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Bubble curtains are multiphase line plumes that are used to reduce buoyancy-driven
flows between two water zones at different densities. They are similar to air curtains,
plane turbulent jets, that are installed in doorways of buildings between two climatically
different environments. In this study, we establish a formal analogy between bubble
curtains and air curtains and unify the two frameworks for their description that had
previously been used. By means of small-scale laboratory experiments conducted in a
channel with freshwater and brine solutions, we study how effectively a bubble curtain
acts as a separation barrier for a wide range of density differences as well as different air
fluxes and water depths. Qualitatively, two regimes of operation of a bubble curtain are
identified and we establish the optimum operating conditions on the basis of quantitative
measurements and theoretical considerations. We develop a theoretical model to calculate
the infiltration flux of dense water across the bubble curtain that is in very good agreement
with experimental measurements and yields a theoretical upper limit on the effectiveness
of the bubble curtain. We also study the zones of mixed fluid around the bubble curtain,
provide a scaling law for their horizontal extent as well as theoretically predict the water
density inside these mixed zones. We discuss how the theoretical models derived from our
small-scale experiments apply to real-scale bubble curtains that are, for example, used in
ship locks.

Key words: gravity currents, buoyant jets, coastal engineering

1. Introduction

An existing horizontal density stratification in a fluid gives rise to buoyancy-driven
currents (Benjamin 1968). Such exchange flows between two zones at different densities
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cause advective transport of mass, heat, particulates, chemical and biological substances,
which often has undesirable consequences for one or both zones. They may occur in a
variety of natural and industrial settings, across a wide range of temporal and spatial scales.

One problematic buoyancy-driven flow arises, for example, in ship locks where the
intruding saltwater into inland freshwater areas may cause ecological or agricultural
damage as well as contamination of drinking water reservoirs (van der Ven & Wieleman
2017; van der Ven, O’Mahoney & Weiler 2018; Oldeman et al. 2020). On a smaller
scale, temperature differences between two rooms in a building or between indoors and
outdoors drive exchange flows through open doorways. In both these example situations,
it is often impossible to shut the gates or the doors since this would hinder or obstruct the
passage of ships, humans or vehicles. Thus, alternative mitigation strategies for reducing
the buoyancy-driven exchange flows have been devised.

A possible way of limiting the saltwater intrusion in ship locks is by injecting air bubbles
from a line source placed normal to the horizontal density difference at the channel bottom.
The rising bubbles form a multiphase line plume, the so-called bubble curtain. Similarly,
in buildings the so-called air curtain devices are fitted across open doorways producing
plane turbulent air jets that act as a separation barrier between two climatically different
zones.

Despite the physical similarity between the two settings in which a bubble curtain and
an air curtain are used as well as their common purpose of reducing the buoyancy-driven
exchange flows, the two research directions on bubble curtains on the one hand, and
on air curtains on the other, have so far been completely detached. In particular, their
performances as separation barriers have been described using two different theoretical
frameworks and two different sets of parameters. As a first goal of our present work, we
establish a formal correspondence between a bubble curtain and an air curtain and unify
the frameworks for their description.

Although bubble curtains have been in use since the 1960s, there are still little systematic
experimental data on how well they perform as separation barriers when they are installed
across a horizontal density stratification (Oldeman et al. 2020). Similarly, there is still
some uncertainty about the optimum parameters for operating the bubble curtain. As
a second goal of the present study, we investigate the ability of a bubble curtain to
reduce the saltwater intrusion into the freshwater zone by means of small-scale laboratory
experiments. To the best of our knowledge and at the time of writing, this constitutes the
most exhaustive systematic experimental study on the performance of the bubble curtain.
By using insights gained from the air curtain theory as well as experimental observations,
we establish a theoretical model that predicts the infiltration flux of saltwater across the
bubble curtain into the freshwater zone. In particular, we provide an upper limit on the
effectiveness of the bubble curtain.

In recent years, air curtains have attracted scientific attention as a means for reducing the
energy consumption in buildings and for improving thermal comfort. Since the pioneering
work by Hayes & Stoecker (1969b,a), the performance of air curtains has been extensively
studied experimentally, theoretically and numerically for a variety of situations (Hayes &
Stoecker 1969b,a; Howell & Shibata 1980; Sirén 2003a,b; Costa, Oliveira & Silva 2006;
Foster et al. 2006, 2007; Gonçalves et al. 2012; Frank & Linden 2014, 2015; Khayrullina
et al. 2020; Ruiz et al. 2021). No exhaustive survey of the literature on air curtains is
attempted here and we refer to these cited studies for a more in-depth review of the topic.

The early history of bubble curtains is summarised by Evans (1955). The research on
bubble curtains was first motivated by their use as wave breakers (Evans 1955; Taylor
1955). Since then, the studies on bubble curtains investigated their performance in many
situations: as a barrier for neutrally buoyant objects, such as jellyfish (Lo 1991); for
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oil-slick containment (Lo 1997); for reduction of underwater noise (Würsig, Greene &
Jefferson 2000); for oxygenation of water reservoirs (McGinnis et al. 2004); for fish
herding (Zielinski et al. 2014) as well as for ice control (Baddour 1990). As the field of
application of bubble curtains is wide and versatile, we focus here in particular on a review
of the literature that is directly relevant for the use of bubble curtains as barriers across
horizontal density stratifications.

Bulson (1961) conducted large-scale experiments in a large graving dock and measured
vertical and water surface velocities induced by bubble curtains. Kobus (1968) and Ditmars
& Cederwall (1974) provided theoretical models for the flow in the rising line bubble
plume based on conservation of mass, momentum and buoyancy, and Kobus (1968)
conducted large-scale experiments to measure the vertical velocities.

The first significant study on the prevention of salt intrusion through locks was
conducted by Abraham, van der Burgh & De Vos (1973). They performed large-scale
experiments on bubble curtains in sea locks, without, however, varying the density
stratification and parameters of the bubble curtain. Based on a simple physical picture,
Abraham et al. (1973) provided a theoretical model for the salt intrusion across the bubble
curtain that, however, did not take into account important features of the flow such as
recirculation cells next to the bubble curtain. Keetels et al. (2011) presented experiments
carried out in ship locks in the Netherlands (with an average water depth of 5 m) as well as
laboratory experiments (with a water depth of approximately 30 cm). They indicate that a
reduction of 85 % of the salt exchange can be reached with a tightly packed bubble curtain.
Recently, van der Ven & Wieleman (2017) investigated the pattern of the flow created by a
bubble curtain in small-scale experiments. They showed that the flow obtained at a small
scale compares well with the full-scale measurements of Bulson (1961), which indicates
that small-scale experiments accurately represent large-scale scenarios. However, they did
not study the effect of a density difference on the curtain and only claim that they will look
into the process of salt intrusion in future tests. A numerical model for the performance of
bubble curtains was developed by Oldeman et al. (2020) where they conducted numerical
simulations to study their separation and mixing characteristics.

In the present paper, we conduct small-scale experiments on bubble curtains for varying
air fluxes, water depths and horizontal density differences with the aim of developing a
comprehensive theoretical model for the salt intrusion across the bubble curtain. Our study
is structured as follows. In § 2, we establish a formal correspondence between the two sets
of parameters used to describe an air curtain and a bubble curtain. In particular, in § 2.1,
we derive a parameter determining the operating regime of a bubble curtain from the well
known deflection modulus parameter of an air curtain. We proceed by revising the mass
transfer characteristics of an air curtain in § 2.2 and propose a simple scaling law for the
infiltration flux across a bubble curtain. In § 2.3, we discuss and compare the parameters
conventionally used for assessing the performance of an air curtain and a bubble curtain,
which are the effectiveness and the salt transmission factor, respectively. The set-up of our
small-scale experiments is described in § 3. Our experimental results are presented in § 4,
with § 4.1 focusing on the qualitative description of the flow field around the bubble curtain
and § 4.2 detailing quantitative measurements. The theoretical modelling of the flow field
around the bubble curtain is developed in § 5. In § 5.1, we suggest a scaling law for the
size of the recirculation cell in the vicinity of the bubble curtain. A theoretical model for
the infiltration flux of saltwater across the bubble curtain is derived in § 5.2, we compare
our experimental results and theoretical predictions in § 5.3, and in § 5.4 we establish the
upper limit on the effectiveness of the bubble curtain. The temporal evolution of the water
density inside the mixed zones in the vicinity of the bubble curtain is discussed in § 5.5.
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We discuss the applications of our results to real-scale bubble curtains in § 6. The paper is
concluded with a summary of the main results in § 7.

2. Theoretical frameworks of air curtains and bubble curtains

2.1. Deflection modulus
A bubble curtain in a ship lock used as a barrier across horizontal density stratification
acts in a similar way as an air curtain installed in a doorway of a building to separate
two rooms at different temperatures. The main difference is that the downwards blowing
(unheated) air curtain, which is a typical installation in doorways, forms a plane air jet,
whereas the rising bubbles create a multiphase line plume by entraining the ambient fluid.
An important feature of multiphase plumes is that the bubbles possess the so-called slip
velocity us by means of which they can separate from the entrained fluid flow and escape
the water body after reaching the surface. Here, we establish a formal correspondence
between the bubble curtain and the air curtain. This will allow us to use the theoretical
foundations developed for air curtains to explain many experimental observations made
on bubble curtains.

The theoretical framework for air curtains was first formulated by Hayes & Stoecker
(1969b,a). They derived the so-called deflection modulus,

Dm = ρ0b0u2
0

g�ρH2 = b0u2
0

g′H2 , (2.1)

as the governing parameter for the air curtain performance in the doorway of a building.
The deflection modulus is a dimensionless parameter. Here, u0 is the discharge velocity of
the plane air jet, ρ0 its density and b0 is the width of the rectangular thin outlet nozzle
spanning the entire door width. The doorway height is denoted by H and the density
difference across the doorway is �ρ = ρd − ρl, where ρd is the density of dense fluid
(at cold temperature Td) and ρl is the density of light fluid (at warm temperature Tl).
The gravity acceleration g can be combined with the density difference �ρ to give the
reduced gravity g′ = g�ρ/ρ̄. It is assumed that all the density differences are small and the
Boussinesq approximation applies so that the reference density ρ̄ can be taken as ρ̄ = ρ0,
ρ̄ = ρl or ρ̄ = ρd without introducing a significant error.

The deflection modulus represents the ratio between the momentum flux of the air
curtain and the lateral pressure forces acting on it due to the horizontal density stratification
across the doorway. Hayes & Stoecker (1969b) delineated two possible operating regimes
for the downwards blowing air curtain. For small values of the deflection modulus Dm �
0.15, the air curtain does not possess enough vertical momentum to withstand the lateral
forcing. In this breakthrough situation, it is completely laterally deflected and discharges
horizontally to one side of the doorway (to the dense-fluid side for the downwards blowing
air curtain). The air curtain fails to act as a separation barrier and an unhindered infiltration
flow through the doorway can take place in that case. For Dm � 0.15, the air curtain stably
reaches the bottom of the doorway opening and ensures the aerodynamic sealing. The
infiltration flux of dense fluid across the doorway is minimised for the deflection modulus
values in the range of Dm ≈ 0.2–0.4 depending on the specific doorway configuration.
If the Dm is increased further, the air curtain operates in the curtain-driven regime. The
infiltration flux across the doorway is now due to the entrainment and mixing induced by
the air curtain, and, as will be seen in § 2.2, the infiltration flux is a function of the initial
volume flux per unit length q0 = b0u0 as well as b0 and H.
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2.0 m

ρl ρd0.25 m

0.20 m
1.0 m Removable gate

False floor False floor

Bubble curtain device

Flowmeter

Air supply

Figure 1. Sketch of the experimental set-up used for small-scale experiments. The false floor (shown as solid
grey on the left-hand side and as grey dashes on the right-hand side) was placed on both sides of the pierced
manifold generating the bubble curtain (indicated by an arrow). The false floor on the right-hand side is
displayed in dashes to make visible the air inlet tubes that were running to the bubble curtain along the bottom
of the tank and were hidden underneath the false floor.

