2)-path.

To see that the coding is one-to-one, suppose C,D ∈ Tn are distinct. Let k :=
max{i ≤ n | Ci �= Di}. We split to two cases:

� Suppose both Ck and Dk are not equal to 1, then clearly the column height of
�vC and �vD are different at coordinate k + 1.

� Suppose one of them is equal to 1, say Ck , then Dk �= 1. Let �vC := 〈vC0 , ... vCn 〉
and �vD := 〈vD0 , ... vDn 〉. Suppose k = n, then clearly vDn < v

C
n . Suppose k < n, then

vDi = vCi for k < i ≤ n. By the coding, vDk < k + 1 and by (b) vDk < v
D
k+1 = vCk+1,

but vCk := min{k + 1, vCk+1}. Hence vDk < v
C
k as sought.

To see that the coding is onto, let us fix a good (n + 2)-path �v := 〈v0, ... , vn〉. We
construct 〈Dk | k ≤ n〉 by reverse recursion on k ≤ n. At the top case, set Dn to be
the vn element of the vector 〈[�n]<�, ... , [�n]<�n–1 , �n, 1〉. For k < n, if vk = vk+1, let
Dk := 1. Else, let Dk be the kth element of the vector 〈[�k]<�, ... , [�k]<�k–1 , �k, 1〉.
Let D =

∏
k≤n Dk , notice that as �v represents a good (n + 2)-path we have D =

F(D), hence D ∈ Tn. Furthermore, �vD = �v, hence the coding is onto as sought. As
a Corollary we get that |Tn| = cn+2.

In Figure 2 we present all good 4-paths and the corresponding types in T2 they
encode.

Lemma 3.1. Suppose C,D ∈ Tn and �vD � �vC , then D ≤T C .
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Figure 2. All good 4-paths and the corresponding types in T2 they encode.

Proof. Let D =
∏
k≤n Dk and C =

∏
k≤n Ck . Note that if Dk ≤T C for every

k ≤ n, thenD ≤T C as sought. Fix k ≤ n, ifDk = 1, then clearlyDk ≤ C . Suppose
Dk �= 1, we split to two cases:

� Suppose Ck �= 1. As vCk < v
D
k and by (a) we have Dk ≤T Ck ≤T C as sought.

� SupposeCk = 1, letm := max{i ≤ n | k < i, vCi = vCk }. As vCi ≤ i + 1, by the
coding m is well-defined and vCm = vCk ≤ k < m. Notice that Cm = [�m]<�p where
p = vCm and Dk ≡T [�k]<�p . So by (b), Dk ≤T Cm ≤T C as sought. �

Lemma 3.2. Suppose C,D ∈ Tn and �vD �� �vC , then D �≤T C .

Proof. Let D =
∏
k≤n Dk , C =

∏
k≤n Ck , �vC := 〈vC0 , ... , vCn 〉 and �vD :=

〈vD0 , ... , vDn 〉 As �vD �� �vC , we can define i = min{k ≤ n | vCk > vDk }.
Let p := vDi and r = max{k ≤ n | vDi = vDk }, notice that p ≤ i . We define a

directed set F such that F ≤T D.
� Suppose p = i and let F = �i . If r = i , then clearly F = Di and F ≤T D as

sought. Else, by the coding Dr = [�r ]<�p . By Lemma 2.13, we have F ≤T D as
sought.

� Supposep < i and letF = D[�i ]
<�p . By the codingDr = [�r ]<�p and by Clause

(b), we have F ≤T D as sought.
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Notice that out(Ibd(F )) = �p and cf(F ) = �i . As F ≤T D, it is enough to verify
that F �≤T C .

As �vC is a good (n + 2)-path, we know that vCk > p for every k ≥ i . Consider
A := {i ≤ k ≤ n | Ck �= 1}. We split to two cases:

� Suppose A = ∅. Then cf(
∏
k≤n Ck) < �i . As cf(F ) = �i , by Lemma 2.12 we

have that F �≤T
∏
k≤n Ck as sought.

� Suppose A �= ∅. Let E :=
∏
k<i Ck ×

∏
k∈A Ck Notice that cf(

∏
k<i Ck) <

�i ,
∏
i≤k≤n Ck ≡T

∏
k∈A Ck and C ≡T E. Furthermore, for each k ∈ A, we

have non(Ibd (Ck)) > �p. By Lemma 2.16, we have �p ∈ in(Ibd(E), �i). Recall
out(Ibd(F )) = �p. By Lemma 2.15, we get that F �≤T E, hence F �≤T C as
sought. �

Theorem 3.3. The posets (Tn, <T ) and (Kn+2,�) are isomorphic.

Proof. Define f from (Tn, <T ) to (Kn+2,�), where for C ∈ Tn, we let f(C ) :=
�vC . By Lemmas 3.1 and 3.2, this is indeed an isomorphism of posets.

Furthermore, we claim that Tn contains one unique representative from each
equivalence class of (Sn,≡T ). Recall that the function F is preserving Tukey
equivalence classes. Consider two distinct C,D ∈ Tn. As the coding is a bijection,
�vC and �vD are different. Notice that either �vC �� �vD or �vD �� �vC , hence by Lemma
3.2, C �≡T D as sought. �

Consider the poset (Tn, <T ), clearly 1 is a minimal element and by Lemma
2.13, [�n]<� is a maximal element. By the previous theorem, the set of immediate
successors of an element D in the poset (Tn, <T ), is the set of all directed setsC ∈ Tn
such that �vC is an �-immediate successor of �vD .

Lemma 3.4. Suppose G,H ∈ Tn, H is an immediate successor of G in the poset
(Tn, <T ) and (�vG, �vH ) are on the l-diagonal. Then there are C,E,M,N directed sets
such that:

• G ≡T C ×M × E andH ≡T C ×N × E;
• for some k ≤ n, cf(N ) = �k , |C | < �k and either E ≡T 1 or non(Ibd(E)) >
�k–l .

Furthermore,

• If l = 0, thenM = 1 and N = �k .
• If l = 1, then k > 1 andM = �k and N = [�k ]<�k–1 .
• If l > 1, then k > l andM = [�k ]<�k–l+1 and N = [�k ]<�k–l .

Proof. As H is an immediate successor of G in the poset (Tn, <T ), we know that
�vH is an immediate successor of �vH in (Kn+2,�). Let k be the unique k ≤ n such
that vkG = vkH + 1.

Let �vG := 〈v0
G, ... , v

n
G〉 be a good (n + 2)-path coded by G. We construct 〈Mi |

i ≤ n〉 by lettingMi be the ith element of the vector 〈[�i ]<�, ... , [�i ]<�i–1 , �i , 1〉 for
every i ≤ n. Notice that G ≡T

∏
i≤n Mi . Similarly, we may construct 〈Ni | i ≤ n〉

such thatH ≡T
∏
i≤n Ni . Clearly,Mi = Ni for every i �= k.

Let C :=
∏
i<k Mi and E :=

∏
i>k Mi . Notice that |C | = cf(C ) < �k and either

E ≡T 1 or non(Ibd(E)) > �k–l . Moreover, G ≡T C ×Mk × E and H ≡T C ×
Nk × E. We split to cases:
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• If l = 0, then vkH = k + 1, henceMk = 1 and Nk = �k .
• If l = 1, then vkH = k, henceMk = �k and Nk = [�k]<�k–1 .
• If l > 1, then vkH = k – l + 1, henceMk = [�k ]<�k–l+1 and Nk = [�k ]<�k–l .

