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Abstract
Real-time and efficient path planning is critical for all robotic systems. In particular, it is of greater importance
for industrial robots since the overall planning and execution time directly impact the cycle time and automation
economics in production lines. While the problem may not be complex in static environments, classical approaches
are inefficient in high-dimensional environments in terms of planning time and optimality. Collision checking poses
another challenge in obtaining a real-time solution for path planning in complex environments. To address these
issues, we propose an end-to-end learning-based framework viz., Path Planning and Collision checking Network
(PPCNet). The PPCNet generates the path by computing waypoints sequentially using two networks: the first net-
work generates a waypoint, and the second one determines whether the waypoint is on a collision-free segment
of the path. The end-to-end training process is based on imitation learning that uses data aggregation from the
experience of an expert planner to train the two networks, simultaneously. We utilize two approaches for training a
network that efficiently approximates the exact geometrical collision checking function. Finally, the PPCNet is eval-
uated in two different simulation environments and a practical implementation on a robotic arm for a bin-picking
application. Compared to the state-of-the-art path-planning methods, our results show significant improvement in
performance by greatly reducing the planning time with comparable success rates and path lengths.

1. Introduction
Bin-picking, which includes object detection, motion planning, and grasping, is a crucial part of automa-
tion in industry. Bin-picking has been one of the trending research topics in recent years because of the
challenges in image processing and path planning [1, 2]. Industrial bin-picking consists of a 2D/3D
camera, which is used to collect the environmental information (object and obstacle detection), and a
conveyor with the bins. The vision system is used to detect object positions and obstacle shapes, while
the motion planning module calculates the path to the grasp position based on this information [3]. An
efficient and real-time path for the manipulator can greatly improve the efficiency of mass production
and assembly lines.

In a typical cycle of bin-picking operations, a combination of machine vision, inverse kinematics,
and other algorithms are used to find the best grasping configuration for the robot. Once a configuration
is found, path-planning algorithms generate a path from the robot’s fixed home state to the grasp and
then to a place state. Finally, the robot physically moves to complete the task. The serial and critical-path
nature of path planning and movement means that planning time and execution time are essential factors
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that impact the overall cycle time and automation economics. It is crucial to ensure that robot paths are
collision-free, considering both obstacles in the environment and self-collision.

Classical planners can be used for bin-picking, but they often fail to take advantage of the repetitive
nature of the task. In a static environment, where a robot cell operates for extended periods, path planning
is limited to fixed initial configurations and a fixed subspace of possible end-effector poses within a bin.
This paper proposes a more efficient path planner in terms of the planning time for bin-picking tasks. We
introduce the Path Planning and Collision Checking Network (PPCNet), a deep neural network-based
tool specifically designed for repetitive tasks like bin-picking. The PPCNet generates waypoints along
the path and estimates collisions faster, making it a reliable solution for autonomous systems such as
robotic arms. By using PPCNet, we can generate a safe and efficient path in a relatively short amount
of time. Our proposed method outperforms conventional approaches in terms of planning time and
stays competitive in path quality and success rate, making it a viable solution for industrial bin-picking
applications.

The following are the major features of this research:

• The proposed PPCNet end-to-end framework is an easy-to-implement and efficient approach in
the context of path planning.

• The proposed post-processing dataset generation improves the quality of PPCNet paths.
• Collision detection is a critical and time-intensive aspect of path planning. PPCNet offers a faster

solution, reducing planning time significantly through its ability to quickly detect collisions.
• We employ and compare two different methods for training the collision checking network to

determine the best and safest approach for collision detection.

The paper is structured as follows: In Section 2, we provide a comprehensive overview of various
path-planning techniques, discussing their advantages, disadvantages, and limitations for this problem.
Section 3 outlines the problem definition. We then introduce our framework, PPCNet, in Section 4,
where we also discuss the training process. In Section 5, we evaluate and compare the performance of
our approach against four state-of-the-art path planners. Finally, we conclude our study in Section 6.

2. Related work
In this section, the related work will be discussed. In the first section, an overview of various path-
planning techniques will be provided. Furthermore, the collision-checking methods are investigated in
the second section. In each section, the general advantages, disadvantages, and limitations of the methods
are mentioned.

2.1. Path planning
Pioneering collision-free path planning for robotic arms engaged in a wide spectrum of tasks, ranging
from welding in industrial contexts to delicate medical applications, remains a central focal point in the
realm of robotics [4]. path-planning methods can broadly be classified into two categories: classical and
learning-based [5]. Classical path-planning approaches encompass a wide range of techniques, including
artificial potential field [6], bio-inspired heuristic methods [7], and sampling-based path planners [8].
In contrast, learning-based path planners primarily utilize various machine-learning techniques to plan
for the robot’s path. These methods have been gaining popularity in recent years due to their ability to
handle complex and dynamic environments.

