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When it comes to aggressiveness and prognosis, immune cells play an important role in the microenvironment of gastric cancer
(GC). Currently, there is no well-established evidence that immune status typing is reliable as a prognostic tool for gastric cancer.
Tis study aimed to develop a genetic signature based on immune status typing for the stratifcation of gastric cancer risk. TCGA
data were used for gene expression and clinical characteristics analysis. A ssGSEA algorithm was applied to type the gastric cancer
cohorts. A multivariate and univariate Cox regression and a lasso regression were conducted to determine which genes are
associated with gastric cancer prognosis. Finally, we were able to produce a 6-gene prognostic prediction model using immune-
related genes. Further analysis revealed that the prognostic predictionmodel is closely related to the prognosis of patients with GC.
Nomograms incorporating genetic signatures and risk factors produced better calibration results. Te relationship between the
risk score and gastric cancer Tstage was also signifcantly correlated withmultiple immunemarkers related to specifc immune cell
subsets. According to these results, patients’ outcomes and tumor immune cell infltration correlate with risk scores. In addition,
immune cellular-based genetic signatures can contribute to improved risk stratifcation for gastric cancer. Clinical decisions
regarding immunotherapy and followup can be guided by these features.

1. Introduction

Te World Health Organization estimates that there are
approximately 1,089,103 new cases of gastric cancer (GC)
every year, ranking it sixth among newly diagnosed cancers
[1]. Each year, approximately 769,000 people die from GC,
making it the third most common type of cancer [2]. In Asia,
Eastern Europe, and South America, gastric cancer is en-
demic, with a wide range of incidences worldwide [3].
Gastric cancer pathogenesis involves a number of factors,
such as Helicobacter pylori, atrophic gastritis, intestinal
metaplasia, and dysplastic tissues of the gastrointestinal tract
[4]. Growth pattern, diferentiation, and molecular

pathogenesis difer signifcantly between stomach cancers.
Adenocarcinomas account for more than 90% of stomach
cancers [5].

Mutant cells are normally recognized and eliminated by
immune cells, preventing cancer development. In many
cases, cancer cells are unable to be detected by the immune
system, which allows them to reproduce rapidly. PD-L1
occurs when cytotoxic T lymphocytes (CTL) encounter
cancer cells and secrete interferon (IFN)-c and activate the
JAK-STAT pathway. Te PD-L1 receptor blocks inhibitory
signals, which prevents Tcells from killing tumor cells [6]. In
many clinical studies, immunotherapy targeting PD-L1 has
been shown to be efective [7]. Next-generation sequencing
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(NGS) has revealed a growing number of immune check-
point molecules, including PD-L2, CTLA-4, CD80, and
PD-L1 [8].

On a global scale, genome analysis is the most popular
method for determining new biological targets for GC pa-
tients. Tere have been numerous studies examining the
interactions between cancer cells and their microenviron-
ment. Tere have been several immunotherapeutic treat-
ments proposed for the treatment of GC since the immune
system regulates the progression of the disease [9]. Many
types of cancer, including advanced gastric cancer, respond
strongly and durably to antibodies that block the PD-1/
PD-L1 pathway. Immune checkpoint inhibitors are not
efective biomarkers for predicting the efcacy of immune
checkpoint inhibitors based on anti-PD-1, anti-PD-L1, and
anti-MSI status, as well as a mutational burden [10]. In order
to maximize the therapeutic benefts of checkpoint immu-
notherapy, predictive biomarkers are important. TME may
play an important role in checkpoint inhibitor immuno-
therapy, according to emerging evidence [11]. To identify
novel immunotherapeutic targets for GC, it is necessary to
characterize the immunophenotypic characteristics of GC
and better understand immune cells’ regulatory functions
[12]. Tis study examined the relationship between GC and
immunity by dividing the GC cohort into diferent subtypes.
To improve our understanding of the genetic factors in-
volved in the occurrence and development of GC, we
constructed a prognostic prediction model.

2. Materials and Methods

2.1. Dataset Downloaded. Data on mRNA expression and
clinical information on GC patients were downloaded from
the TCGA database, which contains 375GC patients. TCGA
and GTEx datasets, which include a total of 391 normal
stomach tissues, were used for the analysis of expression data
and clinical characteristics of normal stomach tissues. In
addition, the immune-related genes were obtained from the
online database.

