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The objective of this work is to investigate linear modal and algebraic instability
in Poiseuille flows with fluids close to their vapour–liquid critical point. Close to
this critical point, the ideal gas assumption does not hold and large non-ideal fluid
behaviours occur. As a representative non-ideal fluid, we consider supercritical carbon
dioxide (CO2) at a pressure of 80 bar, which is above its critical pressure of 73.9 bar.
The Poiseuille flow is characterized by the Reynolds number (Re = ρ∗wu∗r h∗/µ∗w), the
product of the Prandtl (Pr=µ∗wC∗pw/κ

∗

w) and Eckert numbers (Ec= u∗2r /C
∗

pwT∗w) and the
wall temperature that in addition to pressure determine the thermodynamic reference
condition. For low Eckert numbers, the flow is essentially isothermal and no difference
with the well-known stability behaviour of incompressible flows is observed. However,
if the Eckert number increases, the viscous heating causes gradients of thermodynamic
and transport properties, and non-ideal gas effects become significant. Three regimes
of the laminar base flow can be considered: the subcritical (temperature in the channel
is entirely below its pseudo-critical value), transcritical and supercritical temperature
regimes. If compared to the linear stability of an ideal gas Poiseuille flow, we show
that the base flow is modally more unstable in the subcritical regime, inviscid unstable
in the transcritical regime and significantly more stable in the supercritical regime.
Following the principle of corresponding states, we expect that qualitatively similar
results will be obtained for other fluids at equivalent thermodynamic states.

Key words: complex fluids, compressible flows, instability

1. Introduction

Many processes in industrial applications constitute flows with fluids that do not
follow the ideal gas law. For example, flows in vapour power systems, re-entry of
spacecraft, supercritical dyeing, refrigeration and heat pump systems (examples in
supercritical fluids can be found in Brunner (2010)). The non-ideality of fluids is
especially significant in the thermodynamic region close to the vapour critical point.

† Email addresses for correspondence: j.ren-1@tudelft.nl, r.pecnik@tudelft.nl
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As such, it is of great importance to understand the fundamental physics that are
related to flows with these fluids.

Recently, researchers have studied how non-ideal gas effects influence turbulence
and heat transfer. For example, Kawai, Terashima & Negishi (2015), Kawai (2016)
studied turbulent boundary layers with supercritical pressures and transcritical
temperatures. They found that the mean velocity profiles (with density weighted
van Driest transformation) coincide with the same log law as seen in an ideal gas.
Sciacovelli et al. (2016), Sciacovelli, Cinnella & Gloerfelt (2017a), Sciacovelli,
Cinnella & Grasso (2017b) comprehensively studied turbulence dynamics and
near-wall turbulence of flows with molecularly complex fluids in the dense gas regime
using direct numerical simulations. They found that dense gas flows with a heavy
fluorocarbon exhibit almost negligible friction heating (in channel flows), weakening
of compressive (and enhancement of expanding) structures (in homogeneous isotropic
turbulence). Patel, Boersma & Pecnik (2016) studied the influence of variable
properties on fully developed turbulent channel flows and derived a velocity
transformation that allows us to collapse velocity profiles for heated or cooled
non-ideal fluids. Moreover, Rinaldi et al. (2017) provided an explanation of near wall
turbulence modulation, especially the intercomponent energy transfer that has been
observed by, e.g. Morinishi, Tamano & Nakabayashi (2004), Pirozzoli, Bernardini
& Grasso (2008), Duan, Beekman & Martin (2010). Nemati et al. (2016), Peeters
et al. (2016) studied turbulent heat transfer to supercritical CO2, indicating that both
the mean and instantaneous property variations have significant effects on turbulent
structures and their self-regeneration processes in near-wall turbulence. Alferez &
Touber (2017) have studied the refraction properties of compression shock waves in
non-ideal gases. One of the new regimes found is that, due to the non-ideality of the
fluid, it is possible that acoustic modes can be completely damped by a compression
shock, leading to so-called ‘quiet shocks’.

For ideal gases, the thermodynamic properties are associated with a simple equation
of state (EoS). Additionally, the transport properties (namely, the viscosity and thermal
conductivity) can be estimated as unary functions of the temperature (e.g. the widely
used power law or Sutherland’s law). To assess to which degree the ideal gas law
holds, it is possible to evaluate the compressibility factor, defined as Z = p∗/ρ∗R∗T∗.
Figure 1 shows the T–ϑ diagram (temperature–specific-volume diagram, ϑ = 1/ρ) of
carbon dioxide (CO2). The white circle in each panel indicates the critical point, which
for CO2 is at a pressure and temperature of p∗c = 73.9 bar and T∗c = 304.25 K. In
this paper, we denote dimensional and critical quantities with the superscript ‘∗’ and
subscript ‘c’, respectively. Figure 1(a) shows the critical isobar (black thin dashed
line), four isobars of 40 to 100 bar (black thin lines) and the compressibility factor Z
(coloured contour lines). Close to the critical point, the non-ideality is clearly indicated
by low values of Z, while the boundary between ideal and non-ideal gas behaviour is
approximately indicated by the thick dashed line of Z = 0.99. The distribution of the
thermodynamic and transport properties (specific heat capacity at constant volume C∗v ,
dynamic viscosity µ∗ and thermal conductivity κ∗) are shown in figure 1(b,c,d). In the
ideal gas region, these contour lines become quasi-parallel to the x-axis, indicating that
they can be regarded as functions of temperature only. On the other hand, near the
critical point, the gradients of these properties with respect to temperature and specific
volume become significant.

In view of its great simplicity, most of the present knowledge on stability
and laminar–turbulent transition is limited to the ideal gas (Fedorov 2011) or
incompressible flows, where thermodynamic properties are constant. On the other
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FIGURE 1. (Colour online) T–ϑ diagram of CO2 along with the critical point (white
circle), the saturation curves (blue and red solid lines), the liquid–vapour region (grey
area), the critical isobar (black thin dashed line), isobars of 40, 60, 80 and 100 bar (black
thin lines), compressibility factor Z = 0.99 (black thick dashed line) as well as coloured
contour lines of (a) Z = p∗/ρ∗R∗T∗, (b) the specific heat capacity at constant volume C∗v ,
(c) the dynamic viscosity µ∗, and (d) the thermal conductivity κ∗.

hand, numerical simulations of real gas effects (high-enthalpy effects) in hypersonic
flows have just gone through an initial stage (Zhong & Wang 2012; Marxen et al.
2013; Marxen, Iaccarino & Magin 2014). In fact, the well-known Orr–Sommerfeld
equation (Orr 1907; Sommerfeld 1908, often termed the O-S equation) was derived
by applying the linear stability theory (LST) to the incompressible parallel plane
shear flow. Solved as an eigenvalue problem (in the time/space-asymptotic limit),
the growth rate and profiles of the perturbation are obtained from the most unstable
mode as its eigenvalue and eigenvector. This is known as the modal stability problem.
The critical Reynolds number Rec, below which the flow is stable, regardless of the
wavenumber and frequency of the perturbation, is often determined and emphasized in
such modal stability analysis. For example, in plane Poiseuille flow, Rec is numerically
determined to be 5772.22 (Thomas 1953; Orszag 1971). Here the Reynolds number
is based on the half-channel height and the centreline flow velocity. Due to the
non-normality of most practical linear systems, the modal stability analysis cannot
cover the full behaviour of the linear instability (Schmid & Henningson 2001; Schmid
& Brandt 2014). Instead of solving the eigenvalue problem, the stability equation
can be formulated as an initial value problem under the framework of constrained
optimization. Maximizing the energy growth in a finite domain of time or space, leads
to the optimal perturbation, which grows transiently even below the critical Reynolds
number Rec. This is termed the transient growth or algebraic growth. Accordingly, a
‘critical’ Reynolds number can be defined for the algebraic growth as well. For plane
Poiseuille flow, this number is 49.6 (Busse 1969; Joseph & Carmi 1969).
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Studies of viscosity stratified flows, where the viscosity depends on temperature,
has recently received attention, readers may refer to Govindarajan & Sahu (2014) for
a review. Based on the modified O-S equations, early studies show that including a
linear temperature profile destabilizes the Poiseuille flow (Potter & Graber 1972) and
stabilizes/destabilizes the water boundary layer flow (depend on wall heating/cooling)
(Wazzan et al. 1972). However, viscosity and temperature perturbations were ignored
in both studies and were later examined by Pinarbasi & Liakopoulos (1995). Wall &
Wilson (1996, 1997) investigated the effects of different viscosity models, indicating
that the flow can either be more stable or unstable. The study on wall heating and
viscosity stratification has also been extended to transient growth, secondary instability
as well as instabilities in other types of flows (Chikkadi, Sameen & Govindarajan
2005; Sameen & Govindarajan 2007; Sahu 2011; Sameen, Bale & Govindarajan
2011; Sahu & Govindarajan 2014). For compressible plane Couette flow, Malik, Dey
& Alam (2008) showed that the flow is more stable with viscosity stratification,
while recently, a further study on this flow is given by Saikia et al. (2017), in which
the effects of individual/combined viscosity–thermal conductivity stratification are
elucidated. The influence of viscosity gradients on the edge state has recently been
studied by Rinaldi, Schlatter & Bagheri (2018), showing that in minimal channel
flows, the kinetic energy level and the driving force of self-sustained cycle of the
edge state depend on viscosity distribution. The above studies are based on the
incompressible flow assumption or the ideal gas EoS; at the same time, transport
properties are estimated as functions of temperature only.

