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The classical twin design uses data on the varia-
tion of and covariation between monozygotic and

dizygotic twins to infer underlying genetic and envi-
ronmental causes of phenotypic variation in the
population. By using data from additional relative
classes, such as parents, extended twin family
designs more comprehensively describe the causes of
phenotypic variation. This article introduces an exten-
sion of previous extended twin family models, the
Cascade model, which uses information on twins as
well as their siblings, spouses, parents, and children
to differentiate two genetic and six environmental
sources of phenotypic variation. The Cascade also
relaxes assumptions regarding mating and cultural
transmission that existed in previous extended twin
family designs. The estimation of additional parameters
and relaxation of assumptions is potentially important,
not only because it allows more fine-grained descrip-
tions of the causes of phenotypic variation, but more
importantly, because it can reduce the biases in para-
meter estimates that exist in earlier designs.

Keywords: behavior genetics, model misspecification,
extended twin family design, classical twin design, para-
meter indeterminacy

Perhaps the most salient characteristic of behavioral
genetics vis-à-vis other social science fields is its exten-
sive use of structural equation models as a means of
testing hypotheses of interest. This represents a signifi-
cant strength of the field, but is not without its
drawbacks. Among the advantages of using such
models is that they necessitate consideration and
description of hypothesised causal processes, they
direct focus to effect sizes rather than p values, and
they lend themselves to explicit disclosure (and hope-
fully testing) of assumptions upon which model
conclusions rest. A potential drawback of such models
could be termed ‘parameter reification’, which occurs
when researchers become lulled into viewing parame-
ter estimates — usually from time tested, widely used
models — as being the underlying parameters them-
selves rather than imperfect and potentially biased
reflections of the true parameters. The quality of esti-

mates always depends upon how well a particular
model and its assumptions reflect reality. Thus, a
worthwhile goal of behavioral scientists in general and
behavioral geneticists specifically should be the devel-
opment of models that require fewer and less stringent
assumptions, increasing the accuracy and decreasing
the bias of parameter estimates.

The purpose of the present article is to introduce a
new extended twin family design (ETFD) model — the
Cascade model — which makes fewer assumptions
than previous ETFD models and therefore potentially
produces less biased and more accurate parameter
estimates. However, the Cascade is by no means the
definitive model of individual differences, and to this
end we present the logic and algebra underlying this
and other ETFD models so that future researchers can
build on the Cascade in the same way that we have
built on previous (e.g., the Stealth) models. ETFD
models, including the Cascade, are not overly difficult
conceptually, but they are complex and the algebra
can be tedious, which may explain why papers have
not previously described such ETFD models in the
detail we do here. We will attempt to provide insight
into the Cascade and how it works when possible, but
no amount of explanation can substitute for working
through the path diagrams and algebra first hand. As
such, this paper serves as a guide and tutorial for
those wanting to learn about the Cascade and ETFD
models. Our treatment assumes basic knowledge of
behavioral genetic methods and structural equation
modeling; for an introduction, see Carey (2002).

We begin by examining the logic, algebra, assump-
tions and potential biases of the classical twin design
(CTD), the nuclear twin family design (NTFD), and the
Stealth model. We use these, and particularly the NTFD,
as springboards for explaining the Cascade model. As we
progress, the number of assumptions for the models
decreases. This should correspond to parameter esti-
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mates that are less biased. However, fewer assumptions
also means more complicated models, creating a poten-
tial for over-fitting (‘reading into the tea leaves’). We
therefore keep one eye on the benefits and another on
the costs as the complexity of the models increases.

The Classical Twin and Nuclear Twin 
Family Designs
By far, the most commonly used model to infer genetic
and environmental causes of variation in behavioral
genetics is the classical twin design (CTD), which uses
observed covariances between just two types of rela-
tives, monozygotic (MZ) and dizygotic (DZ) twins, to
estimate the variation due to additive genetic (VA),
dominance genetic (VD), and common (VC) and unique
(VE) environmental effects. The interpretation of these
and other variance components are shown in Table 1.
However, a model has no unique solutions, or is
under-identified, when the number of parameters to be
estimated is greater than the number of non-redun-
dant pieces of information used to estimate them. The
CTD is such a model: there are more parameters to be
estimated — V^A, V^D, and V^C — than pieces of informa-
tion to estimate them — the MZ covariance, CV^(MZ,
MZ), and DZ covariance, CV^(DZ, DZ). (We follow
the convention that V^O is the estimate via observation
of a sample or deduction of the unknown population
parameter VO). V^

E is estimable in all models simply
from V^P – CV^(MZ, MZ) and so is not focused on here-
after. To circumvent this under-identification problem,
behavioral geneticists routinely assume that either VD

(when CV^(MZ, MZ) < 2CV^(DZ, DZ)) or VC (when
CV^(MZ, MZ) > 2CV^(DZ, DZ)) is zero when using the
CTD. However, the ratio, CV^(MZ, MZ) : 2CV^(DZ,
DZ), in no way implies that either VD or VC are actu-
ally zero; this is simply an assumption born from the

mathematical necessity of making the model identi-
fied, and it leads to consistent biases in V^A (upward)
and V^D and V^C (downward) when the assumption is
wrong (Keller & Coventry, 2005). The CTD must
make numerous additional simplifying assumptions,
nine of which are listed in Table 2 along with the
effects on parameter estimates when these assump-
tions are violated. These assumptions are rarely
testable with only CTD data, and to the degree that
they are not met, the CTD will produce parameter
estimates that are biased, sometimes wildly so.

