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Abstract

Medical practice is transforming from a reactive to a pro-active and preventive discipline that is
underpinned by precision medicine. The advances in technologies in such fields as genomics,
proteomics, metabolomics, transcriptomics and artificial intelligence have resulted in a para-
digm shift in our understanding of specific diseases in childhood, greatly enhanced by our ability
to combine data from changes within cells to the impact of environmental and population
changes. Diseases in children have been reclassified as we understand more about their genomic
origin and their evolution. Genomic discoveries, additional ‘omics’ data and advances such as
optical genome mapping have driven rapid improvements in the precision and speed of
diagnoses of diseases in children and are now being incorporated into newborn screening, have
improved targeted therapies in childhood and have supported the development of predictive
biomarkers to assess therapeutic impact and determine prognosis in congenital and acquired
diseases of childhood. New medical device technologies are facilitating data capture at a
population level to support higher diagnostic accuracy and tailored therapies in children
according to predicted population outcome, and digital ecosystems now tailor therapies and
provide support for their specific needs. By capturing biological and environmental data as early
as possible in childhood, we can understand factors that predict disease or maintain health and
track changes across a more extensive longitudinal path. Data from multiple health and external
sources over long-time periods starting from birth or even in the in ufero environment will
provide further clarity about how to sustain health and prevent or predict disease. In this respect,
we will not only use data to diagnose disease, but precision diagnostics will aid the ‘diagnosis of
good health’. The principle of ‘start early and change more’” will thus underpin the value of
applying a personalised medicine approach early in life.

Impact statement

There are 1.8 billion young people in the world today — 40% of the global population is under 24.
We should aim to support children and young people with maintaining a long and healthy life
and develop a system by which we personalise their health and healthcare for a better future. New
advances in the fields of genomics, proteomics and cytogenetics have revolutionised our ability
to understand the mechanisms underpinning the evolution and manifestation of existing
diseases, discover new diseases, develop targeted therapies for specific populations of children
to improve outcomes and predict children’s response to therapy, their risk of relapse and their
prognosis. Importantly, our ability to diagnose disease early in life, and in particular using
genomics in newborn screening supports early intervention and prevention and provides a
greater understanding of the evolution and manifestation of diseases over longer periods.
Critical to this process is the study of disease in the context of exposome, a new paradigm that
encompasses the totality of human environmental exposures from conception onwards. A
personalised approach to children’s health requires knowledge of the patient as an individual
and their surrounding ecosystem. New technologies that can provide accurate tracking and
recording of environmental data and technologies that can generate predictive models relating to
future outcomes will add to the factors that facilitate a precision-based approach to managing
health and disease over the life course. Furthermore, the ability to capture health data across
large populations of children allows us to understand population characteristics in specific
diseases that in turn drive individual interventions and changes. Precision medicine, precision
diagnostics and the technological advances underpinning these rapidly advancing fields will
change the way in which we understand disease, sustain health and improve quality of life.
Focussing our efforts early in life is an investment for future health and healthcare.

Introduction

Healthcare is evolving from a traditional ‘one-size-fits-all’ approach to a model that accounts for
the prediction of individual patient disease risks, a tailored approach to the investigation and the
development of targeted interventions. A better understanding of the underlying mechanisms
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and causes of rare and chronic diseases combined with techno-
logical advancements are transforming medicine from a reactive to
a pro-active and preventive discipline that has been encapsulated in
the ‘4P’ approach to medicine (also referred to as P4 Medicine) to
maintain health and well-being and to prevent and predict disease
and thus respond accordingly to individual needs - ‘4P - Prevent-
ive, Predictive, Participatory and Personalised” (Hood et al., 2004;
Flores et al., 2013). A personalised approach to medicine requires
knowledge of the patient as an individual and their surrounding
ecosystem, by understanding their molecular and genetic compo-
nents, their cells and tissues, the whole person and the population
and environment in which they exist. This breadth and depth of
knowledge of an individual and their environmental interaction
underpins the science of systems biology (National Research Coun-
cil (US), 2009). Systems biology is founded on the principle that the
interaction between individual parameters at the genetic, molecular
and cellular level with social and environmental parameters as the
component parts of complex biological systems supports a more
‘predictive’ approach by which computational models can be used
to predict outcomes, and individuals can be stratified more com-
prehensively according to their disease risks. Systems medicine
focuses on the approach of systems biology to human disease by
combining knowledge that ranges from individual genomic
sequencing to understanding global data sets that track patient
populations and their interaction with the environment (Hood
et al., 2012).