We will study the bubble curtain acting as a separation barrier between two sides of
the channel of water depth H and width W (see figure 1). The bubbles are injected at the
bottom of the channel with the volumetric flow rate Qair from a pierced manifold spanning
the entire channel width, and they form a multiphase line plume as they rise towards the
water surface. The air flow rate per unit length is denoted by qair = Qair/W.

Starting from (2.1), we first formulate a similar dimensionless parameter for the bubble
curtain. According to the plume theory built upon the fundamental work by Morton,
Taylor & Turner (1956), the governing parameters for a line plume in a non-stratified
environment are the vertical distance z from the (virtual) origin of the plume and the
source buoyancy flux per unit length B which remains constant with height for single-phase
plumes. Assuming a self-similar flow, the line plume characteristics scale as

b ∼ z, u ∼ B1/3, (2.2a,b)

where b is the line plume width and u the upwards velocity.
In the case of a bubble plume, if we neglect the mass of the air, the vertical momentum

flux per unit length (and unit density) of the rising plume is

bu2 ∼ bB2/3 = b(gqair)
2/3 ∼ z(gqair)

2/3, (2.3)

where B = gqair and the variation in the air flux with height due to the changing bubble
size is neglected. We discuss in § 6 whether the assumption of a constant B = gqair holds
for real-scale bubble plumes in ship locks and how our results are affected if B varies. In
order to adapt (2.1) to the case of a bubble curtain, the momentum flux of the plane jet
needs to be replaced by the momentum flux of the line plume. However, a central point
in the derivation of Dm by Hayes & Stoecker (1969b) was that the momentum flux of
the plane jet remains constant with height whereas for a plane plume, it increases linearly
with z (see (2.3)). Therefore, we will use the maximum momentum flux M when the plume
reaches the free surface (z = H) in the definition of the deflection modulus for the bubble
curtain. Note that although we define z as the vertical distance from the virtual origin of
the plume, the offset between z = 0 and the channel bottom is negligible compared with
the water depth H in practical situations, such that z ≈ H at the surface. This is equivalent
to b0 � H. Paillat & Kaminski (2014) measured that the (total) line plume width grows as

b = 2αEz ≈ 0.14z, (2.4)
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where αE ≈ 0.071 is the experimentally measured entrainment constant for single-phase
line plumes. Therefore, we define the deflection modulus for a bubble curtain as

Dm,b = 2αEH(gqair)
2/3

g′H2 = 2αE(gqair)
2/3

g′H
= 2αEFr2

air. (2.5)

The air Froude number

Frair = (gqair)
1/3√

g′H
, (2.6)

was previously used by Keetels et al. (2011), van der Ven et al. (2018) and Oldeman
et al. (2020) to characterise the bubble curtain. In analogy to air curtains, we expect two
operating regimes to exist for the bubble curtain as well, namely the breakthrough and the
curtain-driven regime. The transition point between these two regimes should occur at a
well-defined value of the deflection modulus Dm,b and we will determine this critical value
from our experimental measurements.

We note that the bubble slip velocity us is expected to cause a separation of bubbles
from the entrained water plume such that the bubbles might follow a different path than
the fluid. Additionally, the entrainment coefficient αE might depend on us. We will discuss
this in more detail in the following sections.

2.2. Mass transfer
When the air curtain operates in the curtain-driven regime, the infiltration flux of dense
fluid across the doorway is self-induced by the air curtain. The turbulent air curtain
entrains fluid from both sides of the doorway, mixes it and then spills the mixed fluid
back to both sides upon reaching the floor. Such an entrainment-spill mechanism should
(to the leading order) be unaffected by the horizontal density stratification (see (2.11) and
(2.16)). Instead, we can expect the infiltration flux to be caused by the vertical volume flux
within the plane jet that is deflected laterally when the air curtain impinges on the floor.
The governing parameters for a plane jet are its source momentum flux per unit length,
b0u2

0, and the vertical distance z. Thus, the vertical volume flux per unit length within the
air curtain close to the floor scales as

q(H) ∼
√

b0u2
0H = q0

√
H
b0

, (2.7)

where q0 = b0u0 is the initial volume flux per unit length. Therefore, we expect the
infiltration volume flux per unit length of dense fluid across the doorway to scale as

qac ≈ q(H)

4
∼
√

b0u2
0H = q0

√
H
b0

, (2.8)

where the subscript ‘ac’ stands for ‘air curtain’. The factor 1/4 arises since q(H) is
assumed to divide equally between two sides when the air curtain impinges on the floor
and, assuming that the fluid inside the air curtain is well-mixed, the density of the spilled
fluid is (ρl + ρd)/2. Hence, the infiltration flux of dense fluid across the air curtain is
q(H)/4. The mass and the heat fluxes per unit length across the doorway can be calculated
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from the volume infiltration flux as, respectively,

qmass = qac(ρd − ρl) (2.9)

and

qheat = qacρ̄cp(Tl − Td), (2.10)

where cp is the specific heat capacity. Conventionally, the heat and the mass transfer are
described in terms of non-dimensional groups

Nu
RePr

= qheat

u0b0ρ̄cp(Tl − Td)
= qac

q0
∼
√

H
b0

(2.11)

and, similarly,

Sh
ReSc

= qmass

u0b0(ρd − ρl)
= qac

q0
∼
√

H
b0

. (2.12)

Here, the Reynolds, Prandtl and Schmidt numbers are

Re = u0b0

ν
, Pr = ν

κ
, Sc = ν

D
, (2.13a–c)

where ν is the kinematic viscosity, κ is the thermal diffusivity and D is the mass diffusion
coefficient. The Nusselt number is defined as

Nu = hH
ρ̄cpκ

= qheat

ρ̄cpκ(Tl − Td)
, (2.14)

with h = qheat/(H(Tl − Td)) being the convective heat transfer coefficient. The Sherwood
number is given by

Sh = kH
D

= qmass

D(ρd − ρl)
, (2.15)

with k = qmass/(H(ρd − ρl)) being the convective mass transfer coefficient.
It was demonstrated both numerically and experimentally that in the curtain-driven

regime Nu/(RePr) and Sh/(ReSc) assume a constant value for a given geometrical
configuration of the air curtain and the doorway (Hayes & Stoecker 1969b; Costa et al.
2006; Frank & Linden 2014), so for large values of Dm,

qac

q0
= const. (2.16)

for fixed H and b0. In particular, this confirms that the infiltration flux qac is independent
of the horizontal density difference across the doorway. The scaling relation (2.11) was
theoretically derived by Sirén (2003b). However, to the best of our knowledge, the basic
scaling arguments in (2.7) and (2.8) based on a simple physical picture have not been
presented in the existing literature on air curtains in this form before.

In order to derive the scaling for the infiltration mass flux across the bubble curtain in
the curtain-driven regime, we make recourse to a similar simple physical picture (that was
also used by Abraham et al. (1973)): the bubble curtain entrains water from both sides
of the channel, mixes it and the mixed fluid is then deflected laterally back to both sides
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when the bubble curtain reaches the free surface. Using (2.2a,b), the vertical volume flux
per unit length of a line (multiphase) plume close to the water surface is

q(H) = bu ∼ B1/3H = (gqair)
1/3H. (2.17)

Hence, the infiltration volume flux of dense water across the bubble curtain (and the
associated mass flux) can be expected to scale as

qc ≈ q(H)

4
∼ (gqair)

1/3H. (2.18)

Note that the subscript ‘c’ denotes ‘curtain’. In their numerical simulations, Oldeman
et al. (2020) observed that during some initial time period after the start, the rate of
mixing associated with the bubble curtain and, hence, the infiltration flux increased with
the air flow rate. However, they did not quantify this increase. Using our experimental
measurements, we will examine whether the infiltration flux qc of dense fluid across the
bubble curtain obeys the scaling (2.18).

2.3. Effectiveness
The performance of an air curtain is conventionally described in terms of the effectiveness

E = qopen − qac

qopen
= 1 − qac

qopen
. (2.19)

The effectiveness E quantifies the fraction by which the infiltration flux is reduced by the
air curtain compared with the case of an open doorway. The buoyancy-driven flux per unit
width due to the density (or, equivalently, temperature) difference across the doorway is
conventionally calculated by means of the orifice equation (see e.g Rottman & Simpson
1983; Wilson & Kiel 1990; Shin, Dalziel & Linden 2004) as

qopen = CD

3
H
√

g′H, (2.20)

where CD is the discharge coefficient that accounts for streamline contraction and
frictional losses at the doorway. The effectiveness of an air curtain is very low in
the breakthrough regime, assumes a maximum when the air curtain stabilises, and then
decreases again in the curtain-driven regime as Dm increases since using (2.11) and (2.20)
we have

qac

qopen
∼

q0

√
H
b0

H
√

g′H
=
√

Dm. (2.21)

The definition of the effectiveness (2.19) relies on the reduction of the buoyancy-driven
flow (and the associated heating costs by means of (2.10)) but does not take into account
the operating costs of the air curtain device. However, the fan power consumption of an air
curtain device is negligible compared with the thermal load of the infiltrating air across
the doorway (Gil-Lopez et al. 2013).

The definition (2.19) for the effectiveness E presents a local view of the exchange process
between two sides of the doorway. It is implicitly assumed that the exchange flow rates with
and without the air curtain are both steady so that the effectiveness does not change with
time. In particular, this means that the dimensions of the enclosures to both sides of the
doorway are large enough that during the entire exchange process neither qopen nor qac are
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modified by the finite size effects of the room geometry. Furthermore, the initial transient
processes associated with the opening of the door and the starting of the air curtain are
also disregarded in the definition of the effectiveness.

To assess the performance of bubble curtains separating two sides of a channel or a ship
lock, the so-called salt transmission factor has been used in the past (Abraham et al. 1973;
Keetels et al. 2011; van der Ven et al. 2018; Oldeman et al. 2020). It is defined as

STF = Vc

Vopen
, (2.22)

where Vc and Vopen are the volumes of brackish dense water present in the light-fluid half
of the channel with and without the operating bubble curtain, respectively. The STF is
calculated at a given time. It is expected to change as the time progresses to reflect the
effects of the finite size geometry of the channel on the exchange process.

For the time period for which the initial transient flow features are negligible and the
finite size effects are not present, the effectiveness E and the salt transmission factor STF
are related as

STF = 1 − E. (2.23)

In our small-scale experiments, we will focus on such a time period to examine the
mechanism of the infiltration flux of dense fluid into the light-fluid half of the channel
across the bubble curtain.

3. Experimental set-up

Small-scale laboratory experiments were performed to investigate the separation
effectiveness of a bubble curtain inside a horizontally stratified water tank (figure 1). The
density difference �ρ across the bubble curtain, the depth of fluid H and the volumetric air
flux Qair (or qair per unit length) in the bubble curtain were the three parameters that could
be varied in the experiments. The tank used for this study was a channel tank with internal
dimensions 2.0 m × 0.2 m × 0.25 m (length × width × height). The tank was back-lit by
means of neon tubes behind a panel of translucent Perspex. The water depth H in the tank
varied between 9 cm and 20 cm.

The two equal halves of the tank, filled with freshwater and brine solutions of different
densities, were initially isolated by a removable sealing gate. From the angle of view of
the camera, the right-hand side was filled with dense fluid ρd and the left-hand side with
light fluid ρl < ρd, thus creating a horizontal stratification �ρ = ρd − ρl. The entire range
of densities obtainable with brine and freshwater mixtures was used: the densities varied
between 998 kg m−3 and 1180 kg m−3. All the densities in this study were measured with
an Anton PAAR DMA 5000 density meter with a precision of ±0.007 kg m−3.