Since there is very limited knowledge on flow stability with highly non-ideal fluids,
we investigate Poiseuille flows with fluids close to the thermodynamic vapour–liquid
critical point. In § 2, the gas model, the formulation of the stability analysis and the
related numerical methods are outlined in detail. The results and discussions on the
base flow are provided in § 3, followed by the modal growth and algebraic instability
in §§ 4 and 5, respectively. The paper is concluded in § 6.

2. Governing equations
2.1. Flow conservation equations

The laws of conservation of mass, momentum and energy (the Navier–Stokes (N–S)
equations), in dimensionless form, are given by

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (2.1)

∂(ρui)

∂t
+
∂(ρuiuj + pδij − τij)

∂xj
= Fi, (2.2)

∂(ρE)
∂t
+
∂(ρEuj + puj + qj − uiτij)

∂xj
= ujFj, (2.3)

where xi = (x, y, z) are the coordinates in the streamwise, wall-normal and spanwise
directions, ui = (u, v, w) are the velocity components, t the time, ρ the fluid density,
E= e+ uiui/2 the total energy, e the internal energy, Fi the body force and p is the
pressure. The viscous stress tensor, τij, and the heat flux, qj, are given by

τij =
µ

Re

(
∂ui

∂xj
+
∂uj

∂xi

)
+
λ

Re
δij
∂uk

∂xk
, qj =−

κ

RePrEc
∂T
∂xj
. (2.4a,b)
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Here µ is the dynamic viscosity, λ = µb − 2/3µ the second viscosity, µb the bulk
viscosity and κ is the thermal conductivity. Results presented in the following sections
are subject to µb= 0. However, we will discuss the influence of the bulk viscosity on
the linear stability in appendix C.

The above equations have been non-dimensionalized by reference values, as follows

u=
u∗

u∗r
, xi =

x∗i
h∗
, t=

t∗u∗r
h∗
, p=

p∗

ρ∗wu∗2r

, ρ =
ρ∗

ρ∗w
,

T =
T∗

T∗w
, E=

E∗

u∗2r

, µ=
µ∗

µ∗w
, κ =

κ∗

κ∗w
,

 (2.5)

which leads to the definition of the Reynolds number, Re, Prandtl number, Pr, Eckert
number, Ec, and Mach number, Ma, which are given as

Re=
ρ∗wu∗r h∗

µ∗w
, Pr=

µ∗wC∗pw

κ∗w
, Ec=

u∗2r

C∗pwT∗w
, Ma=

u∗r
c∗w
. (2.6a−d)

The subscript w denotes wall values, h∗ is the half-channel height, c∗w is the speed
of sound at the wall, u∗r is the reference velocity. Note that for an ideal gas
Ec = (γ − 1)Ma2, where γ is the heat capacity ratio. In this study, both walls
are at the same temperature. Discussions on the choice of different reference scalings
are provided in appendix D.

2.2. Fluid EoS
In order to find a closed form of the conservation equations, an EoS for the fluid
has to be specified. As a representative example of non-ideal fluids, the study is
performed with CO2 at a pressure of p∗= 80 bar, which is above the critical pressure,
within the highly non-ideal thermodynamic region (see the isobar in figure 1). To
account for the non-ideal gas effects, the NIST REFPROP library (Lemmon, Huber
& McLinden 2013) has been used to obtain the most accurate thermodynamic and
transport properties along with their gradients. The multi-parameter EoS (in functional
forms) used in REFPROP are developed with an optimization algorithm. These EoS
are suitable for a broad variety of fluids while high accuracy can be maintained.
Readers may wish to refer to Span & Wagner (2003) for the derivation of the EoS.
To build the linear stability equations (see appendix A), the temperature T0 and
density ρ0 are provided as input, while the required properties and their derivatives
are obtained as output from REFPROP. Moreover, as a direct method to determine
the thermodynamic properties, several cubic EoS (see appendix B), i.e. van der Waals
(van der Waals 1873), Redlich–Kwong (Redlich & Kwong 1949) and Peng–Robinson
(Peng & Robinson 1976), are used for the stability analysis as comparison. All results
with the non-ideal EoS are also compared with an ideal gas (IG) model. A constant
specific heat ratio γ = 1.289 is used for the IG model. All the fluid models are
summarized in table 1.

Figure 2 shows the thermodynamic and transport properties of CO2 at a pressure
of 80 bar. The pentagram in (a) shows the pseudo-critical temperature (T∗pc= 307.7 K,
RP model), which is defined as the point on a supercritical isobar where C∗p reaches a
maximum. Near T∗pc, all properties show large gradients, which do not exist in an ideal
gas. As shown in figure 2(a,b), the Peng–Robinson (PR) EoS is closest to the highly
accurate multiparameter EoS of CO2 as implemented in REFPROP (RP). Principally,
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FIGURE 2. (Colour online) Thermodynamic and transport properties of CO2 at p∗ = 80
bar for the fluid models in table 1. Distribution of (a) density ρ∗, (b) heat capacity at
constant pressure C∗p , (c) viscosity µ∗ and (d) thermal conductivity κ∗ versus temperature
T∗. The pentagram shows the pseudo-critical temperature T∗pc (RP model). The shaded area
indicates the pseudo-critical transition.

Fluid model EoS Transport properties

RP REFPROP REFPROP
PR Peng–Robinson REFPROP
RK Redlich–Kwong REFPROP
VW van der Waals REFPROP
IG Ideal gas Power/Sutherland law

TABLE 1. Fluid models studied in this paper. Gradients of the properties (with respect
to temperature and density) are calculated analytically (using EoS, see appendix B) or
numerically with a finite-difference algorithm (using REFPROP, see appendix A).

the cubic EoS do capture key features of the thermodynamic property variations. In
figure 2(c,d), the power law (2.7) and Sutherland law (2.8), which fall on top of each
other, are compared to the distributions from RP. The power and Sutherland laws for
dynamic viscosity and thermal conductivity are given as

µ∗

µ∗ref
=

(
T∗

T∗ref

)n1

,
κ∗

κ∗ref
=

(
T∗

T∗ref

)n2

, n1 = 0.79, n2 = 1.30, T∗ref = 273 K, (2.7a,b)

µ∗

µ∗ref
=

(
T∗

T∗ref

)3/2 T∗ref + S∗1
T∗ + S∗1

,
κ

κref
=

(
T∗

T∗ref

)3/2 T∗ref + S∗2
T∗ + S∗2

, (2.8a,b)
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where
T∗ref = 273 K, µ∗ref = 1.37× 10−5 Pa s, κ∗ref = 0.0146 W (m K)−1,

n1 = 0.79, n2 = 1.30, S∗1 = 222 K, S∗2 = 1800 K.

}
(2.9)

As shown in figure 2(c,d), there is no discernible difference using the power or
Sutherland law for the IG model, therefore results presented in this study for IG
are based on the power law. In general, as temperature increases from subcritical
to supercritical values, the fluid continuously transitions from compressed liquid to
compressed vapour and finally reaches values that can be described by an ideal gas.

2.3. The linearized stability equations
Following the common procedure, the flow field is decomposed into the base flow and
a perturbation, as

ρ = ρ0 + ρ
′,

ui = ui0 + u′i,
T = T0 + T ′,
p= p0 + p′,
E= E0 + E′,
µ=µ0 +µ

′,
κ = κ0 + κ

′.


(2.10)

It is known that for simple compressible systems (e.g. pure substances, uniform
mixture of non-reacting gases), the thermodynamic state is defined by two independent
thermodynamic properties. In this study, we keep ρ and T as the two basic
thermodynamic variables, while the other thermodynamic and transport properties
(e.g. E, p, µ, κ) are determined as functions of ρ and T . For example, the pressure
perturbation p′ is expanded by a Taylor series with respect to ρ0 and T0 in the
following way

p′ =
∂p0

∂ρ0

∣∣∣∣
T0

ρ ′ +
∂p0

∂T0

∣∣∣∣
ρ0

T ′

+
1
2

(
∂2p0

∂ρ2
0

∣∣∣∣
T0

ρ ′ρ ′ + 2

(
∂

∂ρ0

∣∣∣∣
T0

∂

∂T0

∣∣∣∣
ρ0

p0

)
ρ ′T ′ +

∂2p0

∂T2
0

∣∣∣∣
ρ0

T ′T ′
)
+ · · · (2.11)

For the sake of brevity, the partial derivative of a quantity with respect to T at
constant ρ will be written as ∂/∂T|ρ0 ≡ ∂/∂T , and accordingly ∂/∂ρ|T0 ≡ ∂/∂ρ. The
stability equation is derived by substituting (2.10) into the N–S equations (2.1)–(2.3),
and then subtracting the governing equations of the base flow. With the nonlinear
terms neglected, the linear stability equations are formulated as