Advances in technology and computational analysis over the
last 20 years have radically enhanced our ability to collect, store and
analyse data to create biological networks derived from computa-
tional models that demonstrate how factors within biological sys-
tems can maintain health or lead to disease. Importantly, factors
within these computational models can be modified to predict an
individual’s risk of future ill-health. Ultimately, the aim of systems
medicine is to develop an ‘individual data profile’ founded upon
multi-dimensional longitudinal health data, ranging from the indi-
viduals genomic/proteomic profile, hospital data from historic
interactions and lifestyle and environmental data. These data have
two fundamental origins — data that are derived when an individual
interacts with a system such as a hospital or for health research, or
alternatively, when the individual offers or inputs the data as part of
an interaction with a digital platform encompassed in the partici-
patory component of the 4P model. The latter of these has been
facilitated by the advance in technologies that allow individual
consumers to input and track their own health data and interact
with others to monitor their health and disease risk. Portable
devices such as mobile phones, tablets and laptops, novel sensors
and digital platforms help to facilitate the participatory component
of the 4P model extending health data collection and analysis into
homes, workplaces and schools. Data collection from new devices
can be passive, such that the individual allows the device to track
activity without direct input, or active by which the individual
inputs the data. In principle, if information can be collected early
in life, this has the potential to provide richer longitudinal data
about health, disease, lifestyle and environmental interaction,
which could help modify factors that prevent disease, support
earlier diagnoses or maintain health. Returning to the systems
medicine approach, data could be derived from a number of sources
including primary and secondary care health data, genomics data
derived from genomic newborn screening and whole genome
sequencing (WGS), educational data from schools and universities,
and additional data on lifestyle and environmental exposure, some-
times referred to as the exposome, encompassing environmental
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exposure from the prenatal period onwards. For children, the
exposome encompasses general exposure to the external environ-
ment such as climate, familial and social factors and education, and
specific exposure such as infections, radiation, home factors such as
diet, smoking and alcohol consumption in parents, and physical
activity. The challenge as we develop tools to individualise health-
care and to prevent and predict disease in children and young
people is our ability to acquire data from multiple sources including
those which are controlled by the consumer. Data captured from an
early age will rely on empowering children, young people and their
families to permit the use of their data, particularly data that may be
from non-health related and personalsources, trusting that their
data will be utilised appropriately to support their health and well-
being and will be stored securely (National Research Council (US),
2011). The value of using data from multiple sources must be easily
demonstrable to families in a way that prevention, disease modifi-
cation and individualised care in the future are supported by
meaningful and actionable information that is in a way that chil-
dren, young people and parents can understand, and in a way that
parents can utilise to support their children in preventing ill-health
or seeking earlier healthcare support.

Precision diagnostics is a branch of precision medicine using the
4P approach by which individual diseases are diagnosed based
upon genomic variation, lifestyle and the environment. Under-
standing subpopulations with similar genomic information and
the environmental and lifestyle factors that predict disease
onset allows healthcare professionals and individuals to prevent
disease onset or intervene early to prevent disease progression. This
approach has the potential to develop a radically more cost-effective
approach to healthcare, particularly in the paediatric population,
where rare diseases are more prevalent. Moreover, a better under-
standing of modifiable lifestyle factors in childhood may help to
predict or prevent future disease, thus underpinning the value of
prospective data collection. Tailored therapies by stratifying indi-
viduals into subgroups according to their disease profile, response
to therapy and prognosis and preventing disease through risk factor
modification will result in a reduction in healthcare expenditure
(Wangetal., 2017). Furthermore, understanding the molecular and
cellular origins of disease in children and young people has resulted
in a paradigm shift in thinking about ‘causes’ rather than ‘symp-
toms” of disease leading to a proposal for a new taxonomy for
disease classification that could change the approach to clinical
decision-making, diagnosis, therapy and prognosis (Blower et al.,
2020).

Disease reclassification and predicting future disease
in children

Precision diagnostics is founded on the ability to predict disease and
the ability to adopt a personalised approach. The understanding of
a disease at a molecular level will determine the onset of the disease
or symptoms, or when a perturbation within a biological system
will result in the manifestation of the disease. This will vary between
individuals, and thus, the understanding of the biological environ-
ment at a molecular level is fundamental in determining the indi-
vidual’s disease susceptibility, the severity of the disease, response to
specific therapies and prognosis. At a genetic level, mutations range
from loss or gain of entire chromosomes, loss of smaller regions of
DNA, for example, copy number variants (CNVs), to changes in the
structure of the genome in the form of translocations, inversions
and insertions, or changes in the sequence of the nucleotides
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(Lalonde et al., 2020). Advances in genomics, and in particular the
development of next-generation sequencing (Lalonde et al., 2020),
have had a transformative effect on diagnostics in children, result-
ing in targeted panels for specific diagnoses, and examination of the
entire exome or genome based upon clinical manifestations. Whole
exome sequencing and Whole Genome Sequencing (WGS) have
the potential to increase the diagnostic yield by up to 50% and as
such there has been a call to adopt WGS as a first-tier test, particu-
larly conditions in children with genetic heterogeneity
(Stavropoulos et al., 2016; Meng et al., 2017; Posey et al., 2017;
Lionel et al, 2018). Many of these conditions are congenital,
manifesting at birth, infancy or early childhood. A genetic diagnosis
can then inform prognosis, anticipatory care and surveillance,
targeted management and future family planning. Even within
conditions harbouring the same ‘macro’ genetic mutation, there
can be a high degree of variability based upon the location of the
specific mutation and the interaction with other genes within the
same molecular pathway (Costain et al., 2020). In turn, this allows
individualised planning, targeted therapies and risk profiling.