A rectangular manifold, pierced with equally spaced holes, placed at the bottom of the
tank and spanning the entire channel width W, generated a line bubble plume. It was
positioned next to the removable sealing gate on the dense-fluid side of the channel.
The holes were 1.0 mm in diameter with a spacing of 2.0 mm. In order to prevent the
manifold from acting as an obstacle to the flow, a false floor was placed on both sides of
the manifold at a height of 19 mm above the actual bottom of the tank. The manifold was
fed through four air inlets, with tubes running beneath the false floor from the manifold to
the compressed air supply of the laboratory (see figure 1). The air flux in the curtain was
controlled by means of a flow meter. The compressed air flux ranged between 10 l min−1

and 60 l min−1 at standard conditions with the precision of ±1 l min−1, which was the
reading accuracy of the device.

941 A1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.142


A. Bacot, D. Frank and P.F. Linden

At the start of an experimental run, the bubble curtain was activated before removing
the sealing gate in order to lessen transient effects. Since the air bubbles source was only
on one side of the gate, the bubble curtain induced flow only in the dense-fluid half of the
tank while the other half remained stationary. The gate was then carefully removed so as to
avoid generating any gravity waves in the channel. The flow was allowed to exchange for
some time t. When the intruding dense fluid reached a certain position along the channel,
a horizontal distance L away from the bubble source and just ahead of the end wall in the
light-fluid half, the experiment was ended by placing back the separation gate. The runtime
t, measured with a stopwatch, depended on the initial density difference �ρ = ρd − ρl
across the gate but typically varied between 10 s and 1 min. We will see in (5.23) in § 5.3
how the runtime t of an experiment can be predicted if the experiment is stopped when the
intruding dense gravity current reaches a certain horizontal distance L along the channel,
where L is measured from the bubble curtain source.

Two different types of experiments were conducted using this set-up.

3.1. Experiment A
In this experiment, blue food dye was added either to the light- or the dense-fluid side of
the tank to visualise the flow. The flow was recorded using a Nikon D7000 video camera
at 24 frames per second. After the gate was closed at the end of an experimental run, both
sides of the tank were thoroughly mixed to obtain homogeneous mixtures and measure
their average densities ρend

l and ρend
d . This experiment allows for the calculation of the

volume of fluid exchanged across the bubble curtain during the run. It provides a ‘global’
diagnosis of the efficiency of the bubble curtain device.

3.2. Experiment B
The aim of this experiment was to obtain instantaneous values of the density at each
location in the tank (averaged in the direction normal to the camera view) during an
experimental run. We performed measurements using the dye attenuation technique
with methylene blue as the light absorption agent. The flow was recorded using a JAI
CVM4+MCL 1.3 megapixel camera equipped with a lens and a red filter. The data
acquisition was performed by means of DigiFlow (see http://www.dalzielresearch.com/).
The calibration was carried out using concentrations of methylene blue that varied between
0 and 1.7 × 10−1 ppm which was the range used for the subsequent experiments. The
calibration data are provided in Appendix A.

The recorded images from the camera were converted into instantaneous density maps
inside the tank by means of the technique described in detail in Appendix A. The
experiment B allows us to understand in more detail the temporal and spatial evolution
of the mixing process between the dense fluid and the light fluid. It provides a ‘local’ and
instantaneous diagnosis of the exchange across the bubble curtain.

4. Results

4.1. Qualitative observations in experiments
After the removal of the sealing gate, the bubble curtain is subjected to a transverse force
due to the horizontal density difference �ρ. Slight oscillations and twisting of the curtain
can sometimes be observed as a result of the perturbation caused by the gate removal or
by the surface waves induced by the curtain itself.
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Bubble curtains

Depending on the values of the air flux Qair, the water depth H in the channel and the
water density difference �ρ, two distinct flow regimes can be observed that differ in the
flow pattern of the bubble curtain and the fluid intrusions in the opposite tank halves.

4.1.1. Breakthrough regime
The breakthrough regime occurs if, for given H and Qair, the initial density difference
�ρ is chosen high enough (which corresponds to low values of Dm,b). A time sequence
is shown in figure 2(a). The bubble curtain is violently bent first towards the light-fluid
side (left) and then towards the dense-fluid side (right) in a ‘hook-like’ shape. Dense
fluid (dyed in blue) penetrates through the bubble curtain into the light-fluid half, and
reciprocally. The overall flow in the light-fluid half at a distance from the curtain resembles
a lock-exchange flow. The bubble curtain mixes light and dense fluid around it. Due to the
general up-flowing direction of the bubble curtain and the direction of the stack pressure
forces, the mixed fluid appears to be mostly driven into the dense-fluid half. Apart from
the presence of this mixed fluid, the flow in the dense-fluid half also looks similar to an
intruding gravity current. In this breakthrough regime, the air flux is not strong enough for
the bubble curtain to prevent the gravity current. This regime is defined by the competition
between the vertical momentum of the bubble curtain (a rising plume of air and water)
and the horizontal force exerted by the fluid around the curtain due to the initial horizontal
stratification. When the momentum is too low, the curtain is overcome by the transverse
force and is unable to separate the two halves of the tank. If the momentum is larger, the
air curtain becomes more stable and the direct exchange across it becomes smaller.

We note a distinct difference between the breakthrough regime for a bubble curtain and
the breakthrough regime that is observed for single-phase air curtains, i.e. a real-scale
air curtain in a building or a curtain consisting of a freshwater line jet in small-scale
experiments. In the case of a single-phase air curtain, the upwards discharged curtain
would be deflected entirely to the light-fluid side so that the gravity current in the upper
half of the tank would be undisturbed. This difference arises due to the inherent slip
velocity us of air bubbles. Due to this slip velocity us the bubbles can escape the lateral
deflection caused by the dense gravity current in the bottom half of the tank and cross
the upper half of the tank where the light fluid forms an intruding gravity current into the
dense fluid.

4.1.2. Curtain-driven regime
Once the vertical momentum flux of the bubble curtain is large enough to withstand the
lateral stack pressure forces, the bubble curtain enters the so-called curtain-driven regime.
A time sequence of this regime is shown in figures 2(b) and 2(c). At the very beginning
of an experiment, the bubble curtain mixes surrounding fluid and drives it upwards. Upon
reaching the free surface, the mixed fluid is deflected horizontally and all the bubbles
escape out of the water due to the slip velocity us almost immediately. In particular, the
escaping bubbles will change the buoyancy of the mixed fluid. The mixed fluid possesses
a density which is larger than ρl but less than ρd, so it behaves differently in the two halves
of the tank. In the light-fluid half, the laterally deflected mixed fluid forms a recirculation
cell of a finite horizontal extent. At some distance away from the curtain, there is a gravity
current outflowing out of the recirculation cell along the bottom of the tank (see figure 2c).
In the dense-fluid side, the quasi recirculation cell is less pronounced and the mixed fluid
mostly outflows directly as a gravity current, though some mixing occurs and part of this
mixed fluid is driven again back into the bubble curtain. The bubble curtain here acts as
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(b)(a)

(c)

0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

3.0 s

3.5 s

0 s

0.5 s

1.0 s

1.5 s

2.0 s

2.5 s

3.0 s

3.5 s

Figure 2. Qualitative observations of different operating regimes of a bubble curtain. (a) Time sequence of
the flow in the breakthrough regime for the air flux Qair = 20 l min−1, the water depth H = 15 cm and the
density difference �ρ = 163 kg m−3. (b) Time sequence of the flow in the curtain-driven regime for the air
flux Qair = 20 l min−1, the water depth H = 15 cm and the density difference �ρ = 30 kg m−3. (c) Late frame
of the time sequence shown in figure 2(b) (t = 15.5 s). The recirculation cell and the gravity current of mixed
fluid originating from the cell are clearly visible in the left-hand half of the channel.

a separator between two sides of the channel and the exchange process is now due to the
mixing induced by the bubble curtain itself.

4.2. Quantitative results
In our experiments, we observed that the slip velocity us of the bubbles was large enough
such that all the bubbles escaped out of the water almost immediately after the bubble
curtain impinged on the surface. Thus, the slip velocity us is not included in the analysis
of the infiltration flux qc or the recirculation cell that both arise due to the horizontally
deflected fluid currents. We refer to § 6 for a discussion of the effects of a smaller slip
velocity us.
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4.2.1. Infiltration flux
After discussing the flow regimes that can occur for a bubble curtain, we present
quantitative measurements of the infiltration flux qc of dense fluid across the bubble
curtain into the light-fluid half of the channel for a varying horizontal density difference
�ρ, water depth H and the volume air flow rate Qair of the bubble curtain.

The infiltration flux per unit length qc of dense fluid across the bubble curtain is
calculated using the following procedure. We denote by V the volume of fluid in the
light-fluid side of the channel (so, the total water volume contained in the tank is 2V) and
by V∗ the volume of dense fluid intruding into the light-fluid side during an experimental
run. The final water densities ρend

l and ρend
d in the channel at the end of an experiment

obey the mass conservation

Vρend
l = (V − V∗)ρl + V∗ρd, (4.1)

where we implicitly assume that the net volume flux across the bubble curtain is zero.
The volume of dense fluid infiltrating the light-fluid side of the channel during an

experiment is therefore

V∗ = V
ρend

l − ρl

ρd − ρl
. (4.2)

Hence, if t denotes the duration of an experiment, the infiltration flux of dense fluid per
unit length is

qc = V∗

Wt
, (4.3)

where W is the channel width.
We note that this way of calculating qc does not account for the initial transients after

the gate removal and the finite size effects of the tank. The flux qc in (4.3) is assumed to be
steady, and for this to be valid the duration of the experiment should be chosen long enough
for the transient effects to be negligible and short enough to avoid the effects of the finite
channel length. We stopped our experimental runs at the time t which was the moment
shortly before the infiltrating gravity current reached the end wall of the channel. We will
see later in § 5.4 whether such a choice of time t was appropriate for all our experimental
runs to guarantee the initial transient and finite geometry effects to be minimal.

Figure 3 shows the measured infiltration flux qc (4.3) per unit length of dense fluid
across the bubble curtain for our experiments. All the three panels in figure 3 possess the
same legend which is displayed at the bottom.

Figure 3(a) plots qc as a function of the relative horizontal density difference �ρ/ρ̄. We
note that for the fixed water depth H in the channel and the bubble curtain air flux Qair,
the infiltration flux qc is nearly constant for small values of �ρ/ρ̄ but rises sharply above a
certain value of �ρ/ρ̄. The region of nearly constant qc corresponds to the curtain-driven
regime in which the infiltration flux is due to the mixing by the bubble curtain whereas
a sharp increase in qc indicates the breakthrough situation. The transition value of �ρ/ρ̄

between these two regimes depends on Qair and H. Furthermore, we observe that in the
curtain-driven regime, the values of the infiltration flux qc noticeably increases with the
water depth H (symbols for a fixed colour). We can also detect a slight increase with the
air flux Qair (colours for a fixed symbol) although it is less pronounced than the rise with
H.