Since its inception, the CTD has largely been used
as a way of estimating broad-sense heritability (VA +
VD)/VP) of human traits (Jinks & Fulker, 1970). But
beginning in the 1970s and continuing to today there
has also been interest in characterizing how environmen-
tal factors affect variation, and particularly in
understanding how environmental influences are trans-
ferred from parent to offspring in a process referred to as
‘vertical transmission’ (Cavalli-Sforza & Feldman,
1973), a cultural (albeit blending) analog to genetic
transmission (Cloninger, Rice, & Reich, 1979a, 1979b;
Eaves, 1976a, 1976b). Because the CTD is poorly suited
to resolving such issues, researchers sought additional
sources of information and developed new models
around them, including the nuclear twin family design
(NTFD), which offers finer resolutions to genetic and
environmental causes of human variation (Fulker, 1982).

The NTFD uses data on parents of twins in addi-
tion to MZ and DZ twins to garner two additional
pieces of information — the covariance between
parents, CV^(spouse), and the covariance between
parents and children, CV^(Par, Child). These additional
covariances obviate the need for three of the CTD
assumptions (rows 1–3, Table 2), allowing: (1) V^A, V^D,
and V^C to be estimated simultaneously (assuming that
V^C is completely due to either V^S or V^F ; see next para-

Table 1

Explanation of variance components in ETFD models.

Parameter Interpretation

VP,σ2 Phenotypic variance.

VP
~ Variance of latent phenotype upon which mates choose each other.

VA Additive genetic variance; variance of marginal or average allelic effects.

VD Dominance genetic variance; variance of effects attributable to combinations of alleles at the same locus.

VS Sibling environmental variance; variance in nongenetic effects (e.g., peers, cohort, school, parenting style, and so on) shared
between siblings and twins but not between parents and offspring.

VT Twin environmental variance; variance in nongenetic effects (e.g., peers, cohort, classrooms) shared by twins but not siblings.

VF Familial environmental variance; variance in nongenetic effects (e.g., SES, social mores, education) passed (via ‘vertical 
transmission’) from parents to offspring.

VC VS + VF ; typically estimated in CTD or NTFD models.

VE Unique or residual environmental variance; variance in nongenetic effects (e.g., peers, unique experiences, somatic mutation) that
are unshared with any other relative class.

CV(A,F ) Covariance between additive genetic and familial environmental effects; arises if vertical transmission (causing VF ) is a function of 
the parental phenotype because, for example, higher values on A create higher phenotypic values, which are passed to offspring
F via vertical transmission.
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graph and row 4, Table 2); (2) the effects of assortative
mating, measured from CV(spouse), on parameter esti-
mates to be accounted for; and (3) the covariance
between A and C that arises from assortative mating
and combined genetic and vertical transmission to be
differentiated from the effects of V^

C.
There are many ways the NTFD can be parameter-

ized (Heath, Kendler, Eaves, & Markell, 1985). Here
we focus on a particular parameterization, written by
the authors and similar to the Cascade model, which
divides V^C into that which is shared between siblings
and twins but not parents (V^S) and that which is trans-
mitted via vertical transmission from parents to
offspring (V^F). It should be noted that, because only
three pieces of data, CV^(MZ, MZ), CV^(DZ, DZ), and
CV^(Par, Child) provide information on four parame-
ters, V^A, V^D, V^S, and V^F, only three of these parameters
can be estimated simultaneously in any model (row 4,
Table 2). Again, if the parameter assumed to be zero is
not truly zero, the estimated parameters from the
NTFD will be biased, although not to the degree that
CTD parameters are biased in the analogous (row 1,
Table 2) situation. Some NTFD models include data
on non-twin siblings, which greatly increases power of
parameter estimates (Posthuma & Boomsma, 2000)
and allows estimation of environmental effects shared
only by MZ and DZ twins (V^T), but does not other-
wise change the number of assumptions (Table 2) the
NTFD must make.

Path Analysis of a Nuclear Twin Family 
Because the Stealth and Cascade models are extensions
of the NTFD, and because most of the fundamental
concepts are shared between the three models, it is
useful to focus first on the logic and algebra of the

NTFD. Figure 1 presents the path diagram for our
NTFD model. Squares denote observed and circles
latent (unmeasured) variables; upper case letters simply
identify variables whereas lower case letters represent
path coefficients to be estimated or fixed; single-
headed arrows signify causal relationships from one
variable to another and double headed arrows signify
covariation between two variables or between the
variable and itself (i.e., variation); finally, the line con-
necting the two parents is a ‘copath’, representing
selection between parents for similarity on the pheno-
type (‘like choosing like’), and has special rules as
described below.

Path analysis provides a systematic method for gen-
erating expected variances and covariances. To derive
the expected covariance between two variables, one
identifies all pathways or ‘chains’ that start at the first
variable and end at the second, such that (1) a chain
begins by tracing backwards, against the direction of
one or more (single- or double-headed) arrow(s), (2) a
chain changes direction at a double-headed arrow, and
move thereafter only in the direction of single-headed
arrow(s), (3) no chain goes through more than one
double headed arrow (which implies that no chain
changes direction more than once), and (4) no chain is
counted twice. With respect to this last rule, it should
be noted that order matters, such that fwa is not
counted as the same chain as awf, even though alge-
braically they are equivalent (for an example, see
equation [1] below). The expected covariance is found
by multiplying the coefficients in all possible, non-
redundant chains that connect two variables and
summing them. Variances are found in the same
manner, except that the goal is to find all chains that
begin at a variable and arrive back at the same vari-
able. As per rule 4 above, for variance caused by two

