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Abstract

Complex physical processes that are inherent to rainfall lead to the challenging task of its prediction. To contribute to the
improvement of rainfall prediction, artificial neural network (ANN)modelswere developed using amultilayer perceptron
(MLP) approach to predictmonthly rainfall 2months in advance for sixgeographically diverseweather stations across the
Benin Republic. For this purpose, 12 lagged values of atmospheric data were used as predictors. Themodelswere trained
using data from1959 to 2017 and tested for 4 years (2018–2021). The proposedmethodwas compared to long short-term
memory (LSTM) and climatology forecasts (CFs). The prediction performance was evaluated using five statistical
measures: root mean square error, mean absolute error, mean absolute percentage error, coefficient of determination, and
Nash–Sutcliffe efficiency (NSE) coefficient. Furthermore, Taylor diagrams, violin plots, box error, and Kruskal–Wallis
test were used to assess the robustness of the model’s forecast. The results revealed that MLP gives better results than
LSTM and CF. The NSE obtained with the MLP, LSTM, and CF models during the test period ranges from 0.373 to
0.885, 0.297 to 0.875, and0.335 to0.845, respectively, depending on theweather station.Rainfall predictabilitywasmore
accurate, with 0.512 improvement in NSE using MLP at higher latitudes across the country, showing the effect of
geographic regions on prediction model results. In summary, this research has revealed the potential of ANN techniques
in predictingmonthly rainfall 2 months ahead, supplying valuable insights for decision-makers in the Republic of Benin.

Impact Statement

This article contributed to the understanding ofmonthly rainfall forecasting in the Benin Republic. Thiswas done
through the development of a new monthly forecasting model using an artificial neural network approach. A
large contribution of this work is the quantitative prediction ofmonthly rainfall 2 months in advance. This kind of
forecasting allows policymakers and local populations to better plan their activities and to act appropriately ahead
of time in order to mitigate the challenges of managing rainwater supplies, drought, and flooding.

1. Introduction

Rainfall is one of the weather parameters that mostly affect human life and livelihood around the world. In
the current context of climate change and variability, accurate rainfall prediction is essential for mitigating
floods, managing water resources, and safeguarding lives, property, and economic endeavors. Moreover,
the capacity to predict rainfall several months ahead could improve water efficiency.
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Forecasting the weather is a process of using the science and technology to make predictions about the
state of the atmosphere at a specific location in the future. Soft computational methods and machine
learning (ML) approaches have seen wide use in weather forecasting. ML algorithms are a promising
alternative to numerical weather prediction methods because they can handle the complexity and volume
ofweather datawith less computing power.ML, particularly neural networks, can detect complex patterns
and nonlinear relationships in data. They have been used in predicting rainfall, predicting temperature,
and modeling rainfall runoff. Artificial neural network (ANN) models are the most popular and widely
used models for rainfall prediction because physical processes affecting rainfall occurrence are highly
complex and nonlinear (Adamowski and Sun, 2010). Recently, there has been a growing popularity in
deep learning (DL) techniques due to recent technological advancements. Modeling sequential data using
recurrent neural networks (RNNs) is a highly active field of research in DL (Xu et al., 2022). The long
short-term memory (LSTM) technique is an innovative advancement in this domain that specifically
targets the acquisition of long-term dependencies. It was created to tackle the issue of the vanishing
gradient problem encountered in traditional RNNs (Hu et al., 2018).

Many studies using ANNs to predict rainfall have been published. Ayodele and Precious (2019) used
ANNs and the back propagation (BP) algorithm to forecast seasonal rainfall in Ikeja, Nigeria, using as
input variables sea surface temperature (SST), U-wind at (surface, 700, 850, and 1000 hPa), air
temperature, specific humidity, ITD, and relative humidity from year 1986 to 2017. Results of the
proposed ANN show an accurate seasonal rainfall forecast for Ikeja with a limited error. Besides, Bello
et al. (2018) made an attempt at predicting rainfall over Kano in Nigeria using ANN and a linear model for
a 3-month lead period. Comparing the results, ANN gave better accuracy. Abdulkadir et al. (2017) used a
similar approach to assess the efficacy of neural networks in predicting rainfall patterns in seven chosen
stations in Nigeria using successive rainfall depth data as input. After the model validation, significant
correlation coefficients were observed, indicating that ANN may be employed for quantitative rainfall
prediction in these locations. Similarly, Ewona et al. (2016) used ANNs to forecast rainfall across 23 sites
in Nigeria using 30-year data. The predictability of rainfall was shown to be more accurate at higher
latitudes across the country. Moreover, Folorrunsho (2014) also developed an ANN-based model for
monthly rainfall forecasting in Zaria, Nigeria, using temperature, relative humidity, wind speed, and
sunshine hours as input variables. The authors obtained a value of 81% as correlation coefficient (r) during
the testing phase. Furthermore, Kashiwao et al. (2017) compared multilayer perceptron (MLP) with a
hybrid algorithm composed of BP and random optimization methods and radial basis function network
(RBFN) for the purpose of forecasting short-term rainfall using data from the Japan Meteorological
Agency. The authors demonstrated that MLP outperformed RBFN. Choubin et al. (2016) compared
multiple linear regression, MLP, and adaptive neuro-fuzzy inference system models for predicting
precipitation in Iran. The metric results showed that the MLP network outperformed the other models
in terms of performance. ANNs have been successfully used in conjunction with BP algorithm to forecast
rainfall in Indonesia (Hardwinarto et al., 2015). In Queensland, Australia, Abbot and Marohasy (2014)
usedANNand PredictiveOceanAtmosphereModel for Australia (POAMA) to forecast rainfall. Rainfall,
minimum and maximum temperatures, the Inter-decadal Pacific Oscillation, the Dipole Mode Index, the
Southern Oscillation Index, and El Nino 3.4 were used as input variables. In comparison to the POAMA
model, the analysis discovered that the ANN model makes predictions that are more accurate. Three
distinct models for monthly rainfall forecasting were developed by MuttalebAlhashimi (2014). From
1970 to 2008, the study collected monthly data on precipitation, mean temperature, wind speed, and
relative humidity. The findings demonstrated the superiority of ANNmodels over other models. Pai et al.
(2014) forecasted Southwest Indian Monsoon rainfall with ANN using SST, sea level pressure, humidity,
and zonal (u) and meridional (v) winds. The findings demonstrate a fair degree of precision. In addition,
Chen et al. (2022) evaluated the predictive accuracy of LSTMand random forest (RF)models formonthly
rainfall prediction at twometeorological stations in Turkey, using rainfall as the input variable. The results
demonstrated that the LSTMmodel exhibited superior performance compared to the RFmodel in terms of
efficacy. Ni et al. (2020) also created two hybrid models for predicting monthly streamflow and rainfall,
using the conventional LSTM model as a basis. The findings showcased the aptness of LSTM for
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forecasting time series data. Kumar et al. (2019) employed innovative DL models, specifically RNN and
LSTM, to predict monthly rainfall in regions of India with consistent rainfall patterns. The findings
demonstrate the successful application of DL networks in hydrological time series analysis. Additional
applications using ML algorithms in the field of meteorology can be found in Demir and Citakoglu
(2023), Citakoglu (2021), Lakshminarayana et al. (2020), Fahimi et al. (2017), Yaseen et al. (2015), and
Nourani et al. (2014).

