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In the presence of a stationary gravitomagnetic field, a weakly rotating self-gravitating
fluid relaxes into equilibrium flow configurations which admit both large- and small-scale
structures. Unlike the traditional Beltrami equilibria in fluid, the equilibrium states in a
rotating self-gravitating fluid in a gravitomagnetic field have structure similar to that of
double curl Beltrami equilibria in plasma where the generalized vortical lines are aligned
with the flow field. Different equilibrium flow configurations in the rotating fluid can be
distinguished by the ratio between total energy and helicity. However, these fluid equilibria
do not exhibit diamagnetic behaviours as observed in multi-species plasma equilibria.
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1. Introduction

Vorticity is a measure of the rotation of the velocity field at any point in a fluid. It is
defined as the curl of the fluid velocity field v:

ω = ∇ × v. (1.1)

Vortex sizes in a fluid can range from thousands of light-years (galaxies) to a few hundred
metres (tornadoes) in nature and are often observed to self-organize into equilibrium
configurations (Nitsche 2006). The presence of these ordered vortex structures in fluid
and plasma is quite important in understanding the formation and evolution of galaxies,
accretion discs, stars, etc. (Brahic 1982; Acosta-Pulido et al. 1990; Abramowicz et al.
1992; Shapiro 1996; Klahr & Bodenheimer 2003; Porter, Jones & Ryu 2015; Jelic-Cizmek
et al. 2018). One particularly important class of equilibria in an ideal fluid can be identified
with the Beltrami flow and expressed as

ω = αv, (1.2)

where α is an arbitrary function. When α is taken as a constant, it is also known as Trkalian
flow.

An analogue of this condition can be derived in the context of force-free single-fluid
magnetohydrodynamics when the flow velocity v is replaced by magnetic field B (Woltjer
1958):

∇ × B = αB, (1.3)
where α is a scalar field and must satisfy B · ∇α = 0. This state, first discussed by Woltjer
and Taylor, has been successful in modelling fusion and astrophysical plasmas (Woltjer
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1958; Taylor 1974). It can be derived by the minimization of the magnetic field energy

E =
∫

B2

8π
dV, (1.4)

with magnetic helicity (A being the magnetic vector potential)

h =
∫

A · B dV (1.5)

as a global constraint which leads to the ‘relaxed state’ with spatially homogeneous α, also
known as constant-α-Beltrami field.

Later, this state was extended to multi-species plasmas where the energy now consists
of both kinetic and magnetic parts (Mahajan & Yoshida 1998; Steinhauer & Ishida 1998;
Yoshida & Mahajan 2002):

E =
∫ (

Σi
1
2
ρv2

i + B2

8π

)
dV, (1.6)

with a generalized helicity, not the magnetic helicity,

Hi =
∫

P i · Ω i dV (1.7)

playing the role of constraint in the minimization, where the new canonical momentum
P = A + mc/q v and its curl Ω = ∇ × P = B + mc/q ∇ × v. Here, plasma density ρ
= mn, with m the mass of species, n the number density, q the charge, c the speed of
light and i the individual plasma species. The collinearity condition, now defined as the
generalized Beltrami condition, can be succinctly written as

Ω i = μivi, (1.8)

where μi is the Lagrange multiplier. The generalized Beltrami condition implies an
alignment of generalized vorticity and flow field in a multi-species charged fluid. To fully
describe such equilibrium states, the Beltrami condition must be supplemented by the
appropriate Bernoulli condition which indicates homogeneity in energy distribution in
the plasma. These equilibrium states are called Beltrami–Bernoulli states, and are usually
characterized by the number of independent single Beltrami systems needed to construct
them.