Table 2

Effects of Violating Assumptions on Parameter Estimates From the Classical Twin Design (CTD), Nuclear Twin Family Design (NTFD), Stealth, and
Cascade Models 

Typical biases if assumptions are not met
Assumptions Models Overestimated Underestimated

1 Either VC = 0 or VD = 0 CTD VA VD ,VC

2 CV(spouse) = 0 CTD VC VA ,VD

3 CV(A,C) = 0 CTD VC VA ,VD

4 Either VS = 0, VF = 0, or VD = 0 NTFD VA VF ,VD

5 CV(spouse) due to primary phenotypic assortment NTFD, Stealth variable variable

6 VEpi = 0 All VD , maybe VA (CTD), VEpi , maybe VA (CTD),
VA (Stealth) VS (Stealth)

7 VA × C = 0 All VA VC ,VA × C

8 VA × E = 0 All VE VA ,VA × E

9 VA × age = 0 All VA (CTD), VD (Stealth), VA × age (CTD),
VS (Stealth) VA (Stealth), VA × age (Stealth)

10 VTW(MZ) = 0 All VA ,VD VTW(MZ)

Note: Vx = variance of X; CV (X,Y) = covariance between X and Y; X × Y = nonscalar interaction between X and Y; A = additive genetic; D = dominant genetic; F = familial environment, due
to vertical transmission from parents; S = sibling environment, C = S + F = common environment; E = unique environment; Epi = epistasic; TW(MZ) = special MZ twin environment.
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other variables that are correlated, the covariance is
counted in both directions.

The phenotypic variance in the NTFD is assumed to
be the same for all relative classes, and so we demon-
strate the above tracing rules for finding expected
phenotypic variances by tracing all pathways that start
and end at the paternal phenotype PFA (top left, Figure 1).
For example, consider the first chain to be aqa (the
unique phenotypic variance due to the additive effects
of genes) the second and third awf and fwa (the sum of
the two is the phenotypic variance attributable to
covariance between A and F), the fourth fxf (pheno-
typic variance due to familial environment), and so
forth, such that the expected phenotypic variance,
summing over all possible nonredundant chains, is:

VP = σ2 = a2q + f 2x + 2awf + e2 + d2 + s2 (1) 

Note that, other than those expressed in equation (1),
no other chain starting and ending at the phenotype
exists that would not break one of the four tracing
rules above. Note also that the latent variance of all
variables is set to 1 except for A (variance of q) and F
(variance of x), and that, not coincidentally, A and F
are the only latent variables that have a covariance (w).
The reasons for this are discussed below. Finally, note
that parents, indeed all individuals, also have a sibling
(S) component to their phenotypic variance, but that
only siblings and twins share this variance component.
For example, influences of schools might contribute to
phenotypic differences in some trait; everyone, includ-
ing single children, are potentially influenced by their
schools, but siblings and twins are the only types of rel-
atives likely to routinely share such influences, and to
the degree this is so, school influences will be part of S.

The covariance between spouses, which is modeled
as ‘primary phenotypic assortment,’ or spouses choos-
ing partners who are like (or unlike) themselves based
on their phenotypes, is:

CV(spouse) = σ2μσ2 (2)

where μ is the assortative mating copath coefficient.
Assortative mating between spouses has consequences
for the variances and covariances of A and F as well as
the expected relative covariances (Crow & Kimura,
1970; Eaves, 1976b), and the special rules of the
copath allow these to be modeled appropriately (Van
Eerdewegh, 1982). In particular, as with other paths,
copaths can only be traced once in any chain, but once
traversed, the four tracing rules described above are
‘reset’, allowing, for example, a second double-headed
arrow to be traced.

We demonstrate the copath rules by finding the
expected variance of the latent variable F (x in Figure
1). An assumption of the NTFD (required for identifi-
cation but also plausible) is that the variance
components in the parental generation are the same as
those in the offspring generation (i.e., that the vari-
ances have reached an equilibrium). Thus, to find x,
we set it to be equal to all the chains that can be

traced from and back to the same F latent variable in
offspring. Starting at, say, the F of twin 1, the first
chain (paternal vertical transmission) travels up to the
paternal phenotype (m), then up to and back from all
individual latent variables affecting the father (which
we have already found in equation (1), and so we can
just reuse this parameter, σ2), and then back down
again (m), or simply m2σ2. The second chain, maternal
vertical transmission, is the same, m2σ2 (the assump-
tion that maternal and paternal vertical transmission
path coefficients are the same is usually relaxed in the
NTFD, but it is presented this way here for simplic-
ity). The third chain again goes to the paternal
phenotype (m), up and down again to all latent vari-
ables (σ2), and then traverses the copath (μ), resetting
the rules to their ‘initial state’ once across. From here
it might seem legitimate to move directly back down
to F (m), but this breaks the first tracing rule from
above: a chain always begins by tracing backwards
against an arrow. Thus, the only legitimate paths are
to go up to and back from all latent variables (σ2), and
finally back down to the F (m). It can therefore be
seen that the final variance of F is:

x = 2mσ2m + 2mσ2μσ2m (3)

The variance of F is increased by anything that
increases the phenotypic variance over time, and espe-
cially by assortative mating. At first it might seem
mistaken that x is displayed in the parental generation
in Figure 1 but is missing in the offspring generation.
This is no mistake: the makeup of the variance in F
among offspring is already implicit in Figure 1 in the
form of the vertical transmission paths coming into F;
to place an explicit x for the variance of F for offspring
in Figure 1 would be redundant, doubling its variance
over what it should be.