The non-dimensionalised infiltration flux qc(gqair)
−1/3/H is plotted as a function of

�ρ/ρ̄ in figure 3(b). The scaling given by (2.18) yields a reasonable, albeit not a perfect,
collapse of the data in the curtain-driven regime. The derivation of (2.18) was based on
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Figure 3. Experimentally measured infiltration flux qc per unit length of dense fluid across the bubble
curtain.
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a simple physical picture of the bubble curtain entraining and spilling fluid to both sides
of the channel. However, as explained in § 4.1.2, the real flow is more complicated with
a pronounced recirculation cell building up next to the bubble curtain in the light-fluid
half of the channel and the infiltrating gravity current of dense fluid propagating along
the channel bottom and not next to the water surface. The non-negligible size of the
recirculation cell compared with our finite channel length causes the variation of the scaled
qc(gqair)

−1/3/H in the curtain-driven regime. We expect (2.18) to apply in the limit of an
infinitely long channel. In § 5.2, we will develop a quantitative theoretical model for the
calculation of qc which also will take into account the effects of the recirculation cell, and
hence, the finite channel dimensions.

Finally, figure 3(c) illustrates the non-dimensionalised infiltration flux qc(gqair)
−1/3/H

as a function of the deflection modulus Dm,b given in (2.5). We note a sharp transition
between the breakthrough regime and a curtain-driven regime at approximately Dm,b ≈
0.12, or, equivalently, Frair ≈ 0.93. This confirms that Dm,b as defined in (2.5) is the
governing parameter for the operating regime of the bubble curtain, similar to Dm for air
curtains. The transition value of Dm,b ≈ 0.12 corresponds to the theoretically predicted
transition value Dm ≈ 0.125 for air curtains by Hayes & Stoecker (1969b,a). Furthermore,
similar to air curtains (see (2.11), (2.12) and (2.16)), the infiltration flux qc appears to vary
little with Dm,b in the curtain-driven regime.

We note that the functional relationship between the non-dimensionalised infiltration
flux qc(gqair)

−1/3/H and the deflection modulus Dm,b shown in figure 3(c) can also be
established using a formal dimensional analysis.

The infiltration flux qc across the bubble curtain can be written as a function of the
variables in the problem as

qc = f (g′, H, B, L), (4.4)

where we assume that the Boussinesq approximation applies. The length L is the
horizontal distance that the intruding dense fluid propagates before the separation gate
is closed. As explained in § 3, in our experiments L corresponds just to the entire length
of the light-fluid half. We can choose H and B as the repeating variables and form four
dimensionless groups according to the Buckingham π-theorem. These are

qc

B1/3H
= qc

(gqair)1/3H
,

g′H
B2/3 ∼ 1

Dm,b
,

L
H

. (4.5a–c)

Thus, in general, we expect a functional relationship

qc

(gqair)1/3H
= f

(
Dm,b,

H
L

)
. (4.6)

Figure 3(c) shows qc(gqair)
−1/3/H as a function of Dm,b and neglects the dependence on

H/L, which arises due to the finite channel dimensions. In § 5.2, we will derive a full
functional relationship of the form (4.6).

4.2.2. Effectiveness of the bubble curtain
The purpose of using a bubble curtain in ship locks is to reduce salt intrusions into
freshwater areas. In order to characterise the performance of a bubble curtain and in line
with the effectiveness definition (2.19) for air curtains, we calculate the effectiveness for
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Figure 4. Effectiveness E of the bubble curtain as a function of the deflection modulus Dm,b for varying �ρ,
H and Qair.

bubble curtains as

E = 1 − qc

qopen
. (4.7)

We use (2.20) to calculate qopen. Note that on dimensional grounds, qopen for our channel
is expected to scale as qopen ∼ H

√
g′H. We keep the notation of the proportionality factor

as Cd/3 and measure the discharge coefficient in a separate set of experiments presented
in Appendix B. For our experimental set-up, Cd ≈ 0.55.

Figure 4 plots the effectiveness E (4.7) as a function of Dm,b (2.5). For low values
of Dm,b in the breakthrough regime, the effectiveness E rises steeply. We observe that
the maximum effectiveness of approximately E ≈ 0.8 is achieved at the transition point
Dm,b ≈ 0.12, or Frair ≈ 0.93, between the breakthrough and the curtain-driven regimes.
For higher values of Dm,b the effectiveness E decreases, similar to how the effectiveness
for air curtains also reduces with increasing Dm. We also observe an increased scatter in
the data in the curtain-driven regime, creating an impression that Dm,b might not be the
correct parameter to collapse the data. However, as we will see in § 5.4, this is an artefact
of the finite dimensions of our channel and the data are expected to collapse onto a single
curve for an infinitely long channel.

We recall that for the time period when the initial transients and the finite size
dimensions are negligible, E = 1 − STF. Based on their numerical simulations, Oldeman
et al. (2020) reported a minimum value STF ≈ 0.3 for Frair ≈ 0.91. This is in line
with our measured maximum effectiveness value at Frair ≈ 0.93, although our maximum
effectiveness corresponds to STF ≈ 0.2. Oldeman et al. (2020) report two more data points
of STF up to Frair ≈ 1.15 that have slightly higher values than 0.3. Our data presented in
figure 4 comprise the data up until Frair ≈ 2.67 and demonstrate a clear decrease in the
effectiveness E, which corresponds to an increase in STF. In particular, this clearly shows
that the optimum operating regime of a bubble curtain is at Dm,b ≈ 0.12, or equivalently
at Frair ≈ 0.93, which is the first explicit experimental confirmation for the optimum
operating parameters of a bubble curtain.
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Figure 5. The horizontal extent Lcell in metres of the recirculation cell in the curtain-driven regime plotted as
a function of the relative horizontal density difference �ρ/ρ̄.

4.2.3. Mixing cells in the curtain-driven regime
We examined the horizontal extent of the recirculation cells that appear in the
curtain-driven regime (see § 4.1.2) in the light-fluid half of the channel. The measurements
were conducted using the recorded images of experiments A. For each experimental run,
10 frames were chosen randomly during the steady phase of the flow, i.e. between the
moment when the recirculation cell and the gravity current originating from it were clearly
visible and the end of the experiment. These frames were then averaged and filtered. At
each vertical height above the midheight of the channel, the horizontal extent of a cell
was defined as the distance between the centre of the curtain and the point where the
light intensity was the average between the average light intensity in the cell and that in
the ambient fluid. The horizontal extent Lcell of the recirculation cell was then defined
to be the average of these values. The results for the measured horizontal extent Lcell
as a function of the relative horizontal density difference �ρ/ρ̄ are shown in figure 5.
The estimated error bars for the individual data points are within 2–3 cm. The described
procedure to determine the horizontal extent of the recirculation cells produced results that
were consistent with their visually perceived boundaries.

The most obvious trend is that the size Lcell of the cells decreases as the relative density
difference �ρ/ρ̄ increases. Within the range of parameters involved in the experiments,
the size of the cells is observed to vary by a factor of six. Varying the density difference
alone within the given range, we can change the size of the cells by a factor of three. It
can be seen in figure 5 that Lcell increases with Qair but the influence of H is less clear
than that of the other two parameters. This is most likely because the water depth in our
experiments ranges between 9 cm and 20 cm, which is not sufficient to clearly delineate
the effects of H. It can be expected that L also scales with H and Qair since these two
parameters determine the effect of the curtain on the flow around it. Formally, we can
write this using the dimensional analysis

Lcell = f (g′, B, H), (4.8)

where we again use the Boussinesq approximation and recall that B = gqair. We can now
choose g′ and H as our repeating variables, and invoking the Buckingham π-theorem,
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we expect
Lcell

H
= f

(
B

(g′H)3/2

)
. (4.9)

In the next section, we provide some theoretical insights that explain our experimental
measurements.

5. Theoretical modelling of experiments

The experiments revealed the existence of two operating regimes of the bubble curtain
depending on the value of Dm,b that fundamentally differ in the mechanism of fluid
exchange across the curtain: a nearly undisturbed lock-exchange flow in the breakthrough
regime and an infiltration flow driven by the mixing induced by the curtain in the
curtain-driven regime. The maximum effectiveness E of the bubble curtain is achieved
at the transition value of Dm,b between these two regimes and starts to decrease slowly
as Dm,b is increased further in the curtain-driven regime. Since a bubble curtain acts as
an effective separator between two sides of the channel at different densities only in the
curtain-driven regime, we focus here on that regime and establish some theoretical models
to explain and predict the observed flow behaviour. These theoretical considerations can
be used to design a bubble curtain device that fits specific requirements and to understand
the intrusions of salt in ship locks.

We note here that in the following theoretical considerations, we proceed with the
assumption that the bubble size does not change as the bubble rises and the slip velocity us
of the bubbles is high enough that the bubbles immediately escape out of the water upon
reaching the surface. In other words, the buoyancy force due to the bubbles is constant with
height and immediately disappears as the plume fluid flow is laterally deflected. Thus, the
slip velocity us of the bubbles is not taken into account in the derivation of the theoretical
models in this section. We will discuss in § 6 how the bubble slip velocity us could be
included in a future expansion of the proposed models.

5.1. Scaling law for the cell size
We recall the scaling law for the line plume velocity

u ∼ B1/3 ∼ (gqair)
1/3, (5.1)

that was discussed when we defined the deflection modulus Dm,b (2.5). We assume that
the velocity of the horizontally deflected fluid after reaching the free surface will obey the
same scaling (which was verified experimentally by Bulson (1961)). The rising bubble
plume mixes water from both sides, so the density difference between the horizontal
flow next to the surface and the light-fluid side of the tank should be ∼�ρ. Thus, the
horizontally deflected fluid is subjected to the reduced gravity ∼g′ due to which it falls
towards the bottom of the tank. The time for this process can be estimated as

tcell ∼
√

2H
g′ . (5.2)

Combining (5.1) and (5.2), we obtain a scaling prediction for the horizontal extent Lcell
of the recirculation cell in the light-fluid half

Lcell ∼ (gqair)
1/3

√
2H
g′ . (5.3)
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Figure 6. The measured horizontal extent of mixing cells on the light-fluid side of the tank is shown as a
function of the scaling law (5.3). The black fitted line is given by (5.4).

The experimentally measured values for the horizontal extent Lcell of the recirculation
cell are plotted against the scaling (5.3) in figure 6. We observe a very satisfactory data
collapse for Lcell � 0.5 m, which is half the length of the light-fluid side. For higher values
of Lcell, we expect the finite length of the channel to start affecting the flow. Furthermore,
higher values of (gqair)

1/3
√

2H/g′ are mainly achieved by reducing �ρ in our experiments
which renders an accurate measurement of Lcell difficult since for small �ρ its boundaries
may be blurred due to secondary flows and turbulent effects.

For Lcell � 0.5 m, we perform a linear fit of the data and obtain

Lcell ≈ (0.62 ± 0.02)(gqair)
1/3

√
2H
g′ . (5.4)

We note here that the error in (5.4) is based on the 95 % confidence interval for the
coefficient estimate of the linear regression model whereas an individual data point for
the extent of the recirculation cell is determined within the accuracy of 2–3 cm (see error
bars in figure 6).

This can be rewritten as

Lcell

H
≈ (0.62 ± 0.02)

√
2
(

B
(g′H)3/2

)1/3

, (5.5)

which is the functional relationship predicted by (4.9).
The recirculation cells around bubble curtains were studied by Fanneløp, Hirschberg &

Küffer (1991) and Riess & Fanneløp (1998). Their experiments, however, were conducted
in a homogeneous environment and did not include any density variations. McGinnis et al.
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ρl

ρd

ρ′
dρ′

l
qH

qH qH

qHαqH

αqH
βqH

βqH

Figure 7. Schematic of the steady flow in the curtain-driven regime. The right-hand side is initially filled with
denser fluid and the left-hand side with lighter fluid. The notations used in the theoretical model are provided.

(2004) observed circulation patterns around bubble curtains in their field experiments in
lakes that were vertically stratified. Keetels et al. (2011) noted the presence of recirculation
cells in their small-scale experiments on bubble curtains separating two sides at different
densities but did not study the variation of the horizontal extent of the recirculation cells
and how it depends on other parameters of the system.