In this paper, we explore the possibility of the formation of Beltrami–Bernoulli
states in a weakly rotating self-gravitating neutral (uncharged) fluid. The significance
of rotation within the context of frame-dependent effects such as Coriolis force in
vortical fluid dynamics has been explored in the stellar structure, turbulence, zonal
flows, dynamos, etc. (Singh & Singh 1984; Hopfinger & Van Heijst 1993; Shukla &
Stenflo 2003; Itoh et al. 2006; González, Costa & Santini 2010; Shatashvili & Yoshida
2011; González 2014). Here, we consider the effect of fluid rotation in the context of
the weak-field limit of general relativity, where the rotation of a self-gravitating fluid
can twist the background space–time surrounding it, also known as frame dragging.
This frame-dragging phenomenon can be identified with a magnetic-type gravitational
field, i.e. gravitomagnetic field, and its governing equations can be derived by taking
the weak-field, slow-velocity limit of Einstein’s equation. As moving charges create a
magnetic field, the gravitomagnetic field exists due to the mass currents in the rotating
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fluid. The role of gravitomagnetic field in various astrophysical phenomena such as jet
collimation, pulsar beam precession, gyroscope precession, vorticity generation, etc., has
been explored in detail (Bardeen & Petterson 1975; Nelson & Papaloizou 2000; Lei, Zhang
& Gao 2012; McKinney, Tchekhovskoy & Blandford 2013; Nealon, Price & Nixon 2015;
Krishnan et al. 2020; Bhattacharjee & Stark 2021). By defining generalized vorticity in
the rotating fluid as a combination of flow vorticity and gravitomagnetic field, we obtain
equilibrium flow configurations which are similar to a unique class of Beltrami–Bernoulli
states known as double curl Beltrami states.

We present a brief overview of the Einstein–Maxwell equation based on the analogue
of the electromagnetic Maxwell equation. Then, we construct the generalized vortical
dynamics of a rotating fluid followed by an analysis of the equilibrium solution of the
vorticity transport equation. We compare our results with the plasma equilibrium states
and delineate features that are unique to uncharged self-gravitating rotating fluid. Next, we
present an analysis of helicity and energy, which is helpful in understanding the physical
meaning of the Lagrange multiplier. Finally, we discuss the limiting cases of these states,
possible implications and future work.

2. Einstein–Maxwell equation

To study the gravitational dynamics of a weakly rotating self-gravitating fluid, we need
to explore the linearized limit of the Einstein equation. When the space–time metric is
almost Minskowskian, gμν = ημν + h̄μν , and terms of O(c−4) or higher are neglected, we
can write the Einstein equation

Rμν − 1
2

gμνR = −16πG
c4

Tμν (2.1)

as a set of linearized equations almost identical to the electromagnetic Maxwell equation
as (Braginsky, Caves & Thorne 1977; Thorne 1988; Manfredi 2015)

∇ · Eg = −4πρ, (2.2)

∇ × Eg = 0, (2.3)

∇ · Bg = 0, (2.4)

∇ × Bg = −16πG
c

ρv + 1
c

∂Eg

∂t
, (2.5)

where Tμν is the stress energy tensor, Eg = −∇φ is the Newtonian gravitational field, φ
is the gravitational potential and Bg = ∇ × Ag is the gravitomagnetic field, with Ag being
the corresponding vector potential. Also, G is the gravitational constant and ρ is the matter
density. It should be noted that the right-hand side of (2.3) does not have any ∂Bg/∂t to
this order (Thorne 1988).

3. Vortical fluid dynamics

In the weak-field, slow-velocity limit of general relativity, the Euler hydrodynamics
equation for a rotating ideal fluid can be written as (Thorne, Price & MacDonald 1986)

dv

dt
= −∇p

ρ
+ Eg +

(
v × Bg

c

)
, (3.1)

where d/dt = (∂/∂t + v · ∇), v is the fluid velocity and p is the fluid pressure.

https://doi.org/10.1017/S0022377822000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000101


4 C. Bhattacharjee

The continuity equation for the corresponding fluid is

∂ρ

∂t
+ ∇ · (ρv) = 0. (3.2)

Now using the vector identity (v · ∇)v = ∇(v2/2) − v × (∇ × v) and the expressions
Eg = −∇φ and Bg = ∇ × Ag, we can rewrite (3.1) as

∂v

∂t
= v ×

(
∇ × v + Bg

c

)
− ∇

(
p
ρ

+ v2

2
+ φ

)
, (3.3)

where we have assumed a barotropic equation of state for pressure, i.e. p(ρ). Since the
vector potential Ag does not depend on time, we can rewrite (3.3) as

∂

∂t

(
v + Ag

c

)
= v ×

(
∇ × v + Bg

c

)
− ∇Φ, (3.4)

where we identify the quantity Pg = (v + Ag/c) as a new canonical momentum and Φ
contains all the potentials for the gradient forces.

Now, we take the curl of (3.4) and obtain the vorticity transport equation:

∂

∂t

(
∇ × v + Bg

c

)
− ∇ × v ×

(
∇ × v + Bg

c

)
= 0, (3.5)

where we identify Ωg = ∇ × Pg = ∇ × v + Bg/c as the generalized vorticity.
It should be noted here that (3.5) does not contain any source terms, which implies that

if the vorticity is zero at any time, it remains so for all times in an ideal barotropic fluid.