It might also seem mistaken that three parameters
(m, x, and f,) are all used to estimate a single variance,
VF. Obviously such a situation would be under-identi-
fied. There are many workarounds; the approach taken
here is to fix f = 1 and allow m to be freely estimated. x
is not truly estimated, since its value is fully determined
by m, σ2, and μ (equation 3). Notice the circularity: σ2

in equation (1) is a function of x, and x (equation 3) is
a function of σ2. Thus, σ2 and x (along with q, dis-
cussed below) comprise a set of nonlinear constraints.
Nonlinear constraints are hallmarks of most ETFD
models. They describe, and constrain, the inter-rela-
tionships between estimated parameters in a way that
keeps the entire model internally and logically consis-
tent. Their values are not estimated, strictly speaking,
but instead are determined by (and help to determine)
estimated parameters and other non-linear constraints.
Because of this, close-form solutions to ETFD models
are typically impossible; their solutions usually require
iterative (e.g., maximum likelihood) approaches, such
as those employed in Mx (Neale, 1999).

The variance of the A latent variable, q, is also a
nonlinear constraint in the context of assortative
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mating. The average value of offspring A is simply
1⁄2AFa + 1⁄2AMo. However, parents do not pass on their
average A effects to any particular child but rather one
of two discrete allelic effects per locus, and hence
there is variation around the above expectation which
can be found using tracing rules. In the absence of
assortative mating:

qChild = 1⁄4qFa + 1⁄4qMo + qSeg (4)

The qSeg term above is called the segregation variance,
representing the within-family variance in additive
genetic effects caused by the randomness in which of
two alleles parents pass to offspring. Since additive
genetic variance will be the same across generations at
equilibrium, qChild = qFa = qMo = q, and if there is no
assortative mating, q contains no nonlinear con-
straints and so can be set at 1. Given equation (4), this
implies that qSeg = 1⁄2 when q = 1 (i.e., when there is no
assortative mating).

It has been shown that assortative mating does not
change the within-family additive genetic variance,
qSeg, in polygenic characters (Rogers, 1983). Hence, we
set qSeg = 1⁄2 regardless of whether assortative mating
occurs or not, denoted by dashed double-headed arrows,
pointing into A of offspring in Figure 1. However, the
total additive genetic variance, driven by the between-
family additive genetic variance, will be altered by
primary phenotypic assortment. Given that q equals 1
without assortative mating, it will be greater than 1 as a

function of primary phenotypic assortative mating
(Crow & Kimura, 1970; Eaves, Last, Young, & Martin,
1978). This is because spouses who are phenotypically
similar tend to also have similar additive genetic effects,
creating a covariance between the values of A in each
parent. Offspring A is a weighted sum of the parental A
values, and the variance of the offspring A will be larger
for the same reason that the variance of sums is always
increased by positive covariation between terms.
Intuitively, inheriting positive A effects from one parent
increases the probability of inheriting positive A effects
from the other parent when mates choose similar mates,
increasing the variance of A in offspring and hence in the
population. This increase can be quantified using the
tracing rules:

q = qSeg + 1⁄2q + 1⁄2(qa + wf)μ(qa + wf) = (5)
1 + (qa + wf)μ(qa + wf)

given that qSeg = 1⁄2. Thus, primary phenotypic assortative
mating increases the additive genetic variation by (qa +
wf)2μ over what it would be without assortative mating.

Furthermore, a covariance will develop between A
and F anytime both are non-zero. This is because ver-
tical transmission passes all the constituents of the
parental phenotype, including A effects, to the off-
spring, inducing a covariance between A and F that is
accentuated in the presence of assortative mating. By
tracing all the pathways from A in twin 1 to F in twin
1, or A in twin 1 to F in twin 2 (surprisingly, they are

Figure 1
Path diagram of Nuclear Twin Family Design. Note that all latent variances equal 1 (except for A and F, which equal q and x respectively) and are
not shown.
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equivalent), we can find the nonlinear constraint for
the covariance between A and F:

w = (qa + wf)m + (qa + wf) μσ2m (6)

The genetic and environmental variances being sought
are not estimated directly, but rather are calculated by
multiplying the squared path coefficients by the vari-
ances of the latent variables (VA = a2q, VD = d2, and so
on). Note the terminology: q is the variance of latent
variable A whereas VA is the additive genetic variance,
and q ≠ VA.

The covariances of the three relative types are deter-
mined using the same tracing rules discussed above, but
chains are traced from one observed phenotype to
another. The covariance between S of siblings are
always equal to 1 and those between D of siblings are 1
for MZ twins and .25 for DZ twins.

CV(MZ, MZ) = a2q + d2 + s2 + f 2x + 2awf (7)

CV(DZ, DZ) = a2(q – qSeg) + 1⁄4d2 + s2 + f 2x + 2awf (8)

CV(Par, Child) = 1⁄2a(qa + wf) + 1⁄2a(qa + wf)μσ2 (9)
+ mσ2 + mσ2μσ2

Observed MZ, DZ, and parent–child covariances or
raw data can be entered into Mx or other structural
equation modeling programs that can handle non-linear
constraints, which typically use maximum likelihood to
arrive at parameter estimates. To simplify, these pro-
grams find the fit of the solution (how close the implied
relative covariances from equations 7 to 9 are to the
observed relative covariances) at the start values sup-
plied by the user. An algorithm then moves parameters
in a direction that tends to increase the fit (i.e., decrease
the difference between the implied and observed covari-
ances). This process is iterated until parameter estimates
converge, or change very little from one iteration to the
next. In a model that fits the data well, implied and
observed covariances will be similar; comparing the
two can suggest places where the model is failing.