This approach has led to significant clarification in disorders
with heterogeneous manifestations which present in childhood,
and the reclassification of disease based upon genotype rather than
clinical presentation. For example, the heterogeneous clinical mani-
festations of Noonan syndrome, a condition that presents with a
distinct facial phenotype, short stature, cardiac anomalies, develop-
mental delay and other features (Dahlgren and Noordam, 2022),
have been reclassified and incorporated into a group of genetic
mutations that are collectively known as the RAS-opathies
(Gripp et al, 2020). RAS-opathies define germline mutations in
genes that encode components or regulators of the Ras/mitogen-
activated protein kinase pathway (Rauen, 2013) and share many of
the phenotypic manifestations of Noonan syndrome. RAS-opathies
also include neurofibromatosis type 1, Noonan syndrome with
multiple lentigines, Noonan syndrome-like disorder with loose ana-
gen hair, Noonan syndrome-like disorder with or without juvenile
myelomonocytic leukaemia, capillary malformation-arteriovenous
malformation syndrome, Costello syndrome, cardio-facio-
cutaneous syndrome, SYNGAP1-related intellectual disability and
Legius syndrome. Mutations associated with Noonan syndrome
alone include CBL, BRAF, KRAS, LZTR1, MAP2K1 (MEKI), NRAS,
PTPNI11, RAFI, RIT1, SOSI and SOS2 (Riller and Rieux-Laucat,
2021; Leoni et al., 2022). Thus, this provides an example of one of
many genetic disorders in children that may have been mistakenly
classified according to facial and systemic phenotype, or previously
described as ‘non-classical’ or ‘atypical’ which can now be accurately
genotyped to define the appropriate disorder, the predicted conse-
quences, therapy and prognosis.

Similarly, osteogenesis imperfecta (OI, brittle bone disease), a
rare disease in childhood, was originally classified by Sillence in
1979 into four subtypes (OI I-IV) based upon mode of inheritance,
clinical manifestation and severity (Sillence et al., 1979). However,
20 different subtypes of this condition have emerged based upon a
more refined understanding of the wide range of genes that encode
relevant proteins. These proteins are involved in processes such as
the synthesis of type I collagen and the differentiation, regulation
and activity of bone-forming cells (osteoblasts) and bone-absorbing
cells (osteoclasts). Importantly, this has led to an exponential rise in
targeted therapies for bone fragility in OI based upon the genotype-
derived causative mechanisms, thus supporting the value of gen-
omic reclassification and precision diagnostics to develop novel
targeted therapies for rare diseases in children (Zaripova and
Khusainova, 2020). The reduction in the cost of genomic
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sequencing is facilitating significant advances in the classification
of diseases but additionally in predicting the onset of disease. In the
UK, Genomics England has embarked on a discovery science
programme aiming to sequence and analyse the whole genome
in up to 200,000 babies for a set of actionable genetic conditions
which may affect their health in early years. This aims to ensure
timely diagnosis, access to treatment pathways and enable better
outcomes and quality of life for babies and their families
(Genomics England, 2021). Rapid genomic testing in critically
ill-children is also advancing the field of precision diagnostics
and therapy in paediatrics. The first national healthcare system-
funded implementation of rapid genomic sequencing for acutely
unwell children commenced in England on 1st October 2019 led by
the NHS Genomic Medicine Service. The diagnostic yield was 38%
with the molecular diagnosis directing management in 94% of
patients (Stark and Ellard, 2022).

