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U-10wt.% Zr (U-10Zr) based metallic fuel is the leading candidate for next-generation sodium cooled 

fast reactor in United States.  Currently, Idaho National Laboratory (INL) has been the leading national 

laboratory for research, development, and demonstration (RD&D) on metallic fuel [1, 2]. Advanced 

post-irradiation characterization will help to understand fuel microstructure and property change during 

irradiation, benefiting fuel qualification for commercial application. Characterization capabilities 

ranging from sub-nanometer to micrometer, such as scanning electron microscopy (SEM), focused ion 

beam (FIB) sampling, transmission electron microscopy (TEM) characterization [1], and local thermal 

conductivity microscopy (TCM), have been utilized recently on irradiated U-10Zr fuel samples to gain a 

better understanding of nuclear fuel microstructure and property evolution inside a reactor. 

 

The FIB/SEM coupled with energy dispersive X-ray spectroscopy (EDS) can capture the essential 

information to achieve better understanding of fuel behaviors. Inside a nuclear reactor, the phase and 

microstructure of U-10Zr is constantly changing under neutron bombardment. For example, the gaseous 

fission product atoms have a limited solubility inside fuel matrix and tend to precipitate out in bubble 

form, which not only contribute to fuel thermal conductivity degradation but also provide a shortcut for 

movement of fission products, i.e. lanthanides. The resultant deposition of lanthanides at the cladding 

inner surface will potentially trigger a chemical reaction/interaction between nuclear fuel and cladding at 

reactor operational conditions, threatening fuel integrity and safety. FIB/SEM coupled with EDS can 

provide the fission bubble information as well as probe into phase separation or Zr redistribution, which 

is fundamental to predict the fuel performance. 

 

With high velocity image data generating method, such as FIB/SEM, an automatic way to extract the 

microstructural information quantitively can better serve the needs from post irradiation 

characterization. A trained machine learning model, named Decision Tree, is employed to generate a 

bubble classifier and to categorize bubbles into three categories: isolated bubble, connected without 

lanthanides, and connected with lanthanides bubbles[3]. This work presents a showcase of this approach 

on six regions of a fuel cross-section along the radial temperature gradient. We obtained distributions of 

bubble categories and porosity rates along the six regions. Moreover, a secondary phase U-Zr2 was 

determined and found on regions 5 and 6. The secondary phase fraction was increasing from 15.61% in 

region 5 to 34.79% in region 6 based on this approach (Figure 1). This quantitative data offers insights 

into the lanthanide migration and potentially thermal conductivity degradation. This information from 

machine learning will be fed into fuel design code for better prediction of fuel performance. 
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Figure 1. Workflow to obtain the quantitative microstructural information. 
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