�
Theorem 3.5. Suppose G,H ∈ Tn, H is an immediate successor of G in the poset

(Tn, <T ) and (�vG, �vH ) are on the l-diagonal.
• If l = 0, then there is no directed set D ∈ Dℵn such that G <T D <T H .
• If l > 0, then consistently there exist a directed set D ∈ Dℵn such that G <T
D <T H .

Proof. LetC,E,M,N be as in the previous lemma, soG ≡T C ×M × E,H ≡T
C ×N × E and for some k ≤ n, |C | < �k and either E ≡T 1 or non(Ibd(E)) >
�k–l . We split to three cases:

• Suppose l = 0, then G ≡T C × E and H ≡T C × �k × E, by Theorem 4.1
there is no directed set D such that G <T D <T H .

• Suppose l = 1, then k ≥ 1 and N = [�k ]<�k–1 andM = �k .
– Suppose k = 1, then under the assumption b = �1, by Theorem 5.9 there

exists a directed set D such that G <T D <T H .
– Suppose k > 1, then under the assumption 2ℵk–2 = ℵk–1 and 2ℵk–1 = ℵk ,

by Corollary 5.1 there exists a directed set D such that G <T D <T H .
• Suppose l > 1, then k ≥ 2. Let � = �k–l and 	 = �k–1. Notice N = [�k ]≤�

andM = [�k ]<� . In Corollary 5.11, we shall show that under the assumption
	� < 	+ and ♣�k–1

J (S, 1) for some stationary set S ⊆ E�k
�

, there exists a
directed set D such that G <T D <T H . �

§4. Empty intervals in Dℵn . Consider two successive directed sets in the poset
(Tn, <T ), we can ask whether there exists some other directed set in between in the
Tukey order. The following theorem give us a scenario in which there is a no such
directed set.

Theorem 4.1. Let κ be a regular cardinal. Suppose C and E are two directed sets
such that cf(C ) < κ and either E ≡T 1 or κ ∈ in(Ibd(E), κ) and κ ≤ cf(E). Then
there is no directed set D such that C × E <T D <T C × κ × E.

Proof. By the upcoming Lemmas 4.2 and 4.3. �
Lemma 4.2. Let κ be a regular cardinal. Suppose C is a directed set such that

cf(C ) < κ, then there is no directed set D such that C <T D <T C × κ.

Proof. Suppose D is a directed set such that C <T D <T C × κ. Let us assume
D is a directed set of size cf(D) such that every subset of D of size cf(D) is unbounded
in D. By Lemma 2.12 we get that cf(C ) ≤ cf(D) ≤ κ. We split to two cases:

� Suppose cf(C ) ≤ cf(D) < κ. Let g : D → C × κ be a Tukey function. As
|D| = cf(D) < κ and κ is regular there exists some α < κ such that g”D ⊆ C × α.
We claim that �C ◦ g is a Tukey function from D to C, hence D ≤T C which is
absurd. Suppose X ⊆ D is unbounded in D, as g is a Tukey function, we know
that g”X is unbounded in C × κ. But as (�κ ◦ g)”X is bounded by α, we get that
(�C ◦ g)”X is unbounded in C as sought.
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� Suppose cf(D) = κ, notice that κ ∈ hu(D) is regular so by Lemma 2.9 we get
that κ ≤T D. We also know that C ≤T D, thus κ × C ≤T D which is absurd. �

Note that non(Ibd(E)) > κ implies that κ ∈ in(Ibd(E), κ).

Lemma 4.3. Let κ be a regular cardinal. Suppose C and E are two directed sets
such that cf(C ) < κ ≤ cf(E) and κ ∈ in(Ibd(E), κ). Then there is no directed set D
such that C × E <T D <T C × κ × E.

Proof. Suppose D is a directed set such that C × E ≤T D ≤T C × κ × E, we
will show that eitherD ≡T C × E orD ≡T C × κ × E. We may assume that every
subset of D of size cf(D) is unbounded and |C | = cf(C ). By Lemma 2.12, we have
that cf(E) = cf(D).

Suppose first there exists some unbounded subsetX ∈ [D]κ such that every subset
Y ∈ [X ]<κ is bounded. By Corollary 2.10, this implies that κ ≤T D. But as C ×
E ≤T D and D ≤T C × κ × E, this implies that C × κ × E ≡T D as sought.

Hereafter, suppose for every unbounded subsetX ∈ [D]κ there exists some subset
Y ∈ [X ]<κ unbounded. Let g : D → C × κ × E be a Tukey function. Define h :=
�C×E ◦ g. Now, there are two main cases to consider:

� Suppose every unbounded subset X ⊆ D of size 	 > κ which contain no
unbounded subset of smaller cardinality is such that h”X is unbounded in
C × E.

We show that h is Tukey, it is enough to verify that for every cardinal
� ≤ � ≤ κ and every unbounded subset X ⊆ D of size � which contain no
unbounded subset of smaller cardinality is such that h”X is unbounded in
C × E.

As g is Tukey, the set g”X is unbounded in C × κ × E. Notice that if the
set �C×E ◦ g”X is unbounded, then we are done. Assume that �C×E ◦ g”X is
bounded, then �κ ◦ g”X is unbounded.

�� Suppose |X | < κ. As |g”X | < κ, we have that �κ ◦ g”X is bounded,
which is absurd.

�� Suppose |X | = κ, by the case assumption there exists some Y ∈ [X ]<κ

unbounded in D. But this is absurd as the assumption on X was that X contains
no subset of size smaller than |X | which is unbounded.

�� Suppose |X | > κ, by the case assumption, h”X is unbounded in C × E
as sought.

� Suppose for some unbounded subset X ⊆ D of size 	 > κ which contains no
unbounded subset of smaller cardinality is such that h”X is bounded inC × E.
As g is Tukey, �κ ◦ g”X is unbounded.

Let Xα := X ∩ g–1(C × {α} × E) andUα :=
⋃
�≤α X� for every α < κ. As

g is Tukey and g”Uα is bounded, we get that Uα is also bounded by some
yα ∈ D. Let Y := {yα | α < κ}. We claim that Y is of cardinality κ. If it
wasn’t, then by the pigeonhole principle as κ is regular there would be some
α < κ such that yα bounds the set X in D and that is absurd. Similarly, as X is
unbounded, the set Y and also every subset of it of size κ must be unbounded.

Next, we aim to get Z ∈ [Y ]κ such that �C×E ◦ g”Z is bounded by some
(c, e) ∈ C × E. This can be done as follows: As |C | < κ and κ is regular, by the
pigeonhole principle, there exists someZ0 ∈ [Y ]κ and c ∈ C such that g”Z0 ⊆
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{c} × κ × E. Similarly, if |�E ◦ g”Z0| < κ, by the pigeonhole principle, there
exists some Z ∈ [Z0]κ and e ∈ E such that g”Z ⊆ {c} × κ × {e}. Else, if
|�E”Z0| = κ, then as κ ∈ in(Ibd(E), κ) for some B ∈ [�E ◦ g”Z0]κ and e ∈ E,
B is bounded in E by e. Fix some Z ∈ [Z0]κ such that g”Z ⊆ {c} × κ × B .