2.2. Diferential Expressed Analysis Based on the GCCohort in
the TCGA Database. A diferent expressed analysis was
conducted between the TCGA GC cohort and the normal
cohort using TCGA and GTEx database in R using the mana
expression data obtained from the TCGA database. P val-
ue< 0.05 was considered as static signifcance.

2.3. Pathway Function Analysis Based on Key Genes.
Annotating key genes and exploring candidate gene func-
tions in R was carried out using the “ClusterProfler”
package. We then identifed related functional categories by
using the Kyoto encyclopedia of genes and genomes
(KEGGs) and gene ontology (GO). P values and q-values less
than 0.05 were considered statistically signifcant for GO-
enriched pathways and KEGG-enriched pathways. Based on
the gene sets, the gene set enrichment analysis (GSEA)
identifed GO terms and KEGG pathways. Te 50 best terms
from each subtype were selected based on signifcance. Gene

set variation analysis (GSVA) was used to measure gene set
enrichment. It is possible to determine the biological
function of a sample by converting gene-level changes into
pathway-level changes through comprehensive scoring of
gene sets of interest. A comprehensive assessment of po-
tential biological functional changes was performed for
various samples using the GSVA algorithm.

2.4. Te Classifcation of Immune Subtypes in the GC Cohort.
In ssGSEA, overexpression measures are calculated based on
all other genes within the genome using a rank-based ap-
proach. Te next step in the process was to classify GC using
29 immunobiosignature enrichment levels (ssGSEA scores)
and determine tumor purity and immune score for each GC.

2.5. A Prognostic Prediction Model Based on Genes Related to
GC and Immune Function. For the purpose of exploring the
genes that are closely related to gastric cancer and immune,
an analysis of univariate and multivariate Cox regressions as
well as lasso regressions was conducted to identify genes
closely associated with gastric cancer prognosis. Each patient
was assigned a risk score in the immune-related genes.

2.6. Immune Cell Infltration. From RNA-seq data from
diferent subgroups of GC patients, the relative proportions
of 22 immune-infltrating cells were calculated using the
CIBERSORT algorithm. Based on the results of Spearman’s
correlation analysis, we determined that there was a signif-
icant relationship between gene expression and immune cell
infltration.

2.7. Drug Sensitivity Analysis. Based on the drug sensitivity
genomics in the cancer database, the “pRRophetic” R
package (GDSC) was used to predict chemosensitivity for
each tumor sample. Regression analysis was performed to
determine each drug’s IC50 value. Te accuracy of re-
gression and prediction was tested ten times using GDSC
training data. A default value was set for all parameters,
including the “battle” parameter, which averaged gene ex-
pression across replicates to eliminate batch efects.

2.8. Statistical Analysis. Using log-rank tests and Cox pro-
portional hazards models, survival curves were calculated
and compared in a multivariate analysis. Statistical signif-
cance was defned as a P value of less than 0.05 on both sides
of the test. All analyses were conducted using R software.

3. Results

3.1. Immune Subtype Analysis Showed the Two Immune
Subtypes of GC Cohort. Our frst step was to examine
29 immuno-related genomes, each representing a diferent
type, cascade and function of immune cells. In the TCGA
dataset containing GC samples, immune cell expression
profles were analyzed using ssGSEA. Based on the ex-
pression level of immune cells, GC cohorts were divided into
high immunity (Immunity_H) and low immunity
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(immune_L) groups (Figures 1(a) and 1(b)). Heat maps
showed that Immunity_H subtypes were associated with
highly infltrated immune cells and active immune path-
ways. Moreover, Immunity_L subtypes are linked to low
immune cell infltration, an indication of an immune cold.
In addition, it was discovered that patients with renal cell
carcinoma had diferent immune components based on their
immune subtype. It is evident from the heatmap that the
immunological subtype Immunity_L is more enriched in
tumor purity than the immunological subtype Immunity_H
(Figure 1(c)). Compared with Immunity_L, the Immuni-
ty_H subtype had higher scores on stromal, immune, and
estimated components (Figure 1(d)). It is essential for im-
munotherapy targeting immune checkpoints that tumor-
associated antigens are presented by MHC class I complexes
during immune surveillance. As a result, we measured the
levels of 24 human leukocyte antigens (HLAs). Immunity_L
had reduced expression levels of most immune HLA genes,
suggesting that tumor cells are evading antigen presentation
by impaired antigen presentation (Figure 1(e)). In addition,
the immune cells distribution analysis revealed that CD8+
T cells, CD4+ T cells, monocytes, DC cells, and M0 mac-
rophages showed signifcantly diferent between Immuni-
ty_L and Immunity_H groups (Figure 1(f)).