4. Equilibrium state

In this paper, we are interested in large-scale equilibrium structures in a self-gravitating
and weakly rotating fluid. The stationary solution of (3.5) can be written as

Ωg ≡ ∇ × v + ωg = μ
16πGρ

c2
v, (4.1)

where we have defined ωg = Bg/c and satisfies the requirement of vanishing divergence
of generalized vorticity and time-independent continuity equation, i.e. ∇ · (ρv) = 0.

To fully solve the equilibrium state, we need to supplement the Beltrami condition with
the time-independent gravitomagnetic Ampère law rewritten in terms of the new quantity
ωg, which has the following form:

∇ × ωg = −16πGρ

c2
v. (4.2)

The separation constant μ in (4.1) can be identified as the Lagrange multiplier when the
Beltrami condition is derived via the variational principle.

For (4.1) to be defined as the stationary solution of (3.5), we need to impose the
Bernoulli constraint which is an expression of the balance of all remaining potential forces,
i.e. ∇Φ = 0.

Combining (4.1) and (4.2), we obtain the following equation:

∇ × ∇ × v − 4v = μ

λ̃J

∇ × v, (4.3)

where we have normalized |∇| to the inverse of skin depth λ̃J = α̃λJ with Jean’s length
λJ = cs0/ωJ , Jean’s frequency ωJ = (4πGρ0ρ̂)1/2 and α̃ = c/cs0. Here we have defined
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sound speed cs0 in terms of some ambient mass density ρ0 and ρ̂ is the density envelope
which we take to be a constant of order unity for the rest of this paper. Equation (4.3) is
known as the double curl Beltrami equation and has been studied thoroughly in the context
of Hall magnetohydrodynamics (Mahajan & Yoshida 1998; Mahajan et al. 2001; Ohsaki
et al. 2001).

Next, (4.3) is written as

(∇ × −λ+)(∇ × −λ−)v = 0, (4.4)

where

λ± = 1
2

⎡
⎣ μ

λ̃J

±
[(

μ

λ̃J

)2

+ 16

]1/2
⎤
⎦ . (4.5)

It should also be noted that (4.4) is the combination of two Beltrami fields G+ and G−,
i.e.

∇ × G± = λ±G±, (4.6)

with the final solution
v = C+G+ + C−G−, (4.7)

where the constant amplitudes C± are determined from initial conditions and
characterize the double curl Beltrami states along with their corresponding eigenvalues
λ±. The explicit solution for the Beltrami condition in (4.6) is provided by the
Chandrashekar–Kendall function in cylindrical coordinates whereas it takes the form
of the Arnold–Beltrami–Childress solution in Cartesian coordinates (Chandrasekhar &
Kendall 1957).

One can obtain the solution for gravitomagnetic field by using (4.1) which can be written
as follows:

ωg =
(

μ

λ̃2
J

− λ+
λ̃J

)
C+G+

(
μ

λ̃2
J

− λ−
λ̃J

)
C−G−. (4.8)

Finally, it should be emphasized here that the coupling between gravitomagnetic and
flow fields has enabled us to uncover a far richer equilibrium structure in the fluid
compared with the traditional Trkalian flow.

4.1. Comparison with the double curl Beltrami states in plasmas
Though double Beltrami states emerge in both plasma and self-gravitating rotating fluid,
the physical characteristics of these states might not be the same in both types of systems.
In this section, we study possible differences between the two systems. For a single-species
dynamic charged fluid with constant density in an appropriate neutralizing background,
the generalized Beltrami condition can be written as

Ω ≡ B + mc
q

∇ × v = 4πnq
c

v, (4.9)

which, combined with the Ampère law, gives us the plasma counterpart of (4.3) (Mahajan
2008):

∇ × ∇ × v + v = μ

λs
∇ × v, (4.10)
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with the following roots:

λ± = 1
2

⎡
⎣μ

λs
±
[(

μ

λs

)2

− 4

]1/2
⎤
⎦ , (4.11)

where species skin depth λs = c/ωp and plasma frequency ωp = √
4πnq2/m. The roots

are real for (μ/λs)
2 > 4 but form a complex conjugate pair when (μ/λs)