Note that Z is a subset of Y of size κ, hence, unbounded in D. By the
assumption, there exists some subsetW ∈ [Z]<κ unbounded in D. Note that
as κ is regular, for some α < κ, �κ ◦ g”W ⊆ α. As g is Tukey, the subset
g”W ⊆ {c} × κ × E is unbounded in C × κ × E, but this is absurd as g”W
is bounded by (c, α, e). �

§5. Non-empty intervals. In this section we consider three types of intervals in
the poset (Tn, <T ) and show each one can consistently have a directed set inside.

5.1. Directed set between �+ × �++ and [�++]≤� . In [6, Theorem 1.1], the authors
constructed a directed set between�1 × �2 and [�2]≤� under the assumption 2ℵ0 =
ℵ1, 2ℵ1 = ℵ2 and the existence of an ℵ2-Souslin tree. In this subsection we generalize
this result while waiving the assumption concerning the Souslin tree. The main
corollary of this subsection is:

Corollary 5.1. Assume � is an infinite cardinal such that 2� = �+, 2�
+

= �++.
Suppose C and E are directed sets such that cf(C ) ≤ �+ and either non(Ibd(E)) > �+

or E ≡T 1. Then there exists a directed set D such that C × �+ × �++ × E <T C ×
D × E <T C × [�++]≤� × E.

The result follows immediately from Theorems 5.3 and 5.4. First, we prove the
following required lemma.

Lemma 5.2. Suppose � is a infinite cardinal andD, J,E are three directed sets such
that:

• cf(D) = cf(J ) = �++;
• �+ ∈ in(Ibd(D), �++) and out(Ibd(J )) ≤ �+;
• non(Ibd(E)) > �+ or E ≡T 1;
• D × E ≤T J × E.

Then J × E �≤T D × E. In particular, D × E <T J × E.

Proof. Notice that D is a directed set such that every subset of size �++ contains
a bounded subset of size �+. Let us fix a cofinal subset A ⊆ J of size �++ such that
every subset of A of size > � is unbounded in J.

Suppose on the contrary that J × E ≤T D × E. AsD × E ≤T J × E we get that
D × E ≡T J × E, hence there exists some directed set X such that bothD × E and
J × E are cofinal subsets of X.

We may assume that D has an enumeration D := {dα | α < �++} such that for
every � < α < �++ we have dα �< d� . Fix some e ∈ E. Now, for each a ∈ A take a
unique xa ∈ D and some ea ∈ E such that (a, e) ≤X (xa, ea). To do that, enumerate
A = {aα | α < �++}. Suppose we have constructed already the increasing sequence
〈�� | � < α〉 of elements in �++. Pick some 
 < �++ above {�� | � < α}. As D × E
is a directed set we may fix some (xaα , ea) := (d�α , ea) ∈ D × E above (aα, e) and
(d
, e).
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Set T = {xa | a ∈ A}, since A× E is cofinal in X, the set T × E is also cofinal in
X andD × E. As |T | = �++ we get that there exists some subsetB ∈ [T ]�

+
bounded

in D. Let c ∈ D be such that b ≤ c for each b ∈ B . Consider the set K = {a ∈ A |
xa ∈ B}. Since either non(Ibd(E)) > �+ orE ≡T 1, as {ea | a ∈ K} is of size ≤ �+,
it is bounded in E by some ẽ ∈ E. SoP := {(xa, ea) | a ∈ K} is bounded in X. Since
B is of size > �, the set K is also of size > �. Thus, by the assumption on A, the
setK × {e} is unbounded in J × E, but also in X because J × E is a cofinal subset
of X. Then, for each a ∈ K we have (a, e) ≤X (xa, ea) ≤X (c, ẽ), contradicting the
unboundedness of K × {e} in J × E. �

Theorem 5.3. Suppose � is an infinite cardinal and C,D,E are directed sets such
that:

(1) cf(D) = �++.
(2) For every partitionD =

⋃
�<�+ D� , there is an ordinal � < �+, and an unbounded

K ⊆ D� of size �+.
(3) �+ ∈ in(Ibd(D), �++) and non(Ibd(D)) = �+.
(4) non(Ibd(E)) > �+ or E ≡T 1.
(5) C is a directed set such that cf(C ) ≤ �+.

Then C × �+ × �++ × E <T C ×D × E <T C × [�++]≤� × E.
Proof. As cf(D) = �++, we may assume that every subset of D of size �++ is

unbounded. �
Claim 5.3.1. �+ × �++ ≤T D.

Proof. As cf(D) = �++, we get by Lemma 2.9 that �++ ≤T D. Let K be an
unbounded subset of D of size �+, as every subset of size � is bounded, by Corollary
2.10 we get that �+ ≤T D. Hence, �+ × �++ ≤T D as sought. �

Claim 5.3.2. D ≤T [�++]≤� .

Proof. As cf(D) = �++ and non(Ibd(D)) = �+, by Lemma 2.13,D ≤T [�++]≤�

as sought. �
Notice this implies that C × �+ × �++ × E ≤T C ×D × E ≤T C ×

[�++]≤� × E.
By Lemma 2.17, as |C × �+| ≤ �+, non(Ibd(�++ × E)) > �+ and Clause (2) we

get that D �≤T C × �+ × �++ × E.

Claim 5.3.3. C × [�++]≤� × E �≤T C ×D × E.

Proof. Recall that D[�++]≤� ≡T [�++]≤� . Notice that following:

• cf(C ×D) = cf(C ×D[�++]≤� ) = �++.
• By Clause (3) we have that �+ ∈ in(Ibd(C ×D), �++) and out(Ibd(C ×
D[�++]≤� )) ≤ �+.

• non(Ibd(E)) > �+ or E = 1.
• C ×D × E ≤T C ×D[�++]≤� × E.

So by Lemma 5.2 we are done. �
We are left with proving the following theorem, in which we define a directed set

Dc using a coloring c.
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Theorem 5.4. Suppose � is an infinite cardinal such that 2� = �+ and 2�
+

= �++.
Then there exists a directed set D such that:

(1) cf(D) = �++.
(2) For every partitionD =

⋃
�<�+ D� , there is an ordinal � < �+, and an unbounded

K ⊆ D� of size �+.
(3) �+ ∈ in(Ibd(D), �++) and non(Ibd(D)) = �+.

The rest of this subsection is dedicated to proving Theorem 5.4. The arithmetic
hypothesis will only play a role later on. Let � be an infinite cardinal. For two sets
of ordinals A and B, we denote A� B := {(α, �) ∈ A× B | α < �}. Recall that by
[3, Corollary 7.3], onto(S, J bd[�++], �+) holds for S := [�++]�

++
. This means that

we may fix a coloring c : [�++]2 → �+ such that for every S ∈ S and unbounded
B ⊆ �++, there exists 
 ∈ S such that c”({
} � B) = �+.

We fix some S ∈ S. For our purpose, it will suffice to assume that S is nothing
but the whole of �++. Let

Dc := {X ∈ [�++]≤�
+ | ∀
 ∈ S[{c(
, �) | � ∈ X \ (
 + 1)} ∈ NS�+]}.