The Stealth Model
The Stealth model was developed from the NTFD as a
way to improve upon its shortcoming in differentiat-
ing environmental effects within the family and to
increase the power to test parameter estimates and sex
effects. It was principally developed by Lindon Eaves
in the mid 1980’s, and was first discussed in a paper
on Church Attendance (Truett et al., 1994). The name,
‘Stealth’, comes from Lon Cardon, who commented
that the path diagram looked like a ‘Stealth bomber’
(L. Eaves, personal communication). Originally
written in FORTRAN, the model was transported to
Mx once Mx could handle nonlinear constraints
(Maes, Neale, & Eaves, 1997), and has since been
extended to multivariate phenotypes (Maes, Neale,
Martin, Heath, & Eaves, 1999).

The Stealth model introduces no new concepts
beyond those discussed above with respect to the
NTFD. However, the amount of information and

number of equations to be solved is greatly increased.
By including data from twins, their parents, their off-
spring, and their spouses, the Stealth model models 88
relative covariances, which supplies sufficient informa-
tion to simultaneously estimate sex-specific V^A, V^D, V^S,
V^F, V

^
T, and V^E (see Table 1) as well as additive genetic

variation unique to males/females and correlations
between other sources of variance across sex. Many of
these 88 relative classes are identical except for the
fact that sex-differences must be accounted for. For
example, the Stealth differentiates nephew–aunt
covariances that are between sons of DZ females and
female DZ co-twins from those that are between sons
of DZ males and female DZ co-twins. To simplify, we
do not further discuss sex effects, which reduces the
number of relative classes from 88 to 17. These are
shown in Appendix 1.

Figure 2 shows the Stealth model. The path
diagram is identical to Figure 1 except that spouses of
twins and children of twins have been added. To keep
the diagram uncluttered, siblings of twins are not
shown, but their covariances are simple to derive, being
nearly the same as DZ twins. The same path analysis
rules set forth above with respect to the NTFD are suf-
ficient for finding the expected covariances for all 17
relative classes in the Stealth.

There are currently three datasets with information
on enough relative classes to be usable in the full
Stealth model. The first consists of roughly 30,000
twins and relatives (the ‘Virginia 30K’) from the
Virginia Twin Registry and from a volunteer sample
through the American Association of Retired Persons,
the second consists of roughly 25,000 twins and rela-
tives from the Australian Twin Registry (Lake, Eaves,
Maes, Heath, & Martin, 2000), and the third from
35,000 twins and relatives in the Netherlands Twin
Registry (Boomsma, 1998). Extensive data on demo-
graphics, physical characteristics, alcohol and tobacco
use, depression, personality, religious and political
beliefs, intelligence, cognitive measures, and social
relationships exist for these datasets.

The Stealth model has been used to analyze at least
17 phenotypes to date (Coventry & Keller, 2005),
almost all on the Virginia 30K data. In general, these
studies have found higher dominance and lower addi-
tive genetic effects (but only slightly lower levels of
broad-sense heritability) than CTD studies on the same
phenotypes, demonstrating the biases expected to exist
in parameter estimates from the CTD (Keller &
Coventry, 2005). Estimates of common environmental
variance (V^

S + V^
F) were little changed (Coventry &

Keller, 2005).

The Cascade Model
A potential limitation of the Stealth model is that it
relies upon one particular model of mating — primary
phenotypic assortment — and one particular model of
vertical transmission — transmission to offspring from
the full parental phenotype. Several other possibilities
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exist, and if they are true, then Stealth estimates will
be biased in various, often difficult to predict ways
(Keller et al., in prep.). With respect to mating, one
possibility is that mates do not choose each other
based on phenotypic similarity, but rather become
more similar to each other over time. If such conver-
gence explains spousal similarity, many of the
predicted dynamics in the Stealth model, such as
increases in VA and VF, will be incorrect, leading to
biased estimates (e.g., estimates of VA that are too
high). Another commonly discussed possibility for
mate similarity is social homogamy (Heath & Eaves,
1985), such that mates choose each other based on
similar environmental backgrounds. For example, if
people marry within religions and choice of religion is
not heritable, than any similarity induced between
spouses that is due to religious choice (e.g., similar
views on abortion) would be due to social homogamy
rather than primary phenotypic assortment. With
respect to vertical transmission, it is possible that
parents pass only certain (e.g., environmental) aspects
of their phenotype to offspring. For example, parents
might ‘pass on’ their education to their children not
directly through their own education level, but indi-
rectly, through nongenetically mediated aspects of
their environment that are related to their education.

The purpose of the Cascade model is to provide a
general framework for relaxing the assumptions regard-
ing mate choice and vertical transmission made by the
Stealth. The way that this is done is through use of
latent phenotypes upon which spouses mate or upon
which parents pass on their phenotypes. For clarity of
presentation, we focus here on the mating aspect of the
Cascade rather than the vertical transmission aspects of
it, but it is straightforward to apply the same principles
to vertical transmission. Figure 3 shows the path
diagram and Appendix A shows the algebra (excluding
sex effects) for the version of the Cascade that relaxes
the assumptions about assortative mating but in which
vertical transmission is passed from parental phenotype
to offspring . The path diagrams and algebra for the
model that includes sex effects and for the model that
relaxes both the assortative mating and vertical trans-
mission mechanisms are available online at the first
author’s website (www.matthewckeller.com).