Next-generation cytogenetics such as optical genome mapping
(OGM) has also advanced the speed and ability of detecting
genetic abnormalities (Lam et al, 2012). Cytogenetics is the
genetic discipline that examines chromosomes for abnormalities.
Karyotyping, chromosomal microarray analysis (CMA), multiple
ligation-dependent probe amplification and fluorescent in situ
hybridisation (FISH) are examples of currently utilised cytogen-
etic techniques but have limited resolution or limited region
coverage. For example, CMA, despite having higher resolution
for the detection of repeat regions of the genome known as
CNVs, is limited in detecting balanced translocations and inver-
sions (Levy and Wapner, 2018). Next-generation sequencing
methods can detect sequence variants, but they are unable to
accurately resolve CNVs. Moreover, complete genetic profiling in
specific diseases either for diagnosis or for risk stratification of
prognosis often relies on a combination of techniques which is
time consuming and costly. OGM is a novel technology that
analyses ultra-high molecular weight DNA molecules that pro-
vide a high-resolution genome-wide image. Each patient’s unique
map is aligned to a reference genome map to detect CNVs and
structural anomalies. OGM has strong concordance with other
cytogenetic techniques such as FISH and CMA but has also
advanced the detection of additional chromosomal abnormalities
that are clinically relevant and that are inaccessible to standard
techniques, allowing for further disease stratification in diseases
such as acute lymphoblastic leukaemia (ALL) (Lestringant et al.,
2021; Rack et al., 2022). OGM is now recognised as key genomic
technology capable of detecting all classes of structural variants in
many disorders, which will undoubtedly improve the speed and
accuracy of diagnosis of rare disorders in children (Levy and
Wapner, 2018; Mantere et al., 2020) but also improve risk strati-
fication in common haematological disorders in children such as
ALL. Stratification in ALL has previously relied on a combination
of genetic tests which is time consuming and expensive. In recent
studies categorising subtypes of ALL, OGM increased the detec-
tion rate and cytogenetic resolution and abrogated the need for
cascade testing using multiple cytogenetic techniques, resulting in
reduced turnaround times and cost saving (Neveling et al., 2021;
Rack et al.,, 2022). OGM has also been applied to other areas of
paediatrics to improve the diagnostic yield including neurodeve-
lopmental paediatrics (Shieh et al., 2020), myotonic dystrophy
(Otero et al., 2021), disorders of sex development (Barseghyan
et al,, 2018) and with the potential for widespread application for
prenatal diagnostic testing (Sahajpal et al, 2021). Given the
extended capabilities of OGM, many undiagnosed conditions in
paediatrics will be elucidated using this new technique and other
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future developments as we enter an era of next-generation cyto-
genetics (Mantere et al., 2020).

Developing biomarkers and targeted therapies to treat
childhood diseases

Proteomics

While advances in genomics and cytogenetics are revolutionising
our understanding of diseases in childhood, these advances should
not be considered in isolation. A systems biology or systems medi-
cine approach is used to consider genetic mutations in the context
of or interaction with other biological systems. In vitro and in vivo
functional studies examine the translational effect of genetic muta-
tions at a molecular level. Translational studies may include the
large-scale impact on protein synthesis and function (proteomics)
(Sahajpal et al., 2021) and metabolic function within the biological
system (metabolomics). It is through the study of proteins within
the sphere of proteomics that protein modifications can be char-
acterised, and the targets of drugs identified. The value of prote-
omics within the context of precision diagnostics in children and
adults is the understanding of the post-translational modifications
that proteins undergo in response to a variety of intracellular and
extracellular signals. Protein phosphorylation is important in pro-
tein signalling and disruption of protein phosphorylation due to
alteration in protein kinases or phosphatases can lead to oncogen-
esis (Graves and Haystead, 2002). The process of cell growth,
programmed cell death and the decision to proceed through the
cell cycle are all regulated by signal transduction through protein
complexes (Hunter, 1995). Dysregulation of these processes results
in potential cancer development. Disruption of protein localisation
can also have a profound effect on cellular function and can result in
diseases in childhood such as cystic fibrosis (Graves and Haystead,
2002). Detailed knowledge about the structure, function, post-
translational modifications, localisation, compartmentalisation
and protein-protein interactions within cells supports the devel-
opment of targeted drug therapies and the use of biomarkers to
determine disease development and for monitoring treatment
effect (Wilkins et al., 1996; Garcia-Foncillas et al., 2021). However,
proteomics provides an added layer of complexity as protein
expression is altered by chronicity and environmental conditions
(Al-Amrani et al, 2021). To enable drug development and the
development of novel biomarkers, public resources of curated
signal transduction pathways have been developed (Chatr-
aryamontri et al,, 2007; Mi et al, 2007; Schaefer et al., 2009;
Kandasamy et al., 2010; Croft et al., 2011; Kanehisa et al., 2012;
Kerrien et al., 2012; Franceschini et al., 2013; Holman et al., 2013;
Schmidt et al., 2014). Proteomic-derived biomarker development is
classified as diagnostic, predictive and prognostic, based on
their uses.