ConsiderDc ordered by inclusion, and notice thatDc is a directed set since NS�+ is
an ideal.

Proposition 5.5. The following hold:

• [�++]≤� ⊆ Dc ⊆ [�++]≤�
+

.
• non(Ibd(Dc)) ≥ add(Ibd(Dc)) ≥ �+, i.e., every family of bounded subsets ofDc

of size < �+ is bounded.
• If 2�

+
= �++, then |Dc | = �++, and hence Dc ∈ D�++ .

Lemma 5.6. For every partition Dc =
⋃
�<�+ D� , there is an ordinal � < �+, and

an unbounded E ⊆ D� of size �+.

Proof. As [�++]1 is a subset of Dc , the family {D� | � < �+} is a partition of
the set [�++]1 to at most �+ many sets. As �+ < �++ = cf(�++), by the pigeonhole
principle we get that for some � < �+ and b ∈ [�++]�

++
, we have [b]1 ⊆ D� . Notice

that by the assumption on the coloring c, there exists some 
 ∈ S and 
 < b′ ∈ [b]�
+

such that c”(
 � b′) = �+. Clearly the set E := [b′]1 is a subset of D� of size �+

which is unbounded in Dc . �
Lemma 5.7. Suppose 2� = �+, then �+ ∈ in(Ibd(Dc), �++).

Proof. We follow the proof of [6, Lemma 5.4].
LetD′ be a subset ofDc of size �++ we will show it contains a bounded subset of

size �+, let us enumerate it as {T� | � < �++}. Let, for each X ∈ Dc and � ∈ S, NX�
denote the non-stationary set {c(�, �) | � ∈ X \ (� + 1)}, and let GX� denote a club
in �+ disjoint from NX� .

As 2� = �+ we may fix a sufficiently large regular cardinal �, and an elementary
submodelM ≺ H� of cardinality �+ containing all the relevant objects and such that
M� ⊆M . Denote 
 =M ∩ �++, notice 
 ∈ E�++

�+ . Fix an increasing sequence 〈�
 |

 < �+〉 in 
 such that sup{�
 | 
 < �+} = 
. Enumerate 
 ∩ S = {s
 | 
 < �+}. In
order to simplify notation, let G�
 denote the set GT�s
 for each � < �++ and 
 < �+.
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We construct by recursion on 
 < �+ three sequences 〈

 | 
 < �+〉, 〈Γ
 | 
 < �+〉
and 〈�
 | 
 < �+〉 with the following properties:

(1) 〈

 | 
 < �+〉 is an increasing sequence converging to 
.
(2) 〈Γ
 | 
 < �+〉 is a decreasing ⊆-chain of stationary subsets of �++ each one

containing 
 and definable in M.
(3) 〈�
 | 
 < �+〉 is an increasing sequence of ordinals below �+.

(4) G
� ∩ �� = G
�� ∩ �� for � ≤ � < �+.

� Base case: Let �0 be the first limit point ofG
0 . Notice thatG
0 ∩ �0 is an infinite
set of size ≤ � below 
, hence it is inside of M. Let

Γ0 := {� < �++ | G
0 ∩ �0 = G�0 ∩ �0}.

Since 
 ∈ Γ0, the set Γ0 is stationary in �++. Let 
0 := min(Γ0).
� Suppose 
0 < �

+, and that 

 , Γ
 and �
 have been constructed for each 
 < 
0.
Let �
0 be the first limit point of G

0 \ sup{�
 | 
 < 
0}. Consider the set

Γ
0 = {� ∈
⋂


<
0

Γ
 | ∀
 ≤ 
0[G

 ∩ �
0 = G�
 ∩ �
0 ]}.

Since Γ
0 belongs to M, and since 
 ∈ Γ
0 , it must be that Γ
0 is stationary in �++.
Since Γ
0 is cofinal in �++ and belongs to M, the set 
 ∩ Γ
0 is cofinal in 
. Define


0 be the minimal ordinal in 
 ∩ Γ
0 greater than both sup{

 | 
 < 
0} and �
0 . It
is clear from the construction that conditions (1 – 4) are satisfied. �

The following claim gives us the wanted result.

Claim 5.7.1. The set {T

 | 
 < �+} is a subset of D′ of size �+ which is bounded
in Dc .

Proof. As the order on Dc is ⊆, it suffices to prove that the union T =⋃

<�+ T

 ∈ Dc . Since, for each 
 < �+, both 

 and 〈T� | � < �++〉 belong to M, it

must be thatT

 ∈M . Since �+ ∈M andM |= |T

 | ≤ �+, we haveT

 ⊆M . Thus
T ⊆M and furthermore T ⊆ 
. This means that, in order to prove that T ∈ Dc ,
it is enough to prove that for each t ∈ S ∩ 
, the set {c(t, �) | � ∈ T \ (t + 1)} is
non-stationary in �+. Fix some t ∈ S ∩ 
. Let � < �+ be such that s� = t. Define

G := G
� ∩ (
⋂


≤�
G



� ) ∩ (�
<�+G




� ).

Since the intersection of < �+-many clubs in �+ is a club, and since diagonal
intersection of �+ many clubs is a club, we know that G is a club in �+.

We will prove that G ∩ {c(t, �) | � ∈ T \ (t + 1)} = ∅. Suppose α < �+ is such
that α ∈ G ∩ {c(t, �) | � ∈ T \ (t + 1)}. This means that α ∈ G and that for some

� < �+ and � ∈ T
� \ (t + 1) we have α = c(t, �). So α ∈ N
T
�
t . Note that this

implies that α /∈ G
�� . Let us split to three cases:

� Suppose � ≤ � , then since α ∈
⋂

≤� G




� , we have that α ∈ G
�� which is clearly

contradicting α /∈ G
�� .
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� Suppose � > � and α < ��. Then by (4), we have that G
� ∩ �� = G
�� ∩ ��. As

α �∈ G
�� and α < ��, it must be that α /∈ G
� . Recall that α ∈ G , but this is absurd
as G ⊆ G
� and α /∈ G
� .

� Suppose � > � and α ≥ �� ≥ �. As α ∈ G , we have that α ∈ �
<�+G



� . As

α > �, we get that α ∈ G
�� which is clearly contradicting α /∈ G
�� . �

5.2. Directed set between � × �1 and [�1]<� . As mentioned in [8], by the results
of Todorčević [13], it follows that under the assumption b = �1 there exists a
directed set of size�1 between the directed sets� × �1 and [�1]<� . In this subsection
we spell out the details of this construction.

For two functions f, g ∈ ��, we define the order <∗ by f <∗ g iff the set {n <
� | g(n) ≥ f(n)} is finite. Furthermore, byf � g we means that there existsm < �
such that for all n < mwe havef(n) ≤ g(n) andf(k) < g(k) wheneverm ≤ k < �.
Assuming f ≤∗ g, we let Δ(f, g) := min{m < � | ∀n ≥ m[f(n) ≤ g(n)]}.

The following fact is a special case of [13, Theorem 1.1] in the case n = 0, for
complete details we give the proof as suggested by the referee.

Fact 5.8 (Todorčević [13, Theorem 1.1]). Suppose A is an uncountable sequence
of �� of increasing functions which are <∗-increasing and ≤∗-unbounded, then there
are f, g ∈ A such that f � g.