The only difference between Figure 2 (the Stealth
model) and Figure 3 (the Cascade model) is the addition
of the latent phenotype (P

~
) upon which mates assort.

There is not sufficient information to estimate the path
coefficients (e.g., a~) leading to this latent phenotype.
Rather, these coefficients are set a priori by the user to
reflect the type of mating system that is to be modeled.
While any choice is possible, for ease of interpretation

Figure 2
Path diagram of the Stealth model. Note that all latent variances equal 1 (except for A and F, which equal q and x respectively) and are not shown.
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it is best to set the path coefficients to P
~

to either be
equal to the path coefficients to P or to be equal to
zero. For example, to model social homo gamy, all
genetic path coefficients to P

~
can be set to zero and all

other path coefficients to P
~

can be set to the values of
those to P, such that a~ = 0, d

~
= 0, f

~
= f = 1, s~ = s, t~ = t,

and e~ = e (recall that either m or f must be fixed in
order for the variance of F to be identified; here we set
f to 1). The fit of this model can then be compared to
a model of primary phenotypic assortment, in which a~

= a, d
~

= d, f
~

= f = 1, s~ = s, t~ = t, and e~ = e, and the best
fitting of the two models can be chosen. In addition,
convergence can be modeled (or at least approxi-
mated) by setting e~ = e and all other path coefficients
to P

~
to zero. This removes the effects of assortative

mating on the genetic and familial variation, as it
should, and makes intuitive sense, in that convergence
is an environmental factor that uniquely affects the
spouses, leading to no expected covariances between
in-laws and decreasing similarity between MZ twins.

Although not shown in Figure 3, the generaliza-
tion of the way in which vertical transmission occurs
follows the same principles as those explained above
with respect to assortative mating. This is accomplished
by adding an additional latent variable, P̈, directly anal-
ogous to P

~
, from which parents pass on aspects of

their phenotype to offspring F via vertical transmis-
sion. The m pathways to offspring F leave from P̈
rather than from P. Again, path coefficients (e.g., ä)
are set to be equal to those going to P or set to zero,
and fits of the competing models can be compared.

The Stealth and Cascade models are identical when
assortative mating is due to primary phenotypic assort-
ment and when vertical transmission includes all
aspects of the parental phenotype. However, by using
the latent mating and vertical transmission phenotypes
as explained above, the Cascade offers a much more
general model of assortative mating and vertical trans-
mission than possible in the Stealth. In this framework,
the Stealth conforms to a particular subset of the
models available to the Cascade. To the degree that the
Stealth assumptions are unmet, the Cascade allows
them to be relaxed, which should reduce bias in esti-
mated parameters.

We have used simulation to explore the degree to
which assumptions regarding mating and vertical trans-
mission, as well as additional assumptions, including
those that must be made by all extended twin family
designs (e.g., no A-by-age interaction effects), affect the
CTD, NTFD, Stealth, and Cascade models (Keller et
al., in prep). These results demonstrate that each of
these four models produce unbiased estimates when

Figure 3
Path diagram of the Cascade model. Note that all latent variances equal 1 (except for A and F, which equal q and x respectively) and are not shown.

PMo

S
a

D
d

T

E

t

e

PMo

s

e

a

A

q

x

w
f

f

~

t
~

~

~
~

d
~

s
~

F

�

PFa

S
a

D
d

T

E

t

e

PFa

s

e

a

A

q

x

w
f

f

~

t
~

~

~
~

d
~

s
~

F

m
m

PT1

S
a

D
d

T

E

t

e

PT1

s

e

a

A

f

f

~

t
~

~

~
~

d
~

s~F

PSp

S
a

D
d

T

E

t

e

PSp

s

e

a

A

q

x

w
f

f

~

t
~

~

~
~

d
~

s
~

F

PT2

S
a

D
d

T

E

t

e

PT2

s

e

a

A

f

f

~

t
~

~

~
~

d
~

s~ F

PSp

S
a

D
d

T

E

t

e

PSp

s

e

a

A

q

x

w
f

f

~

t
~

~

~
~

d
~

s
~

F

m
m

PCh

S
a

D
d

T

E

t

es

A

f

F

� �

m
m

m
m

PCh

S
a

D
d

T

E

t

e s

A

f

F

Path

Covariance

Copath

Path fixed to 1/2

P - Phenotypic variance (latent)

P - Phenotypic variance

A - Additive genetic

D - Dominant genetic

F - Familial environment

S - Sibling environment

T - Twin environment

E - Unique (non-shared) environment

w - Covariance between A-F

m - Familial transmission

z - Pathways fixed to z or to 0

� - Assortative mating copath

~

1 / .25

1 / 0

1

~

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

PF

~

~

dt
aa~~w

s
www ~

t
~~

d
~ ~~

s
~~~

   

    

   

   

   

   

   

   

    

    

   

        

    

 

PMo

~

~

s
~

aa w~~ www~
~

~~

s
~~~��

Fa

   

    

   

   

   

   

   

   

    

    

   

        

    

 

d tt
~~

d
~~ ~~

   

    

   

   

   

   

   

   

    

    

   

        

    

 

htaP

ecnairavoC

htapoC

htaP otdexif 2/1   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

S

PFa

s
aa

D
dd

T

E

tt

ees

a

A

f

f

qq

xxF x

f

f

~~

f

m
mm

m

   

    

   

   

   

   

   

   

    

    

   

        

    

 

PMo

s
aaE

ee

e

s

e

a

~~
A

~

f

xx Fxx

f

f

~

f

~
~

E

ee~~

m
mm

m

   

    

   

   

   

   

   

   

    

    

   