3.2. Immunity_L and Immunity_H Subtypes Difer in a Large
Number of Immune-Related Genes. By performing a difer-
ential expression analysis, we were able to identify the genes
that are important to both Immunity_L and Immunity_H
subtypes. Based on the results, 977 genes were identifed as
diferential genes, including 546 up-regulated genes and
431 down-regulation genes (Figures 2(a) and 2(b)). Our next
step was to perform GO and KEGG enrichment analyses to
identify pathways that play a key role between subtypes. Te
results demonstrated that up-regulated genes are closely
associated with sister chromatid segregation, regulation of
sister chromatid segregation, p53 signaling pathway, regu-
lation of nuclear division, and progesterone-mediated oo-
cyte maturation. In addition, the results revealed that down-
regulated genes are closely associated with the camp sig-
naling pathway, protein digestion and absorption, negative
regulation of translational initiation, muscle system process,
myofbril assembly, and fatty acid oxidation (Figures 2(c)
and 2(d)).

3.3. Construction of the Prognostic PredictionModel Based on
the Diferential Expressed Genes between Immunity_L and
Immunity_H Subtype. Te prognostic prediction model is
then constructed in order to explore the genes that are
closely associated with diferent immune subtypes. Tere is
a high correlation between 14 genes and the prognosis of
patients with GC according to univariate cox regression
analysis (Figure 3(a)). In addition, the lasso regression re-
veals that the model is optimal when lambda is 10, which
involves MYH16, TFPI, SLC22A16, CALCR, THSD7A,
ARHGAP44, E2F2, MPND, NCAPD2, and PHF7
(Figures 3(b) and 3(c)). Our fnal step was to perform

multivariate Cox regression analysis and to construct
a prognostic prediction model based on the risk scores
assigned to each patient: risk score�TFPI∗
0.0102943363210788 + SLC22A16 ∗ 0.608827192332847 +
CALCR∗ 0.101781283350081 +THSD7A
∗ 0.0710558398763891
+ARHGAP44∗−0.0313871395805361 + E2F2
∗−0.0378035205275216. According to the median expres-
sion level of risk score, GC patients in the TCGA cohort were
divided into low- and high-risk groups (Figure 3(d)). Overall
survival (OS) was associated with a lower rate for GC pa-
tients in high-risk groups in the survival analysis
(Figure 3(e)). For GC patients, the time-dependent ROC
curve shows AUC scores of 0.653 (at 1-year), 0.630 (3-year),
and 0.652 (5-year), respectively, (Figure 4(c)). In addition,
we construct a nomogram based on the age, gender, grade,
stage, TMN stage, and risk score of GC patients for better
prediction of their prognosis (Figures 4(a) and 4(b)). Te
correlation analysis was then performed to evaluate the
relationship between risk score and clinical characteristics.
More than 65-year-old GC patients tend to have lower risk
scores (Figure 4(d)). Furthermore, male patients with GC
have higher risk scores (Figure 4(e)). GC patients with
a lower stage and grade are more likely to join the low-risk
group, whereas GC patients with a higher stage do not tend
to be members of the low-risk group (Figures 4(e)–4(h)).
Also, the results showed that the risk score was closely
associated with the T stage (Figure 4(i)). A heatmap shows
the relationship between patients’ risk scores and clinical
characteristics (Figure 4(j)).

3.4. Diferent Immune Scores, Immunotherapy Response be-
tween Low- and High-Risk Groups. Our next step was to
determine the diference between the immune scores of low
and high-risk groups. Researchers demonstrated that
cancer-associated fbroblasts, hematopoietic stem cells, en-
dothelial cells, monocytes, stromal score, macrophage, mast
cell, and microenvironment score are closely related to the
risk score (Figures 5(a)–5(e)). Tere is no signifcant dif-
ference between GC patients with low-risk scores and those
with high-risk scores when it comes to immunotherapy
response with CTLA4 and PD1 (Figures 6(a)–6(d)). In
addition, the R package “pRRophetic” was used to predict
the chemosensitivity of GC samples. Te results revealed
that the prognosis-related prediction model was closely
associated with the sensitivity of many drugs, including
bosutinib, bryostatin, dasatinib, imatinib, methotrexate,
midostaurin, pazopanib, bexarotene, and bicalutamide
(Figures 7(a)–7(i)).