Proof. Let A := {gα | α < �1} be an uncountable sequence of increasing
functions of �� which are <∗-increasing and ≤∗-unbounded.

Let us fix a countable elementary sub-model M ≺ (H�2 ,∈) with A ∈M . Let

 := �1 ∩M , B := �1 \ (
 + 1) and write Bn := {� ∈ B | Δ(g
, g�) = n}. As B =⋃
n<� Bn, let us fix some n < � such that Bn is uncountable. As {gα | α ∈ Bn} is

unbounded, we get that the set K := {m < � | sup{g�(m) | � ∈ Bn} = �} is non-
empty, so consider the minimal element, m := min(K). For t ∈ m�, denote Btn :=
{� ∈ Bn | t ⊆ g�}. By minimality of m, the set {t ∈ m� | Btn �= ∅} is finite, so we can
easily find some t ∈ m� such that sup{g�(m) | � ∈ Btn} = �.

Note that the set {� < �1 | t ⊆ g�} is a non-empty set that is definable from A and
t, hence it is in M. Let us fix some α ∈M ∩ �1 such that t ⊆ gα . Put k := Δ(gα, g
),
and then pick � ∈ Btn such that g�(m) > gα(k + n). Of course, α < 
 < � . We claim
that gα � g� as sought.

Let us divide to three cases:

• If i < m, then gα(i) = t(i) = g�(i).
• If m ≤ i ≤ k + n, then gα(i) ≤ gα(k + n) < g�(m) ≤ g�(i) recall that every

function in A is increasing.
• If k + n < i < �, then Δ(gα, g
) = k < i and gα(i) ≤ g
(i), as well as

Δ(g
, g�) = n < i and g
(i) ≤ g�(i). Altogether, gα(i) ≤ g�(i). �

Theorem 5.9. Assume b = �1. Suppose E is a directed set such that non(Ibd(E)) >
� or E ≡T 1. Then there exists a directed set D such that

� × �1 × E <T D × E <T [�1]<� × E.
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Proof. Let F := 〈fα | α < �1〉 ⊆ �� witness b = �1. Recall F is a <∗-
increasing and unbounded sequence, i.e., for every g ∈ ��, there exists someα < �1

such that f� �≤∗ g, whenever α < � < �1.
For a finite set of functions F ⊆ ��, we define a function h := max(F ) which is

�-above every function in F by letting h(n) := max{f(n) | f ∈ F }. We consider the
directed set D := {max(F ) | F ⊆ F , |F | < ℵ0}, ordered by the relation �, clearly
D is a directed set. �

Claim 5.9.1. Every uncountable subset X ⊆ D contains a countable B ⊂ X which
is unbounded in D.

Proof. Let X be an uncountable subset of D. As F is a <∗-increasing and
unbounded, also X contains an uncountable <∗-unbounded subset Y ⊆ X . As no
functiong : � → � is<∗-bounding the set Y, we can find an infinite countable subset
B ⊆ Y and n < � such that {f(n) | f ∈ B} is infinite. Clearly B is �-unbounded
in D as sought. �

Claim 5.9.2. � ∈ in(Ibd(D), �1).

Proof. We show that every uncountable subset of D contains a countable infinite
bounded subset. LetA ⊆ D be an uncountable set, we may refine A and assume that
it is <∗-increasing and unbounded. We enumerate A := {gα | α < �1} and define
a coloring c : [�1]2 → 2, letting for α < � < �1 the color c(α, �) = 1 iff gα � g� .
Recall that Erdös and Rado showed that �1 → (�1, � + 1)2, so either there is an
uncountable homogeneous set of color 0 or there exists an homogeneous set of
color 1 of order-type � + 1. Notice that Fact 5.8 contradicts the first alternative,
so the second one must hold. Let X ⊆ �1 be a set such that otp(X ) = � + 1 and
c”[X ]2 = {1}, notice that {gα | α ∈ X} is an infinite countable subset of A which is
�-bounded by the function gmax(X ) ∈ A as sought.here �

Note that cf(D) = �1, hence D × E ≤T [�1]<� × E.

Claim 5.9.3. � × �1 × E ≤T D × E.

Proof. As every subset of D of size �1 is unbounded, we get by Lemma 2.9 that
�1 ≤T D. As D is a directed set, every finite subset of D is bounded. By Claim 5.9.1,
D contains an infinite countable unbounded subset, so by Corollary 2.10 we have
� ≤T D. Finally, � × �1 ≤T D as sought. �

Claim 5.9.4. D �≤T � × E.

Proof. Recall that either non(Ibd(E)) > � or E ≡T 1. Note that if E ≡T 1,
then as cf(D) = �1 > cf(�), we have by Lemma 2.12 that D �≤T � × E as sought.
Note that for every partition D =

⋃
{Dn | n < �} of D, there exists some n < �

such that Dn is uncountable, and by Claim 5.9.1, there exists some X ⊆ Dn infinite
and unbounded in D. As non(Ibd(E)) > �, by Lemma 2.17 we have D �≤T � × E
as sought. �

Claim 5.9.5. [�1]<� �≤T D × E.

Proof. By Claim 5.9.2, every uncountable subset of D contains an infinite
countable bounded subset and every countable subset of E is bounded, we get
that � ∈ in(Ibd(D × E), �1). As out(Ibd([�1]<�)) = � by Lemma 2.15 we get that
[�1]<� �≤T D × E as sought. �
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5.3. Directed set between [	]<� × [	+]≤� and [	+]<� . In [6, Theorem 1.2], the
authors constructed a directed set between [�1]<� × [�2]≤� and [�2]<� under the
assumption 2ℵ0 = ℵ1, 2ℵ1 = ℵ2 and the existence of a non-reflecting stationary
subset of E�2

� . In this subsection we generalize this result while waiving the
assumption concerning the non-reflecting stationary set.

We commence by recalling some classic guessing principles and introducing a
weak one, named ♣�J (S, 1), which will be useful for our construction.

Definition 5.10. For a stationary subset S ⊆ κ:

(1) ♦(S) asserts the existence of a sequence 〈Cα | α ∈ S〉 such that:
• for all α ∈ S, Cα ⊆ α;
• for every B ⊆ κ, the set {α ∈ S | B ∩ α = Cα} is stationary.

(2) ♣(S) asserts the existence of a sequence 〈Cα | α ∈ S〉 such that:
• for all α ∈ S ∩ acc(κ), Cα is a cofinal subset of α of order type cf(α);
• for every cofinal subset B ⊆ κ, the set {α ∈ S | Cα ⊆ B} is stationary.

(3) ♣�J (S, 1) asserts the existence of a sequence 〈Cα | α ∈ S〉 such that:
• for all α ∈ S ∩ acc(κ), Cα is a cofinal subset of α of order type cf(α);
• for every partition 〈A� | � < �〉 of κ there exists some � < � such that the

set {α ∈ S | sup(Cα ∩ A�) = α} is stationary.

Recall that by a Theorem of Shelah [10], for every uncountable cardinal 	 which
satisfy 2	 = 	+ and every stationaryS ⊆ E	+�=cf(	), �(S) holds. It is clear that �(S) ⇒
♣(S) ⇒ ♣	J (S, 1). The main corollary of this subsection is:

Corollary 5.11. Let � < 	 be two regular cardinals. Assume 	� < 	+ and♣	J (S, 1)
holds for some stationary S ⊆ E	+� . Suppose C and E are two directed sets such that
cf(C ) < 	+ and non(Ibd(E)) > � or E ≡T 1. Then there exists a directed set DC
such that:

C × [	]<� × [	+]≤� × E <T C × [	]<� ×DC × E <T C × [	+]<� × E.