Lt
∂q
∂t
+Lx

∂q
∂x
+Ly

∂q
∂y
+Lz

∂q
∂z
+Lqq

+Vxx
∂2q
∂x2
+ Vxy

∂2q
∂x∂y

+ Vxz
∂2q
∂x∂z

+ Vyy
∂2q
∂y2
+ Vyz

∂2q
∂y∂z

+ Vzz
∂2q
∂z2
= 0. (2.12)

Here q= (ρ ′, u′, v′,w′, T ′)T is the perturbation vector and Lt, Lx, Ly, Lz, Lq, Vxx, Vyy,
Vzz, Vxy, Vyz and Vxz are matrices of size 5 × 5. The detailed expressions for these
matrices are provided in appendix A. As can be seen, they are functions of the base
flow, the thermodynamic and transport properties, Re and PrEc. The gradients of the
properties are either calculated analytically using a cubic EoS (see appendix B) or
numerically employing the finite-difference method within the REFPROP library.
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2.4. Modal and algebraic stability
In modal stability, the perturbation is assumed to have the form

q(x, y, z, t)= q̂(y) exp(iαx+ iβz− iωt)+ c.c. (2.13)

where c.c. stands for the complex conjugate. Substituting (2.13) into (2.12) results in

(−iωLt + iαLx +LyD+ iβLz +Lq

−α2Vxx + iαVxyD− αβVxz + VyyD2
+ iβVyzD− β2Vzz ) q̂= 0, (2.14)

where D= d/dy. Equation (2.14) is solved as an eigenvalue problem, which describes
the development of the perturbations in temporal or spatial domain, i.e.{

LT q̂=ωLtq̂ (temporal),
LSq̂= α(βVxz − iVxyD− iLx)q̂+ α2Vxxq̂ (spatial),

(2.15)

where

LT = αLx − iLyD+ βLz − iLq

+ iα2Vxx + αVxyD+ iαβVxz − iD2Vyy + βDVyz + iβ2Vzz, (2.16)

LS =−iωLt +LyD+ iβLz +Lq +D2Vyy + iβDVyz − β
2Vzz. (2.17)

Here we consider the temporal problem only, therefore α and β are the prescribed
streamwise and spanwise wavenumbers. ω = ωr + iωi is solved as the eigenvalue,
where ωr and ωi give the angular frequency and growth rate of the perturbation. The
domain 0 6 y 6 2 is discretized with Chebyshev collocation points, defined by:

yj = 1− cos
πj
N
, j= 0, 1, . . . ,N − 1,N. (2.18)

The derivatives with respect to y (the D operator) in (2.15) are evaluated with the
matrix form of the Chebyshev collocation derivatives. Numerical tests indicate that
typically N = 200 (used here) is sufficient to give a grid-independent solution of the
physical modes.

With regard to the algebraic stability, following Schmid & Henningson (2001), the
optimal energy amplification is defined as:

G(t)=max
q0

E(q(t))
E(q0)

, G(x)=max
q0

E(q(x))
E(q0)

. (2.19a,b)

Here E(q) is the disturbance energy with the definition as given in (5.1). The
perturbation q is expanded using the eigenvector basis obtained from the modal
stability. The calculation of the optimal energy amplification G, the corresponding
optimal perturbation (the input), as well as the resulting perturbation (the output),
are performed using singular value decomposition method described in Schmid &
Henningson (2001), Schmid & Brandt (2014).

The (modal and algebraic) perturbations are solved subjected to the boundary
condition: u′ = v′ =w′ = T ′ = 0 at the lower (y= 0) and upper wall (y= 2).
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y = 2

y = 0
Inflection point

Pseudo-critical temperature

u0 T0 ®0

FIGURE 3. (Colour online) Sketch of the laminar base flow. Dashed lines show the
isothermal limit with PrEc→ 0, such that u0 = y(2 − y), T0 = 1, ρ0 = 1. Solid lines
represent a transcritical case, in which T0 crosses Tpc and u0 is inflectional.

3. The laminar base flow
The base flow is driven by a constant body force in the streamwise direction and is

obtained by solving (2.1)–(2.3) with the assumption that the flow is fully developed,
spanwise and streamwise independent, steady and parallel, i.e. ∂( )/∂x= 0, ∂( )/∂z=
0, ∂( )/∂t= 0, v =w= 0. The N–S equations are thus simplified as

∂

∂y

(
µ
∂u
∂y

)
=−ReF=−F̂, (3.1)

∂p
∂y
= 0, (3.2)

∂

∂y

(
κ

PrEc
∂T
∂y
+µu

∂u
∂y

)
=−ReF · u=−F̂ · u. (3.3)

It is worth noting that the above equations are independent of density, therefore, ρ0

can be separately determined by the EoS. We assume the body force, F̂, which drives
the flow, to be uniform. To obtain a solution of the base flow, an initial temperature
field is assumed, e.g. T = Tw = const., µ and κ are determined from REFPROP
according to the temperature and pressure. First, the velocity is solved using equation
(3.1), followed by an update of temperature by solving (3.3). Values of µ and κ
are then updated using the obtained temperature. This procedure is repeated until the
solution is converged.

3.1. The isothermal limit
When PrEc → 0, the viscous heating is negligible if compared to the thermal
conduction. Therefore, the temperature, as well as the other thermodynamic properties,
remain constant, namely T0 = 1, ρ0 = 1, µ0 = 1, κ0 = 1. The flow is thus simply
governed by ∂2u/∂y2

= −F̂. Choosing u∗r as the centreline velocity leads to setting
F̂ = 2. As a result, the dimensionless base flow is independent of any parameters
(e.g. Tw, F̂ and PrEc) and is given by u0 = y(2 − y). A sketch of this base flow,
which is free from any non-ideal gas effects, is shown in figure 3 (dashed lines).

3.2. The compressible base flow
Equations (3.1)–(3.3) show that the compressible base flow is determined by PrEc,
F̂ and T∗w. Either by increasing PrEc or F̂, the compressibility effects become more
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Case T∗w PrEc Ma Temperature range

Subcritical 290 K PrEc 6 0.1 Ma 6 0.40 290 K (wall) – 304.9 K (centre)
Transcritical 300 K PrEc 6 0.1 Ma 6 0.58 300 K (wall) – 366.2 K (centre)
Supercritical 310 K PrEc 6 0.1 Ma 6 1.35 310 K (wall) – 328.6 K (centre)

TABLE 2. Cases investigated in this study.

0.02 0.04 0.06

T* w 
(K

)

T*
centre (K) u*

centre/u*
r

PrEc
0.08 0.10 0.02 0.04 0.06

PrEc
0.08 0.10

320

310

300

290

280

270

1.5 2.0 2.5 3.0
(a) (b)

280 300 320 340 360

Supercritical (T *
w = 310 K) 

T *
w = T *

pc = 307.7 K T *
w = T *

pc = 307.7 K 

T *
centre = T *

pc = 307.7 K 

T *
centre = T *

pc = 307.7 K 
Subcritical (T *

w = 290 K) 

Transcritical (T *
w = 300 K) 

Supercritical (T *
w = 310 K) 

Subcritical (T *
w = 290 K) 

Transcritical (T *
w = 300 K) 

FIGURE 4. (Colour online) Centreline (a) temperature T∗centre and (b) velocity ucentre as
functions of wall temperature T∗w and PrEc. Model RP, p∗ = 80 bar, F̂= 2.

significant. Without loss of the generality, a constant body force F̂= 2 is specified in
this work, while PrEc is varied from the isothermal limit (we assume PrEc = 10−5)
to a typical compressible state with PrEc= 0.1. For example, setting PrEc= 0.1 and
T∗w = 290, 300 or 310 K, the Mach number is Ma = 0.40, 0.58 or 1.35, respectively.
In this work, the wall temperature T∗w is considered in a range from 265 to 320 K.
Note, given our non-dimensionalization, the base flow is free from the choice of the
Reynolds number.

Figure 4 shows the contours of the centreline temperature T∗centre and velocity
ucentre = u∗centre/u

∗

r as a function of wall temperature T∗w and PrEc. Regardless of
the wall temperature, an increase of PrEc is accompanied by an increase of T∗centre
and ucentre as compressible effects become more prominent. Interestingly, a distinct
right-angled triangular area emerges in each panel of figure 4. At the hypotenuse of
this triangle, the centreline temperature, T∗centre, and velocity, ucentre, suddenly increase,
forming a discontinuity in the PrEc–T∗w plane.

It is also interesting to note that the hypotenuse of the triangle almost coincides with
the line where T∗centre reaches the pseudo-critical temperature T∗pc = 307.7 K (shown
with the dot-dashed line). Likewise, the upper boundary of the triangle coincides with
the dotted line where T∗w = T∗pc.