Sampling-based methods are widely used in path planning. In this regard, they can be divided into two
categories: single-query algorithms and multi-query algorithms. While single-query approaches aim to
find a path between a single pair of initial and goal configurations, the multi-query ones try to be efficient
when there are multiple pairs [9]. The Rapidly-exploring Random Tree (RRT) [10] and Probabilistic
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Road Map (PRM) [11] are two of the most well-known algorithms for single-query and multi-query
approaches, respectively. PRM is a roadmap algorithm that aims to build an exhaustive roadmap of the
configuration space to plan the path between any two configurations given to it. While PRM has been
used for path planning of robotic arms before [12, 13], it has several limitations. Firstly, it generates paths
that are far from the optimal solution. Secondly, generating the roadmap is computationally expensive
[14], making it inefficient for path planning in relatively high-dimensional environments, even for static
tasks such as bin-picking [15].

Furthermore, given an initial and goal configuration pair, RRT grows a tree of waypoints from the
initial configuration in order to connect the two configurations. An important characteristic of RRT algo-
rithm is its probabilistic completeness, meaning that it is guaranteed to find a path if there exists one [9].
Due to RRT’s capability in non-convex high-dimensional spaces, it has been extensively employed in
many studies for path planning of robotic arms [16–18]. To increase the performance of RRT in different
aspects, such as planning time and optimality, there are many variants of this method in the literature.
In ref. [19], the bi-directional RRT (Bi-RRT) is introduced for path planning of the 7-DOF manipu-
lator. Moreover, in ref. [20] this algorithm was used for distributed picking application. This method
simultaneously builds two RRTs; one of them attempts to find the path from the initial configuration
to the final configuration, and the other one attempts to find the path in the opposite direction and tries
to connect these two trees in each iteration. Although this method is faster than RRT, they both often
produce suboptimal paths in practice and the quality of the path depends on the density of samples and
the shape of the configuration space. In order to enhance the performance of the Bi-RRT method for
manipulators, a pioneering study by Xu et al. [21] presents a novel modified version of this technique.
The key innovation of their work lies in the integration of a sparse dead point saved strategy, effectively
reducing the frequency of collision checks.

RRT∗ is the optimal version of the RRT and finds the asymptotically optimal solution if one exists
[14]. While that is a strong feature of RRT∗, it is inefficient in high-dimensional spaces and has a rel-
atively slow convergence rate. As a result, it is not a suitable solution for the real-time path planning
of a robotic arm. To overcome the problems mentioned above, biased sampling is one of the promising
methods which can improve the performance of sampling-based path planners, due to the adaptive sam-
pling of the configuration space of the robot. Batch-informed trees (BIT∗) [22] and informed RRT∗ [23]
are other significant variants of the RRT∗ that employ an informed search strategy and batch-processing
approach to find the optimal path in a more efficient way by focusing the search on promising areas of
the tree. Although this method is able to find the optimal solution, it is not suitable for real-time path
planning since it requires a large amount of computational resources, which can lead to delays in the
system’s response time.

As mentioned above, since collision-checking is computationally expensive and the configuration
space gets exponentially bigger with the increase of dimensionality, most of the classical sampling-
based methods suffer from high computation and low convergence rates, making them impractical for
use in a complex environment with high-dimensional configuration space and real-time applications
such as bin-picking [24]. Ellekilde et al. [15] present a new algorithm for planning an efficient path in
a bin-picking scenario based on using lookup tables. Although this method is almost instantaneous and
faster than sampling-based planners, it is memory inefficient.

To this end, learning-based path planners have emerged to deal with the limitations of classical meth-
ods. Learning-based techniques can solve the long run-time problem of sampling-based methods by
providing biased sampling nodes, allowing them to run faster and more efficiently [25]. For instance,
Qureshi et al. [26] proposed a deep neural network-based sampler to generate nodes for sampling-based
path planners. This work shows a significant improvement in the performance of sampling-based path
planners in terms of planning time.

Reinforcement learning (RL) is a subcategory of learning-based techniques for path planning in an
unknown environment [27–30] where the agent learns the optimal behavior through interactions with
the environment and receiving reward signals. RL can be a promising solution when there is limited
information regarding the environment. However, especially in the context of path planning, using RL
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poses several limitations. Due to the trial-and-error nature of RL, the agent needs to strike a good bal-
ance between exploration and exploitation during its learning process. Hence, it requires a vast amount
of data to learn a viable policy. Therefore, in addition to being sample-inefficient, it requires powerful
hardware and significant memory for processing, especially when neural networks with a large number
of parameters are employed. Moreover, when using DRL to solve the path-planning problem, the long
horizon nature of it poses a great challenge in having an effective learning process. In its basic form,
the reward shaping used to solve these problems are sparse functions where the agent receives a posi-
tive signal only when it has reached the goal. However, the DRL algorithm using this reward shaping
scheme can often exhibit instability during training [31]. Furthermore, devising dense reward functions
requires expert knowledge and engineering and a careful training routine since it can be susceptible to
convergence to suboptimal policies [32, 33]. To this end, imitation learning is an alternative to these
limitations. In imitation learning, the training dataset is provided by an expert during the execution of
the task. For instance, in ref. [34], a recurrent neural network is trained by using demonstration from the
virtual environment to perform a manipulation task.