In the rest of this subsection we prove this result.
Suppose C := 〈Cα | α ∈ S〉 is a C-sequence for some stationary set S ⊆ E	+� ,

i.e., Cα is a cofinal subset of α of order-type �, whenever α ∈ S. We define the
directed setDC := {Y ∈ [	+]≤� | ∀α ∈ S[|Y ∩ Cα | < �]} ordered by ⊆. Notice that
non(Ibd(DC)) = � and [	+]<� ⊆ DC .

Recall that by Hausdorff’s formula (	+)� = max{	+, 	�}, so if 	� < 	+, then
(	+)� = 	+. So we may assume |DC | = 	+.

Claim 5.11.1. Suppose |DC | = 	+, then [	+]≤� ≤T DC .

Proof. Fix a bijection φ : DC → 	+. Denote X := {x ∪ {φ(x)} | x ∈ DC},
clearly X is cofinal subset ofDC . Let us fix some injective function g : [	+]≤� → X .
We claim that g is a Tukey function, which witness that [	+]≤� ≤T DC . Fix some
B ⊆ [	+]≤� unbounded in [	+]≤� , note that |B | > �. As g is injective, we get that
g”B is a set of size > �. Notice that there exists Z ∈ [	+]�

+
such that Z ⊆

⋃
g”B .

Assume that g”B is bounded by d ∈ DC in DC . As DC is ordered by ⊆, we get that
Z ⊆ d , so |d | ≥ �+. But this is a absurd as every set in DC is of size ≤ �. �
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Notice that by Lemma 2.13 and Claim 5.11.1, as (	+)� = 	+ we have
[	]<� × [	+]≤� ≤T [	]<� ×DC ≤T [	+]<�. Hence, C × [	]<� × [	+]≤� × E ≤T
C × [	]<� ×DC × E ≤T C × [	+]<� × E.

Claim 5.11.2. Suppose C is a ♣	J (S, 1)-sequence and:

(i) C is a directed set such that |C | < 	+;
(ii) E is a directed set such that non(Ibd(E)) > � and cf(E) ≥ 	+.

Then C ×DC �≤T C × E.

Proof. Suppose thatf : C ×DC → C × E is a Tukey function. Fix some o ∈ C
and for each 
 < 	+, denote (c
, x
) := f(o, {
}). Consider the set {(c
, x
) | 
 <
	+}. For every c ∈ C , we define Ac := {
 < 	+ | c
 = c}, clearly 〈Ac | c ∈ C 〉 is a
partition of 	+ to less than 	+ many sets.

As C is a ♣	J (S, 1)-sequence, there exists some c ∈ C and α ∈ S such that |Cα ∩
Ac | = �. Let us fix some B ∈ [Cα ∩ Ac ]� . Notice that the set G := {(o, {
}) | 
 ∈
B} is unbounded in C ×DC , hence as f is Tukey, f”G is unbounded in C × E.
The subset {x
 | 
 ∈ B} of E is of size �, hence bounded by some e. Note that
f”G = {(c, x
) | 
 ∈ B} is bounded by (c, e) in C × E which is absurd. �

By the previous claim, as 	� < 	+, we get that C ×DC × [	]<� × E �≤T C ×
[	]<� × [	+]≤� × E. The following claim gives a negative answer to the question of
whether there is a C-sequence C such that DC ≡T [	+]<� .

In the following claim we use the fact that the sets in the sequence C are of a
bounded cofinality.

Claim 5.11.3. Assume 	� < 	+. Suppose S ⊆ E	+� is a stationary set and C :=
〈Cα | α ∈ S〉 is a C-sequence, then DC �≥T [	+]<� .

Proof. Let S ⊆ E	+� and C := 〈Cα | α ∈ S〉 be a C-sequence. Suppose we have
[	+]<� ≤T DC , let f : [	+]<� → DC be a Tukey function and Y := f”[	+]1. Let us
split to two cases:

� Suppose |Y | < 	+. By the pigeonhole principle, we can find a subset Q ⊆ [	]1

of size � such that f”Q = {x} for some x ∈ DC . As f is Tukey and Q is unbounded
in [	+]<� , the set f”Q is unbounded which is absurd.

� Suppose |Y | = 	+. As f is Tukey, every subset of Y of size � is unbounded
which is absurd to the following claim. �

Subclaim 5.11.3.1. There is no subset Y ⊆ DC of size 	+ such that every subset of
Y of size � is unbounded.

Proof. Assume towards a contradiction that Y is such a set. As 	� < 	+, we may
refine Y and assume that Y = {yα | α < 	+} is a Δ-system with a root R separated
by a club C ⊆ 	+, i.e., such that for every α < � < 	+, yα \R < � < y� \R for
some � ∈ C .

We define an increasing sequence of ordinals 〈�� | � ≤ �2〉 where for each � ≤ �2

we let �� := sup{y
 | 
 < �}. As C is a club, we get that ��·� ∈ C for each � < �.
We aim to construct a subsetX = {xj | j < �}of Y, we split to two cases: Suppose

��2 ∈ S. Recall that otp(C�
�2 ) = � and sup(C�

�2 ) = ��2 , so for every j < � we have
that the interval [��·j , ��·(j+1)) contains< � many elements of the ladderC�

�2 , let us
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fix some xj ∈ Y such that xj \R ⊂ [��·j , ��·(j+1)) and xj \R is disjoint from C�
�2 .

If ��2 /∈ S, define X := {xj | j < �} where xj := y�·j .
Let us show that X = {xj | j < �} is a bounded subset of Y, which is a

contradiction to the assumption. It is enough to show that for every α ∈ S, we
have that |(

⋃
X ) ∩ Cα | < �. Let α ∈ S.

� Suppose α > ��2 , as Cα is a cofinal subset of α of order-type � and
⋃
X is

bounded by ��2 it is clear that |(
⋃
X ) ∩ Cα | < �.

� Suppose α < ��2 . As Cα if cofinal in α and of order-type �, there exists some
j < � such that for all j < � < �, we have (x� \R) ∩ Cα = ∅. As x� ∈ DCR for every
� < � and � is regular, we get that |(

⋃
X ) ∩ Cα | < � as sought.

� Suppose α = ��2 . Notice this implies that we are in the first case of the
construction of the set X. Recall that the Δ-system {xj | j < �} is such that
(xj \R) ∩ Cα = ∅, hence (

⋃
X ) ∩ Cα = R ∩ Cα . Recall that as x0 ∈ DC , we get

that R ∩ Cα is of size < �, hence also (
⋃
X ) ∩ Cα is as sought. �

Claim 5.11.4. Assume 	� < 	+. Suppose C and E are two directed sets such that
|C | < 	+ and either non(Ibd(E)) > � or E ≡T 1. Then for every C-sequence C on a
stationary S ⊆ E	+� , C × [	+]<� × E �≤T C ×DC × E.