For a more detailed discussion, we will now define three cases with different
wall temperatures that are summarized in table 2 and highlighted by dashed lines in
figure 4. These cases will also be used in the subsequent sections regarding the linear
modal and algebraic instability analysis. The wall temperature for these cases has
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FIGURE 5. (Colour online) Temperature (a–c), density (d–f ) and velocity (g–i) profiles
of the base flow. The wall temperature is (a,d,g) T∗w = 290 K, (b,e,h) T∗w = 300 K, (c, f,i)
T∗w = 310 K respectively. PrEc increases uniformly from 0.01 to 0.1. The black and blue
lines on the left and right half denote the non-ideal (RP) and ideal (IG) gases respectively.
The dashed lines in each panel show the isothermal limit. The REFPROP library is used
for the transport and thermodynamic properties of the non-ideal gas. The orange and red
lines in panels (b,e,h) show the profiles at PrEc= 0.05115 and 0.05116 respectively. The
dash-dotted lines (the triangle) in (g,h,i) show the lines of constant gradient |∂u/∂y| = F̂.

been set to 290, 300 and 310 K, such that their temperature profile in the considered
range of PrEc is either subcritical, transcritical or supercritical, respectively. Their
base flow profiles are plotted in figure 5, together with the incompressible limit,
indicated by the dashed line in each panel. The profiles on the left half (black lines)
and right half (blue lines) represent the base flow of the non-ideal (RP) and ideal
(IG) gases, respectively. As PrEc uniformly increases from 0.01 to 0.1 it can be
seen that the temperature and velocity increase, while the density decreases. For the
transcritical case, however, a sudden jump of the base flow profiles can be observed.
This jump occurs between PrEc= 0.05115 and 0.05116, as highlighted by the orange
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and red lines in figure 5(b,e,h). Note, the jump is caused by an inflectional velocity
profile as highlighted by the red line in figure 5(h).

The discontinuous behaviour with respect to PrEc can be explained as follows.
Integrating (3.1) gives µ∂u/∂y = −F̂y + C. Applying the symmetry condition at the
channel centre (y= 1), it follows that C= F̂. Therefore, (3.1) can be written as

µ
∂2u
∂y2
=−F̂−

∂µ

∂y
∂u
∂y
=−F̂

(
1+

1
µ

∂µ

∂y
(1− y)

)
. (3.4)

Based on (3.4), it can be seen that an inflectional velocity profile occurs if the
viscosity gradient is large enough to change the sign within the parenthesis in (3.4),
namely if

1
µ

∣∣∣∣∂µ∂y

∣∣∣∣> 1. (3.5)

In the cases considered herein, it appears that the viscosity gradient at the wall
is large enough to cause an inflectional profile to occur when the temperature in
the channel centre reaches T∗pc. Recall figure 2(c), a sharp gradient of the viscosity
(∂µ/∂T � 0) is seen close to the pseudo-critical point. As PrEc increases, ∂T/∂y
increases at the wall, such that ∂µ/∂y∼= (∂µ/∂T)(∂T/∂y) can drop below −1 at the
wall, leading to inflectional velocity profiles. The jump of the base flow solution can
thus be explained by referring to figure 5(h). Since, µ|∂u/∂y| at the wall is equal to
the constant forcing F̂, regardless of PrEc and wall temperature, the velocity profiles
with/without inflectional points are isolated by the line of constant gradient F̂ (the
dash-dotted lines that form a triangle in figure 5g–i). Therefore, a velocity profile
without an inflection point cannot reach the apex of the triangle (|∂u/∂y| decreases
towards the channel centre) and the sudden increase of the centreline velocity appears
once an inflection point is formed.

In general, the base flow solutions can be summarized as follows:

(i) In the subcritical case, the wall temperature is much lower than T∗pc, and in the
range of PrEc considered, T∗centre is always less than T∗pc. Hence, the velocity
profile is not inflectional.

(ii) In the transcritical case, the wall temperature is close to T∗pc, such that for
large enough PrEc, T∗centre reaches T∗pc. Consequently, a jump of the solution
with respect to PrEc occurs and the velocity profile becomes inflectional. From
figure 4(b), it can be inferred that the lower the wall temperature T∗w, the larger
the discontinuity will be.

(iii) In the supercritical case, the wall temperature is higher than T∗pc. The properties
of the fluid are gas-like (compressed vapour) and the velocity is not inflectional.

4. Linear modal instability

Depending on the cases discussed below, we will use the definition of dynamic and
thermodynamic modes, as{

ρ ′ = 0, and T ′ = 0 (dynamic modes)
ρ ′ 6= 0, or T ′ 6= 0 (thermodynamic modes).

(4.1)
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FIGURE 6. (Colour online) Eigenspectrum (a) and neutral curve (b) for the isothermal
limit. The eigenspectrum is subject to α = 1, β = 0 and Re= 10 000. The neutral curve
is solved for two-dimensional perturbations (β = 0). Symbols show results using different
fluid models (RP, PR, RK, VW, IG) and incompressible equations (IC). IC in (b) shows
the results given by Schmid & Henningson (2001, p. 71). In (c) and (d), profiles of the
unstable mode (ω= 0.2375+ 0.0037i) and one of the stable modes (ω= 0.4164− 0.1382i,
highlighted in orange in the spectrum) are shown. The perturbations are normalized by
|u′|. An offset of −0.1 and −0.2 is applied to |ρ ′| and |T ′|. The solid lines are results
with fluid model IG.

4.1. The isothermal limit
With the base flow obtained in § 3.1, we solve the stability equations (2.12) for the
isothermal limit with different fluid models (RP, PR, RK, VW, IG), as well as for the
incompressible equations (IC). As shown in figure 6(a), at Re= 10 000, α= 1 and β=
0, the A-, P- and S-branches (originally named by Mack (1976)) are reproduced by
incompressible equations. Comparing the results using different EoS, the eigenvalues
fall on top of the incompressible counterparts, verifying the correct behaviour of the
compressible models at low Eckert (Mach) numbers. One of the modes (highlighted
in red) is exclusively unstable. Despite being solved with different thermodynamic
models, this mode is shown to be a dynamic mode, which leads to identical neutral
curve and eigenfunctions as shown in figure 6(b,c). The contour lines in figure 6(b)
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show the growth rate ωi (RP model). In fact, inspecting the stability equations (2.12)
(see appendix A), it can be shown that the thermodynamic and transport properties
do not influence the dynamic modes in the isothermal limit. For instance, gradients
of properties, which vary among different models, are multiplied with thermodynamic
components of the perturbations.

On the other hand, more stable modes emerge when the compressible equations are
solved. By looking into the corresponding eigenfunctions (not shown), thermodynamic
components become important in these modes, and as such dependent on the non-
ideal gas properties. We plot one of the stable modes in figure 6(d), where density
perturbations are captured by compressible equations (indicated by blue ellipses).

4.2. Compressible flows
To achieve a first impression of the non-ideal gas effects, the problem is first studied
with the RP model, where thermodynamic and transport properties are taken from the
REFPROP library. Figure 7 shows the neutral curves (a–c) as well as eigenfunctions
(d–f ) at representative parameters. As discussed in § 3.2, the temperature is subcritical,
transcritical and supercritical with T∗w = 290 K, 300 K and 310 K respectively. The
results are compared with those of an ideal gas (IG).

By increasing PrEc, the base flow of the ideal gas becomes more stable as the
critical Reynolds number increases, regardless of the Tw specified. In fact, despite
the difference in wall temperature, the dimensionless thermodynamic and transport
properties (scaled with wall values) remain much the same. On the other hand, the
behaviour of the non-ideal cases is different for the three cases investigated. In the
subcritical case, the flow becomes more unstable when PrEc is increased. This is
manifested by the enlargement of the neutral curve. Similarly, the transcritical case
becomes more unstable as PrEc increases. However, once PrEc reaches the critical
value (in this case PrEc= 0.05115), the base flow becomes inflectional. The flow is
thus inviscid unstable and the critical Reynolds number is substantially reduced. For
instance, the flow is unstable for Re < 1000 and PrEc = 0.06. In the supercritical
case, the increase of PrEc stabilizes the base flow and the non-ideal gas is even
more stable than the ideal gas. In this case, when PrEc reaches 0.03, the modal
instability is found after Re > 8000. Interestingly, a weak influence of PrEc on the
velocity perturbations is observed (see figure 7d–f ), while the amplitudes of density
and temperature perturbations are considerably larger if PrEc increases. For the
transcritical case, when the flow enters the triangular zone, the density perturbations
are dominant.

Below, we compare the fidelity of the cubic EoS models with the EoS model from
REFPROP. The solutions for the ideal EoS are also shown to highlight the difference
with respect to the results obtained with the non-ideal EoS models. Figure 8 shows
the growth rate of the unstable modes for all EoS models. Recall the discussion in
§ 4.1, all these curves collapse under the isothermal limit. As can be inferred from
each row of figure 8, the differences between these models magnify when PrEc is
increased. In all three cases, the cubic EoS models predict the correct trend that the
flow becomes more unstable in sub-/transcritical cases, and more stable in supercritical
cases as PrEc increases.

Specifically, the van der Waals EoS shows a good agreement with the RP EoS
model in the subcritical case, while both the Peng–Robinson and Redlich–Kwong
EoS predict a lower growth rate (shown in figure 8). In the transcritical case, the
van der Waals and Redlich–Kwong EoS give acceptable growth rates if compared to
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FIGURE 7. (Colour online) Neutral curves and profiles of perturbations for the non-ideal
gas (RP model) and ideal gas (IG model). (a,d) T∗w = 290 K, (b,e) T∗w = 300 K, (c, f )
T∗w = 310 K. The neutral curves are obtained for two-dimensional perturbations (β = 0).
The profiles shown are subject to α= 1, β= 0 and Re= 10 000 (close to the most unstable
area of the neutral curves), and they are normalized with |u′|max. The left and right halves
show the non-ideal and ideal gas respectively.
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FIGURE 8. (Colour online) Growth rates of the perturbation for different gas models.
Results shown are at Re= 10 000, β = 0 for the subcritical case (a–d, PrEc= 0.01, 0.03,
0.05 and 0.07), transcritical case (e–h, PrEc= 0.01, 0.03, 0.05 and 0.06) and supercritical
case (i–l, PrEc= 0.01, 0.015, 0.02 and 0.03). Note that the y-coordinate of (h) is different
from the others.