Neural planners are relatively new methods in the path-planning context. These planners are based
on deep neural networks, and their purpose is to solve the path-planning problem as an efficient and
fast alternative to sampling-based methods. Bency et al. [35] proposed a recurrent neural network to
generate an end-to-end near-optimal path iteratively in a static environment. Moreover, in refs. [36] and
[37], motion planning networks (MPnet) is introduced. This method has a strong performance in unseen
environments as the path can be learned directly.

2.2. Collision approximation
Collision detection is a vital component of path planning in robotics and can consume a significant
amount of computation time. In fact, it has been reported that it can take up to 90% of the total
path-planning time [8]. There are several methods for performing collision checking in path planning.
Analytical methods like GJK (Gilbert-Johnson-Keerthi) algorithm [38] use mathematical equations and
geometric models to determine if two objects will collide. They are often fast and efficient but can
struggle with complex shapes and interactions. Grid-based methods like Voxel Grid [39] divide the
environment into a grid of cells and check for collisions by looking at the occupied cells. This is often
faster than analytical methods but can result in a loss of precision. Another simple method for collision
detection is by approximating objects with overlapping spheres [40]. In this approach, the number of
spheres used to represent each object is a crucial hyperparameter. Additionally, this method is more
instantaneous than other traditional collision detection algorithms.

Recently, machine-learning techniques have been utilized to overcome the limitations of traditional
collision detection methods in robotics. For example, support vector machines [41] have been used to
calculate precise collision boundaries in configuration space. Gaussian mixture models were applied
in another study [42], resulting in the path being generated five times faster than bi-directional RRT.
K-Nearest neighbors is another machine-learning technique used in modeling configuration space for
collision detection [43]. Fastron, a machine-learning model, was proposed by Das et al. [44] to model
configuration space as a proxy collision detector, decomposing it into subspaces and training a colli-
sion checker for each region. The majority of previous studies in this field rely on decomposing the
configuration space, which requires significant engineering and simplifications.

3. Problem definition
In this section, we will define the path-planning problem for the bin-picking application. Besides, the
notation that we use in this paper will be introduced.

The first important concept in path planning is the configuration space (Cspace). Cspace includes all
positions and configurations of the robot. We can define q as the specific configuration for an n-joints
robotic arm:
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Figure 1. Path planning for pick-and-place operation.

q= [
θ1 . . . θn

]T (1)

where θi is the angular position of the i-th joint of the arm. Cfree can be defined as the subspace of Cspace

in which the robot is collision-free. Let τ be a trajectory and the first and last element of it be qinitial and
qtarget, respectively. The path-planning problem is to find all of the elements between qinitial and qtarget in a
way that all of the segments in the trajectory lie entirely in the Cfree space. In the context of path planning,
a segment between two configurations is the space of the configurations inside the linear combination
of the two configurations. In the other words:

{
αqi + (1− α)qi+1 | α ∈ [0, 1]

}
⊆Cfree, ∀i ∈ {1, . . . , N − 1} (2)

where N is the number of waypoints.
Bin-picking includes two different path-planning problems. The first one is finding the path between

the initial configuration of the robot and the grasp configuration which is located inside the bin (Qpick);
the second one is finding the path between the grasp position and the place configuration (Qplace). Fig. 1
shows the pick-and-place operation overview. Now the problem is to design a planner that can satisfy
the following objectives:

• generating a safe and obstacle-free path.
• answering the queries in real time.
• generating a high-quality path with a high probability of success.

4. Path planning and collision checking framework
In this section, we will delve into the details of the proposed framework for path planning in bin-picking
tasks. As illustrated in Fig. 2, the proposed method is comprised of two consecutive networks, namely
the planning network and the collision checking network. Our choice of a two-network architecture is
underpinned by several key considerations. First and foremost, safety is of importance in robot motion,
and ensuring collision-free paths is a fundamental requirement. To expedite the planning process, we
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Figure 2. Path planning and collision checking network (PPCNet).

have incorporated a collision checking network, which offers significantly faster collision checks com-
pared to traditional analytical methods. Secondly, the inherent nature of function approximation in our
planning network introduces an element of inaccuracy, leading to occasional outputs prone to be in-
collisions. Given this limitation, a subsequent verification step is essential to assess waypoint feasibility
regarding potential collisions. The collision checker network serves this vital role, acting as a safeguard
to ensure safety. By harnessing both networks, our approach strikes a balance between efficiency and
safety, guaranteeing swift and secure robot motion planning.

The first network is a modified version of MPNet [37]. The original version of the MPNet consists
of two networks. The first one is the planning network which generates the waypoints in a sequential
manner by imitating the behavior of an expert planner. The second one, the encoder network, encodes the
environment to a fixed-length vector in order to give environment information to the planning network
for better planning.