Proof. Let C := 〈Cα | α ∈ S〉 be a C-sequence where S ⊆ E	+� . Suppose on the
contrary thatC × [	+]<� × E ≤T C ×DC × E. Hence, [	+]<� ≤T C ×DC × E, let
us fix a Tukey function f : [	+]<� → C ×DC × E witnessing that. Consider X =
[	+]1.

By the pigeonhole principle, there exists some c ∈ C and some set Z ⊆ X of size
	+ such that f”Z ⊆ {c} ×DC × E. Let Y := �DC (f”Z). Let us split to two cases:

� Suppose |Y | < 	+. By the pigeonhole principle, we can find a subset Q ⊆ Z
of size � such that f”Q = {c} × {x} × E for some x ∈ DC . As f is Tukey and
Q is unbounded, we must have that f”Q is unbounded, but this is absurd as
non(Ibd(E)) > �.

� Suppose |Y | = 	+. As f is Tukey and either non(Ibd(E)) > � or E = 1, every
subset of Y of size � is unbounded which is impossible by Claim 5.11.3.1. �

5.4. Structure of DC . In [12, Lemmas 1, 2], Todorčević defined for every κ
regular and S ⊆ κ the directed set D(S) := {C ⊆ [S]≤� | ∀α < �1[sup(C ∩ α) ∈
C ]} ordered by inclusion; and studied the structure of such directed sets. In this
section we follow this line of study but for directed sets of the formDC , constructing
a large <T -antichain and chain of directed sets using �-support product.

5.4.1. Antichain

Theorem 5.12. Suppose 2	 = 	+, 	� < 	+, then there exists a family F of size 2	
+

of directed sets of the form DC such that every two of them are Tukey incomparable.

Proof. As 2	 = 	+ holds, by Shelah’s Theorem we get that ♦(S) holds for every
S ⊆ E	+� stationary subset. Let us fix some stationary subsetS ⊆ E	+� and a partition
of S into 	+-many stationary subsets 〈Sα | α < 	+〉. For each Sα we fix a ♣(Sα)
sequence 〈C� | � ∈ Sα〉.

Let us fix a family F of size 2	
+

of subsets of S such that for every two
R,T ∈ F there exists some Sα such that R \ T ⊇ Sα . For each T ∈ F let us define
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a C-sequence CT := 〈Cα | α ∈ T 〉. Clearly the following lemma shows the family
{DCT | T ∈ F} is as sought. �

Claim 5.12.1. Suppose CT := 〈C� | � ∈ T 〉 and CR := 〈C� | � ∈ R〉 are two C-
sequences such that T,R ⊆ E	+� are stationary subsets. Then if 〈C� | � ∈ T \R〉 is a
♣-sequence, then DCT �≤T DCR .

Proof. Suppose f : DCT → DCR is a Tukey function. Fix a subsetW ⊆ [	+]1 ⊆
DCT of size 	+, we split to two cases:

� Supposef”W ⊆ [α]� for someα < 	+. As	� < 	+, by the pigeonhole principle
we can find a subset X ⊆W of size 	+ such that f”X = {z} for some z ∈ DCR . As
〈C� | � ∈ T \R〉 is a ♣-sequence and

⋃
X ∈ [	+]	

+
, there exists some � ∈ T \R

such thatC� ⊆
⋃
X . So X is an unbounded subset of CT such that f”X is bounded

in CR which is absurd.
� As |f”W | = 	+, using 	� < 	+ we may fix a subsetY = {y� | � < 	+} ⊆ f”W

which forms a Δ-system with a root R1. In other words, for α < � < 	+ we have
yα \R1 < y� \R1 and yα ∩ y� = R1. For each α < 	+, we fix xα ∈W such that
f(xα) = yα . Finally, without loss of generality we may use the Δ-system lemma
again and refine our set Y to get that there exists a club E ⊆ 	+ such that, for all
α < � < 	+ we have:

• xα ∩ x� = ∅;
• yα ∩ y� = R1;
• there exists some � ∈ E such that xα < � < x� and yα \R1 < � < y� \R1;
• f(xα) = yα .

Furthermore, we may assume that between any two elements of 
 < � in E there
exists a unique α < 	+ such that 
 < xα ∪ (yα \R1) < �.

As 〈C� | � ∈ T \R〉 is a ♣-sequence, there exists some � ∈ (T \R) ∩ acc(E)
such that C� ⊆

⋃
{xα | α < 	+}. Construct by recursion an increasing sequence

〈�� | � < �〉 ⊆ C� and a sequence 〈z� | � < �〉 ⊆ {xα | α < 	+} such that
�� ∈ z� < � .

Clearly, {z� | � < �} is unbounded in DCT , so the following claim proves f is not
a Tukey function. �

Subclaim 5.12.1.1. The subset {f(z�) | � < �} is bounded in DCR .

Proof. Let Y :=
⋃
f(z�) and CR := 〈C� | � ∈ R〉, we will show that for every

α ∈ R, we have |Y ∩ Cα | < �. By the refinement we did previously it is clear that
{f(z�) \R1 | � < �} is a pairwise disjoint sequence, where for each � < � we have
some element �� ∈ E such that f(z�) \R1 < �� < f(z�+1) \R1 < � . Let α ∈ R.

� Suppose α > � . As Cα is cofinal in α and of order-type �, then |Y ∩ Cα | < �.
� Suppose α < � . As Cα is cofinal in α and of order-type �, there exists some

� < � such that for all � < � < �, we have (f(z�) \R1) ∩ Cα = ∅. As f(z�) ∈ DCR
for every � < � and � is regular, we get that |Y ∩ Cα | < � as sought.

As � /∈ R there are no more cases to consider. �

Corollary 5.13. Suppose 2	 = 	+, 	� < 	+ and S ⊆ E	+� is a stationary subset.
Then there exists a family F of directed sets of the form DC × [	]<� of size 2	

+
such

that every two of them are Tukey incomparable.
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Proof. Clearly by the same arguments of Theorem 5.12 the following lemma is
suffices to get the wanted result. �

Claim 5.13.1. Suppose CT := 〈C� | � ∈ T 〉 and CR := 〈C� | � ∈ R〉 are two C-
sequences such that T,R ⊆ E	+� are stationary subsets such that T \R is stationary.
Then if 〈C� | � ∈ T \R〉 is a ♣-sequence, then DCT × [	]<� �≤T DCR × [	]<� .

Proof. Suppose f : DCT × [	]<� → DCR × [	]<� is a Tukey function. Consider
Q = f”([	+]1 × {∅}), let us split to two cases:

� If |Q| < 	+, then by the pigeonhole principle, there exists x ∈ DCR , F ∈ [	]<�

and a set W ⊆ [	+]1 of size 	+ such that f”(W × {∅}) = {(x, F )}. As 〈C� | � ∈
T \R〉 is a ♣-sequence and

⋃
W ∈ [	+]	

+
, we may fix some � ∈ T \R such that

C� ⊆
⋃
W . Hence W × {∅} is unbounded in DCT × [	]<� but f”(W × {∅}) is

bounded in DCR × [	]<� which is absurd as f is Tukey.
� If |Q| = 	+, then by the pigeonhole principle there exists some F ∈ [	]<�

and a set W ⊆ [	+]1 of size 	+ such that, f”(W × {∅}) ⊆ DCR × {F }. Let
Y := �0(f”(W × {∅})). Next, we may continue with the same proof as in
Lemma 5.12.1. �

5.4.2. Chain

Theorem 5.14. Suppose 2	 = 	+, 	� < 	+. Then there exists a family F = {DC
 |

 < 	+} of Tukey incomparable directed sets of the form DC such that 〈

∏≤�
�<
 DC� |


 < 	+〉 is a <T -increasing chain.