RP. When the base flow becomes inflectional (PrEc= 0.06), the Peng–Robinson EoS
shows the best approximation. In the supercritical case, Redlich–Kwong produces the
best results, while the van der Waals EoS gives a much lower growth rate. Given
these observations, it can be concluded that all non-ideal EoS models give the same
trends. However, it is not possible to conclude on the fidelity of the cubic EoS
models in terms of the growth rate.

4.3. The kinetic energy budget
To further understand the instability mechanism of the non-ideal fluids, we perform
a kinetic energy budget analysis for the two-dimensional perturbation. The energy
balance equation is the sum of the x-momentum perturbation equation, multiplied
with û†, and the y- equation, multiplied with v̂†. Here, dagger stands for the complex
conjugate. The continuity equation is used to substitute the temporal growth of the
density, which appears in the x-momentum equation. This gives the following kinetic
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energy balance equation:

K =Θ + P+ T + V, (4.2)

where

K =−iω
∫
ρ0(ûû†

+ v̂v̂†) dy, (4.3)

Θ =−iα
∫
ρ0u0(ûû†

+ v̂v̂†) dy, (4.4)

P=−
∫
ρ0
∂u0

∂y
v̂û† dy, (4.5)

T = −
∫ [

iα
∂p0

∂ρ0
ρ̂û†
+ iα

∂p0

∂T0
T̂û†
+
∂p0

∂ρ0

∂ρ̂

∂y
v̂†
+
∂p0

∂T0

∂T̂
∂y
v̂†

+

(
∂2p0

∂ρ2
0

∂ρ0

∂y
+

∂2p0

∂ρ0∂T0

∂T0

∂y

)
ρ̂v̂†
+

(
∂2p0

∂T2
0

∂T0

∂y
+

∂2p0

∂ρ0∂T0

∂ρ0

∂y

)
T̂ v̂†

]
dy, (4.6)

V =
1

Re

∫ [
−α2(2µ0 + λ0)ûû†

+µ0
∂2û
∂y2

û†
+ iα(µ0 + λ0)

∂v̂

∂y
û†

+ iα
∂µ0

∂y
v̂û†
+
∂µ0

∂ρ0

∂u0

∂y
∂ρ̂

∂y
û†
+
∂µ0

∂y
∂ û
∂y

û†
+
∂µ0

∂T0

∂u0

∂y
∂T̂
∂y

û†

+
∂µ0

∂ρ0

∂2u0

∂y2
ρ̂û†
+
∂u0

∂y

(
∂2µ0

∂ρ2
0

∂ρ0

∂y
+

∂2µ0

∂ρ0∂T0

∂T0

∂y

)
ρ̂û†

+
∂µ0

∂T0

∂2u0

∂y2
T̂û†
+
∂u0

∂y

(
∂2µ0

∂T2
0

∂T0

∂y
+

∂2µ0

∂T0∂ρ0

∂ρ0

∂y

)
T̂û†

−α2µ0v̂v̂
†
+ (2µ0 + λ0)

∂2v̂

∂y2
v̂†
+ iα(µ0 + λ0)

∂ û
∂y
v̂†

+ iα
∂µ0

∂ρ0

∂u0

∂y
ρ̂v̂†
+ iα

∂λ0

∂y
ûv̂†
+ iα

∂µ0

∂T0

∂u0

∂y
T̂ v̂†
+

(
2
∂µ0

∂y
+
∂λ0

∂y

)
∂v̂

∂y
v̂†

]
dy. (4.7)

The real part of (4.2) describes the balance of the kinetic energy growth. In particular,
Kr is the temporal growth of the kinetic energy, Θ is purely imaginary and does
therefore not contribute to the temporal growth, Pr is the production term, Tr is the
thermodynamic term and Vr is the viscous dissipation.

The results of the kinetic energy budget analysis are summarized in table 3. The
analysis is performed for all three cases at α = 1 and Re= 10 000. It clearly shows
that, for all the cases, the energy growth Kr originates from the production term Pr.
The thermodynamic term Tr slightly reduces the growth. The viscous dissipation Vr is
not sensitive to the parameters and remains almost constant, except in the transcritical
case (T∗w= 300 K, PrEc= 0.06), which has a considerably larger growth rate (as also
shown in figures 7 and 8). The reason for this lies in a much larger production and a
smaller viscous dissipation. Figure 9 compares the production of the two cases with
PrEc= 0.05 and 0.06 at T∗w = 300 K. It can be inferred that the inflectional velocity
profile (PrEc = 0.06) has caused a larger ρ0∂u0/∂y near both walls, the amplitude
of the velocity perturbation v̂û† is larger as well. Therefore, a large production term
−
∫
ρ0(∂u0/∂y)v̂û† dy and accordingly the large growth rate can be explained.
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Cases Budgets (× 10−3)

T∗w PrEc Kr Pr Tr Vr

290 K

0.01 3.4 8.2 0.0 −4.8
0.03 4.5 9.4 0.0 −4.9
0.05 5.6 10.7 0.0 −5.1
0.07 6.8 12.1 −0.1 −5.2

300 K

0.01 3.5 8.4 −0.1 −4.8
0.03 5.0 10.1 −0.1 −5.0
0.05 6.2 11.6 −0.2 −5.2
0.06 17.5 21.1 −2.4 −1.2

310 K

0.01 1.8 6.6 0.0 −4.8
0.015 1.2 6.1 −0.2 −4.7
0.02 0.6 5.5 −0.2 −4.7
0.03 −0.7 4.3 −0.3 −4.7

TABLE 3. Kinetic energy budget analysis for two-dimensional perturbations. α = 1,
Re= 10 000.
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FIGURE 9. (Colour online) Production of the kinetic perturbation energy with T∗w= 300 K,
α = 1, Re= 10 000. (a) PrEc= 0.05, (b) PrEc= 0.06.

5. Algebraic growth
5.1. Choice of the energy norm

Mack’s energy norm (Mack 1969; Hanifi, Schmid & Henningson 1996) has been
extensively used in compressible flows. The norm is designed under the ideal gas
assumption, therefore the pressure-related energy transfer terms can be eliminated by
choosing suitable coefficients for each component. In fact, Mack’s norm is equivalent
to Chu’s norm (Chu 1965; George & Sujith 2011). In the current non-ideal gas flows,
the EoS can be different (PR, RK, VW, IG), or even implicit (the look-up table
method) as in the case of the RP EoS model. Therefore, we choose a general form
of the norm:

E(q)=
∫
(u′†u′ + v′†v′ +w′†w′)+mρρ

′†ρ ′ +mTT ′†T ′ dV, (5.1)
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FIGURE 10. (Colour online) Maximum energy growth Gmax versus mT using the energy
norm (5.1). mρ = 0, 1, 2 and 10. The fluid (with RP model) is at PrEc= 0.05, Re= 2000,
α = 1.0, β = 0.25 and T∗w = 290 K.

where † denotes the complex conjugate. This norm has been tested for the
compressible ideal/non-ideal gas flows at various conditions. Figure 10 shows the
optimal energy growth Gmax (the maximum of G(t) over time t) as a function of
mT and mρ , for PrEc = 0.05 (thermodynamic components become important) and a
wall temperature of T∗w = 290 K. When mρ is set to 0, Gmax converges to a constant
value when mT is large enough. On the other hand, the energy norm is shown to
be rather robust when the density component is properly accounted for, e.g. mρ = 1.
Therefore, the results presented in this section are mainly obtained for mρ =mT = 1. A
comparison with Mack’s energy norm (mρ = T0/(ρ

2
0γMa2), mT = 1/(γ (γ − 1)T0Ma2))

is provided at the end of this section.

5.2. The isothermal limit
Although all EoS considered in this work give the same most unstable mode in the
isothermal limit (discussed in § 4.1), their eigenvalue spectra can be rather different
(see figure 6a). Their corresponding eigenfunctions form the basis of the optimal
perturbation and the algebraic growth. We show the contour plot of Gmax in α–β
diagram in figure 11(a). Lines and circles show results of RP and IG models,
respectively. It is evident that they fall on top of each other. In fact, all five models
(RP, PR, RK, VW, IG) show the same results, and correspond to the results using
incompressible equations. The largest transient growth occurs at α= 0 and 26β6 2.1,
which is well known for an ideal gas. The optimal perturbation and the corresponding
output are shown in figure 11(b,c) for α = 0, β = 2. The classic streamwise vortices
(the optimal perturbation) and streaks (the corresponding output) are recovered. There
is no discernible difference between the non-ideal and ideal gases under the isothermal
limit.