3.5.Explorationof theRoleofE2F2 in theGCCohort. Tenext
step was to determine if there was a correlation between
E2F2 expression and GC cohort composition. A high ex-
pression of E2F2 is associated with a shorter overall survival
(OS) rate and disease-specifc survival (DSS) as well as
a shorter progression-free interval (PFI) during the survival
analysis (Figures 8(a)–8(c)). Te immune checkpoint
analysis demonstrated that the expression level of E2F2 is
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associated with CD274, CTLA4, LAG3, PDCD1, and TIGIT,
suggesting that E2F2 could be considered as an immuno-
therapy target for immune checkpoint blocking
(Figure 8(d)). According to the immune cell analysis, the
expression of E2F2 is associated with endothelial cells
(Figure 8(e)). Te TIDE score of GC patients with lower
levels of expression of E2F2 is associated with lower im-
munotherapy responses, indicating that GC patients with
lower levels of expression of E2F2 may respond less well to
immunotherapy (Figure 8(f)). Time-dependent ROC curves
showed that E2F2 has good predictive value for GC cohorts
(Figure 8(g)).

3.6. Functional Analysis Based on the Risk Score and Key
Genes. After performing GSEA and GSVA enrichment
analyses, we looked for potential pathways that are closely
associated with the risk score and genes that contribute to
prognostic prediction models. Te GSEA enrichment
analysis demonstrated that E2F2 is closely associated with
arrhythmogenic right ventricular cardiomyopathy, cell cir-
cle, dilated cardiomyopathy, DNA replication, hypertrophic
cardiomyopathy hcm, and spliceosome (Figure 9(a)). For
THSD7A, the GSEA enrichment analysis demonstrated that
base excision repair, DNA replication, glyoxylate and

dicarboxylate metabolism, steroid biosynthesis, calcium
signaling pathway, and neuroactive ligand-receptor in-
teraction (Figure 9(b)). Finally, we performed GSVA anal-
ysis. Te results demonstrated that risk score is associated
with many enriched pathways, including adipogenesis, an-
drogen response, angiogenesis, bile acid metabolism, cho-
lesterol homeostasis, coagulation, DNA repair, and E2F
target (Figure 9(c)).

4. Discussion

It is estimated that there are approximately 1,089,103 new
cases of gastric cancer diagnosed each year, making it the
sixth most common cancer among newly diagnosed patients
[13]. Approximately 133,100 new cases of gastric cancer are
diagnosed in Europe each year, and approximately 102,200
deaths are caused by gastric cancer, ranking it ffth among
European men and sixth among European women [14]. Te
survival rate for GC patients is 32% at present. Te disease is
typically diagnosed after it has spread to other parts of the
body, so efective treatment requires a multimodal approach
tailored to each individual [15]. Established immunother-
apies have been enhanced by recent developments in im-
mune checkpoint inhibition. Several European and
American authorities have approved single-agent and
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Figure 1: (a) Te PCA analysis reveals the diferent immune subtypes of GC cohort; (b) the diferent immune subtypes were divided by
ssGSEA algorithm; (c) the diferent immune cell infltration between Immunity_L and Immunity_H subtype; (d) the stromal score, immune
score, and estimate score between Immunity_L and Immunity_H subtype; (e) the expression level of HLA encoding genes between
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combination therapies with PD-1 inhibitors for advanced
gastric cancer treatment, whether it is a frst- or third-line
treatment [16]. For this reason, we must explore potential
therapeutic targets to reduce mortality in GC patients. GC
cohorts were divided into low- and high-immune groups to
explore potential therapeutic targets for immunotherapy. As
a result, we evaluated the immune cell infltration between
diferent subtypes, revealing that Immunity_L subtypes
show lower immunity purity. Moreover, the immunological
score, estimate score, and stromal scores are all higher with
the Immunity_H subtype. For HLA-related genes, the ex-
pression levels of most immune HLA genes were signif-
cantly reduced in Immunity_L, suggesting that impaired
antigen presentation by tumor cells is an evasionmechanism
of immune surveillance. A great deal of research has been
conducted on the HLA genes in GC patients over the past
few years. Several clinical and pathological factors associated
with gastric cancer are afected by two antitumor immune
markers: Treg infltration and HLA class I expression. Im-
munologically, combining HLA class I expression with Treg
cell infltration can provide an improved prediction of
postoperative outcomes. In addition, clinical factors asso-
ciated with gastric cancer are independently infuenced by
HLA-E and HLA-F. Invasive depth, lymph node

involvement, lymphatic invasion, and venous invasion
were2 signifcantly correlated with HLA-E and HLA-F
expression.