        

    

 

S
s

D
dd

Ttt

s

qq
-P ehP

ehP-P

ddA-A

oD-D

maF-F

biS-S

-T wT

nU-E

oC-w

-m aF

~

   

    

   

   

   

   

   

   

    

    

   

        

    

 

)tnetal(ecnairavcipytone

ecnairavcipytone

citenegevitid

citenegtnanim

tnemnorivnelailim

tnemnorivnegnilb

ni tnemnorivne

tnemnorivne)derahs-non(euqi

F-Aneewtebecnairav

noissimsnartlailim

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

S
ss

dt

A

qq

t s
~~

d
~ ~~

s
~~

   

    

   

   

   

   

   

   

    

    

   

        

    

 

E

PT

e

~

e~~~

aa E
ee

P pp

e

~
Spp~

e

aa

~~

~~

A

f

f

xxF

wwww
f

f

~~

f

~
~

~~~ ��

   

    

   

   

   

   

   

   

    

    

   

        

    

 

S
s

aa

D

E
ee

T1

s

s

d

aa~~

AF

f
~

f

~

f

~

ff

~
~

d

s
~~

~~~~

   

    

   

   

   

   

   

   

    

    

   

        

    

 

tt
~~~

S
s

D

s

s

d

t

A

t
~~~

d
~~~~

s~~~

1 / .251 / .25

11

   

    

   

   

   

   

   

   

    

    

   

        

    

 

E

PSp

e

~

e~~~

aa E
ee

P 2T2

e

~

e

aa

~~

~~

F

f

f

f

f

~~

ff

~

��

taP-z

ssA-�

~

   

    

   

   

   

   

   

   

    

    

   

        

    

 

S
s

aa

D
ee

pp

s

d t
aa~~

A

~

f

qq

s

xx Fxx

wwww
f

f

~~

f

ttt
~~

~
~

d
~~ ~

s
~~~

0otrozotdexifsyawh

gnitamevitatros htapoc

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 
s

D
dd

T tt

s

   

    

   

   

   

   

   

   

    

    

   

        

    

 

PSp

ee

mm

S
A

   

    

   

   

   

   

   

   

    

    

   

        

    

 

PT1

s
D

dd

Ttttt

ee s

mm

E

F

   

    

   

   

   

   

   

   

    

    

   

        

    

 
s

D
dd

T tt

s
1 /1 / 00

   

    

   

   

   

   

   

   

    

    

   

        

    

 

PT2

ee

mm

SE

AF

   

    

   

   

   

   

   

   

    

    

   

        

    

 

PSp

s
D

dd

Ttttt

ee s

mm

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

S

PCh

s
aa

D
dd

T tt

s
f

   

    

   

   

   

   

   

   

    

    

   

        

    

 

f

h

E
ee

fff

   

    

   

   

   

   

   

   

    

    

   

        

    

 

   

    

   

   

   

   

   

   

    

    

   

        

    

 

S

PCh

s
aaf

dd

E

tt

ee s
ff

   

    

   

   

   

   

   

   

    

    

   

        

    

 

D

T

   

    

   

   

   

   

   

   

    

    

   

        

    

 

https://doi.org/10.1375/twin.12.1.8 Published online by Cambridge University Press

https://doi.org/10.1375/twin.12.1.8


assumptions are met, but that they produce various
levels of biases when assumptions are not met. These
results also demonstrate that, in trying to estimate so
many parameters, Stealth and Cascade models can
produce estimates with higher variance than equivalent
CTD or NTFD estimates, despite the huge increase in
information. Despite this, estimates from the Cascade
tend to be more accurate under a wider range of situa-
tions than any previous extended twin family model.

In writing this article, we have attempted to present a
new extended twin family model, the Cascade, in a way
that enables researchers to understand its fundamental
concepts and the algebra underlying it. Our motivation
has not only been to encourage researchers to use the
Cascade model (the full Mx Cascade script is available at
www.vipbg.vcu.edu/~sarahme/cascade/ and the extended
algebra is available at www.matthewckeller.com), but
also to have researchers build upon it; the Cascade is but
a step in what we hope will be a longer pathway toward
better, more realistic models of extended kinship. We
also hope that the development of this and similar
models encourages collection of datasets that include
other relative classes in addition to twins. As several
behavioral genetics methodologists have stressed over
the years, twins alone cannot resolve many of the issues
of greatest interest to behavioral scientists.
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Description of the Cascade Model

�
2  : covariance between the true phenotype and the latent phenotype on which mates assort 

�  : covariance between additive genetic latent factor and phenotype 

µ  : copath between spouses  

a  : additive genetic path 

d : dominance genetic path 
s  : sibling-specific environmental path 

t  : twin-specific environmental path 
e  : unique environmental path 

f  : familial path – set to 1 

x  : variance of familial environment 

q  : variance of common  additive genetic latent factor 

w  : covariance between additive genetic latent factor and familial latent factor 

 �z   : pathways to latent mating phenotype ( �P ). Set equal to 0 or to z  to model different modes of mating. 