The primary obstacles of concern in this paper are the bin, other permanent structures, and the robot
itself. These are considered to be fully known and encoded within the planning environment such that
unlike the MPNet, our proposed planner does not use a depth map or other sensory readings of the
environment to encode information for the planning network. This allows for faster planning times,
which is a key focus of our research. In a full bin-picking solution, the process that determines the grasp
configuration will select grasps that are at low risk of collision during grasping and robot path.

In our work, the planning network takes the current and goal configurations and generates the next
joint space configuration to move into. Each configuration is represented by an n-dimensional column
vector. Therefore, the path-planning network’s input is a 2n-dimensional vector which is obtained by
the concatenation of the current and goal configuration. In each iteration of decision-making, after get-
ting the next configuration from the path-planning network, the feasibility of the segment is checked
using the second network. The second network, namely the collision checking network, gets the next
waypoint and estimates how likely it is that the segment between the two configurations will be inside
Cfree. By following this approach, the process of decision-making (followed by collision-checking) in
the configuration space can be done in a more efficient manner.
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4.1. Training and dataset generation
The main purpose of the path-planning network is to clone the behavior of an “expert” planner. In cases
like this, where it is feasible for an expert to demonstrate the desired behavior, imitation learning is
a useful approach. Moreover, while RRT-based path planners are not themselves sequential decision-
makers, they can be modeled as:

qt+1 = f (qt, qtarget) (3)

The purpose of the neural planner is to learn the function f . Behavior cloning, which focuses on using
supervised learning to learn the expert’s behavior, is the most basic type of imitation learning. The pro-
cess of behavioral cloning is rather straightforward. The expert’s demonstrations are broken down into
state-action pairs, which are then used as independent and identically distributed (i.i.d.) training data
for supervised learning. An important concern when using supervised learning for behavioral cloning is
the risk of encountering out-of-distribution data. During the inference process, the neural planner may
make decisions that were not previously observed in the dataset. Consequently, even minor inaccuracies
in the replicated behavior can accumulate rapidly, resulting in a substantial failure rate in identify-
ing viable paths. To mitigate this issue, we propose the data aggregation algorithm (DAGGER) in our
study [45].

The training process of the neural planner and the collision checker is explained in Algorithm 1. At
the beginning of the process, some initial demonstrations from the expert planner are required. To do so,
RandomGoalConf (T) function samples T goal configurations in the collision-free space of the bin. The
generated goal configurations are given to the expert planner to generate the paths using GeneratePath
function which requires initial and goal configurations. The expert planner outputs two datasets: the
neural planner dataset (D) and the collision checker network dataset (C). D only consists of the final
path that the expert planner generates; however, C includes every segment which was checked by the
expert planner using the geometrical collision checker. In the case of an RRT-based algorithm, the final
path will be stored in D and the whole RRT tree and all the instances of its corresponding steer function
are stored in C.

To train the neural planner, the demonstration dataset generated by the expert planner should be of
high quality. To generate a high-quality dataset, post-processing is applied to the paths generated by the
expert planner. As shown in Fig. 3, the expert planner generates a collision-free path for a random query.
Followed by that, the binary state contraction (BSC) is utilized to remove redundant and unnecessary
waypoints, resulting in a shorter overall path. The sparsity of waypoints is desirable as it simplifies the
subsequent processing, such as collision checking, communication with the robot controller, and trajec-
tory planning. While the output of BSC is similar to the lazy state contraction presented in ref. [36], BSC
is computationally more efficient and reduces the run time. After BSC, the resampling function is used
to ensure the smoothness and efficiency of the planned path. This involves discretizing the waypoints
at regular intervals, which are guaranteed to be collision-free as they already exist on the collision-free
path. Importantly, these additional waypoints do not increase the overall length of the path but do serve
to reduce the mean and variance of the target step magnitudes, ||qt+1 − qt||. While larger steps require
fewer neural network forward passes and collision checks during the inference phase, smaller steps offer
several advantages. Firstly, they minimize the deviation from the planned path by reducing the magni-
tude of individual errors ||q̂t+1 − qt+1||. Secondly, they are more likely to be collision-free as they occupy
less physical space. Finally, they offer a more normalized training target for the neural network, where
the problem is reduced to predicting a direction in the limit. However, BSC is a crucial step before
resampling, as it relies on dividing large steps into regular steps, and a dense path of short steps cannot
be divided. Fig. 4 illustrates this procedure in a 2D environment, highlighting how this method enhances
the smoothness and quality of the path. The PostProcess procedure in Algorithm 1 presents the use of
BSC and resampling on the generated paths.
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Figure 3. End-to-end training process of PPCNet: top row: the imitation learning and data aggre-
gation processes for training the planner network. In this process, based on random queries and the
data aggregation process, the planning network dataset is constructed. The dataset outputs the tuple
(qt, qT , qt+1) indicating the current, goal, and next configurations. Finally, the loss function Lplanner is used
to backpropagate through the network’s weights. bottom row: population-based probability estimation
and collision checker network training processes. In this process, for calculating the population-based
probability, KD-tree is employed. Furthermore, using the collision checking network dataset and the
respective loss function (Lbinary or LPopulation), the network is updated.