The proportionality coefficient in (5.4) provides a good fit to our measured extents of
recirculation cells in small-scale experiments. However, as will be discussed in § 6, it might
be affected by the water depth H or the slip velocity us and thus, might need to be adjusted
for real-scale bubble curtains.

5.2. Model for the exchange through the curtain
Qualitative descriptions of the curtain-driven regime provided in § 4.1.2 indicate very clear
features of the flow. A schematic of the flow is shown in figure 7.

As before, ρl and ρd are the initial densities of the light and dense fluids, respectively.
We denote by ρ′

d and ρ′
l the densities of the weak quasi recirculation cell on the dense-fluid

side and the recirculation cell on the light-fluid side, respectively, as is indicated in figure 7,
and by QH the volume flow rate of mixed fluid that the curtain discharges horizontally to
each side upon reaching the water surface. The volume flow rate per unit width of the
tank W is denoted as qH . To account for the recirculation, we denote the volume flow rate
per unit width that leaves the cell on the light-fluid side as a gravity current as αqH (or
volumetric flow αQH), on the dense-fluid side, as βqH (or βQH), where α < 1, β < 1.

We have implicitly assumed that symmetry implies that the same volume flow of liquid
per unit width qH is discharged to each side. Similarly, we assume that the bubble curtain
entrains the fluid equally from both sides, which is again qH in a steady state. We further
postulate that the fluid in both recirculation cells (especially also in the quasi recirculation
cell on the dense-fluid side) is well-mixed and that the gravity currents originating from
them possess the same density: ρ′

d or ρ′
l . We refer to figure 7 for a schematic of the involved

flows.
The mass balance yields the density of the fluid rising within the plume as

1
2
(ρ′

l + ρ′
d). (5.6)

We can establish the mass balance equations in the recirculation cell in the light-fluid
half as

αqHρl + qH
1
2
(ρ′

l + ρ′
d) − αqHρ′

l − qHρ′
l = 0 (5.7)

and in the dense-fluid half as

βqHρd + qH
1
2
(ρ′

l + ρ′
d) − βqHρ′

d − qHρ′
d = 0. (5.8)
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This is equivalent to( −1
2 − α 1

2
1
2 −1

2 − β

)(
ρ′

l
ρ′

d

)
=
( −αρl

−βρd

)
. (5.9)

Therefore,

ρ′
l =

(
1
2 + β

)
αρl + 1

2βρd

�
,

ρ′
d =

(
1
2 + α

)
βρd + 1

2αρl

�
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.10)

with

� =
(

1
2

+ α

)(
1
2

+ β

)
− 1

4
= α + β

2
+ αβ. (5.11)

Then, the equations for the gravity currents fluxes in both halves give (see (2.20))

αqH = Cd

3
H3/2g1/2

(
ρ′

l − ρl

ρ̄

)1/2

,

βqH = Cd

3
H3/2g1/2

(
ρd − ρ′

d
ρ̄

)1/2

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.12)

Solving the system (5.10) and (5.12) of four equations and four unknowns ρ′
l , ρ′

d, α and
β yields

α3 + α2 = C2
d

18
H3g′

q2
H

, (5.13)

α = β, (5.14)

ρ′
l =

(
1
2 + α

)
ρl + 1

2ρd

α + 1
, (5.15)

ρ′
d =

(
1
2 + α

)
ρd + 1

2ρl

α + 1
. (5.16)

The only obstacle with respect to the comparison of this model with our experiments is
the unknown value of the volume flux per unit length qH . The dimensional scaling inspired
by Morton et al. (1956) that has been previously discussed is

qH ∼ (gqair)
1/3H. (5.17)

It is important, however, to determine the order of magnitude of the coefficient that
goes with the scaling since the model we have developed is not a scaling law but aims
at predicting the values as precisely as possible. Abraham et al. (1973) suggest that the
depth of the outflowing current is H/4 and that the velocity increases linearly from a
zero value at the lower boundary of the current to a maximum value at the water surface.
Bulson (1961) measured that the maximum surface velocity Vmax of the horizontal current
created by a line bubble plume scales as

Vmax ≈ Cv(gqair)
1/3 (5.18)

with the proportionality factor Cv ≈ 1.46.
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This results in

qH ≈ 1
2

Vmax
H
4

= Cv

8
(gqair)

1/3H ≈ 0.18(gqair)
1/3H. (5.19)

We conducted some experiments to examine whether the scaling (5.18) is appropriate in
our case (at our small scale, in particular) that are briefly presented in Appendix C.

5.3. Comparison between model and experiments
We now use the model developed in the previous section in order to predict the infiltration
flux qth

c of dense fluid across the bubble curtain during an experimental run and compare
it with the experimentally measured flux qc (4.3). Note that the superscript ‘th’ stands for
‘theoretical’.

The procedure to calculate qth
c is as follows. First, we use (5.13) to determine the value

of the parameter α for each experimental run. The right-hand side of (5.13),

C2
d

18
H3g′

q2
H

= 64C2
d

18C2
v

Hg′

(gqair)2/3 = 64C2
dαE

9C2
v

1
Dm,b

≈ 0.072
Dm,b

, (5.20)

where we use (5.19) for qH , contains the known initial condition Dm,b along with
proportionality coefficients measured in the previous literature and can be calculated
directly for every experimental run. Equation (5.13) is then solved for α. This yields one
well-defined positive root 0 < α < 1 for any choice of initial conditions for which the
bubble curtain is operating in the curtain-driven regime. A short proof of this statement is
provided in Appendix D.

Once the value of α is found, the infiltration flux qth
c is calculated as

qth
c =

(
αqH + LcellH

2t

)
1

2(α + 1)
, (5.21)

where Lcell can be computed using the correlation (5.4). Figure 8 elucidates the two terms
inside the brackets contributing to the infiltration flux. The first term, αqH , is due to the
gravity current propagating along the channel bottom. The second term, LcellH/2t, arises
because of the presence of the recirculation cell in the upper half of the channel next to
the bubble curtain. It is calculated as the volume in the upper half of the recirculation cell
LcellH/2, which is fixed once the recirculation cell is established and is shown in the blue
dashed square in figure 8, divided by the time t. We recall that we consider only those
times t which are longer than the initial transient time during which the recirculation cell
is establishing. Note that this correction due to the recirculation cell decreases with an
increasing duration t of an experiment. The fluid inside the dyed volume in the light fluid
possesses the density

ρ′
l = (1 + 2α)ρl + ρd

2(α + 1)
. (5.22)

This means that a fraction of (1 + 2α)/(2(α + 1)) of fluid inside the dyed volume
originates from the light-fluid half whereas a fraction of 1/(2(α + 1)) is the original dense
fluid that has infiltrated the light-fluid half across the bubble curtain. This explains the
presence of the factor 1/(2(α + 1)) in the calculation of the theoretical infiltration flux
(5.21).

Figure 9 shows the comparison between the experimentally measured flux qc across
the bubble curtain in experiments A and the theoretically expected infiltration flux
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ρl

ρ′
lVolume ≈ αqH t

Volume

≈   Lcell HH1–
2 1–

2

Figure 8. Sketch of the light-fluid half of the channel illustrating two volume contributions of the dyed fluid
in the calculation of the theoretical infiltration flux qth

c in (5.21).
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Figure 9. Experimentally measured values of the infiltration flux per unit length qc of dense fluid across the
bubble curtain plotted against the theoretically expected infiltration flux per unit length qth

c . We use (5.21) with
(5.19) and (5.4) to calculate qth

c where α is determined for every set of initial conditions by (5.29). The black
line depicts qc = qth

c .

qth
c calculated using (5.21) with (5.19) and (5.4). We observe a near perfect collapse

of the data around the line qc = qth
c which shows that our theoretical model makes

an excellent prediction of the infiltration flux. We can calculate the mean deviation
of the experimentally measured values from the bisectrix of the first quadrant as√∑

i(qc(i) − qth
c (i))2/N ≈ 2.1 cm2 s−1, where the index i runs through our experiments

and N is the total number of our measurements. We note here, however, that our model
does not take into account any reflections of the intruding gravity current from the end
wall of the tank.
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We note that (5.21) presents the functional relationship given by (4.6). The time t can
be linked to the horizontal propagation distance L of the intruding gravity current as

t = 3L

2Cd

√
g(ρ′

l − ρl)

ρ̄
H

= 3L
√

2(α + 1)

2Cd
√

g′H
, (5.23)

where we apply (5.12) and model the intruding volume as αqHt = LH/2. Then, using
(5.19) and (5.4) we obtain

qth
c

(gqair)1/3H
=
(

C1α + C2
1√

2(α + 1)
×
√

H
g′ ×

√
g′H
L

)
1

2(α + 1)

=
(

C1α + C2
1√

2(α + 1)
× H

L

)
1

2(α + 1)
, (5.24)

where α = α(Dm,b) and C1 and C2 are constant coefficients. This is exactly the form of
the functional relationship (4.6) expected from the dimensional analysis.

For an infinitely long horizontal propagation distance L (or, equivalently, for t → ∞)

qth
c

(gqair)1/3H
→ C1

α

2(α + 1)
, (5.25)

which is equivalent to

qth
c → α

2(α + 1)
qH. (5.26)

We see that in this case, the non-dimensionalised infiltration flux is a function only of the
deflection modulus, so that the scatter observed in figure 3(c) is an artefact of the finite
length of our tank. We also recover the scaling proposed in (2.18) with the proportionality
factor depending on Dm,b as argued in (5.20). Thus, in contrast to the relation given by
(2.16) for air curtains, the ratio qc/qH for a bubble curtain is not constant with Dm,b for
a fixed opening geometry in the curtain-driven regime. However, as figure 3(c) indicates,
the variation of qc/qH with Dm,b in the curtain-driven regime is relatively slow.

Figure 8 allows us to estimate the relative contributions of the terms αqH and LcellH/2t
to qth

c in (5.21). The first term dominates if the volume αqHt is larger than the volume
LcellH/2, that is for those times t when the recirculation cell is already established and the
gravity current starts to flow out of the recirculation cell. Nevertheless, the correction due
to the second term can be significant for a fixed finite length of the channel. Recall that we
stopped our experiments when the gravity current reached the end wall of the light-fluid
side. If, for example, the horizontal extent of the recirculation cell is half the length of the
light-fluid side, then the correction due to the recirculation cell will be 50 %. We can assess
the relative contribution of the correction due to the recirculation cell in our experiments
by defining

qth,approx
c = αqH

2(α + 1)
, (5.27)

which neglects the second term of (5.21). Figure 10 shows the experimentally measured
flux qc against the approximate infiltration flux qth,approx

c (calculated using (5.27)
with (5.19)). The horizontal distance between the axis of ordinates and a point is the
contribution due to the term αqH , the horizontal distance between a point and the bisectrix
of the first quadrant (shown as a black line) is the missing contribution due to the term
LcellH/2t in (5.21).
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Figure 10. Experimentally measured values of the infiltration flux per unit length qc of dense fluid across the
bubble curtain plotted against the approximate infiltration flux per unit length qth,approx

c given by (5.27). The
black line depicts the bisectrix of the first quadrant.

5.4. Effectiveness revisited
After establishing the model (5.13)–(5.16) allowing us to calculate the theoretical
infiltration flux qth

c in (5.21), we revisit the effectiveness measurements presented in § 4.2.2
and can now explain the observed scatter in the experimental data for large Dm,b.