Monthly rainfall plays a significant role in agricultural and hydrological endeavors (Omotosho et al.,
2000). In the Republic of Benin, the majority of the population relies on agriculture that is dependent on
rainfall. The study conducted by Amegnaglo et al. (2017) examined the significance of seasonal climate
forecasts for maize farmers in the Republic of Benin. The findings revealed that farmers highly value
rainfall forecasts, particularly those that are accessible 1–2 months prior to the start of the rainy season.
This variable provides information on water stress, deficits, and extreme climatic occurrences during the
rainy season. Predicting rainfall accurately is amajor challenge in operational water resourcemanagement
in many countries, including the Republic of Benin.

Although much work has been done on rainfall prediction using ANNs, particularly MLP and LSTM
approaches in different countries, so far, no study has established a rainfall-forecasting model for Benin
Republic using those approaches.Our research focuses on accurately predictingmonthly rainfall 2months
ahead in order to provide sufficient time for decision-making based on the predictions using ANNs. This
study is unique in that it builds a newmethod for predicting models based onMLP network. To the best of
our knowledge, this is the first time anMLP has been used to predict monthly rainfall for localized regions
in the Benin Republic. Furthermore, this article examines and compares the performance of MLP against
other techniques, such as LSTM and CF. The findings of this research will serve as a baseline for future
researchers.

2. Materials and methods

2.1. Site description

Geographically located inWest Africa at a latitude of 6°300N to 12°300N and a longitude of 1°E to 3°400E,
the Republic of Benin has 12 departments, of which six host main synoptic weather stations operated by
the National Meteorological Agency of Benin, Agence Nationale de laMétéorologie du Bénin (METEO-
BENIN). Therefore, this study was focused on those six departments. Figure 1 shows the spatial location

Figure 1. Study sites location: (a) Benin’s location inWest Africa. (b) Synoptic stations’ location in Benin.
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of selected synoptic weather stations in the study area. The geographical positions of selected stations are
presented in Table 1. The purpose of selecting these places was to study the performance of the prediction
models under diverse climatic and hydrological regimes. Benin’s climatic profile shows two contrasting
climatic zones (Guinean vs. Sudanian) and a transitional zone (Sudano-Guinean). Figure 2 shows
the rainfall patterns in different climate zones using rainfall data over a period from 1959 to 2021.

Table 1. Summary of the latitude and longitude coordinates for the chosen stations

Climatic zone Station name Latitude (°N) Longitude (°E)

Guinean zone Cotonou 6.35 2.38
Guinean zone Bohicon 7.17 2.07
Sudano–Guinean zone Savè 8.03 2.47
Sudano–Guinean zone Parakou 9.35 2.60
Sudanian zone Natitingou 10.38 1.36
Sudanian zone Kandi 11.13 2.93

Figure 2. Rainfall patterns in different climate zones in Benin Republic (period 1959–2021).
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The Guinean zone, located between 6°250 and 7°300N, has a subequatorial climate with four seasons (two
rainy and two dry). The annual rainfall of approximately 1200 mm is bimodal, occurring mostly between
March and July and September and November. The temperature ranges between 25 °C and 29 °C, and the
relative humidity ranges between 69% and 97%. The Sudano-Guinean, located between 7°300 and 9°
450N, is a transitional zone with two rainy seasons merging into a unimodal regime. Annual rainfall varies
between 900 and 1110 mm, the temperature ranges between 25 °C and 29 °C, and the relative humidity
ranges from 31% to 98%. The Sudanian region, which lies between 9°450 and 12°250N, has a tropical dry
climate of two seasons of similar duration (rainy and dry). Annual mean rainfall in this region is often less
than 1000mmand occursmostly betweenMay and September. The temperature varies between 24 °C and
31 °C, and the relative humidity varies between 18% and 99% (Hounkpèvi et al., 2016).

2.2. Data

Two climate datasets were used for this study:

• Monthly in situ rainfall (RR) data used as predictand was collected from the six weather stations for
63 years within the period from 1959 to 2021. The rainfall time series has been taken fromMETEO-
BENIN.