(a) (b) (c)

Figure 4. Post-processing procedure: (a) The generated path by the planner, (b) Path after binary state
contraction, (c) Path after resampling.

4.1.1. Path planner training formulation
Once the dataset has been generated, it is time to train the network. The goal of the network is to predict
the next configuration, q̂t+1, which should be as close as possible to the actual next configuration, qt+1,
in the training dataset. The network uses the dataset to learn the underlying patterns and relationships
between the input and output data.

To achieve the goal of accurate prediction, the network must minimize the difference, or loss, between
the predicted and actual configurations. This is done by comparing the predicted output q̂t+1 to the actual
output qt+1 and adjusting the network’s parameters to minimize the difference. This process is known
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as backpropagation and it is typically done using optimization algorithms such as stochastic gradient
descent.

Lplanner = 1

Nt

Nd∑
j=1

T∑
i=1

||q̂j,i − qj,i||2 (4)

In this equation, Nt is the number of trajectories and Nd is the number of all individual waypoints in the
training dataset.

4.1.2. Collision checker training formulation
To ensure the safety of the robot, we experimented with two different approaches for training the collision
checker and evaluated their performance. As mentioned earlier, the collision checker network takes the
current and next configurations as input and estimates the probability of the segment being in collision.
Therefore, the training set for this network should include segments and corresponding labels indicating
whether they are in collision or not. The optimization function utilized to train the collision checker for
both of the approaches is called binary cross-entropy loss:

L(p̂, ptrue)= p̂ log ptrue + (1− p̂) log (1− ptrue) (5)

where p̂ is the probability estimation made by the neural network and ptrue is the true probability. The
reason for using binary cross-entropy is due to the fact that, in essence, the collision checker is a binary
classification network. Therefore, the standard approach in the literature is to use cross-entropy due to
it giving a better probability distribution over the training data.
Binary labels. The most basic approach to tackle the optimization of the network is to use the true labels
given by the analytical collision checker. In that case, ptrue in Eq. (5) becomes either 0 (collision-free
segment) or 1 (in-collision segment). In Fig. 3, this approach has been named as Lbinary. The binary cross-
entropy loss function measures the dissimilarity between the network’s predicted probability distribution
and the true probability distribution in the binary classification problem.
Population-based labels. The sparsity of the binary labels hinders the performance of the collision
checker since it skews the output of the network towards the more common label. The motivation for
this method is to make the binary labels continuous. In addition to the mentioned reasoning, making the
labels continuous can help the network be better optimized in corner cases. For example, a collision-free
segment inside the bin is mostly surrounded by in-collision segments. Hence, the collision-free segment
will not be of much help in optimizing the network compared to the massive existence of the in-collision
segments. Making the labels continuous will amplify the effect of the collision-free segment. To make
the binary labels continuous, we give a regional estimation of the probability of a specific segment
being collision-free by retrieving the segments similar to it whose centers lie within the hypersphere
(with a specific radius) surrounding the center of the segment. Finally, the population-based probability
(denoted as p̂ref to indicate it being a reference probability) estimates the probability of a segment being
collision-free by dividing the number of collision-free segments by the total number of segments:

p̂ref =
∑K

k=1 1[p(k)
true == 0]

K
(6)

where 1 is the identity-indication function. The advantage of the proposed approach is that the proba-
bility labels generated by this method can provide a well-behaving continuous function where near the
obstacles, the probability gets near zero and the further it gets from them, it approaches one. In practice,
we utilize KD-Tree method (built with the centers of the segments) to find similar segments. Moreover,
the more data this approach gets, the better the estimation will be. Therefore, our proposed algorithm
stores every segment that was checked by the analytical collision checker during the path-generation
process with the expert planner. In the case of an RRT-based expert planner, this corresponds to storing
the whole tree and all of the in-collision segments generated by it. While this approach may have higher
computational cost compared to the binary labels approach, our results indicate that it can achieve better
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Algorithm 1. Training process of PPCNet
Require expert planner π ∗, number of initial demonstrations T , number of rollouts in each
iteration T ′, number of state samples S, required policy success rate ζ

Initialize Planner and Collision Dataset: D, C←∅
Generate initial demonstrations:

GoalConf ← RandomGoalConf (T)
D, C←GeneratePath(π ∗, HomeConf , GoalConf )

Apply post-processing: PostProcess(D)
SuccessRate← 0
for i= 1, . . . do

πi← TrainPolicy(D) 
 Start of DAGGER
GoalConf ← RandomGoalConf (T ′)
Dπi←GeneratePath(πi, HomeConf , GoalConf )
Si← SampleStates(Dπi , S)
Di, Ci←GeneratePath(π ∗, Si, GoalConf )
Di← PostProcess(Di)
D←D∪Di. 
 End of DAGGER
C←C ∪Ci.
ηi← TrainCollisionChecker(C)
SuccessRate← TestPolicy(πi, ηi)
if SuccessRate > ζ then
return πi, ηi

end if
end for

prediction performance. For this approach, p̂ref is used instead of ptrue in Eq. (5), and the corresponding
loss function is called Lpopulation.