An analysis of univariate cox regressions, lasso re-
gressions, and multivariate cox regressions was performed
to uncover the genes implicated in the genetic compo-
sition of GC cohorts. To conclude, a six-signature prog-
nostic prediction model has been developed, which
includes TFPI, SLC22A16, CALCR, THSD7A, ARH-
GAP44, and E2F2. According to the survival analysis, the
model is closely associated with GC prognosis. In addi-
tion, time-dependent ROC curves demonstrated that the
model had good predictive value for GC patients. As
a result of many studies in recent years, there have been
many discoveries of potential biomarkers for immuno-
therapy of GC patients that have enabled the construction
of the best model for prognosis prediction. Tere was
a decrease in miR-21 and miR-181b expression among
patients treated with S-1 and docefuridine [17]. In ad-
dition, patients with low miR-125a-3p expression have
larger tumors, invade, metastasize, and are at an advanced
stage of the disease [18]. To validate the predictive value of
our prognostic model, we performed survival analysis,
ROC curve analysis, and nomogram analysis, which may
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Figure 4: (a) Te nomogram was constructed by clinical characteristics and risk score; (b) the calibration curve was applied to reveal the
predictive value of nomogram; (c) the time-dependent ROC curve is applied to evaluate the predictive value of prognostic prediction value;
(d) the clinical correlation analysis between risk score and age; (e) the clinical correlation analysis between risk score and gender; (f ) the
clinical correlation analysis between risk score and grade; (g) the clinical correlation analysis between risk score and M stage; (h) the clinical
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Figure 5: (a)Te correlation between multiple immune scores and risk score; (b) the correlation analysis between DC and risk score; (c) the
correlation analysis between stromal score and risk score; (d) the correlation analysis between CD4+ Tcells and risk score; (e) the correlation
analysis between cancer-associated fbroblasts and risk score; (f ) the correlation analysis between hematopoietic stem cell and risk score; (g)
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Figure 8: Continued.
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Figure 8: (a) Te OS between high- and low-expression of E2F2 groups; (b) the DSS between high- and low-expression of E2F2 groups; (c)
the PFI between high- and low-expression of E2F2 groups; (d) the immune checkpoint-related genes between high- and low-expression of
E2F2 groups; (e) the immune cell infltration between high- and low-expression of E2F2 groups; (f ) the TIDE score between high- and low-
expression of E2F2 groups; (g) the ROC curve shows the predictive value of E2F2 in TCGA GC cohort.
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provide new sight into the early diagnosis and early
treatment of GC patients.

E2F2 has been extensively researched in the past few
decades in association with gastric cancer. It has been
shown that high E2F2 levels are associated with a poor
prognosis [19]. A further function of E2F2 is that it
regulates PI3K/Akt/mTOR, which are necessary for cell
migration, invasion, and autophagy. According to another
study, miR-26a increases GC cell sensitivity to cisplatin-
based chemotherapy by targeting E2F2 [20]. Tis study
aimed to determine whether E2F2 is closely associated
with the prognosis of GC patients. Next, we explored the
pathways that are closely associated with E2F2. DNA
replication may be associated with E2F2, according to
research, which shows that MTA2 impairs DNA repli-
cation stress in gastric cancer cells and increases their
sensitivity to PARP inhibition [21].

Bioinformatics analysis has expanded its use in
predicting treatment response to gastric cancer, as
mRNA may now serve both diagnostic and prognostic
purposes. As opposed to a single miRNA signature,
multiple-mRNA signatures provide clinicians with
valuable information on how to manage the disease in
a personalized manner [22]. Our better understanding of
these mRNAs and their target genes will allow us to
develop more complex and efective therapeutics for
gastric cancer. However, the bioinformatics analysis has
some inevitable shortcomings. First, we did not provide

the verifcation assays. In addition, no extra dataset was
involved in this analysis, which may lead to the het-
erogeneity of the bioinformatics analysis. Terefore,
further analysis should focus on the role of E2F2 in the
GC cells. Our analysis provided a new direction for the
future exploration of the biomarkers of GC.
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Figure 9: (a)Te GSEA analysis based on E2F2; (b) the GSEA analysis based on THSD7A; (c) the GSVA analysis based on the risk score and
key genes involved in GC cohort.
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