• Monthly reanalysis atmospheric data for each station, collected as predictors of RR, comprises
several key variables, including 10-meter wind speed, 2-meter temperature, evaporation, mean sea
level pressure, surface pressure, relative humidity at 850 and 1000 millibars levels, zonal and
meridional wind components at both 850 and 1000 millibars levels, and SST. These variables are
monthly ERA5 data sourced from the Climate Data Store (CDS) (https://cds.climate.copernicus.eu),
available for 1940–present (Hersbach et al., 2023a,b). In this study, we considered the timeframe
from January 1959 to December 2021. Table 2 presents the description of atmospheric data.

2.3. Artificial neural networks

ANN is a soft computing method that mimics the behavior of biological neural processing (Graupe,
2013). ANN is a nonlinear statistical technique that has become popular among scientists as an alternative
technique for predicting and modeling complicated time series, weather phenomena, and climate
variables (Mekanik and Imteaz, 2013). Various neural network architectures exist, but the prevalent

Table 2. Description of atmospheric data

Parameters Unit
Horizontal
resolution Data reference Temporal coverage

10‑meter wind speed (si10) m/s 0.25° × 0.25° ERA5 1959/01 to 2021/12
2‑meter temperature (t2m) °C 0.25° × 0.25° ERA5 1959/01 to 2021/12
Evaporation (e) mm 0.25° × 0.25° ERA5 1959/01 to 2021/12
Mean sea level pressure (msl) hPa 0.25° × 0.25° ERA5 1959/01 to 2021/12
Surface pressure (sp) hPa 0.25° × 0.25° ERA5 1959/01 to 2021/12
Relative humidity at 850 hPa (r850) % 0.25° × 0.25° ERA5 1959/01 to 2021/12
Zonal wind at 850 hPa (u850) m/s 0.25° × 0.25° ERA5 1959/01 to 2021/12
Meridional wind at 850 hPa (v850) m/s 0.25° × 0.25° ERA5 1959/01 to 2021/12
Relative humidity at 1000 hPa (r1000) % 0.25° × 0.25° ERA5 1959/01 to 2021/12
Zonal wind at 1000 hPa (u1000) m/s 0.25° × 0.25° ERA5 1959/01 to 2021/12
Meridional wind at 1000 hPa (v1000) m/s 0.25° × 0.25° ERA5 1959/01 to 2021/12
Sea surface temperature (SST) °C 0.25° × 0.25° ERA5 1959/01 to 2021/12
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design is the MLP neural network, developed in 1960 and, over time, becoming one of the most widely
adopted methods for addressing a wide range of problems (Ren et al., 2021). TheMLP is characterized by
an arrangement comprising an input layer, one ormore hidden layers, and an output layer, which is trained
using the backpropagation learning algorithm (Dawson and Wilby, 1998). The input layer initially
receives the data, the hidden layer processes them, and finally, the output layer displays the model’s
output. Figure 3 presents anMLPwith two hidden layers. Themathematical equation of anMLPwith one
hidden layer can be expressed as follows (Eq. 1).

ŷk ¼ f 2
Xn
h¼1

whof 1
Xm
i¼1

wihxiþwbh

 !
þwbo

" #
(1)

where ŷk is the forecasted kth output value, f 2 is the activation function for the output neuron, n is the
number of hidden neurons, who is the weight connecting the hth neuron in the hidden layer and neuron
in the output layer, f 1 is the activation function for the hidden neuron, m is the number of input
neurons, wih is the weight connecting the ith neuron in the input layer and hth neuron in the hidden
layer, xi the ith input variable, wbh is the bias for the hth hidden neuron, and wbo is the bias for output
neuron.

In addition to their capacity to implicitly identify complex nonlinear relationships between variables,
ANNs offer the advantage of requiring less formal statistical training for model development. ANNs are
capable of revealing a wide range of interactions between predictor variables and can be trained using a
variety of techniques. The primary disadvantages of ANN, however, are their “black box” nature and
inability to discern causal relationships with clarity. Determining the optimal model structure prior to
conducting studies is one of the methodological concerns that arise with the empirical construction of
ANN models (Uncuoglu et al., 2022).

Since Hochreiter and Schmidhuber (1997) proposed the LSTM neural network, it is widely used to
accurately model short and long-term data. LSTMs are specifically designed to effectively capture and
retain long-term dependencies. The differentiation between LSTM and conventional RNNs lies in their
respective internal architectures. One of themost salient features of the LSTMmodel is its cell state, which
facilitates the propagation of information across the entire sequence through a series of linear interactions
(Pérez-Alarcón et al., 2022).

The LSTM architecture has an input gate, output gate, forget gate, and cell. The cell retains
information for varying times. The forget gate is crucial in deciding what memory block information

Figure 3. A multilayer perceptron with two hidden layers. Source: Salaeh et al. (2022).
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to discard. In contrast, the input gate receives new data and decides whether to update each node’s
values, which the output gate then displays or discards. The structure of the LSTM unit is depicted in
Figure 4, and the corresponding formula is presented in Eq. (2). To predict, a dense neural network
layer connects the cell and hidden states to output (yout, Eq. 3) after the input sequence (Mbuvha et al.,
2023).

ct,htf g¼ f LSTM xt,ct�1,ht�1,Wð Þ (2)

yout ¼Φ ct,ht,Wdð Þ (3)

whereW represents the weight matrices of the model, xt is the input data, Ct�1 is the previous cell state,
ht�1 is the previous hidden state,Ct is the new cell state, ht is the new hidden state,Φ andWd represent the
dense layer and its weight, respectively.

Long training times and memory demands are LSTM’s main drawbacks. Due of their sensitivity to
random weight initializations, LSTM dropout implementation is difficult (Uncuoglu et al., 2022).