Proof. As in Theorem 5.12, we fix a partition 〈S� | � < 	+〉 of E	
+

� to stationary
subsets such that there exists a ♣(S�)-sequence C� for � < 	+. Note that for every
A ∈ [	+]<	

+
, we have |

∏≤�
�∈A DC� | = 	+. Note that for every A,B ∈ [	+]<	

+
such

that A ⊂ B , we have
∏≤�
�∈A DC� ≤T

∏≤�
�∈B DC� . The following claim gives us the

wanted result. �
Claim 5.14.1. Suppose A ∈ [	+]<	

+
and 
 ∈ 	+ \ A, then DC
 �≤T

∏≤�
�∈A DC� . In

particular,
∏≤�
�∈A DC� <T

∏≤�
�∈A DC� ×DC
 .

Proof. Let D := DC
 and E :=
∏≤�
�∈A DC� . Note that as 2	 = 	+, then (	+)	 =

	+, so |E| = 	+. Suppose f : D → E is a Tukey function. Consider Q = f”[	+]1,
let us split to cases:

� Suppose |Q| < 	+, then by pigeonhole principle, there exists e ∈ E and a subset
X ⊆ D of size 	+ such that f”X = {e}. As 〈C� | � ∈ S
〉 is a ♣-sequence, there
exists some � ∈ S
 such that C� ⊆

⋃
X . So X is an unbounded subset of D such

that f”X is bounded in E which is absurd.
� Suppose |Q| = 	+. Let us enumerateQ := {qα | α < 	+}. Recall that for every

� ∈ A,DC� ⊆ [	+]≤� . Let zα :=
⋃
{qα(�) × {�} | � ∈ A, qα(�) �= 0DC�

}, notice that

zα ∈ [	+ × A]≤� . We fix a bijection φ : 	+ × A→ 	+.
As {φ”zα | α < 	+} is a subset of [	+]≤� of size 	+ and 	� < 	+, by the Δ-system

lemma, we may refine our sequence Q and re-index such that {φ”zα | α < 	+} will
be a Δ-system with root R′.

For each α < 	+ and � ∈ A, let yα,� := {� < 	+ | � ∈ qα(�)}. We claim that
for each � ∈ A, the set {yα,� | � ∈ A} is a Δ-system with root R� := {� < 	+ |
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(�, �) ∈ φ–1[R′]}. Let us show that whenever α < � < 	+, we have yα,� ∩ y�,� =
R� . Notice that 
 ∈ yα,� ∩ y�,� ⇐⇒ 
 ∈ qα(�) ∩ q�(�) ⇐⇒ (
, �) ∈ zα ∩ z� ⇐⇒
φ(
, �) ∈ φ”(zα ∩ z�) = φ”zα ∩ φ”z� = R′ ⇐⇒ (
, �) ∈ φ–1R′ ⇐⇒ 
 ∈ R� . For
each α < 	+, we fix xα ∈ [	+]1 such that f(xα) = qα .

We use the Δ-system lemma again and refine our sequence such that there exists
a club C ⊆ 	+ and for all α < � < 	+ we have:

(1) for every � ∈ A, we have yα,� ∩ y�,� = R� ;
(2) xα ∩ x� = ∅;
(3) there exists some � ∈ C such that xα ∪ (

⋃
�∈A(yα,� \R�)) < � < x� ∪

(
⋃
�∈A(y�,� \R�)).

Furthermore, we may assume that between any two elements of � < 
 in C there
exists some α < 	+ such that � < xα ∪ (

⋃
�∈A(yα,� \R�)) < 
. We continue in the

spirit of Claim 5.11.3.1.
As 〈C� | � ∈ S
〉 is a ♣-sequence, there exists some � ∈ S
 ∩ acc(C ) such that

C� ⊆
⋃
{xα | α < 	+}. Construct by recursion an increasing sequence 〈�� | � <

�〉 ⊆ C� and a sequence 〈w� | � < �〉 ⊆ {xα | α < 	+} such that �� ∈ w� < � .
Clearly, {w� | � < �} is unbounded inDC
 , so the following Claim proves f is not

a Tukey function. �

Subclaim 5.14.1.1. The subset {f(w�) | � < �} is bounded in E.

Proof. For each � ∈ A, letW� :=
⋃
�<� f(w�)(�). We will show thatW� ∈ DC� ,

as |{� ∈ A |W� �= ∅}| ≤ � this will imply that
∏≤�
�∈AW� is well defined and an

element of E. Clearlyf(w�) ≤E
∏≤�
�∈AW� for every � < �, so the set {f(w�) | � < �}

is bounded in E as sought.
Let C� := 〈Cα | α ∈ S�〉, we will show that for every α ∈ S� , we have |W� ∩ Cα | <

�. By the refinement we did previously it is clear that {f(w�)(�) \R� | � < �} is a
pairwise disjoint sequence, where for each � < � we have some element �� ∈ C such
that f(w�)(�) \R� < �� < f(w�+1)(�) \R� . Furthermore, f(w�)(�) ⊆ � for every
� < �. Let α ∈ S� .

� Suppose α > � . As Cα if cofinal in α and of order-type �, then |W� ∩ Cα | < �.
� Supposeα < � . AsCα if cofinal inα and of order-type �, there exists some � < �

such that for all � < � < �, we have (f(w�)(�) \R�) ∩ Cα = ∅. As f(w�)(�) ∈ DC�
for every � < �, we get that |W� ∩ Cα | < � as sought.

As � /∈ S� there are no more cases to consider. �

§6. Concluding remarks. A natural continuation of this line of research is
analysing the class Dκ for cardinals κ ≥ ℵ� . As a preliminary finding we notice
that the poset (P(�),⊂) can be embedded by a function F into the class Dℵ�
under the Tukey order. Furthermore, for every two successive elements A,B in the
poset (P(�),⊂), i.e., A ⊂ B and |B \ A| = 1, there is no directed set D such that
F(A) <T D <T F(B). The embedding is defined via F(A) :=

∏<�
n∈A �n+1, and the

furthermore part can be proved by Lemma 4.3. As a corollary, we get that in ZFC
the cardinality of Dℵ� is at least 2ℵ0 .
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Figure 3. Tukey ordering of (T2, <T ).

Figure 4. Tukey ordering of (T3, <T ).

A. Appendix: Tukey ordering of simple elements of the class Dℵ2
and Dℵ3

We
present each of the posets (T2, <T ) and(T3, <T ) in a diagram. In both diagrams
below, for any two directed sets A and B, an arrowA→ B , represents the fact that
A <T B . If the arrow is dashed, then under GCH there exists a directed set in
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between. If the arrow is not dashed, then there is no directed set in between A
and B. Every two directed sets A and B such that there is no directed path (in the
obvious sense) from A to B, are such that A �≤T B . Note that this implies that any
two directed sets on the same horizontal level are incompatible in the Tukey order
(Figures 3 and 4).
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