Diagnostic biomarkers indicate if a patient has a specific disease,
predictive biomarkers can predict the response to therapy, and
prognostic biomarkers support the prediction of the clinical out-
comes. Paediatric sepsis provides an example underpinning the
value of using a precision diagnostic approach that sub-categorises
patients to allow directed therapy to improve outcome and predict
prognosis. Sepsis is a leading cause of mortality in children world-
wide (Glaab et al., 2012). Given the heterogeneity of presentation in
paediatric septic shock caused by viral or bacterial pathogens, this
acts as an excellent model to demonstrate the value of proteomics in
relation to precision diagnostic, predictive and prognostic biomark-
ers in children. Over a decade ago, whole blood RNA was first used
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to identify genes that were up- and down-regulated in a cohort of
paediatric patients with septic shock, demonstrating that these
patients had a unique gene expression signature (Wong et al.,
2007; Liu et al., 2012). Early work identified three subclasses of
children with septic shock who were defined by age, illness severity
and complications classified by 100 genes; younger patients were
more likely to have a higher level of illness severity, a higher degree
of organ failure and a higher mortality rate (Cvijanovich et al., 2008;
Wong et al,, 2009). Further work in this field has led to the
categorisation of children with septic shock into two endotypes
which through iterations are now classified by only four genes
(Wong et al., 2011, 2015). Of note, endotype A was noted to have
repression of genes corresponding to glucocorticoid receptor sig-
nalling and thus adaptive immunity, and use of adjunctive cortico-
steroids in this group was associated with a 4-fold increase in
mortality, thus helping to determine which children with septic
shock would benefit from adjunctive corticosteroids and which
would not (Wong et al,, 2011, 2017). In addition, multiple serum
protein biomarkers with known biological mechanisms in combin-
ation with mRNA biomarkers have been used in mortality risk
stratification of children with septic shock (Wong et al., 2016).
Combining metabolomic and inflammatory protein mediator pro-
filing early after presentation of paediatric sepsis may differentiate
children with sepsis requiring intensive care from those with or
without sepsis who can be safely cared for without intensive inter-
vention, thus enabling diagnostic and triage decisions in children
with sepsis (Wong et al., 2017). Recent work has also helped to
define the presence of bacterial or viral pathogens based upon the
presence of biomarkers including procalcitonin, neutrophil
gelatinase-associated lipocalin-2 and resistin (Mickiewicz et al.,
2015) with further advances using host RNA signatures to further
discriminate between bacterial and viral infection (Nijman et al,,
2021). Other developments in this field include the use of prote-
omic profiling to distinguish late onset sepsis and necrotising
enterocolitis in neonates (Pennisi et al., 2022), potentially predict-
ive, early diagnostic and prognostic metabolomic and proteomic
biomarkers in neonatal necrotising enterocolitis (Chatziioannou
et al., 2018), and the combination of metabolomic, transcriptomic,
genomic and proteomic profiles as an ‘integrated-omics’ systems
medicine approach to the stratification, diagnosis, treatment and
prognostics in paediatric sepsis (Agakidou et al., 2020). Outside the
field of neonatal and paediatric sepsis, there are other examples
where proteomics has the potential to further our understanding of
conditions in children. In the field of paediatric allergy, novel
proteomics methods have been used to identify the presence of
36 digested cow’s milk proteins in breast milk which would be
missed by immunochemical methods, and thus may help to
improve our understanding of cow’s milk protein allergy in exclu-
sively breast-fed infants and to support new approaches to allergy
prevention (Zhu et al., 2019). Recently, proteomics profiling as part
of a multi-omics approach has been used to predict neurodegen-
eration in children with Down’s syndrome pointing to a disruption
of IGF1 signalling as a potential contributor to or biomarker to the
neurodegenerative process, again potentially providing novel path-
ways for targeted treatments (Araya et al., 2022). In paediatric
oncology, proteogenomic studies are furthering our understanding
of relapse and treatment resistance in children with acute myeloid
leukaemia, providing new approaches to predict relapse during
disease progression, novel biomarkers and new targets for novel
drug therapies (Stratmann et al., 2022). Other areas where prote-
omics provides value to prediction, diagnostics and personalised
interventions include chronic kidney disease and peritoneal dialysis
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in children (Cummins et al.,, 2022; Trincianti et al., 2022), drug
metabolism and personalised dose optimisation in children
(Streekstra et al., 2021; van Groen et al,, 2022) and the use of
multi-omics derived biomarkers to develop prediction models in
children with asthma to guide therapy (Golebski et al., 2020; Kang
et al., 2022). Proteomics either in isolation or part of a multi-omics
approach has revolutionised our ability to develop individual dis-
ease profiling across multiple areas of paediatrics with new diag-
nostic, predictive and prognostic methodologies, and new targets
for novel drug development.