For t → ∞, we can deduce that theoretically

E = 1 − qth
c

qopen

→ 1 −
α

2(α+1)
Cv

8 (gqair)
1/3H

Cd
3 H

√
g′H

= 1 − 3αCv

16Cd(α + 1)

√
Dm,b√
2αE

, (5.28)

where α is given by

α3 + α2 = 64C2
dαE

9C2
v

1
Dm,b

. (5.29)

This demonstrates that for t → ∞, the effectiveness E can be expressed as a function of
Dm,b and we would expect the collapse of our measured data. The data scatter observed
in figure 4 arises from the presence of the recirculation cell and the fact that our channel
is not long enough to achieve the asymptotic scaling for the infiltration flux. Thus, it is
an artefact of the finite dimensions of our channel. Indeed, if we superimpose the curve
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Figure 11. Theoretical curve E(Dm) in the limit t → ∞ for an infinitely long channel calculated by means of
(5.28) and (5.29). The experimentally measured effectiveness values (cf. figure 4) are below the theoretical
curve due to the presence of the recirculation cell next to the bubble curtain and the finite length of the channel.

E(Dm,b) as given in (5.28) and (5.29) on our data as shown in figure 11, we observe that it
constitutes the upper envelope of the measured data points. The data points for H = 9 cm
(diamonds) are closer to our theoretical limit than for H = 20 cm (squares), which is the
expected behaviour because of the smaller aspect ratio H/L for H = 9 cm.

We stress here, in particular, that our theoretical model enables us to provide a
theoretical upper limit on the effectiveness values of the bubble curtain by means of (5.28)
and (5.29). The optimum effectiveness at Dm.b ≈ 0.12 can be theoretically calculated as
E ≈ 0.83. We also observe that for Dm.b → ∞, we obtain E → 1 − 1/2

√
2 ≈ 0.65.

5.5. Instantaneous density measurements in experiments B
Our set of model equations (5.13)–(5.16) allows not only the calculation of the infiltration
flux qth

c but also the prediction of the asymptotic values of densities ρ′
l and ρ′

d.
Experiments B provide instantaneous and local density measurements in the

curtain-driven regime by means of dye attenuation as explained in § 3.2. In particular,
processing the data from an experiment B (see Appendix A) shows the temporal evolution
of ρ′

l,exp(t) and ρ′
d,exp(t) in the recirculation cells. This can confirm that a steady state has

indeed been reached and allows for a comparison between the predicted final values of ρ′
l

and ρ′
d given in (5.15) and (5.16) and their measured final counterparts ρ′

l,exp and ρ′
d,exp.

The quantitative results for the final densities ρ′
l,exp and ρ′

d,exp in experiments B are
shown in table 1 while figure 12 shows a few examples of how ρ′

l,exp(t) and ρ′
d,exp(t)

evolve over time. The examples provided in figure 12 show that the densities ρ′
l,exp(t) and

ρ′
d,exp(t) in each half of the channel tend towards a constant value. The evolution ρ′

l,exp(t)
is steep near the beginning and quickly reaches its constant, asymptotic value. In contrast,
the decrease of ρ′

d,exp(t) is more stable and slower. An explanation for this asymmetry is
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Figure 12. Examples of the temporal evolution of densities ρ ′
l,exp (red line) and ρ′

d,exp (blue line) in
experiments B. The dashed lines indicate their respective theoretical predictions ρ ′

l and ρ′
d . The time t

is real time with the t = 0 s corresponding to the gate removal at the start of an experiment. Here (a)
Qair = 10 l min−1, H = 9 cm, �ρ = 12 kg m−3; (b) Qair = 30 l min−1, H = 15 cm, �ρ = 12 kg m−3; (c)
Qair = 10 l min−1, H = 9 cm, �ρ = 25 kg m−3; (d) Qair = 30 l min−1, H = 15 cm, �ρ = 25 kg m−3.

that the flow itself is initially highly asymmetric around the bubble curtain. Indeed, on
the dense-fluid side, the bubble curtain impinging on the surface immediately creates an
outflowing gravity current which propagates in the upper half of the channel. Over time,
some mixing occurs and some part of this mixed fluid is re-entrained by the bubble curtain
giving rise to a weak quasi recirculation cell. In the light-fluid side, however, the fluid
spilled laterally by the bubble curtain first sinks to the bottom and creates a recirculation
cell so that this fluid can be re-entrained by the bubble curtain. Based on this physical
picture, we indeed expect that the transient phase of ρ′

d,exp(t) in the dense-fluid side will
be longer because mixed fluid will require a longer time to recirculate.

Figure 13 shows the ratios (ρ′
l,exp − ρ′

l)/�ρ and (ρ′
d,exp − ρ′

d)/�ρ of the 17 experiments
listed in table 1. Given the measurement errors using the dye attenuation technique
explained in § 3.2 and Appendix A, we observe that predicted values of ρ′

l in (5.15) are
very close to experimental measurements for ρ′

l,exp: the discrepancy is always within 10 %
of the initial density difference �ρ and is in almost all experiments within 1 kg m−3.
There is, however, a bigger discrepancy when it comes to ρ′

d, with differences between
the model and the experiments that sometimes reach 4 kg m−3. In all experiments ρ′

d,exp
is underestimated by the theoretical values for ρ′

d in (5.16). This may be a consequence of
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Qair H �ρ ρl ρd ρ′
l ρ′

l,exp ρ′
d ρ′

d,exp
l min−1 cm kg m−3 kg m−3 kg m−3 kg m−3 kg m−3 kg m−3 kg m−3

B1 10 9 12 999.22 1011.29 1003.80 1003.76 ± 0.03 1006.71 1008.27 ± 0.04
B2 10 9 25 999.47 1022.49 1007.56 1007.30 ± 0.25 1014.40 1017.20 ± 0.13
B3 10 15 25 999.22 1024.12 1007.28 1006.73 ± 0.17 1016.06 1019.20 ± 0.41
B4 10 20 12 999.07 1012.00 1003.48 1004.07 ± 0.12 1007.59 1009.21 ± 0.07
B5 10 20 25 999.16 1024.31 1006.94 1008.34 ± 0.09 1016.53 1020.44 ± 0.10
B6 20 9 12 999.12 1011.65 1004.08 1004.53 ± 0.03 1006.69 1008.71 ± 0.05
B7 20 9 25 999.45 1022.15 1007.90 1008.20 ± 0.30 1013.70 1017.00 ± 0.25
B8 20 15 12 999.10 1011.67 1003.82 1003.83 ± 0.11 1006.94 1007.97 ± 0.19
B9 20 15 25 999.13 1023.45 1007.56 1008.77 ± 0.12 1015.01 1018.38 ± 0.17
B10 20 20 12 999.08 1012.10 1003.79 1004.90 ± 0.09 1007.39 1009.43 ± 0.10
B11 20 20 25 999.17 1024.09 1007.45 1007.63 ± 0.20 1015.81 1019.51 ± 0.22
B12 30 9 12 999.17 1011.29 1004.10 1004.08 ± 0.05 1006.36 1007.98 ± 0.06
B13 30 9 25 999.17 1023.15 1008.32 1008.64 ± 0.31 1014.01 1017.86 ± 0.29
B14 30 15 12 999.06 1011.68 1003.94 1004.24 ± 0.16 1006.80 1007.91 ± 0.14
B15 30 15 25 999.19 1023.40 1007.89 1008.62 ± 0.22 1014.70 1018.47 ± 0.12
B16 30 20 12 999.08 1011.71 1003.81 1004.77 ± 0.05 1006.98 1008.84 ± 0.07
B17 30 20 25 999.14 1024.26 1007.79 1008.08 ± 0.14 1015.61 1019.89 ± 0.17

Table 1. Quantitative comparison of ρ′
l and ρ′

d with their measured final counterparts ρ′
l,exp and ρ′

d,exp in
experiments B. The measurement error in the density using the dye attenuation is approximately 1 kg m−3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
–0.2

–0.1

0

0.1

0.2

Number of experiment

ρ
′ l,e

xp
–
ρ
′ l

ρ
′ d,

ex
p–

ρ
′ d

�
ρ

�
ρ

,

Figure 13. The relative differences (ρ′
l,exp − ρ′

l)/�ρ (red diamonds) and (ρ′
d,exp − ρ′

d)/�ρ (blue circles) of
the 17 experiments listed in table 1.

the fact that a steady state on the dense-fluid side is not quite reached in our experiments,
as argued below.

As a side remark, we note that the asymptotic values of ρ′
l and ρ′

d (or ρ′
l,exp and ρ′

d,exp,
respectively) are not the same: there is still a density difference between the recirculation
cells on either side of the bubble curtain in the steady state. The difference between (ρd −
ρl)/2 and both ρ′

l and ρ′
d gives an idea of how imperfectly the curtain acts as a mixing

device. Indeed, if it were a perfectly efficient mixer we would have a fluid of perfectly
homogeneous density around it. With our model ρ′

d − ρ′
l = α(ρd − ρl)/(α + 1), which

goes to 0 as Dm,b → ∞.
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998.3 
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1019  
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Bottom layer of dense fluid

t = 0 s

t = 1 s

t = 3 s

t = 5 s

t = 10 s

t = 20 s

Figure 14. Density map in kg m−3 obtained with data from experiment B15 for Q = 30 l min−1, H = 15 cm
and �ρ = 25 kg m−3.

The results provided in table 1 and figure 12 are obtained by averaging the information
collected in experiments B over the recirculation cells (see Appendix A). In order to try to
understand the quasi-systematic discrepancy between the predicted values of ρ′

d and the
measured values ρ′

d,exp, it is useful to consider the density maps inside the tank.
Figure 14 shows a density map for Qair = 30 l min−1, H = 15 cm and �ρ = 25 kg m−3.

The quantitative data for this particular experiment B15 are listed in table 1 and the
evolution of the density in both cells is shown in figure 12. At the end of the experiment,
there is a noticeable volume of fluid at the bottom of the tank below the recirculation
cell in the dense-fluid half (right-hand side of the tank), that is denser than the cell. This
phenomenon was not taken into account in the theoretical model (see § 5.2) which could
explain why there is a discrepancy between the model and the experiments in terms of ρ′

d.
It is an interesting question where this bottom layer of fluid which is denser than the

recirculation cell density ρ′
d comes from. It could either consist of the dense fluid ρd that

is attracted along the bottom of the channel by the entrainment flow created by the bubble
curtain and, thus, would continue to exist in the final steady state. Alternatively, it could
be the original boundary layer of pure dense fluid that slowly disappears as the quasi
recirculation cell slowly builds up, but would in our case take more time to disappear than
the experiment lasts. In this latter case, we expect ρ′

d,exp(t) → ρ′
d as t → ∞, but the time

for the final steady state in the dense-fluid side to be reached would be longer than the
duration of our experiments.

A simple experiment was conducted to understand what happens at the bottom of the
channel in the dense-fluid side. The set-up was the same as in experiment A (see § 3.1)
except that the dense fluid was filled into the half of the channel where the water was still
before the removal of the sealing gate, i.e. the left-hand side of the channel in the recorded
videos. Some dyed dense fluid was carefully injected at the bottom of the dense-fluid half
with the least possible momentum in order to create a stable bottom layer of dyed fluid in
the dense-fluid half of the channel. This dyed layer at the bottom allows the visualisation
of the flow at the bottom of the tank in the dense-fluid half. We qualitatively observed
that the bottom dyed layer in the vicinity of the bubble curtain was slowly disappearing
by mixing into the recirculation cell and its colour was gradually fading out. We did not
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Dyed boundary layer

Mixing of boundary layer

into recirculation cell

Gradual colour fading in the

boundary layer

0 s

10.0 s

20.0 s

30.0 s

40.0 s

(a)

(b)

(c)

(d)

(e)

Figure 15. Time sequence of an experiment where only a thin layer of dense fluid is dyed at the bottom
(the dense fluid is on the left and the light fluid is on the right) with Q = 20 l min−1, H = 15 cm and �ρ =
25 kg m−3.

observe any significant flow of dense dyed fluid along the channel bottom caused by the
entrainment of the bubble curtain.