5.3. Compressible flows
The algebraic growth has been studied for the subcritical, transcritical and supercritical
cases at Re = 1000 and PrEc = 0.01, 0.03, 0.05, 0.07. The optimal energy growth
Gmax for RP model is compared with the IG model in figures 12–14, respectively. The

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

81
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.815


108 J. Ren, S. Fu and R. Pecnik

5

4

3

2

1

0 1 2 3 4

ı

å

700

600

500

400

300

200

100

1.0

0.5

0

0 1 2

IG

y
0

|u�|
|√�|
|w�|
|®�|
|T �|

1 2
y

(a)

(b) (c)

FIGURE 11. (Colour online) Transient growth in the isothermal limit. PrEc→ 0, Re =
2000, T∗w=290 K. (a) Contour plot of Gmax. (b) The optimal perturbation (input) for α=0,
β = 2. (c) The corresponding output. Lines and circle symbols show results of non-ideal
(RP) and ideal gas (IG) respectively.

three cases actually start from the same results at the isothermal limit (figure 11a).
Regardless of the wall temperature and PrEc, the largest transient growth occurs at
α = 0 and 2 6 β 6 2.1 for both ideal and non-ideal gases. In the subcritical and
transcritical cases (figures 12 and 13), when PrEc is increased, the ideal gas tends
to be slightly more stable, while the non-ideal gas becomes more unstable. In fact,
due to the power/Sutherland law (for the transport properties), the results for the ideal
gas are weakly dependent on the wall temperature. Notably in figure 13(d), where
PrEc= 0.07, an area of Gmax→∞ stands out. Recall the discussion in § 4, the base
flow has entered the triangular zone (see figure 5) and becomes inflectional. Hence,
the flow is inviscid unstable and the critical Re is reduced considerably (see figure 7c).
As a result, a sub-zone of modal growth (near β = 0) in the α–β diagram is observed
(where Gmax→∞). For better display of the results, we have limited the colour band
to Gmax = 450 in figure 13. In the supercritical case (figure 14), the plots are almost
symmetrical, indicating the non-ideal gas effects are rather insignificant. The non-ideal
gas is only slightly more unstable than the ideal gas. Table 4 summarizes the above
maximum transient growth Gmax. With the increase in PrEc, a similar trend as for the
modal growth can be observed. Namely, the ideal gas becomes more stable, while the
non-ideal gas tends to be more unstable for the subcritical and transcritical cases, and
more stable for the supercritical case. On the whole, the non-ideal gas effects increase
the algebraic instability in all regimes, most prominently in the transcritical regime.
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FIGURE 12. (Colour online) Contour plot of Gmax at T∗w= 290 K. Re= 1000. On the left-
and right-hand side of each panel, we show the results for non-ideal (RP) and ideal (IG)
gases respectively. (a) PrEc= 0.01, (b) PrEc= 0.03, (c) PrEc= 0.05, (d) PrEc= 0.07.
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FIGURE 13. (Colour online) Same as figure 12 but for T∗w = 300 K.
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FIGURE 14. (Colour online) Same as figure 12 but for T∗w = 310 K.

Ideal gas (IG) Non-ideal gas (RP)

T∗w = 290/300/310 K T∗w = 290 K T∗w = 300 K T∗w = 310 K

PrEc= 0.01 193.3 206.5 212.2 201.4
PrEc= 0.03 187.9 231.6 262.7 204.4
PrEc= 0.05 182.8 265.6 472.3 199.5
PrEc= 0.07 178.1 316.7 ∞ 190.3

TABLE 4. Maximum transient growth Gmax of the perturbations at Re= 1000.

The typical optimal perturbation and the resulting output are shown in figure 15
at PrEc= 0.07, α = 0 and β = 2. Similar to an incompressible flow, the streamwise
vortices and velocity streaks are recovered as the optimal perturbation and the
output, respectively. For compressible flows, thermal streaks (ρ ′ and T ′) also become
significant. Considering the non-ideal gas effects, the subcritical and supercritical
cases share similar optimal perturbations as the ideal gas. In the transcritical case, the
profiles are strongly influenced by the inflectional base flow and the strong property
variations. On the other hand, the output perturbations are almost the same with
regard to the u′ component, indicating similar dynamic streaks are being generated.
The amplitude of the thermal streak is much larger in the transcritical case close to
the wall.

We have shown in § 4.2 that cubic EoS cannot guarantee accurate results for the
growth rate if compared to results obtained with the accurate REFPROP EoS. This
is also true for the algebraic instability as shown in figure 16, depicting G–t curves
of the three cases with different EoS at PrEc= 0.07, α = 0 and β = 2. For example,
the van der Waals EoS over-predicts Gmax by 270 % for the transcritical case. In the
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FIGURE 15. (Colour online) Optimal perturbations (a) and the resulting output (b).
PrEc = 0.07, α = 0 and β = 2. Only significant components are plotted, namely in (a)
|v′|, |w′|, (b) |u′|, |ρ ′| and |T ′|.
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FIGURE 16. (Colour online) The transient amplification curve G(t) at PrEc= 0.07, α= 0
and β = 2. (a) T∗w = 290 K, (b) T∗w = 300 K, (c) T∗w = 310 K.

supercritical case, the non-ideal gas effects are less significant, and the results of all
considered EoS are close to each other.

The main results presented in this section are based on the energy norm: mρ =mT =

1. When Mack’s energy norm is used, figure 17 provides a comparison for all three
regimes with highly non-ideal gas effects (PrEc= 0.07, α= 0). Indeed, the non-ideal
gas has a larger algebraic growth in all three cases with Mack’s energy norm, while on
the other hand, the ideal gas are rather insensitive to different norms. As a result, the
conclusion on algebraic growth will not change, the flow is more unstable compared
with the ideal gas in all three regimes (sub-, trans- and supercritical).

6. Conclusion
Linear stability of highly non-ideal plane Poiseuille flows is studied. We have

chosen carbon dioxide (CO2) at supercritical pressures (p∗= 80 bar) as an example of
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FIGURE 17. (Colour online) Comparison of maximum algebraic growth using Mack’s
energy norm. Cases with (a) T∗w= 290 K, (b) T∗w= 300 K and (c) T∗w= 310 K. The other
parameters are kept constant: α = 0, Re= 1000, PrEc= 0.07.

a fluid in a highly non-ideal thermodynamic region. The investigation is based on the
fully compressible Navier–Stokes equations in which the product of two dimensionless
parameters, namely the Prandtl Pr and Eckert Ec numbers, determines the viscous
heating and consequently the temperature increase between the two isothermal walls.
The investigated range of PrEc is from the isothermal limit (PrEc→ 0) to typical
compressible flows with PrEc = 0.1. Three cases with wall temperatures in the
vicinity of the pseudo-critical point (T∗pc = 307.7 K) have been investigated in more
detail. In particular, the wall temperatures are set such that the temperature profile is
subcritical (T∗w= 290 K), transcritical (T∗w= 300 K) and supercritical (T∗w= 310 K). In
all cases, the thermodynamic and transport properties are strongly dependent on the
thermodynamic state of the fluid (e.g. temperature, density) and they influence the
stability in a coupled way through the base flow and the linear stability operator.

In the isothermal limit, the three cases with different wall temperatures have the
same base flow as the ideal gas. When PrEc increases, the base flows of the three
cases deviate from the ideal gas solution. In the subcritical regime, as PrEc increases,
the flow becomes more unstable with regard to both the modal and algebraic growth,
while for ideal gas the trend is opposite. When PrEc is large enough, or Tw is closer to
(but lower than) Tpc, the flow falls in the transcritical regime. Due to the large gradient
of the viscosity near Tpc, the base flow becomes inflectional and inviscid unstable.
As a consequence, the stability of the non-ideal gas flow is very different from the
ideal gas. The neutral curve is expanded, which results in a very low critical Reynolds
number. Moreover, the algebraic growth is also enhanced. It should be expected that
the laminar–turbulent transition is considerably enhanced in this regime. When Tw >

Tpc, the fluid is in the thermodynamic supercritical regime. In this case, the results
of the modal growth show that the non-ideal gas is substantially more stable than
the ideal gas. However, the transient growth shows only a weak dependence on the
non-ideal gas effects and is slightly more unstable than ideal gas flows. Additionally,
we show that the linear stability analysis with simple cubic EoS gives qualitatively
similar results to using the more accurate multi-parameter EoS implemented in the
REFPROP library. Discussions on the reference scaling indicate that the conclusion is
not influenced by the choice of the reference variables. This investigation constitutes
the first systematic study of linear stability with highly non-ideal fluids close to the
thermodynamic critical point. Future studies will focus on the validation of the results
using direct numerical simulations.
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Appendix A. The stability equation

The non-zero elements in the stability equation (2.12) are given below. For
simplicity, the derivative of a thermodynamic quantity with respect to ρ0 at constant
T0 (and vice versa) has been denoted as ∂/∂ρ0, instead of ∂/∂ρ0|T0 . The elements
are:

Lt(1, 1)= 1,
Lt(2, 1)= u0,

Lt(2, 2)=Lt(3, 3)=Lt(4, 4)= ρ0,

Lt(5, 1)= e0 + ρ0
∂e0

∂ρ0
,

Lt(5, 5)= ρ0
∂e0

∂T0
,


(A 1)