Precision diagnostics for targeted drug therapies

An understanding of genetic causes of specific diseases has resulted
in the recent increase in the development of gene therapies in
children regulated under the guidelines for advanced therapy medi-
cinal products. Broadly, gene therapies were previously categorised
into ex vivo and in vivo (Langley and Wong, 2017). Ex vivo is the
route taken predominantly for the gene modification of bone
marrow-derived cells and epidermal sheets. Ex vivo gene therapies
are based upon the process of extracting immature bone marrow
cells from the patient, employing a viral vector to integrate a
functional copy of the gene into the genome of the target cells.
The genetically modified cells are then re-administered to the
patient in the form of an autologous gene-modified cell transplant.
Examples of ex vivo gene therapies include the treatment of primary
immune deficiencies and metabolic disorders (Qasim et al., 2007;
Buckland and Bobby Gaspar, 2014) with more recent approvals
granted for rare diseases such as metachromatic leukodystrophy
(treated with atidarsagene autotemcel) (Rivat et al, 2012) and
cerebral adrenoleukodystrophy (treated with elivaldogene auto-
temcel) (Fumagalli et al., 2022). The first UK patient to receive
gene therapy in the UK celebrated his 21*" birthday last year after
having been treated for severe combined immunodeficiency
(Keam, 2021). In vivo gene therapy primarily uses a viral vector
(commonly the adeno-associated virus) to deliver the therapy
directly to the patient rather than the transplant of gene-corrected
cells. Glybera (alipogene tiparvovec) was the first gene therapy
treatment to receive an European Commission marketing author-
isation and the first gene therapy to be approved anywhere in the
world, was used to treat lipoprotein lipase deficiency, an inherited
condition with an incidence of 1/500,000. This therapy has since
been withdrawn due to the rarity of the disease lack of cost-
effectiveness (Great Ormond Street Hospital for Children
(GOSH), 2021; Kastelein et al., 2013). There are currently five gene
therapy treatments approved in Europe — Luxturna (for individuals
with an inherited retinal disease caused by mutations in both copies
of the RPE65 gene), Zolgensma (to treat spinal muscular atrophy),
two chimeric antigen receptor T cell therapies (Yescarta - to treat
non-Hodgkin lymphoma and Kymriah for the treatment of adult
patients with relapsed or refractory follicular lymphoma) and
Strimvelis (the gamma-retrovirus for adenosine deaminase-severe
combined immunodeficiency). Multiple other clinical trials are
ongoing to identify candidate genes amenable to in vivo gene
therapies (Yla-Herttuala, 2012; Mendell et al., 2021). The recent
advent of genome editing uses a different approach to correct
genetic differences by introducing molecular tools to change exist-
ing DNA. Approaches include the use of zinc finger nucleases (Lee
etal., 2021), transcription activator-like effector nucleases (Carroll,
2011) and clustered regularly interspaced short palindromic repeats
(Liu et al,, 2015), which has catalysed the implementation of new
clinical trials of gene editing to cure rare and common diseases in
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children that otherwise result in death in childhood or early adult-
hood (Lee et al., 2018, 2021).

Biomarker-driven directed therapies in the treatment of cancer
in children are still early in development. A recent systematic
review reporting on the clinical utility of precision medicine in
the treatment of paediatric cancer has reported on the use of
molecular techniques such as array comparative hybridisation,
immunohistochemistry, next-generation sequencing, RNA
sequencing, single nucleotide polymorphism array, targeted
panel-based sequencing, whole-exome sequencing and WGS to
identify genomic targets, which have guided the allocation of
targeted drugs (Salsman and Dellaire, 2017). Genes which are
transcribed in any one condition are known as the transcriptome;
the process of determining the genetic codes contained in the
transcriptome and their relative proportions is known as transcrip-
tome sequencing or transcriptomics. Of note, the value of under-
standing the transcriptome has been highlighted through the
increased benefit of identifying additional therapeutic targets that
were not identified by genomic analysis alone (Marks et al., 2017;
Uddin et al., 2020). Targetable mutations were found in 48.0% of
patients, with 41.7% who received targeted drugs demonstrating an
objective response. However, accessibility and thus inequity of
access to targeted oncological therapies were cited as problematic,
with only 27% of patients receiving targeted treatments, highlight-
ing the gulf between access to precision diagnostics and subsequent
therapies (Salsman and Dellaire, 2017). Challenges cited included
the need to access drugs off-licence due to lack of paediatric dosing
schedules, lack of access to clinical trials at their treating centre or
ineligibility owing to advanced disease or trial restriction to adult
patients or the dependency on compassionate access facilitated by
pharmaceutical companies (Salsman and Dellaire, 2017). More-
over, heterogeneity in outcome reporting across clinical trials may
lead to bias in the interpretation of treatment effect. This underpins
the need for consistency in clinical trial outcomes to clearly define
the clinical and economic value of a precision diagnostics approach
to targeted therapy. Large molecular databases and global collab-
orative clinical trials have been assembled to help demonstrate the
value of targeted therapies which will in turn enhance our under-
standing in the future and improve access to novel therapies (Pincez
et al., 2000; Brien et al., 2016; Harttrampf et al., 2017; Linzey et al.,
2018; George et al., 2019; Hansford, 2019; Gojo et al., 2020).