4.1.3. End-to-end training process
In this section, an overview of the end-to-end process of training the integrated model which consists of
both the planner network and the collision checker network will be discussed. The training procedure is
outlined in Algorithm 1.

Initially, a set of trajectories are sampled using the expert planner as the initial demonstration,
and the planner and collision dataset are filled. In each iteration, the path planner’s policy is trained
using the demonstrations from an expert planner. Consequently, DAGGER process (as explained in
Section 4.1) is executed which results in the expansion of both of the datasets. Finally, the collision-
checking dataset is trained and the model’s performance is evaluated in the TestPolicy function. The
function uses some random goal configurations and attempts to path plan between them (following the
process in Algorithm 2). If the success rate of the model is satisfying, the path planner and the collision
checker network weights are returned.

4.1.4. Path-planning process
In this section, the end-to-end path-planning process of the PPCNet is explained. As illustrated in Fig. 2,
the two networks, the planning network and collision checking network, do the decision-making sequen-
tially. In the context of the bin-picking application, given the start, pick, and place configurations, the
proposed model picks the object from the bin and places it in the place configuration. As outlined in
Algorithm 2, in each iteration of the decision-making process the path-planning network outputs the
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Algorithm 2. Path-generation process using PPCNet
Require Trained neural planner π and collision checker η, and initial and goal configurations
qstart, qtarget

path←{qstart}
qcurrent← qstart

for i= 1, . . . , smax do
if Steer(qcurrent, qtarget, η)== qtarget then

path← path∪ qtarget

if IsFeasible(path) then
return path

else 
 Apply Patching
segments← InCollision(path)
for (qs, qe) in segments do

pathalt← π ∗(qs, qe)
if Failed(pathalt) then

return failure
end if
path← Patch(path, pathalt)

end for
return path

end if
end if
qnext← π (qcurrent, qtarget)
if Steer(qcurrent, qnext, η) then

qnext← Steer(qcurrent, qnext, η)
path← path∪ qnext

qcurrent← qnext

end if
end for

next configuration that the robotic arm must transition into. The current configuration and the next con-
figuration are then checked with the collision-checking network. To do so, the Steer function is used. As
explained in Algorithm 3, the path between the two waypoints is discretized into equal segments with
lengths close to the resolution step size of the expert planner. This is done in order to have the segments be
close to the collision checker training dataset’s distribution. Furthermore, in each segment, the collision-
free probability of the segment is checked. In order to decide whether a segment is collision-free or not,
a safety threshold is needed. If the probability is more than the threshold, the algorithm continues to
the next segment for collision checking. If the probability is less than the threshold, then the segment is
deemed to be in collision. In that case, if the in-collision segment is the first segment of the path, then
the planner has failed to output a good waypoint. Otherwise, if the in-collision segment is not the first
segment, the planning network was successful and the tail of the last collision-free segment will be the
output of the steer function. Moving on, if the steer function outputs success, then the next waypoint
toward the goal configuration is added to the path. In the case that the steer function outputs failure, the
planner network attempts to generate a new waypoint. For that purpose, stochasticity is needed inside
the network. Therefore, dropout layers are used during inference to have the network be able to recover
from failure cases [36]. Furthermore, in each iteration, if it is possible to directly connect the current
configuration to the target configuration, then the target configuration is added to the path and it will be
the final path generated by the PPCNet. At this point, the feasibility of the path is checked with the geo-
metrical collision checker using IsFeasible function. If the path is collision-free, it will be returned;
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Algorithm 3. Steer Function (qcurrent, qnext)
Require collision checking network η, safety threshold η̄

segments←Discretize(qcurrent, qnext)
qfinal← qcurrent

for (qi, qe) in segments do
if η(qi, qe) > η̄ then

qfinal← qe

else
if qfinal == qcurrent then

return failure
else

return success, qfinal

end if
end if

end for

otherwise, the algorithm will attempt to patch the in-collision segments using the expert planner.
To this end, the InCollision function outputs the segments in the path that are in collision. It is important
to note that if some consecutive segments were in collision, all of the segments will be counted as one
bigger in-collision segment and the head and tail of the bigger segment will be considered. This is done
in order to have lesser expert planner calls and be more computationally efficient. Furthermore, for each
segment, the expert planner attempts to generate an alternative path between the two configurations. If
for all of the segments, the patching was done with success, then the proposed path planner would be
successful and the path would be returned.