2.4. Climatology forecast

A climatology forecast (CF) is a prediction that relies exclusively on the mean or average value of the
variable being studied, calculated using historical data over a specific time period. This historical average
is then used as the forecast for future instances in the verification data. Thus, a climatology-based forecast
suggests that the variable’s value at the forecast’s valid time will be equal to this average (Murphy, 1992).
For instance, if the climatological average of monthly rainfall for June is 350mm, then the CF forecast for
June of the upcoming year would also be 350 mm.

The climatological average is determined by calculating the mean of the variable of interest over all
historical data. Mathematically, this can be expressed as follows (Eq. 4):

x¼ 1
n

Xn
i¼1

xi (4)

where x is the climatological average, n denotes the total number of observations in the historical data, and
xi represents each observation.

The CF method provides a simple, interpretable forecast, but it has limitations. The method assumes
past climate patterns will persist into the future, which may not be true due to climate change or other
factors. In our study, the CFmethod is used as a fundamental baseline for comparison, and the CF period is
1991–2020, as recommended by the WMO (2021).

Figure 4. Structure of LSTM unit. Source: Nifa et al. (2023).
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2.5. Methodology

The methodology is illustrated in Figure 5 and comprises five main stages: data acquisition and
transformation (i), predictor selection (ii), data preprocessing (iii), model development (iv), and predic-
tion and assessment (v). This study selected two ML methods, namely MLP and LSTM, to compare and
evaluate their effectiveness in predicting monthly rainfall at six weather stations located in the Benin
Republic. The MLP and LSTMmodels were implemented using Python code. The open-source software
package Keras (Chollet, 2015) installed on top of the Tensorflow framework was utilized. The program-
ming interface used for this purpose was Jupyter Notebook, and Python modules such as TensorFlow,
Keras, Sklearn, Numpy, Pandas, Matplotlib, and others were utilized. We conducted all experiments in
this study using a device running the Windows 10 operating system, a core i7 CPU, and 12 GB of RAM.

2.5.1. Data transformation
With the exception of two missing rainfall values for Parakou station, there are no missing values in the
data obtained. These two values occurred in March and April 1991 and were filled, respectively, by the
median and mean of the rainfall records in March and April for other years.

Atmospheric data are released over grid areas of 0.25° (~27 km) and are saved in Network Common
Data Form files. Using the Python programming language, the data for each weather station were

Figure 5. Summary of the main methodology.
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extracted into csv files by considering the local grid cell where the station is located (see Table 1 for
coordinates). In order to identify basins, which are regions in the ocean that have an influence (well-
correlated) on the rainfall patterns, and get their time series for respective stations, the correlation between
station rainfall and the SST (-40N_50N,-40E_80E) has been computed (Figure 6). This basin is found by
first determining the grid box that shows the highest correlation and then selecting the basin by
considering the neighboring grid boxes centered on that grid box with the highest correlation. Following
the selection of all the best-correlated basins, we computed the mean over each basin to obtain a monthly
SST time series for each station.

2.5.2. Selecting of optimal lagged predictors
Meteorological variables are potentially useful predictors of precipitation. To select the predictor
variables and identify the months that could be used as input to the ANNs, cross-correlation analyses

Figure 6. Correlation map between station rainfall and grid point SST (-40N_50N,-40E_80E).
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were carried out for delayed atmospheric data. The correlation coefficients were calculated between each
monthly atmospheric data with a lag time from 1 to 6 months and monthly rainfall (Figure 7). To avoid
data leakage, the test data (2018–2021) was not included when calculating the correlation coefficients.
The lagged atmospheric variables with significant correlations at lags ranging from 3 to 6 months were
selected as rainfall predictors. The presence of robust correlations beyond a lag of 2 months suggests that
these variables have the potential to serve as rainfall predictors. This extended lag period offers an
opportunity to establish early warning systems for various socio-economic sectors and facilitate informed
decision-making processes (Gado Djibo et al., 2015). The list of predictors variables, values of the
correlation coefficients and times lags (in red color) that were used for the forecasting model are shown in
Table 3. For different atmospheric variables, different months had a significant correlation with rainfall.

2.5.3. Data preprocessing
The objective of the data preprocessing phasewas to ensure correct data type and format conversion for all
parameters, as well as normalize the data in order to maintain feature values within a specified range.

The final data set of 750 rows (July 1959–December 2021), representing the number of months of
observation, is the data obtained after including lagged values as possible predictors, even if the data was
collected from January 1950. In other words, July 1959 is the first instance with completed lagged values.

Figure 7. Correlations between rainfall and atmospheric variables.
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Table 3. Selected meteorological variable, lagged months (in red color), and correlation coefficients of monthly rainfall

Stations si10 t2m e msl sp r850 u850 v850 r1000 u1000 v1000 sst

Cotonou �0.392 (6) 0.390 (4) �0.265 (3) �0.405 (5) 0.405 (5) �0.581 (5) �0.511 (6) �0.496 (6) �0.429 (5) �0.462 (5) 0.322 (6) �0.381 (5)
Bohicon 0.361 (3) 0.572 (5) 0.386 (4) �0.608 (5) �0.605 (5) �0.586 (5) �0.466 (6) �0.511 (6) �0.503 (5) �0.552 (5) �0.308 (6) �0.559 (6)
Save 0.437 (3) 0.612 (5) 0.496 (6) �0.679 (5) �0.676 (5) �0.613 (6) �0.415 (6) �0.571 (6) �0.555 (5) �0.547 (6) �0.338 (6) �0.676 (6)
Parakou 0.616 (4) 0.661 (5) 0.734 (6) �0.736 (5) �0.725 (5) �0.764 (6) �0.499 (6) �0.693 (6) �0.731 (6) �0.624 (6) �0.521 (6) �0.765 (6)
Natitingou 0.484 (3) 0.748 (5) 0.734 (6) �0.769 (5) �0.758 (5) �0.809 (6) �0.463 (6) �0.775 (6) �0.790 (6) �0.629 (6) �0.686 (6) �0.809 (6)
Kandi 0.538 (4) 0.753 (4) 0.800 (5) �0.721 (4) �0.718 (4) �0.816 (6) �0.540 (6) �0.690 (6) �0.815 (6) �0.766 (6) �0.816 (6) �0.791 (5)



First, we divided the data into three sets: the training, validation, and testing sets. The training set is used to
update the network weights and biases; the validation set is used to guarantee the generalization capability
of the model; and the test set is used to check the generalization (Mahmood, 2017). The first 702 rows
(July 1959–December 2017) were used to train and validate MLP and LSTM models. Then, 80%
(561 rows, July 1959–March 2006) were used for training, while 20% (141 rows, April 2006–December
2017) were used for model validation and overfitting prevention. Model testing used the remaining
4 years of unseen data (48 rows, January 2018–December 2021).