2 < 4.
Apart from a factor of 4, there is a sign difference between the left-hand sides of

(4.3) and (4.10) and the origin of this can be attributed to the fact that gravity is always
attractive as reflected in (4.2). Contrary to the plasma equilibrium states, the roots λ± in
(4.5) for double curl Beltrami states in self-gravitating fluid are always real. Moreover,
the presence of an inherent length scale, i.e. Jean’s length, has introduced a singular
perturbation term ∇ × ∇ × v in (4.3). This implies equilibrium states in self-gravitating
fluid are also endowed with two length scales in a gravitomagnetic field. This can have
major consequences for the formation of large- and small-scale flow configurations in the
fluid as demonstrated in charged fluid (Mahajan et al. 2001; Kagan & Mahajan 2010).

Next, if we set μ = 0 and reverse the normalization of the gradients, (4.3) can be
rewritten as

∇2v = − v

λ̃2
J

, (4.12)

which can be compared to the corresponding limiting case of (4.10) in plasma:

∇2v = v

λ2
s

, (4.13)

which are nothing but the Ω = 0 solution of the vorticity transport equation for both
plasma and fluid.

Though (4.12) and (4.13) have a similar structure, the physics exhibited by the two
systems is completely opposite. Equation (4.13) is the superconducting limit in a plasma
with a skin depth λs beyond which the magnetic flux is completely expelled from the
interior of the plasma; a complete antithesis to the behaviour of gravitomagnetic flux in a
neutral fluid. Another way to interpret (4.12) and (4.13) is that electric current is restricted
to the skin depth in a diamagnetic plasma equilibrium, whereas the mass current is not
confined to Jean’s length in a fluid equilibrium.

5. Helicity and energy

From our analysis in the previous section, we notice that the values of Lagrange
multiplier μ determine the characteristics of equilibrium states in a fluid. First, we take
the following definition of helicity as one of the invariants of the system:

H = c2

32πG

∫
d3 x Pg · Ωg, (5.1)

which is a measure of different topological features of vortical field lines such as
knottedness and twists (Moffatt 1969).
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The physical interpretation of the Lagrange multiplier can then be obtained by
computing the helicity from (5.1):

H = c2

32πG

〈(
v + Ag

c

)
·
(

∇ × v + Bg

c

)〉

= c2

32πG

〈(
v + Ag

c

)
· μ16πGρ

c2

〉

= μc2

32πG

〈
16πGρv2

c2
− Ag · ∇ × Bg

c2

〉

= μ

〈
1
2
ρv2 − B2

g

32πG

〉
= μE, (5.2)

yielding an expression for μ in terms of two invariants of the motion:

μ = H
E

, (5.3)

where 〈〉 = ∫
d3 x. Therefore, the Lagrange multiplier is a measure of generalized helicity

as a fraction of total energy. It should be noted that, gravity being an attractive force, the
energy density of the gravitomagnetic field has a negative sign in front of it (Sebens 2020).

6. Discussion

In light of our results, we notice that the equilibrium flow configurations of a rotating
fluid in a stationary gravitomagnetic field allow for small-scale structures due to the
singular perturbation term ∇ × ∇ × v. These small-scale structures can be distinguished
by comparing the ratio between Jean’s length and system size. Moreover, two invariants
of the motion, i.e. generalized helicity H and energy E, emerge as the determinants of
different classes of flow configurations in the fluid. The interaction and evolution of
structures at different length scales can provide new insights into turbulence in accretion
discs, differential rotation patterns in stars and jet formations in various astrophysical
objects (Tobias, Dagon & Marston 2011).

One can obtain the traditional Beltrami flow if the system length L � λ̃J and (4.3)
reduces to ∇ × v = −(μ−1)v. Similar to the double Beltrami equilibria in a plasma, the
double curl Beltrami states in a fluid can terminate and relax into single curl equilibria.
Furthermore, such termination can result in catastrophic events. These events can have
potential effects in astrophysics such as stability of a rotating star, formation of large-scale
structure in galaxies, excitation of different wave modes, collimation of ionizing radiation
in an accretion disc, etc.

The next step in this scheme will be to explore the gravitomagnetic effects in plasma
equilibria. In that case, one has to appropriately incorporate the coupling between gravity
and electromagnetic fields in Maxwell’s equation which is beyond the scope of this
paper. Finally, the consequence of double curl Beltrami flow in weakly rotating stars and
accretion discs will be explored in future work.
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