5. Experimental results
In this section, we will discuss the performance of our proposed algorithm, which employs PyTorch [46]
to implement the planner network and collision checker network. The simulation environment we used
is Pybullet planning [47, 48]. To evaluate the effectiveness of our approach compared to the state-of-
the-art path-planning techniques, we compared it against Bi-RRT [19], informed RRT∗ [23], BIT∗ [22],
and MPNet [37] on three different environments (Fig. 5). The first environment consists of a universal
robot UR5 and a bin, the second one involves a UR5 robot and a wall as an obstacle, and the third one
features a Kinova Gen3 robotic arm, which we implemented on both simulation and practical settings.
The system used for training and testing has a 3.700 GHz AMD Ryzen 9 processor with 96 GB RAM
and NVIDIA TITAN RTX GPU. Moreover, Table I shows the hyperparameter selection for each of the
planners.

5.1. Comparative study
Table II presents a comparative analysis of the performance of PPCNet against other planning methods.
Our experiments demonstrate that PPCNet exhibits remarkable performance in terms of planning time
in all three environments (More than 70% improvement). Fig. 6 provides a visual illustration of the
planning time comparison. The hyperparameters for the competing RRT-based algorithms were tuned
such that they produce paths of comparable length to PPCNet, while ensuring that they find a path
for each planning task in less than 10 s and 1000 iterations. However, the results show that BIT∗ and
Informed RRT∗ methods take longer to plan and have lower success rates than PPCNet.

PPCNet has shown its ability to generate paths with comparable length and success rates compared
to other algorithms, which is particularly important in evaluating the effectiveness of path-planning
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(a) (b)

(c)

Figure 5. Experimental environments: (a) UR5 scene, (b) UR5 scene with a wall as an obstacle,
(c) Real-world implementation on Kinova Gen3.

methods. Additionally, the post-processing method employed in dataset generation has allowed PPCNet
to outperform its expert planner (Bi-RRT) in terms of path length. The BSC function plays a critical
role in eliminating redundant and unnecessary waypoints, resulting in a reduction in path length and
an improvement in path quality. The combination of the BSC function and resampling has significantly
enhanced the quality of paths generated by PPCNet. Furthermore, our findings show that while the
addition of the collision checking to the PPCNet has caused significant improvement compared to the
MPNet in the expense of the marginal reduction in the PPCNet’s success rate.

The success rate falling short of 100% in a known environment can be attributed to two primary
factors. First, the limitations inherent to function approximation become apparent when the planner’s
output lacks precision, especially when navigating near obstacles. The paths generated by the expert
planner occasionally skirt very close to an obstacle’s edge. Replicating such precision in the planner
network becomes challenging, leading to deviations from the expert’s path and resulting in failures.
Secondly, our specific objectives, which revolves around planning time and path length, have prompted
us to establish defined thresholds. For instance, in pick-and-place tasks, we have set a limit of 300ms
for overall planning time and a maximum of 100 waypoints. Any result exceeding these thresholds is
classified as a failure. Adjusting these thresholds can potentially improve our success rates, although it
is essential to balance them with the efficiency of our approach.

Finally, the study’s results indicate that the population-based training method for the collision-
checking network performed better than the binary classification approach, resulting in a more accurate
collision-checking model. This is evident from the decrease in the planning time due to a reduction in the
need for patching. Hence, the tradeoff between the computational cost of training the population-based
collision checker against the accuracy it offers can be observed.
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Table I. Hyperparameters selection for planners.

Methods Hyperparameters Values
Max iterations 1000

Bi-RRT Max planning time 5 s
Resolution 0.1 rad

Number of batches 500
Resolution 0.05 rad

Informed RRT∗ γ 500
Goal probability 0.1
Max iterations 1000

Max planning time 10 s

Max iterations 1000
Max planning time 10 s

BIT∗ Number of samples 500
η 20

Goal probability 0.1

Max iterations 100
learning rate 0.0001

MPNet Expert planner Bi-RRT
Network architecture Fully connected 6 layers,

300 neurons per layer

Post-processing
resample step size

0.1745 rad

Max iterations 100
Optimizer Adam

PPCNet Similarity distance 0.4 rad
Dagger iterations 30
Expert planner Bi-RRT

Safety threshold (η̄) 0.8
Network architecture

(planning and collision
checking network)

Fully connected 6 layers,
300 neurons per layer

5.2. Real-world implementation
In this section, the motion profile generated by the Kinova Gen3 robot based on the path created by the
PPCNet in the real-world bin-picking example is discussed. Due to the path-planning architecture of
our approach, the main trajectory-planning process for deploying the robot in the real world relies on
the specific software platform, parametric settings, and the architecture of the particular robot in use.
Hence, to demonstrate the practical applicability of our method, and to underscore its potential for real-
world robotic operations, we made use of the Kinova Kortex API [49] for our Kinova Gen3 robot to
perform bin-picking operations. This facilitates the conversion of our established paths into actionable
trajectories. For safety considerations during the implementation phase on the Kinova Gen3 robotic arm,
we capped the maximum velocity for all six actuators at 36◦/s. This constraint served as a determinant
to compute the trajectory time for each distinct path segment. Figs. 7 and 8 present motion profiles from
a randomly selected bin-picking scenario. As evident, the robot’s motion, guided by the generated path,
exhibits a combination of smoothness and safety. The Cartesian space motion profile illustrates that the
generated collision-free path maintains a safe distance from the bin, ensuring its safety. Furthermore,
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Table II. Planning time and path length comparison of the proposed method and BI-RRT for
500 random pick-and-place queries.