Lx(1, 1)= u0,
Lx(1, 2)= ρ0,

Lx(2, 1)= u0u0 +
∂p0

∂ρ0
,

Lx(2, 2)= 2ρ0u0,

Lx(2, 3)=−
1

Re
∂µ0

∂y
,

Lx(2, 5)=
∂p0

∂T0
,

Lx(3, 1)=−
1

Re
∂µ0

∂ρ0

∂u0

∂y
,

Lx(3, 2)=−
1

Re
∂λ0

∂y
,

Lx(3, 3)=Lx(4, 4)= ρ0u0,

Lx(3, 5)=−
1

Re
∂µ0

∂T0

∂u0

∂y
,

Lx(5, 1)= e0u0 + ρ0u0
∂e0

∂ρ0
,

Lx(5, 2)= ρ0e0 + p0,

Lx(5, 3)=−
2

Re
µ0
∂u0

∂y
,

Lx(5, 5)= ρ0u0
∂e0

∂T0
,



(A 2)
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Ly(1, 3)= ρ0,

Ly(2, 1)=−
1

Re
∂µ0

∂ρ0

∂u0

∂y
,

Ly(2, 2)=−
1

Re
∂µ0

∂y
,

Ly(2, 3)= ρ0u0,

Ly(2, 5)=−
1

Re
∂µ0

∂T0

∂u0

∂y
,

Ly(3, 1)=
∂p0

∂ρ0
,

Ly(3, 3)=−
2

Re
∂µ0

∂y
−

1
Re
∂λ0

∂y
,

Ly(3, 5)=
∂p0

∂T0
,

Ly(4, 4)=−
1

Re
∂µ0

∂y
,

Ly(5, 1)=−
1

RePrEc

(
∂κ0

∂ρ0

∂T
∂y

)
,

Ly(5, 2)=−
2

Re
µ0
∂u0

∂y
,

Ly(5, 3)= ρ0e0 + p0,

Ly(5, 5)=−
1

RePrEc

(
∂κ0

∂y
+
∂κ0

∂T0

∂T0

∂y

)
,



(A 3)

Lz(1, 4)= ρ0,

Lz(2, 4)= ρ0u0,

Lz(3, 4)=−
1

Re
∂λ0

∂y
,

Lz(4, 1)=
∂p0

∂ρ0
,

Lz(4, 3)=−
1

Re
∂µ0

∂y
,

Lz(4, 5)=
∂p0

∂T0
,

Lz(5, 4)= ρ0e0 + p0,



(A 4)
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Lq(1, 3)=
∂ρ0

∂y
,

Lq(2, 1)=−
1

Re
∂µ0

∂ρ0

∂2u0

∂y2
−

1
Re
∂u0

∂y

(
∂2µ0

∂ρ2
0

∂ρ0

∂y
+

∂2µ0

∂ρ0∂T0

∂T0

∂y

)
,

Lq(2, 3)= ρ0
∂u0

∂y
+ u0

∂ρ0

∂y
,

Lq(2, 5)=−
1

Re
∂µ0

∂T0

∂2u0

∂y2
−

1
Re

(
∂2µ0

∂T2
0

∂T0

∂y
+

∂2µ0

∂T0∂ρ0

∂ρ0

∂y

)
∂u0

∂y
,

Lq(3, 1)=
∂2p0

∂ρ2
0

∂ρ0

∂y
+

∂2p0

∂ρ0∂T0

∂T0

∂y
,

Lq(3, 5)=
∂2p0

∂T2
0

∂T0

∂y
+

∂2p0

∂ρ0∂T0

∂ρ0

∂y
,

Lq(5, 1)=−
1

RePrEc

(
∂2T0

∂y2

∂κ0

∂ρ0
+

(
∂2κ0

∂ρ2
0

∂ρ0

∂y
+

∂2κ0

∂ρ0∂T0

∂T0

∂y

)
∂T0

∂y

)
−

1
Re
∂µ0

∂ρ0

(
∂u0

∂y

)2

,

Lq(5, 3)= e0
∂ρ0

∂y
+ ρ0

∂e0

∂y
,

Lq(5, 5)=−
1

RePrEc

(
∂2T0

∂y2

∂κ0

∂T0
+

(
∂2κ0

∂T2
0

∂T0

∂y
+

∂2κ0

∂ρ0∂T0

∂ρ0

∂y

)
∂T0

∂y

)
−

1
Re
∂µ0

∂T0

(
∂u0

∂y

)2

,



(A 5)

Vxx(2, 2)= Vyy(3, 3)= Vzz(4, 4)=−
2µ0 + λ0

Re
,

Vxx(3, 3)= Vxx(4, 4)=−
µ0

Re
,

Vyy(2, 2)= Vyy(4, 4)=−
µ0

Re
,

Vzz(2, 2)= Vzz(3, 3)=−
µ0

Re
,

Vxx(5, 5)= Vyy(5, 5)= Vzz(5, 5)=−
κ0

RePrEc
,

Vxy(2, 3)= Vxy(3, 2)=−
µ0 + λ0

Re
,

Vxz(2, 4)= Vxz(4, 2)=−
µ0 + λ0

Re
,

Vyz(3, 4)= Vyz(4, 3)=−
µ0 + λ0

Re
.



(A 6)

The second-order finite differences were used to determine the gradients of the
properties. For instance, the gradients of viscosity

∂µ(T0, ρ0)

∂T
=
µ(T0 +1T, ρ0)−µ(T0 −1T, ρ0)

21T
, (A 7)
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FIGURE 18. (Colour online) Sensitivity of ∂2µ∗/∂T∗∂ρ∗ to 1T∗ and 1ρ∗.

Gas constant Heat capacity Acentric Critical Critical
ratio factor pressure temperature

R∗g = 188.9 J (kg K)−1 γ = 1.289 ω= 0.228 p∗c = 73.9 bar T∗c = 304.1 K

TABLE 5. The material dependent parameters for CO2.

∂µ(T0, ρ0)

∂ρ
=
µ(T0, ρ0 +1ρ)−µ(T0, ρ0 −1ρ)

21ρ
, (A 8)

∂2µ(T0, ρ0)

∂T∂ρ
=

∂µ

∂ρ
(T0 +1T, ρ0)−

∂µ

∂ρ
(T0 −1T, ρ0)

21T
. (A 9)

An example of the sensitivity of ∂2µ∗/∂T∗∂ρ∗ to 1T∗ and 1ρ∗ is shown in
figure 18. In fact, the gradients of the thermodynamic and transport properties
became rather robust when 1T∗6 1 K and 1ρ∗6 1 kg m−3. In this study, the results
are obtained with 1T∗ = 0.1 K and 1ρ∗ = 0.1 kg m−3.

Appendix B. Cubic EoS
The material dependent parameters for CO2 are provided in table 5. These

parameters are necessary inputs for the cubic EoS detailed below and can be easily
replaced for other fluids.

B.1. The van der Waals EoS
The van der Waals (1873) EoS is the simplest cubic EoS that is capable of accounting
phase separation and the critical point (see the introduction in Zappoli, Beysens &
Garrabos 2015; Moran et al. 2012). The EoS can be written as

p=
RgT
ϑ − b

−
a
ϑ2
, (B 1)
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where Rg is the specific gas constant, a is a measure of the attraction forces between
molecules and b accounts for the finite volume occupied by the molecules. The
constants a and b can be determined at the critical point where

∂p
∂ϑ

∣∣∣∣
Tc

=
∂2p
∂ϑ2

∣∣∣∣
Tc

= 0 ⇒ a=
27
64

R2
gT2

c

pc
, b=

RgTc

8pc
. (B 2)

Using the Maxwell relations and the departure function, it is possible to obtain the
internal energy as

e=CvT − aρ. (B 3)

The required derivatives for stability equations are

∂p
∂T

∣∣∣∣
ρ

=
ρRg

1− ρb
,

∂p
∂ρ

∣∣∣∣
T

=
RgT

(1− ρb)2
− 2aρ, (B 4a,b)

∂

∂ρ

∣∣∣∣
T

(
∂p
∂T

∣∣∣∣
ρ

)
=

Rg

(1− ρb)2
,

∂2p
∂T2

∣∣∣∣
ρ

= 0,
∂2p
∂ρ2

∣∣∣∣
T

=
2RgTb
(1− ρb)3

− 2a, (B 5a−c)

∂e
∂T

∣∣∣∣
ρ

=Cv +
∂Cv

∂T

∣∣∣∣
ρ

T,
∂e
∂ρ

∣∣∣∣
T

=−a. (B 6a,b)

B.2. The Redlich–Kwong EoS
The Redlich–Kwong (Redlich & Kwong 1949) EoS is given as

p=
RgT
ϑ − b

−
aα

ϑ(ϑ + b)
, (B 7)

where α =
√

Tc/T . Similarly, by satisfying the critical condition, the constants a and
b are

a=
0.42748RgT2

c

pc
, b=

0.08664RgTc

pc
. (B 8a,b)

The internal energy is

e=CvT +
3
2

a
b
α ln

1
1+ bρ

. (B 9)

The derivatives in the stability equations are

∂p
∂T

∣∣∣∣
ρ

=
ρRg

1− bρ
+

1
2

T−(3/2)T1/2
c

aρ2

1+ bρ
,

∂p
∂ρ

∣∣∣∣
T

=
RgT

(1− ρb)2
− T−(1/2)T1/2

c
2aρ + abρ2

(1+ ρb)2
,

 (B 10)

∂

∂ρ

∣∣∣∣
T

(
∂p
∂T

∣∣∣∣
ρ

)
=

Rg

(1− bρ)2
+

1
2

T−(3/2)T1/2
c

2aρ + abρ2

(1+ bρ)2
, (B 11)
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∂2p
∂T2

∣∣∣∣
ρ

=−
3
4

T−(5/2)T1/2
c

aρ2

1+ bρ
,

∂2p
∂ρ2

∣∣∣∣
T

=
2bRgT
(1− ρb)3

− T−(1/2)T1/2
c

2a
(1+ ρb)3

,

 (B 12)

∂e
∂T

∣∣∣∣
ρ

=Cv +
∂Cv

∂T

∣∣∣∣
ρ

T −
3
4

a
b

T−(3/2)T1/2
c ln

1
1+ bρ

,

∂e
∂ρ

∣∣∣∣
T

=−
3
2

T−(1/2)T1/2
c

a
1+ bρ

.