 

NON-LINEAR CONSTRAINTS AND SHORTCUTS 

Non-linear constraints 

 
q = CV (AMZ1,AMZ 2 ) = 1+

��
2μ  

x = CV (F
T 2
,F

T 2
) = 2m

2
�

2
+ 2m

2
�

2μ� 2  

 
CV (A,F) = CV (A

T1
,F

T 2
) = CV (A

SIB
,F

SIB
) = w = �m + ��µ� 2

m  

�
2
= a

2
q + f

2
x + 2awf + e

2
+ s

2
+ d

2
+ t

2  

 
CV (P, �P) = �

2
= aq �a + fx�f + aw�f + fw �a + e�e + s�s + d �d + t�t  

 

Shortcuts 

CV (A,P) = CV (AMZ1,PMZ 2 ) = � = qa + wf  

 
CV (A, �P) = CV (AMZ1,

�PMZ 2 ) =
�� = q �a + w�f  

CV (ADZ1,ADZ 2 ) = CV (ASib ,ASib ) = q � .5  

CV (ADZ1,PDZ 2 ) = CV (ASib ,PSib ) = � = a(q � .5) + wf  

 
CV (ADZ1,

�PDZ 2 ) = CV (ASib ,
�PSib ) =

�� = �a(q � .5) + w�f  

 
CV (AMZ1,PMZ 2.Child ) = � = .5a(q + �� 2µ) + mf (� + ��� 2µ)  

 
CV (ADZ1,PDZ 2.Child ) = � = .5a(q � .5 + ��µ ��) + mf (� + ��µ� 2

)  

 

RELATIVE COVARIANCES 

MZ Twins: 

CV (PMZ1,PMZ 2 ) = � = a
2
q + f

2
x + 2awf + d

2
+ t

2
+ s

2  

 
CV (PMZ1,

�PMZ 2 ) =
�� = aq �a + fx�f + aw�f + fw �a + d �d + s�s + t�t  

 
CV ( �PMZ1,

�PMZ 2 ) =
��� = �a

2
q + �f

2
x + 2 �a�fw + �d

2
+ �t

2
+ �s

2  

 

DZ Twins:  

CV (PDZ1,PDZ 2 ) = � = a
2
(q � .5) + f

2
x + 2 fwa + s

2
+ t

2
+ .25d

2  

Appendix A

Algebraic Expectations From the Cascade Model

 
CV (PDZ1,

�PDZ 2 ) =
�� = a �a(q � .5) + fx�f + aw�f + fw �a + t�t + s�s + .25d �d                                

 
CV ( �PDZ1,

�PDZ 2 ) =
��� = �a

2
(q � .5) + �f

2
x + 2 �fw �a + �s

2
+ �t

2
+ .25 �d

2  

Siblings:  
CV (PSib ,PSib ) = = t 2 

 CV (PSib1,PSib2 ) = = tt  

 CV (PSib1, PSib2 ) = = t 2  

1 2
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Appendix A (continued)

Algebraic Expectations From the Cascade Model

Spouses 

CV (PSpouse,PSpouse ) = �
2µ� 2  

 

Parent-child 

 
CV (PParent ,PChild ) = � = .5a(� + ��µ� 2

) + fm(�
2
+ �

2µ� 2
)  

 
CV (PParent ,

�PChild ) =
�� = .5 �a(� + ��µ� 2

) + �fm(�
2
+ �

2µ� 2
)  

 

MZ-Nephew/Niece (MZ twin is the Uncle/Aunt) 

 
CV (PNephew /Niece,PMZ ) = � = fm(� + �

2µ ��) + .5a(� + ��µ ��)  

 
CV (PNephew /Niece,

�PMZ ) =
�� = .5a( �� + ��µ ���) + fm( �� + �

2µ ���)  

 

DZ-Nephew/Niece (DZ twin is the Uncle/Aunt) 

 
CV (PNephew /Niece,PDZ ) = � = fm(� + �

2µ ��) + .5a(� + ��µ ��)  

 
CV (PNephew /Niece,

�PDZ ) =
�� = .5a( �� + ��µ ���) + fm( �� + �

2µ ���)  

 

Sibling-Nephew/Niece (sibling of a twin is the Uncle/Aunt) 

 
CV (PNephew /Niece,PSib ) = .5a(� + ��µ ��) + fm(� + �

2µ ��)  

 

Cousin-Cousin 

 
CV (PCous ,PCous via MZs) = .5a(� + ��µ ��) + fm(� + � 2µ ��)  

 
CV (PCouse,PCous via DZs) = .5a(� + ��µ ��) + fm(� + �

2µ ��)    

 

Grandparent-Grandchild 

 
CV (PGrandparent ,PGrandchild ) = .25a(� + ��µ� 2

+ 2 ��µ ��) + fm(� + �
2µ ��)  

 

Siblings-in-law 

 
CV (PMZ ,PSpouse of MZ

) = ��µ� 2    

 
CV (PDZ ,PSpouse of DZ

) = ��µ� 2    

 
CV (PSib ,PSpouse of Twin

) = ��µ� 2    

 
CV (P

Spouse of MZ1
,P

Spouse of MZ 2
) = �

2μ2 ����
2  

 
CV (P

Spouse of DZ1
,P

Spouse of DZ 2
) = �

2µ2 ����
2  

 

Parents-in-law 

 
CV (P

Spouse of Twin
,PParent ) = �

2µ ��  

 

Uncle/Aunt-in-laws 

 
CV (PNephew /Niece,PSpouse of MZ

) = �
2µ ��            

 
CV (PNephew /Niece,PSpouse of DZ

) = �
2µ ��  

 

Note. Subscripts: MZ1 monozygotic twin 1; DZ1 dizygotic twin 1; T1 monozygotic or dizygotic twin 1. 

Superscripts: ~ pathways to the latent factor on which spouses mate assortatively 

Cousin-Cousin 

 CV (PCous ,PCous via MZs) = .5a( + μ ) + fm( + 2μ )  

 CV (PCous,PCous via DZs) = .5a( + μ ) + fm( + 2μ )
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