Based on this qualitative experiment, it appears that the layer of denser fluid underneath
the recirculation cell observed in figure 14 is most likely the initial bottom layer of the
dense fluid that is still in the process of being slowly mixed. In particular, based on our
experimental observations we can estimate that the time it takes for the initial bottom layer
of dense fluid to disappear and the steady state to be reached is longer than the duration
of our dye attenuation experiments: in figure 15, we can observe that the dyed fluid from
the bottom layer is still not entirely mixed after t = 40 s which is a typical duration of
experiments B. Summarising, we expect that in the steady state ρ′

d,exp(t) → ρ′
d. However,

the times needed to reach this steady state are longer than the running times we were able
to achieve in our dye attenuation measurements in experiments B. This is also corroborated
by the observation of the blue curves in figure 12 that still appear to slowly decrease.

6. Discussion

In our small-scale experiments, the rising bubbles creating the bubble curtain had two
distinctive features. First, the bubble size did not change as the bubbles were rising through
the water column and, second, the slip velocity us of the bubbles was large enough that
all the bubbles almost immediately escaped out of water as the curtain impinged on
the surface rather than being laterally deflected by the horizontal outflowing currents.
These were the two assumptions used in our theoretical modelling in § 5. Bubble plumes
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in real-scale water reservoirs with a depth of several metres exhibit variation in the
buoyancy with height because of the bubble size expansion due to the hydrostatic pressure
changes (Ditmars & Cederwall 1974; Milgram 1983) as well as the gas exchange with the
surrounding fluid (Wüest, Brooks & Imboden 1992; McGinnis & Little 2002; McGinnis
et al. 2004). Furthermore, the slip velocity of the bubbles us might be small enough that
the bubbles are laterally deflected by horizontal currents when the curtain impinges on
the water surface or in the breakthrough regime. Here, we discuss the applications and
limitations of our model to real-scale bubble curtains.

Assuming the hydrostatic pressure distribution and the isothermal expansion of bubbles,
the buoyancy flux varies with the vertical coordinate z as

B(z) =
patm

ρ̄g
+ H

patm

ρ̄g
+ (H − z)

gqair, (6.1)

where patm is the atmospheric pressure at the water surface.
For H = 10 m, the buoyancy flux close to the surface would be B(H) = 2gqair and for

H = 5 m, B(H) = 3gqair/2. However, as we see from (5.4), (5.19) and (5.21), the buoyancy
flux enters the equations only with the power of 1/3. So, for a channel of 5 m depth, the
correction due to the changing buoyancy flux would be at most 15 %. As a side note, the
uncertainty of 10 % in measuring qair at the low end of our parameter range in small-scale
experiments, yields only a 3 % error for our measurements of qc.

In fact, as can be seen in (6.1), the correction due to the changing buoyancy flux can
be absorbed into the proportionality coefficients that would depend on the water depth
H whereas the functional form of (5.4), (5.19) and (5.21) would remain the same. For
example, in (5.19), this means defining Cv(H) and measuring it for different water depths.
However, the fact that to analyse our small-scale experiments we used the coefficient Cv

measured in real-scale experiments by Bulson (1961) and obtained a good fit of the data
with our model, suggests that this dependence should not be too pronounced (see also van
der Ven & Wieleman 2017).

Another mechanism by which the buoyancy flux can vary is the gas exchange via
dissolution and stripping between the air bubbles and the dissolved oxygen and nitrogen
in the surrounding water. This process is the main principle used for the hypolimnetic
oxygenation of lakes and other water reservoirs (Wüest et al. 1992; McGinnis & Little
2002; McGinnis et al. 2004). However, the bubble plumes used for aeration are relatively
weak such that the bubbles are all expected to dissolve in water. For bubble curtains, we
can make the following estimate. For a stable bubble curtain, we need Dm,b � 0.12, which
yields

qair = 1
g

(
Dm,bHg′

2αE

)3/2

� 0.22 m2 s−1 ≈ 800 m2 h−1, (6.2)

where we take as representative values g′ = 0.2 m s−2 and H = 5 m. This value is 103

times larger than the gas flow rate used for the oxygenation of lakes (McGinnis &
Little 2002). The associated mass flux per unit width is approximately 270 g m−1 s−1.
Taking the solubility of gases (nitrogen and oxygen) in water to be approximately
0.04 g l−1 = 40 g m−3, around 200 g of gas can be dissolved in the water column of 1 m2

cross-sectional area and 5 m height around the bubble curtain. This means that after 1 s
the bubble curtain supplies more gas bubbles than can be dissolved in such a surrounding
water column. Thus, we can conclude that the gas exchange does not noticeably change
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the buoyancy flux of the bubble curtain. We also note here that Bombardelli et al. (2007)
provided a full numerical solution of the model by Wüest et al. (1992) including mass
transfer and compressibility effects for a realistic water reservoir and showed that for
the bubble sizes between 2 mm and 7 mm the assumption of a constant bubble radius
is acceptable.

Additionally, in the derivation of our model for the infiltration flux, we neglected the
inner structure of the bubble curtain, which is a multiphase line plume: the bubbles
merely provided the buoyancy driving the plume, that immediately disappeared as the
curtain reached the water surface. As a consequence, we did not measure the bubble size
distribution in our small-scale experiments and our suggested models for the length of the
recirculation cells (5.4) and the infiltration flux (5.21) do not include the slip velocity us.

The effects of different slip velocities us are twofold. First, the entrainment constant
αE might depend on the slip velocity us of the bubbles as well as on the gas flow rate
(cf. Milgram 1983) which will change the volume flux in the rising bubble curtain. In
our theoretical modelling, however, we have not explicitly used the volume flux in the
bubble curtain but rather the flux qH (5.19) which we based on the experimental correlation
obtained by Bulson (1961) for real-scale bubble plumes. Thus, we expect the expression
for qH to equally hold for real-scale bubble curtains. This also means that the expression
for α (5.13) is expected to remain valid for the real-scale bubble curtains, and, hence the
formulas for ρ′

l and ρ′
d given by (5.15) and (5.16), respectively.

Second, the slip velocity us determines how easily the bubbles are laterally deflected.
In our experiments, the slip velocity us was large enough for the bubbles to almost
immediately escape out of water as the bubble curtain impinged on the surface. For
real-scale bubble curtains, the bubble sizes in the millimetre range possess slip velocities
us = 0.3 m s−1 (Wüest et al. 1992). As the bubble curtain flow is laterally deflected upon
reaching the surface, the bubbles must cross the maximum distance ∼ H/4 to reach the
surface and thus, we expect all the bubbles to escape at a time scale ∼ H/4us. This
time scale should be contrasted with the time scale

√
2H/g′ for the formation of the

recirculation cells. For H = 5 m and g′ = 0.2 m s−2, we can calculate the ratio of both
time scales to be approximately 0.5. This means that the bubbles will remain suspended
in the laterally deflected flows for a non-negligible amount of time and only gradually
disappear. Hence, we can expect the buoyancy of the laterally deflected flows to gradually
change over time and, as a consequence, the horizontal extent of the recirculation cells
might be larger than predicted by (5.4), and the infiltration flux in (5.21) might increase
due to the growing contribution of Lcell. We expect, however, the functional dependence of
Lcell on g′, qair and H to remain the same and the proportionality factor could be modelled
as a function of us. It would be an interesting problem for a future study to investigate the
dependence of the horizontal extent of recirculation cells on the slip velocity us. We also
note here that in the breakthrough regime, the path of the rising bubbles in our small-scale
experiments may be different from the path of the bubbles in the breakthrough regime for
real-scale bubble curtains. However, since the bubble curtain does not act as an effective
barrier in the breakthrough regime, this observation is of no further relevance to our
study.

Summarising the preceding discussion, we might expect the form of the functional
relationships for Lcell, qH , qth

c , ρ′
l and ρ′

d to apply to real-scale air curtains although
some of the proportionality coefficients may change depending on the water depth H and
the slip velocity of the bubbles us. Some further experiments on a larger scale would
be desirable to understand the effects of H and us on these experimentally measured
coefficients.
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7. Conclusion

In this paper, we considered both experimentally and theoretically the ability of a bubble
curtain to separate two water zones at different densities. Our small-scale experiments
provide the most exhaustive investigation of the bubble curtain performance for varying
density differences, air fluxes and water depths to date.

We first established a formal analogy between a bubble curtain and an air curtain and
showed how the two theoretical frameworks used for their description can be unified. In
particular, analogous to air curtains, we identified two operating regimes of the bubble
curtain: the breakthrough regime, where the bubble curtain is too weak to stop the
buoyancy-driven exchange flow, and the curtain-driven regime, where the bubble curtain
successfully interrupts the gravity current. In the latter regime, the infiltration flux of
dense fluid is solely due to the self-induced mixing of the bubble curtain. Both our
theoretical reasoning and our quantitative measurements allowed us to conclude that the
bubble curtain operates optimally at Dm.b ≈ 0.12, or Frair ≈ 0.93, which is the value at
the transition between the breakthrough and the curtain-driven regimes.

In the curtain-driven regime, we developed a theoretical model to predict the infiltration
flux of dense fluid across the bubble curtain, the density inside the recirculation cells as
well as the horizontal extent of the mixing cells in the light-fluid half. Our theoretical
predictions for the infiltration flux across the bubble curtain are in excellent agreement
with our measured data. This also allowed us to provide an upper limit on the effectiveness
of the bubble curtain in the curtain-driven regime and show that, asymptotically for very
long running times, the values for the effectiveness E are expected to collapse onto a single
curve as a function of Dm.b. The optimum effectiveness achieved at Dm.b ≈ 0.12 can be
theoretically estimated to be E ≈ 0.83. The prediction of the density ρ′

l in the recirculation
cell in the light-fluid half coincides very well with the measured values ρ′

l,exp. There is
a slight discrepancy between the density ρ′

d and the experimentally measured ρ′
d,exp in

the quasi recirculation cell in the dense-fluid side. However, we attribute this difference
mostly to the fact that the running times of our experiments were not long enough to
achieve a steady state in the dense-fluid side due to the limited size of our experimental
set-up.

We may expect that our results and theoretical models derived from small-scale
experiments apply to real-scale bubble curtains and can be helpful in minimising the
salt transport from saltwater into the freshwater zone, which is the main goal of using
a bubble curtain. For instance, the effectiveness reaches its peak at Dm.b ≈ 0.12. Thus,
when operating a bubble curtain, the air flux qair could be adjusted for given H and g′
to ensure the optimal performance of the bubble curtain. Our model developed in § 5.2
allows us to theoretically calculate the infiltration flux qc across the bubble curtain via
(5.21). For example, it would allow an estimate of the maximum time that a lock can
remain open if the objective is to keep the salt transport below a given acceptable level.
The theoretical expression (5.21) for the infiltration flux could also be incorporated into
models simulating the entire system of channels with multiple locks to estimate the salt
intrusion into the system for a given ship traffic.

Summarising, the bubble curtain can be highly effective in preventing the saltwater
intrusion with the effectiveness value E of 80 %. As we mentioned earlier, however,
the definition of effectiveness does not take into account the operating costs of the
bubble curtain. While the definition of effectiveness for air curtains can be easily linked
to the resource economy (since the fan power consumption of air curtains is much lower
than the thermal load of the infiltrating air), the estimate of the economic effectiveness of
bubble curtains is much more complex and would depend on a specific scenario, such as
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Figure 16. Processed calibration image Iavg(c). The water depth is H = 15 cm and the concentration of
methylene blue is c = 0.04 ppm. The red box shows the region where the density is averaged.

the commercial costs of a specific ship lock as well as on how much damage the infiltrating
saltwater would cause to the environment.
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Appendix A. Calibration and processing of experiments B

For the calibration measurements of the dye attenuation, the entire channel was filled
with freshwater to the height of H = 15 cm. A methylene blue solution of concentration
2.00 g l−1 (200 ppm) was prepared in a separate flask. This solution was then added in
different amounts to the water in the channel to calibrate the dye attenuation.