Training a neural network with unscaled data with a wide range of values can slow learning and
convergence. It may even prevent the network from learning the underlying problem. In order to address
this concern, it is highly recommended to implement the practice of data normalization. This process
entails adjusting the scale of the data to fall within the range of 0 and 1, thereby optimizing the learning
process. Hence, the MinMaxScaler function was employed to normalize the input and output data within
the range of 0 to 1, as described by Eqs. (5) and (6), respectively.

Xn ¼ X�Xmin

Xmax�Xmin
(5)

Yn ¼ ln 1þYð Þ� min ln 1þYð Þð Þ
max ln 1þYð Þð Þ� min ln 1þYð Þð Þ (6)

where X, Xmin, and Xmax are the value to be scaled, the minimum and maximum values of all records,
respectively, andXn is the normalized input value. Yn is the normalizedmonthly rainfall value, andY is the
monthly rainfall value to be scaled. ln denotes the natural logarithm. Log transformation is used for
normalization to have a less skewed distribution of the rainfall parameter.

To finish, the LSTMmodel’s architecture is a 3D input (number of samples, time steps, features). The
dataset was then reshaped to fit these needs (561, 1, 12); (141, 1, 12); and (48, 1, 12) for training,
validating, and testing, respectively.

2.5.4. Model development
An effective ANNmodel requires identifying key input variables and optimizing network structure. Input
variables were selected by analyzing correlations between lagged atmospheric variables and monthly
rainfall (see Figure 7). The number of hidden layers and neurons depends on the task and available data
(Mekanik et al., 2013; Ghamariadyan and Imteaz, 2021). This study used one hidden layer in MLP and
LSTM models. Given our limited sample size (750) and large predictor pool (12), this choice reduces
overfitting. More hidden layers in an ANN increase complexity and reduce system performance. Thus,
most scientists recommend a single hidden layer (Arifin et al., 2019). Since there is no standardmethod for
estimating the optimal number of hidden layer neurons, we used trial-and-error (Hossain et al., 2020; Bai
et al., 2021; Ghamariadyan and Imteaz, 2021; Tareke and Awoke, 2023; Nifa et al., 2023). This was
achieved by training the model with different numbers of hidden neurons, from 10 to 20, and making a
decision based on the root mean square error (MSE) and coefficient of determination of the predicted and
observed values in the training and validation datasets, as well as by analyzing the loss function curve over
the number of epochs. Because the ANN sets the initial weight value at random at the start of training, a
different neural network model is created for each training process, resulting in different performance. As
a result, the best prediction model was chosen by repeating the ANN model generation process 50 times
for each hidden neuron selected. Additionally, we used an early stopping technique (Prechelt, 1998) to
prevent overfitting, stopping trainingwhen validation errors began increasing, even if training errors were
decreasing. The number of epochs was set to 200 to have the same scale of comparison between models,
with an early stop of 20 epochs when the model performance stops improving on the validation set. The
optimizer used was the Adam optimizer, with a learning rate set at 0.001 and batch sizes of 8, 16, 32, and
64. The chosen loss function was the MSE (Eq. 7). In this study, the rectified linear unit, which keeps
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positive input values while setting negative input values to zero, and linear functions were considered for
the hidden and output layers, respectively, in all of the models that were implemented.

MSE¼ 1
n

Xn
i¼1

yi� ŷið Þ2 (7)

where yi and ŷi are the observed and predicted values for the ith data point respectively, and n is the
number of samples.

2.5.5. Model evaluation
The prediction performance of the models was assessed by comparing observed and predicted rainfall
using five performance measures: the root mean squared error (RMSE), the mean absolute error
(MAE) (Legates and McCabe Jr, 1999), the mean absolute percentage error (MAPE) (Uncuoglu et al.,
2022), the coefficient of determination (R2) (Etemadi et al., 2014), and the Nash-Sutcliffe efficiency
(NSE) coefficient (Nash and Sutcliffe, 1970) (Eqs. 8–12). The RMSE and MAE metrics are commonly
used in statistical modeling due to their theoretical importance. The RMSE is used to evaluate how
closely the predicted values match the observed values, based on the relative range of the data. The
MAE measures the average magnitude of the errors in a set of predictions, without considering their
direction. The MAE and RMSE values range between 0 and ∞. The lower the RMSE and MAE, the
better a model fits a dataset. It is well known that the MAE is less sensitive to outliers than the RMSE
(Hyndman and Koehler, 2006). The MAPE has the advantage of being independent of the dependent
variable’s order of magnitude. According to Uncuoglu et al. (2022), if the MAPE criterion is less than
10%, the estimations are excellent, between 10% and 20%, good, between 20% and 50%, acceptable,
and larger than 50%, inaccurate. R2 evaluates the degree of correlation between predicted and observed
data, under the assumption of a linear relationship (Choubin et al., 2017). It ranges from 0 to 1, with
higher values indicating lower error variance. The NSE values range between -∞ and 1, with 1 being
the perfect model. Negative NSE values indicate that the prediction model does not forecast better than
the mean of the actual data.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ŷi� yið Þ2
s

(8)

MAE¼ 1
n

Xn
i¼1

ŷi� yij j (9)

MAPE¼ 100
1
n

Xn
i¼1

ŷi� yi
ŷ

����
���� (10)

R2¼
Pn

i¼1 yi� yð Þ: ŷi� ŷ
� �� �2

Pn
i¼1 yi� yð Þ2:Pn

i¼1 ŷi� ŷ
� �2 (11)

NSE¼ 1�
Pn

i¼1 yi� ŷið Þ2Pn
i¼1 yi� yð Þ2 (12)
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From the above, ŷi and yi are the model predictions and observed values, respectively; n is the number of
target values; ŷ is the mean of predicted values; and y is the mean of observed values.