Planning Path length Success
Environments Methods time (s) (rad) rate (%)

Bi-RRT 0.701± 0.246 7.516± 2.147 100
Informed RRT∗ 10.186± 3.192 5.304± 1.983 79.8

BIT∗ 8.621± 3.594 5.278± 2.315 77.6
UR5 MPNet 0.384± 0.079 7.305± 2.298 94.4

PPCNet Collision: Binary 0.101± 0.031 5.887 ± 1.038 90.2
PPCNet Collision: Population 0.093± 0.033 5.679 ± 1.503 93.4

Bi-RRT 0.749± 0.182 7.925 ± 3.307 100
Informed RRT∗ 10.856± 3.425 5.813± 2.056 73.6

BIT∗ 9.299± 3.919 5.514± 2.747 70.4
UR5 with a wall MPNet 0.392± 0.106 7.874± 3.011 93

PPCNet Collision: Binary 0.106± 0.027 6.142± 1.979 89.8
PPCNet Collision: Population 0.099± 0.034 6.016± 1.749 92.2

Bi-RRT 0.645± 0.281 6.812± 2.749 100
Informed RRT∗ 9.535± 4.122 5.124± 2.205 79.2

BIT∗ 8.496± 3.082 5.099± 2.464 79.6
Kinova Gen3 MPNet 0.227± 0.151 6.714± 2.812 90.6

PPCNet Collision: Binary 0.090± 0.029 5.315± 1.482 88.2
PPCNet Collision: Population 0.0857± 0.032 5.188± 1.335 89.8
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Figure 6. Planning time comparison between different methods.

there are no abrupt changes in the robot’s joint velocity and acceleration in all of our randomly selected
real experiments on Kinova Gen3 robotic arm.

While our approach did not involve explicit trajectory optimization algorithms, our results suggest
that the path generated by PPCNet exhibits the potential for conversion into a smooth trajectory.1 The

1The video of the proposed algorithm’s sample bin-picking path can be accessed through the URL: https://youtu.be/
lYxLWPi0XuA
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Figure 7. Cartesian space path for a randomly selected bin-picking scenario with the Kinova Gen3
robotic arm. In this scenario, the robot should pick three different objects and place them on the table.

Time (s)
Pick-Place 1 Pick-Place 2 Pick-Place 3

Figure 8. Motion profile for a randomly selected bin-picking scenario with the Kinova Gen3 robotic
arm. top row: joints angles plot middle row: joints velocities plot bottom row: joints accelerations plot.

field of trajectory planning offers various methods and techniques to optimize different aspects of the
trajectory, as documented in the literature [50–52]. Leveraging these established methods in conjunc-
tion with PPCNet could lead to enhanced trajectory refinement and further improvements in the overall
performance.
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6. Conclusions
In this paper, we introduced a novel path-planning framework, PPCNet, and examined its efficacy for
bin-picking applications. The robot path planning for the bin-picking application is typically a compu-
tationally expensive process because the traditional algorithms need to compute the path in its entirety
every time the target changes. Further, most existing algorithms lack the ability to learn from past experi-
ences. The proposed PPCNet utilizes deep neural networks to find a real-time solution for path-planning
and collision-checking problems. Specifically, we propose an end-to-end training algorithm that lever-
ages the data aggregation algorithm to generate i.i.d. data for supervised learning. Using an expert
planner in the training process, data aggregation can assist the agent in encountering unseen states.
Another novel component of the proposed PPCNet algorithm includes two variations of the collision-
checking network for approximating the exact geometrical collision function. We evaluate our proposed
framework, PPCNet, by conducting simulation on two robotic arms namely UR5 and Kinova Gen3 in
a bin-picking application. We have also examined the algorithm in a real-world scenario using Kinova
Gen3 robot. Our results indicate that our approach significantly reduced planning time while produc-
ing paths with path lengths and success rates comparable to those of the state-of-the-art path-planning
methods. In our research, we chose Kinova Gen3 based on the available resources to showcase PPCNet’s
applicability in real-world examples. However, the implementation of this algorithm on other robotic
systems is feasible due to its model-free nature.

There is potential for future work in PPCNet’s adaptation to dynamic environment such as scenarios
involving human-robot interaction. In this context, the method can be enriched by extracting crucial data
from human behavior to determine goal configurations and facilitate collision avoidance within PPCNet.
Furthermore, a promising avenue for research is the incorporation of human motion data within the
learning from demonstration subroutine. This is especially effective in tasks like human-robot handovers
where the anticipation of human-like robot motion by human provides a higher level of adaptability.
Moreover, another important future work is considering robot or environment constraints which could
facilitate motion planning resulting in smoother and better motion profiles.

Supplementary material. The supplementary material for this article can be found at http://dx.doi.org/10.1017/
S0263574724000109.
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