 (B 13)

B.3. The Peng–Robinson EoS
The Peng–Robinson (Peng & Robinson 1976) EoS modifies the original RK and SRK
(RK modified by Soave (1972)) EoS, giving better results regarding the liquid density,
vapour pressure and equilibrium ratios. It is one of the most used EoS. It is given as

p=
RgT
ϑ − b

−
aα

ϑ2 + 2bϑ − b2
. (B 14)

The constants a, b and parameter α are given by

a=
0.457235R2

gT2
c

pc
, b=

0.077796RgTc

pc
, α = (1+K(1−

√
T/Tc))

2. (B 15a−c)

Here K = 0.37464 + 1.54226ω − 0.26992ω2, ω is the acentric factor of the species.
The internal energy

e=CvT +
a

2
√

2b
[(1+K)2 −K(1+K)

√
T/Tc] ln

1+ b(1−
√

2)ρ

1+ b(1+
√

2)ρ
. (B 16)

The derivatives used in the linear stability equations are given by

∂p
∂T

∣∣∣∣
ρ

=
ρRg

1− ρb
+K

√
α

TTc

aρ2

1+ 2bρ − b2ρ2
, (B 17)

∂p
∂ρ

∣∣∣∣
T

=
RgT

(1− ρb)2
− α

2aρ + 2abρ2

(1+ 2bρ − b2ρ2)2
, (B 18)

∂

∂ρ

∣∣∣∣
T

(
∂p
∂T

∣∣∣∣
ρ

)
=

Rg

(1− ρb)2
+K

√
α

TTc

2aρ + 2abρ2

(1+ 2bρ − b2ρ2)2
, (B 19)

∂2p
∂T2

∣∣∣∣
ρ

=−
K(1+K)
2
√

T3Tc

aρ2

1+ 2bρ − b2ρ2
, (B 20)

∂2p
∂ρ2

∣∣∣∣
T

=
2RgbT
(1− ρb)3

− α
2a(2b3ρ3

+ 3b2ρ2
+ 1)

(1+ 2bρ − b2ρ2)3
, (B 21)

∂e
∂T

∣∣∣∣
ρ

=Cv +
∂Cv

∂T

∣∣∣∣
ρ

T +
a

4
√

2b
[−K(1+K)

√
1/TTc] ln

1+ b(1−
√

2)ρ

1+ b(1+
√

2)ρ
, (B 22)

∂e
∂ρ

∣∣∣∣
T

=−
a

1+ 2bρ − b2ρ2
[(1+K)2 −K(1+K)

√
T/Tc]. (B 23)
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FIGURE 19. (Colour online) Influence of bulk viscosity on neutral curves in (a) subcritical
(b) transcritical and (c) supercritical case.

Appendix C. Influence of the bulk viscosity

The dynamics of a fluid is described by the Navier–Stokes equation, which in
its simplest form contains a linear relation between deformation of a fluid element
and the resulting stress, with the shear viscosity µ the coefficient of proportionality.
Phenomenologically, another coefficient is possible, the second viscosity λ, which
was introduced by Stokes (1845). Stokes anticipated that the second viscosity might
play a role in compressible fluids. However, for the cases he considered, the fluids
can be assumed incompressible with negligible dilatational effects, such that the bulk
viscosity within the second viscosity can be ignored. This is known as the Stokes
approximation. Consequently, setting the bulk viscosity µb to zero, has been broadly
adopted in numerical simulations of compressible flows (see a succinct review by
Graves & Argrow 1999).

Cramer’s (2012) numerical estimates indicate that µb/µ of some common gases
can reach O(103). To investigate the influence of µb on the results of the linear
stability, we performed simulations with µb = 1000µ. The results are shown in
figures 19 and 20, which show the comparison of the linear stability results for
µb = 1000µ and µb = 0, using the RP model (the other parameters are kept the
same). Figure 19 shows that the neutral curves are barely affected. A discernible
difference only exists in the transcritical case (T∗w = 300 K, PrEc= 0.06), where the
neutral curve with µb = 1000µ becomes slightly more expanded. On the other hand,
the algebraic instability does not vary with bulk viscosity. Only the modal growth
region (Gmax =∞) in figure 20(b) becomes larger with µb = 1000µ and is consistent
with the results shown in figure 19(b).
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FIGURE 20. (Colour online) Influence of bulk viscosity on the algebraic growth. PrEc=
0.07, Re= 1000. (a) Subcritical (b) transcritical and (c) supercritical case.

The above comparisons support the Stokes hypothesis used in this study. In fact, µb
is frequency dependent, this means that, depending on the perturbation one prescribes
in the stability analysis, the bulk viscosity will have different values. Therefore for
a more rigorous investigation we would need reliable frequency resolved data for
the bulk viscosity, either from theories, experiments (Karim & Rosenhead 1952) or
molecular dynamics simulations (Hoover et al. 1980).

Appendix D. Influence of the reference scaling
Previous studies have shown that the scaling of the governing equations may have

a large influence on the results. For example, if the viscosity at the cold wall is used
as a reference value, Sahu & Matar (2010) concluded that increasing the temperature
difference between both walls destabilizes the flow, while Sameen & Govindarajan
(2007) concluded the opposite behaviour if the viscosity at the hot wall is used. On
the other hand, Rinaldi et al. (2018) investigated the edge state solutions of viscosity
stratified flows where they showed that a different reference value for viscosity does
not qualitatively change the results. In this appendix, we show how the definition of
the non-dimensional quantities will influence the results presented in the paper.

We introduce the averaged values of the thermodynamic and transport properties:

T∗av =
1
h∗

∫
T∗ dy, ρ∗av =

1
h∗

∫
ρ∗ dy, (D 1a,b)
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FIGURE 21. (Colour online) Influence of the reference scaling on the neutral curve for
the (a) subcritical, (b) transcritical and (c) supercritical cases. Solid lines show the results
with wall scaling (in the α–Re diagram), while dashed lines indicate the average scaling
(in the α–Re diagram).

µ∗av =
1
h∗

∫
µ∗ dy, κ∗av =

1
h∗

∫
κ∗ dy. (D 2a,b)

When the governing equations are scaled by the above averaged values, one obtains
the averaged Reynolds number, Re, and the product of the averaged Prandtl and Eckert
numbers, PrEc:

Re=
ρ∗avu

∗

r h∗

µ∗av
, PrEc=

µ∗avu
∗2
r

κ∗avT∗av
. (D 3a,b)

We name it the average scaling, to distinguish from the wall scaling presented in § 2.1
of the paper. Note that the reference velocity is not independent, and is given by

u∗r =

√
PrEc

κ∗wT∗w
µ∗w
=

√
PrEc

κ∗avT∗av
µ∗av

. (D 4)

Using either scalings resulted in a qualitatively similar conclusion as shown in
figure 21 for the modal instability. That is, the flow becomes more unstable in the
subcritical regime, inviscid unstable in the transcritical regime and more stable in the
supercritical regime.
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FIGURE 22. (Colour online) Influence of the reference scaling on the maximum algebraic
growth Gmax for the (a) subcritical, (b) transcritical and (c) supercritical cases. The left
and right halves show the results with wall scaling and average scaling respectively. The
non-ideal gas model is RP, PrEc= 0.07, Re= 1000.

Scaling
Wall-based Average-based

T∗w = 290 K (IG) 178.1 189.9
T∗w = 290 K (RP) 316.7 271.3
T∗w = 300 K (IG) 178.1 189.9
T∗w = 300 K (RP) 1040.8 1582.7
T∗w = 310 K (IG) 178.1 189.9
T∗w = 310 K (RP) 190.3 268.2

TABLE 6. Maximum algebraic growth Gmax over α and β. PrEc= 0.07, Re= 1000 (wall
scaling) or Re= 1000 (average scaling). The values for the T∗w = 300 case are for α = 0
where modal instability is absent.

Regarding the algebraic instability using the average scaling, as can be seen from
figure 22, the maximum growth shows a minor reduction in the subcritical regime.
Increases in Gmax are noticed for the trans- and supercritical regimes. Comparisons
with the ideal gas have been summarized in table 6. The ideal gas is not sensitive to
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the wall temperature under either scaling. With average scaling, the conclusion for the
algebraic instability will not change.
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