In addition to this, a Taylor diagram, violin plots, and box error were used to evaluate model accuracy.
These diagrams show how well models match observations (Taylor, 2001; Choubin et al., 2017; Demir
and Citakoglu, 2023; Coşkun and Citakoglu, 2023). The Taylor diagram illustrates the geometric
relationship between correlation, centered root mean square difference, and standard deviation amplitude.
On the other hand, a violin plot shows the dataset’s probability distribution using a boxplot and kernel
density graphs on each side. Finally, the Kruskal–Wallis test was used to determine whether the prediction
results have similar distribution as the actual data (Coşkun and Citakoglu, 2023).

3. Results and discussion

Table 4 presents the optimal values found for the number of hidden neurons and batch sizes for themodels.
The loss function during the training and validation phases of the selected network architecture is shown
in Figure 8. As depicted in the figure, each model’s training and validation loss plots across all stations
have been similar, with the same monotony. Hence, neither the models overfit nor underfit (Chollet,
2015). Table 5 shows the RMSE,MAE, MAPE, R2, and NSE values obtained by the developedMLP and
LSTM models over the training, validation, and testing datasets. During the test period, the metric for
assessing performance RMSE values forMLP and LSTMmodels vary between 39.35 and 72.41mm, and
between 43.09 and 76.65 mm, respectively, depending on the weather station. Similarly, the MAE ranges
from 25.25 to 51.97mm forMLP and from 28.51 to 54.53mm for LSTM. TheMAPE values forMLP and
LSTMmodels vary between 29.16% and 61.64%, and between 31.80% and 61.66%, respectively. TheR2

values range from 0.432 to 0.912 for MLP and from 0.369 to 0.894 for LSTM. Additionally, the NSE
values vary between 0.373 and 0.885 forMLP and between 0.297 and 0.875 for LSTM, depending on the
weather station. The MLP models exhibit superior accuracy compared to the LSTM models in monthly
rainfall predictions across all locations, as evidenced by their lower RMSE, MAE and MAPE values, as
well as higher R2 and NSE values. The reason why LSTM did not perform better than MLP could be the
limited size of the training dataset used. According to Cheng et al. (2020), the absence of a large monthly
training dataset is what causes the LSTM model to perform less accurately on a monthly scale when
compared to the ANN, but it performs better when it comes to making daily predictions.

In addition, we compared the results of the MLP model with those of the CF model to determine
whether or not the MLP model actually performs significantly better than simply making the assumption
that the climatologically typical amount of rainfall occurs each month. When it comes to medium- and
long-term forecasting, CF is a better benchmark than persistence forecasts (Murphy,1992). RMSE,MAE,
R2, and NSE for each model over the testing set are shown in Figure 9. During the test period, the CF
achieved RMSE ranging from 40.43 to 74.54mm,MAE from 27.90 to 54.30mm,R2 from 0.443 to 0.887,
and NSE from 0.335 to 0.845, depending on the weather station. Similar to the MLP and LSTM, the best
prediction with CF is also observed at Kandi, and the worst at Cotonou (see Figure 9). Based on NSE, the

Table 4. Optimal parameters used for training MLP and LSTM network

Hyper-
parameters

Cotonou Bohicon Savè Parakou Natitingou Kandi

MLP LSTM MLP LSTM MLP LSTM MLP LSTM MLP LSTM MLP LSTM

Hidden
neurons/
units

12 13 15 14 14 13 15 18 10 13 16 16

Batch size 8 8 8 8 32 32 16 16 16 16 16 16
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Figure 8. Loss function while training the MLP and LSTM models for all stations.
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Table 5. RMSE, MAE, MAPE, R2, and NSE values obtained over the training, validation, and testing datasets

Stations Models

Training Validation Testing

RMSE
(mm)

MAE
(mm)

MAPE
(%) R2 NSE

RMSE
(mm)

MAE
(mm)

MAPE
(%) R2 NSE

RMSE
(mm)

MAE
(mm)

MAPE
(%) R2 NSE

Cotonou MLP 99.48 60.22 76.26 0.375 0.315 110.90 66.35 82.78 0.307 0.218 72.41 51.97 61.64 0.432 0.373
LSTM 97.18 59.80 73.01 0.393 0.346 102.93 64.30 77.50 0.423 0.326 76.65 54.53 61.66 0.369 0.297

Bohicon MLP 62.66 42.91 55.56 0.452 0.410 62.88 43.12 56.56 0.367 0.307 42.23 33.59 43.66 0.665 0.630
LSTM 60.73 42.48 51.75 0.469 0.446 61.80 42.91 53.04 0.372 0.331 44.55 35.32 41.06 0.593 0.589

Savè MLP 69.01 45.28 52.62 0.415 0.360 65.78 45.25 47.21 0.392 0.255 52.03 38.51 38.90 0.655 0.648
LSTM 62.26 41.09 48.66 0.495 0.479 52.75 38.81 43.27 0.551 0.521 53.55 38.72 43.15 0.632 0.627