For each concentration of methylene blue in the channel, a video was recorded for
5 s at 24 frames s−1. The raw image sequence I(0)(k) with the light intensity between
0 for ‘black’ and 1 for ‘white’ was then processed as follows using MATLAB 2019a.
First, we removed the background by using the transformation I(1)(k) = I(0)(k)/Ibg. The
background image Ibg that was used was the one where the tank was entirely filled with
fresh water to the height H = 15 cm with no added dye. An average image Iavg(c) =∑100

k=1 I(1)(k) was calculated out of 100 frames for each methylene blue concentration c.
The light intensity I(c) for each methylene blue concentration in the channel was averaged
over a box (see figure 16) in the image Iavg(c).

The Beer–Lambert law for the light attenuation states that

I(c) = I(0) exp(−Kc), (A1)

where I is the light intensity and c is the concentration of the attenuating species. The
factor K generally depends on the wavelength of light and the travel distance through the
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Figure 17. Measurement of the light intensity after passing the dyed water in the channel as a function of the
concentration c of methylene blue. The black line shows the linear fit to the data through the origin with a
coefficient of approximately K = 6.02 ± 0.08.

solution but both were held fixed in our experiments (by using a filter for the camera and
a fixed channel width W).

The results for lnI(c)/I(0) are shown in figure 17 as a function of the concentration c.
The calibration constant K is obtained by performing a linear fit to the experimental data.
The error bars are smaller than the symbols. The calibration law used in the experiments
is therefore

− ln
I(c)
I(0)

≈ (6.02 ± 0.08)c. (A2)

In experiments B, we used the following procedure to convert recorded images from
the camera to instantaneous density maps inside the channel (see also Allgayer & Hunt
2012).

(i) We first transformed the raw sequence I(0)(k) of recorded images by removing the
background to I(1)(k) = I(0)(k)/Ibg. The background image Ibg showed the tank
entirely filled with freshwater and no added dye to the height H and there was one
background image for each water height H.

(ii) The average light intensity Ī(k) in a fixed region (a box above the tank) in each image
of I(1)(k) was compared with the average light intensity Īref in the same region of
the first frame I(1)(0). The light intensity of I(1)(k) was then adjusted according
to I(2)(k) = I(1)(k) × Īref /Ī(k). The purpose of this step is to reduce the effects of
slow variations in intensity of the light bank that can occur over the course of several
minutes.

(iii) The first frame I(2)(0) (with the gate still closed) was used to calculate I(0) by
averaging the density over a box in the light-fluid half of the channel. By averaging
the light intensity over a box in the dense-fluid half of the channel, we obtained
the value I(cmax). Using (A2) we could then determine the concentration cmax
of methylene blue that was present in the dense-fluid half of the channel at the
beginning of the experiment and corresponded to ρd. The typical averaging boxes
in the light- and dense-fluid halves are shown in figure 18. They extended from
the bottom of the channel to approximately 3H/4. The width of the box in the
dense-fluid half was fixed in all experiments, the width of the box in the light-fluid
half varied depending on the size of the recirculation cell. The width of the box in
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Figure 18. Processed frame of an experiment B with Q = 30 l min−1, H = 20 cm and �ρ = 25 kg m−3

showing typical averaging boxes for density calculation in the recirculation cells.

the dense-fluid half was chosen to correspond to the smallest width in the light-fluid
half.

(iv) In each frame I(2)(k), the light intensity was averaged over the same two box regions,
yielding I(cl(k)) and I(cd(k)), where cl(k) and cd(k) are the concentrations of
methylene blue in the boxes in the light- and dense-fluid half, respectively. The
values of cl(k) and cd(k) were determined using (A2) and then converted to ρ′

l,exp(t)
and ρ′

d,exp(t) as

ρ′
l,exp(t) = ρl + cl(k)

cmax
(ρd − ρl), (A3)

and, similarly, for ρ′
d,exp(t). To obtain the density map in figure 14, no averaging

over boxes was performed and the methylene blue concentration as well as the
corresponding densities were calculated directly for each pixel in the image I(2)(k).

(v) The final asymptotic values ρ′
l,exp and ρ′

d,exp were calculated by averaging ρ′
l,exp(t)

and ρ′
d,exp(t) over the last 50 frames of the experiment. Table 1 lists these mean

values along with the corresponding standard deviations.

Appendix B. Determination of the discharge coefficient

The discharge coefficient Cd is an experimental constant that accounts for the discrepancy
between the theory of lock-exchange flows (see Wilson & Kiel 1990) and the experimental
results. The orifice equation reads

qopen = Cd

3
H
√

g′H. (B1)

We measured Cd with exactly the same procedure as for experiments A (see § 3.1) except
that the bubble curtain was not activated.

The density difference �ρ between both sides of the tank was varied, along with the
water depth H. As in experiments A, the measured quantities are the densities on both
sides before and after the experiment from which the infiltrating volume of dense fluid V∗
is deduced (see (4.2)). The duration t of the experiment was also measured. The equation
above can be written as

V∗

WH2 = Cd

3
t

√
g′

H
. (B2)

The non-dimensionalised infiltration volume is proportional to the non-dimensionalised
time t

√
g′H−1/3 by a factor Cd. In figure 19, we plot the experimentally measured
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1 2 3 4 5 6 7 80

1

2

3

4
V∗

/(
W

 H
2
)

H = 13.1 cm
H = 18.1 cm
H = 9 cm
H = 20 cm

t�g′H–1/3

Figure 19. Plot of the non-dimensionalised infiltration volume V∗/(WH2) as a function of the
non-dimensionalised time t

√
g′H−1/3. The measurements were conducted for several values of the water depth

H and initial horizontal density difference �ρ. The slope of the fitted black line is the discharge coefficient
Cd ≈ 0.55 ± 0.02.

non-dimensionalised volume as a function of the non-dimensionalised time. By
performing a linear fit to the data through the origin, we determine Cd. The value that
we use for our experiments is

Cd ≈ 0.55 ± 0.02. (B3)

Appendix C. Experiments on the scaling of qH

In the formulation of our theoretical model for the infiltration flux qc in § 5.2, we had to
estimate the horizontal outflow qH induced by the bubble curtain next to the water surface.
We used the results by Bulson (1961) and by Abraham et al. (1973) that the outflowing
horizontal current has the maximum surface velocity Vmax ≈ 1.46(gqair)

1/3 (5.18) and the
depth H/4, respectively. We conducted some experiments to roughly check whether these
scaling relations are appropriate for our small-scale experiments.

C.1. Maximum surface velocity Vmax

The experiments to estimate the maximum surface velocity Vmax of the horizontal outflow
were conducted by running the bubble curtain in the channel with �ρ = 0 for several
values of qair and H. The velocity of the current close to the surface was observed by
injecting the blue dye at the source of the bubble curtain with a syringe (see figure 20).
We then measured the propagating horizontal velocity of the blue dye by performing the
analysis of the recorded side-view videos. The results for measured Vmax are presented in
figure 21 as a function of the scaling (g′qair)

1/3. The dispersion in the experimental data
is very large and it is difficult to obtain any accurate quantitative correlations based on
the crude blue dye visualisation that we used. However, we observe that Vmax does indeed
appear to linearly scale as (g′qair)

1/3. A linear fit to the data through the origin yields
a coefficient of approximately 0.8. It is in the same order of magnitude as reported by
Bulson (1961). We expect our coefficient to be smaller since in our side-view recordings
the injected blue dye allows us to observe only the velocity close to the water surface but
not the surface velocity itself. Similarly, van der Ven & Wieleman (2017) also observed
in their small-scale experiments that the maximum horizontal velocities measured a few
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Figure 20. A frame of an experimental recording for Qair = 20 l min−1 and H = 15 cm showing that the blue
dye which was injected with a syringe at the source of the bubble curtain is being carried into the outflowing
horizontal current close to the water surface.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.400

0.1
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0.4

V m
ax

 (
m
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–
1
)

(gqair)1/3 (m s–1)

Qair = 10 l min–1, H = 9 cm

Qair = 20 l min–1, H = 9 cm

Qair = 30 l min–1, H = 9 cm

Qair = 60 l min–1, H = 9 cm

Qair = 10 l min–1, H = 15 cm

Qair = 20 l min–1, H = 15 cm

Qair = 30 l min–1, H = 15 cm

Qair = 60 l min–1, H = 15 cm

Qair = 10 l min–1, H = 20 cm

Qair = 20 l min–1, H = 20 cm

Qair = 30 l min–1, H = 20 cm

Qair = 60 l min–1, H = 20 cm

Figure 21. The experimentally measured values of the horizontal current velocity Vmax as a function of the
velocity scale (gqair)

1/3. The black line corresponds to the linear fit to the data through the origin with a
coefficient of approximately 0.8.

centimetres below the surface were lower than predicted by Bulson (1961). The velocity
vectors were, however, increasing towards the surface and, upon extrapolating their data,
van der Ven & Wieleman (2017) found that the resulting surface velocities were in good
agreement with Bulson (1961). Hence, the scaling (5.18) proposed by Bulson (1961) should
be applicable to our small-scale experiments.

C.2. Water depth
In order to obtain a first approximation for the depth of the horizontal outflow current
close to the surface induced by the bubble curtain, we recorded a movie of the
bubble curtain running for a few minutes in the channel with �ρ = 0. By applying an
appropriate threshold to the frames to only keep the bubbles present in the water and
then superimposing them in one image, it was possible to obtain an idea of how deep

941 A1-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

14
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.142


Bubble curtains

(a)

(b)

(c)

Figure 22. Visualisation of the bubbles entrained by the outflowing horizontal current produced by different
air flow rates Qair for (a) H = 9 cm, (b) 15 cm, (c) 20 cm. The images have been rescaled in the horizontal
direction. The black silhouette corresponds to Qair = 10 l min−1, the purple to Qair = 20 l min−1, the yellow
to Qair = 30 l min−1 and the cyan to Qair = 60 l min−1. The horizontal lines indicate a depth of H/4 below the
water surface.

the bubbles were driven in the horizontal current. Although the bubbles escape the water
almost immediately due to their slip velocity, a few bubbles are deflected horizontally by
the outflow current and can be used to estimate its depth in the immediate vicinity of the
bubble curtain.

The results are shown in figure 22. The scaling of H/4 for the depth of the outflow
current appears to be reasonable. Obviously, the water depth H in our experiments was
not varied within ranges that are significant enough to find a precise scaling coefficient. It
is important to note that for Qair = 60 l min−1 the bubble curtain tends to create a bulge
at the free surface, which creates a downward current explaining why bubbles tend to go
beyond H/4 for high values of the air flow. We use the coefficient of 1/4 proposed by
Abraham et al. (1973) for our theoretical model.

Appendix D. Proof for the existence of a well-defined 0 < α < 1 in the curtain-driven
regime

Here we give a brief proof for the existence of a well-defined root 0 < α∗ < 1 of the (5.29)
in the curtain-driven regime.

We consider the function

f (α) = α3 + α2 − r, (D1)
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where r > 0. We have f (0) = −r and f (1) = 2 − r so that f (1) > 0 for r < 2. Since f is
continuous, the intermediate value theorem ensures the existence of the root 0 < α∗ < 1
so that f (α∗) = 0 for 0 < r < 2. Since f ′(α) = 3α2 + 2α > 0 for 0 < α < 1, the root α∗
is unique.

In the curtain-driven regime Dm,b � 0.1. So, invoking (5.20)

r = 64C2
dαE

9C2
v

1
Dm,b

� 0.72 (D2)

in the curtain-driven regime, which concludes the proof.
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