A digital approach to precision diagnostics and medicine
in paediatrics

The value of population data

The focus on precision diagnostics in paediatrics has largely focused
on the value of data derived from ‘omics’ profiling as a means of
supporting diagnoses, risk stratification, directing therapy
(pharmacogenomics and pharmacometabolomics) and determin-
ing prognostic indicators. While this approach is revolutionising
the way patients are managed, a systems medicine approach should
also consider data relating to patient populations and external
factors that may impact on patient diagnosis, monitoring and care.
While precision in the initial diagnosis enhances a personalised
approach to therapy, longitudinal patient monitoring facilitates a
dynamic precision approach to ‘diagnosing’ new or recurrent
issues. As medical device development in paediatrics and child
health gathers momentum (Vo et al., 2020), the value of persona-
lised and population data to direct patient management is attracting
attention. For example, large data sets relating to growth in children
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combined with automated systems for monitoring linear growth
are facilitating the early identification of growth disorders of chil-
dren at a greater frequency while reducing the number of referrals
of children with normal growth parameters (Dimitri, 2019). For
patients diagnosed with disorders of growth requiring growth
hormone therapy, large-scale data acquisition using a growth hor-
mone delivery device with a connected monitoring platform
(easypod™), which automatically transmits adherence data via
an online portal (easypod™ connect), can be used to predict an
individual’s response to therapy relative to a population undergoing
the same treatment, by integrating methodologies such as machine
learning. This facilitates clinical decision support to modify therapy
in individual patients (Sankilampi et al., 2013). This approach of
using patient population data to ‘diagnose’ poor adherence to
therapy has been a catalyst to develop a digital ecosystem to support
service users and service providers in the management of growth
disorders requiring growth hormone therapy. This includes the
development of online educational materials to support digital
literacy and patient management (Dimitri et al., 2000; Su et al.,
2022), digital monitoring of patient therapy, adherence and pref-
erences (Boman et al., 2021; Spataru et al., 2021; Spataru et al., 2022;
van Dommelen et al., 2018; Koledova et al., 2020) and the devel-
opment of a framework to guide future digital developments
including automated referral pathways, enhanced digital commu-
nication, digital medical and psychological support, gamification to
support adherence to therapy, access to digital resources, digital
reporting of patient reported outcomes and safety and assessment
reporting (Dimitri et al,, 2021).

The application of machine learning in paediatric diagnosis

The advent of machine learning has facilitated the use of large
patient data sets or ‘training sets’ to generate and refine predictive
models. Large data sets already exist in multiple areas of medicine,
and these are now being employed to predict disease in children.
Machine learning has superior capabilities to traditional data ana-
lytics methods based upon the ability to rapidly process large
volumes of complex data, to explore and extrapolate data relation-
ships through pattern recognition that are not recognisable through
other methods and improving efficiency and accuracy through data
acquisition. Deep learning lets the data train the computer leading
to predictive models that become stronger as more data are added.
Imaging data sets that are being used in paediatrics to predict
abnormalities have been frequently reported in the literature in
the last few years with examples including (but not limited to) the
detection of abnormalities in chest radiographs (Chen et al., 2020;
Padash et al,, 2022), the diagnosis of effusions in elbow joints
(Huhtanen et al., 2022), the detection of intracranial pathology
on CT imaging, defining abnormalities as critical or non-critical
(Titano et al., 2018), the assessment of left ventricular function from
birth to 18 years and the diagnosis of coronary artery lesions in
Kawasaki disease using echocardiography (Lee et al., 2022;
Zuercher et al, 2022) and the assessment of paediatric brain
tumours (Grist et al., 2021; Huang et al., 2022). However, challenges
remain in achieving an acceptable diagnostic accuracy and the
acquisition of adequate training data sets in cohorts, particularly
in relation to rare diseases due to the size of the patient populations.
Machine learning has been applied to continuous conventional
electroencephalography to determine the diagnostic accuracy of
detecting and monitoring seizures in neonates. The artificial intel-
ligence (AI) platform did not improve the number of neonates
diagnosed with seizures, although the quantification of seizure
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burden was greater, thus providing a more accurate means of
monitoring seizure frequency and duration (Pavel et al., 2020).
The DeepGestalt platform utilising computer vision and deep-
learning algorithms for facial image analysis has shown great
potential in the phenotypic evaluation of syndromes including
the initial syndromic diagnosis and the ability to subclassify differ-
ent genetic subtypes within the same syndromic diagnosis
(Gurovich et al., 2019). Patient population data have also been used
to detect the earlier presentation of more common presentations in
paediatrics such as neonatal sepsis (Masino et al., 2019), the risk
stratification of infants with bronchiolitis to promptly identify
infants at risk of deterioration (Raita et al., 2020), improving the
prediction of clinical outcomes in children presenting to the emer-
gency department with the benefit of better identifying critically ill
children while reducing the over triaging of children who are less ill
(Raita et al., 2020) and predicting the need for hospitalisation of
children with asthma (Patel et al., 2018). Notably, this last example
also demonstrates the value of using environmental data including
weather data, population influenza patterns and socioeconomic
status to improve predictability. The value of data acquisition from
social media platforms on smartphones and tables to support the
diagnosis of mental health issues in young people and adults such as
depression (Reece and Danforth, 2017), post-traumatic stress dis-
order (Reece et al., 2017) and schizophrenia (Héansel et al., 2021)
highlights the value of ‘non-health’ data to support diagnoses.
Given that children and young people are high users of technology
and social media, it is important to consider the value of persona-
lised data on commercially available platforms in the future to
inform on health, well-being and disease. For example, Instagram
posts have been used as a predictor of physical activity in adults
aged 18-30 years (Liu et al, 2021). A comprehensive review of
machine learning in paediatrics is covered elsewhere (Clarke et al.,
2022), supporting the value of Al in the field of precision diagnos-
tics in paediatrics. As electronic patient records become the global
norm, it is likely that the application AI will become fundamental to
improve diagnosis and clinical outcomes. However, large and
accurate data sets will be required to ensure accurate outputs from
machine learning models, and legal and governance structures will
need to be in place to regulate the use of these data. Given the
relative paucity of large paediatric data sets, interoperability across
systems and continental or global data sharing of high-quality data
may be required to optimise outputs but will also need to be viewed
in the context of generalisability across different healthcare systems.