Parakou MLP 62.23 40.14 48.74 0.626 0.588 64.26 43.74 57.59 0.604 0.546 51.94 33.79 39.61 0.768 0.743
LSTM 59.37 38.69 40.25 0.658 0.625 57.32 40.26 42.83 0.653 0.638 54.94 35.15 35.86 0.715 0.713

Natitingou MLP 57.95 35.88 41.31 0.740 0.717 55.03 35.12 39.52 0.737 0.721 39.35 26.52 29.16 0.827 0.819
LSTM 56.27 34.61 39.44 0.754 0.733 56.19 35.91 37.60 0.720 0.709 43.09 29.63 31.80 0.797 0.783

Kandi MLP 60.65 33.86 37.95 0.712 0.650 62.16 35.51 41.44 0.692 0.630 41.98 25.25 31.19 0.912 0.885
LSTM 59.00 34.14 43.00 0.693 0.669 59.98 32.88 38.46 0.712 0.655 43.80 28.51 34.00 0.894 0.875
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MLP model is the best compared to LSTM and CF in all stations except in Bohicon Station, where CF
outperformed both MLP and LSTM. The NSE for the CF is 0.661 in this station, while the MLP and
LSTM achieve 0.630 and 0.589, respectively. Also, aside from Bohicon, the LSTM model is unable to
achieve higher accuracy than the CF for Cotonou in terms of NSE.

Hydrographs and scatterplots (Figures 10–15) were also used to compare observed and predicted
monthly rainfall values during the test period (2018–2021).

Figure 10 depicts the hydrographs of the MLP, LSTM, and CF model predictions versus observed
monthly rainfall at Cotonou during the test period, as well as the scatterplots. The graphs show that the
models do not have a high forecasting capability, with low NSE values (0.297, 0.335, and 0.373 for
LSTM, CF, and MLP, respectively). Following the categorization of NSE values into four benchmark
categories (Moriasi et al., 2007), all models’ performance could be classified as unsatisfactory
(NSE ≤ 0.50). Furthermore, as shown in Figure 10(a), the actual and predicted time series are also not
very close to each other, and high rainfall values are significantly underestimated at some peaks. The
scatterplot in Figure 10(b) shows a good correlation for all low and medium data points.

Figure 9. Prediction performance with the MLP, LSTM, and CF over the test period (2018–2021).

Figure 10. Comparison between observed and predicted monthly rainfall using MLP, LSTM, and CF at
Cotonou during the test period (2018–2021): (a) hydrograph and (b) scatterplot.
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Figure 11 shows the hydrographs of all of the models’ predictions in comparison to the observed
monthly rainfall, as well as the scatterplots at Bohicon during the testing phase. The graphs demonstrate
that the models have adequate forecasting capability, with relatively high NSE criteria (0.589, 0.630, and
0.661 for LSTM, MLP, and CF, respectively). According to Moriasi et al.’s (2007) classification of NSE
values into four benchmark categories, the performance of LSTM and MLP is deemed to be satisfactory
(0.5 <NSE ≤ 0.65), whereas the performance of CF is deemed to be good (0.65 <NSE ≤ 0.75). Themodel
predictions reasonably follow the series patterns. This can be seen in Figure 11(a). The scatterplot in
Figure 11(b) shows that there is a good correlation for all data points across all ranges.

Scatterplots and hydrographs of predicted versus observed monthly rainfall at Savè during the testing
period are shown in Figure 12. NSE criterion values of 0.593 for CF, 0.627 for LSTM, and 0.648 forMLP
are indicative of the models’ satisfactory forecasting ability. Based on the four benchmark categories of
NSE values (Moriasi et al., 2007), all models demonstrate satisfactory performance (0.5 < NSE ≤ 0.65).
Figure 12(a) shows that the actual and forecast time series are similar, with peak rainfall event captured by
MLP model. The scatterplot in Figure 12(b) shows a good correlation for all data points in all ranges.

The hydrographs of all model predictions versus observed monthly rainfall, as well as the scatterplots,
at Parakou during the testing period, are displayed in Figure 13. The models’ good predictive ability is
demonstrated by the graphs, which feature NSE criteria values of 0.704, 0.713, and 0.743 for CF, LSTM,
andMLP, respectively. Following the breakdown of NSE values into four benchmark categories (Moriasi
et al., 2007), all models exhibit good (0.65 <NSE ≤ 0.75) performance. Themodel predictions reasonably

Figure 11. Comparison between observed and predicted monthly rainfall using MLP, LSTM, and CF at
Bohicon during the test period (2018–2021): (a) hydrograph and (b) scatterplot.

Figure 12. Comparison between observed and predicted monthly rainfall using MLP, LSTM, and CF at
Savè during the test period (2018–2021): (a) hydrograph and (b) scatterplot.
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follow the series patterns, as seen in Figure 13(a), but high rainfall values are underestimated. In
Figure 13(b), the scatterplot shows a good correlation between the displayed data points in all ranges.

Figure 14 depicts the hydrographs and scatterplots of all model predictions versus observed monthly
rainfall at Natitingou during the testing period. The graphs show that the models can forecast well, with
NSE criteria of 0.772, 0.783, and 0.819 for CF, LSTM, and MLP, respectively. All models exhibit very
good (0.75 < NSE ≤ 1) performance, according to the classification of NSE values into four benchmark
categories (Moriasi et al., 2007). As shown in Figure 14(a), the actual and forecast time series are nearly
identical, with peak rainfall events almost captured. The scatterplot in Figure 14(b) shows a very good
correlation for all data points in all ranges.

Hydrographs and scatterplots of the monthly rainfall observed and predicted by each model during the
testing period are displayed in Figure 15 for Kandi. The graphs present a very good capacity for
forecasting on the part of the models, as evidenced by the high values of NSE criteria (0.845, 0.875,
and 0.885 for CF, LSTM, andMLP, respectively). According to the classification of NSE values into four
benchmark categories (Moriasi et al., 2007), all models exhibit very good (0.75 < NSE ≤ 1) performance.
According to Figure 15(a), the actual and forecast time series are, for the most part, identical to one
another, with peak rainfall events almost captured byMLP and LSTMmodels. The scatterplot that can be
seen in Figure 15(b) demonstrates that there is a very good correlation between all of the data points across
all of the ranges.

Figure 13. Comparison between observed and predicted monthly rainfall using MLP, LSTM, and CF at
Parakou during the test period (2018–2021): (a) hydrograph and (b) scatterplot.

Figure 14. Comparison between observed and predicted monthly rainfall using MLP, LSTM, and CF at
Natitingou during the test period (2018–2021): (a) hydrograph and (b) scatterplot.
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These results are confirmed in Figure 16, which depicts the evaluationmetrics (correlation, RMSE, and
standard deviation) for the MLP, LSTM, and CF models during the testing period as a Taylor diagram.
This graphical summary of the agreement between model predictions and observations is quite helpful. It
can be seen that theMLPmodel’s point (in red) is closer to the observed point (red star dot) than the LSTM
and CF models in all stations, except in Bohicon, where the CF model is slightly closer than the MLP.

Violin plot (Figure 17) and error boxplot (Figure 18) of the models were also used for comparison.
According to Figure 17, theMLPmodel’s violin plots at all stations are more similar to the actual data sets
than the LSTM and CF models. This suggests that MLP model estimated rainfall values are more
statistically similar to actual data. Thus, the MLP model simulates rainfall better than the MLP and CF

Figure 15. Comparison between observed and predicted monthly rainfall using MLP, LSTM, and CF at
Kandi during the test period (2018–2021): (a) hydrograph and (b) scatterplot.

Figure 16. Taylor diagrams of MLP, LSTM, and CF for all stations.
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models at all stations. This is confirmed by the error boxplot diagram results. The observed values were
subtracted from the predicted values to create the errors diagrams. Both violin and error boxplot results
coincide with the Taylor diagram results, as can be seen from these results.

Finally, the Kruskal–Wallis test was employed to see if the predicted and observed data distributions
matched. As seen in Table 6, all models’ rainfall data estimations reject the Ho hypothesis. The Kruskal–
Wallis test results indicate that there was no significant difference between the means of the predicted and
observed rainfall values. The predicted rainfall by MLP, LSTM, and CF is consistent with the observed
rainfall, but the MLP model performs better. Although they could fairly accurately simulate monthly
rainfall, the models were unable to replicate some of the highest monthly rainfall values. The size of the
training data and the small number of heavy rainfall events may have made it difficult for models to learn
such features (Pérez-Alarcón et al., 2022). Furthermore, the performance of all models’ predictions varies
significantly, both within and between climate zones, with more accurate performance in the Sudanian
climate zone having a unimodal rainfall regime and less accurate performance in the Guinean zone having
a bimodal rainfall regime. This may be due to the increased instability and extreme rainfall in the Guinean
zone of the study site. Additionally, the results demonstrate that variations in each region’s geographical
characteristics have an impact on rainfall predictions, with better accuracy at higher latitudes. Ewona et al.
(2016) reported similar results by applying ANN to predict rainfall over 23 stations in Nigeria with more
accurate rainfall predictability at higher latitudes over Nigeria. The correlation coefficients were in
ascending order from south to north. When using ANN to predict rainfall at seven locations in Nigeria,
Abdulkadir et al. (2017) also reported similar results.

Figure 17. Violin plots of MLP, LSTM, and CF for all stations over the test period (2018–2021). Thin
black lines represent the 5th and 95th percentile ranges of rainfall values, while thick black lines and
white dots represent the 25th and 75th percentile ranges and median, respectively.
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4. Conclusion and future work

Accurate rainfall prediction has always been a significant challenge since so many lives depend on
it. Monthly rainfall forecasting has a number of advantages. Taking agriculture, water resource manage-
ment, risk management, and disaster mitigation as examples, it helps decision-makers and stakeholders in
these sectors. The aim of this study is to develop an ANN model to forecast monthly rainfall 2 months in
advance for selected locations in the Benin Republic. This study also examined how geographical regions
affected the model’s effectiveness in predicting monthly rainfall in Benin. To achieve this, an MLP
approach has been proposed to predict monthly rainfall using 12 lagged atmospheric variables as
predictors. When comparing the developed model to the LSTM and CF, the proposed MLP model was
found to perform better, demonstrating the efficacy ofMLP in a rainfall prediction task.We also found that
rainfall predictability was more accurate at higher latitudes across the country.

According to the findings of this study, theMLP prediction model can be employed independently as a
reliable model for rainfall predictions.

The study has six primary limitations: utilizing MLP and LSTM ML methods along with CF;
employing six weather stations to depict Benin; utilizing reanalysis atmospheric data from 1959 to
2021 as predictors; employing cross-correlation analysis to select input features at different time lags;
incorporating visual comparison criteria such as Taylor, violin, and error box plots alongside performance
metrics; and utilizing the Kruskal–Wallis test to assess result accuracy.

Predicting rainfall is a complex process that requires continual improvement. Future work will be
necessary to improve the performance of ANN models in predicting extreme rainfall events. This can be
achieved by incorporating additional climate variables, employing ensemble techniques and specific
training techniques, and further investigating the architecture of the network model in order to improve
prediction accuracy.

Figure 18. Errors boxplots of MLP, LSTM, and CF for all stations over the test period (2018–2021).
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In conclusion, this study demonstrated the feasibility of predicting monthly rainfall 2 months in
advance for the study locations using ANNs and lagged atmospheric variables.
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