Future perspectives

Advances in science, technology and data acquisition and analytics
have already revolutionised paediatric healthcare. Adopting the 4P’
systems medicine approach (Hood et al., 2004; Flores et al., 2013) to
ensure healthcare is preventive, predictive, participatory and per-
sonalised will rely on the combination of multiple data sources and
methodologies to maintain health and prevent and predict disease.
The value of combining ‘omics’ data has advanced the science of
molecular precision medicine to understand the molecular basis of
disease, the risk of developing it and its evolution and pathogenesis
in children; the speed of technological advances in genomics,
proteomics, transcriptomics and AI will further improve this
(Williams et al., 2018; Garcia-Foncillas et al., 2021).

The future of precision diagnostics in paediatrics will in part rely
on data acquisition that has not been commonly used in medicine
before from commercial and social media platforms, and from
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environmental sources, knowing that the lifestyle, demographic
and environmental factors play a key role in the presentation and
course of disease. Personalised platforms on mobile phone and
tablets, digital monitoring systems within homes and remote sens-
ing technologies can gather data on personal habits, lifestyle, phys-
ical activity and diet, and environmental data such as climate data
can be derived from institutional sources. Collectively, these factors
are encapsulated in the concept of the ‘exposome’. The ‘exposome’
has been proposed as a new paradigm to encompass the totality of
human environmental (non-genetic) exposures from conception
onwards (Wild, 2012; Vrijheid, 2014). Thus, the exposome will play
a fundamental part in precision diagnostics through the life course.
In this context, there is a value in collecting data from early life to
truly reflect response to changes in the exposome which in turn
support disease prevention, predicting the future risk of developing
a disease and supporting the management of disease in an envir-
onmental context once established. To facilitate this, advances in
sensing devices and other technologies will facilitate collection and
remote access to these data (Martin Sanchez et al, 2014). In
addition to the challenges of collecting and extrapolating data, data
analytics and combining data sets, the context in which these data
are derived must be considered. Despite the inherent affinity chil-
dren and young people have with technology, there is a reluctance
in this population to simply ‘hand over’ data, and data acquisition
must be contextualised to social context. Children and young
people are reluctant to use technology to collect health data if this
does not fit in with social norms, thus risking discrimination.
Concerns have been raised surrounding data sharing, use and
confidentiality of personal information, with children and young
people needing reassurance that their data are being used by trusted
organisations, that it is stored safely and securely, with a desire to
control their data and privacy, and to minimise the risk of misin-
terpretation of their health data, particularly in the context of them
having a health-related problem (Blower et al., 2020). Participation
is framed as a central tenet of personalised medicine. As we move in
the direction of whole-scale personalised medicine that involves the
collection and storage of data in children, particularly in relation to
the future predictability or certainty of disease, the ethical and legal
considerations around informed consent, data protection, auton-
omy and privacy must be considered carefully, particularly for
those who are not old enough to express their views. There are
potential legal and ethical ramifications from extensive testing and
use of data that may have unintended consequences, for example,
the identification of a secondary disease that does not manifest until
adulthood, that in turn may limit testing in children. Thus, guide-
lines on how to pursue children’s participation in personalised
medicine would be of benefit in the future (O Cathaoir, 2021).

Conclusion

The way data is changing health and healthcare in the 21* century
could be likened to the impact that the introduction of antibiotics
had on bacterial disease in the early 20™ century - it will save and
improve many lives. We have already seen significant advances in
diagnosis, drug discovery and interventions in healthcare as a result
of advances in the ‘omics’ and cytogenetics. The future acquisition
and combination of data from multiple sources including data from
individuals, their lifestyle behaviours and their immediate and
wider environments will add to our understanding of the manifest-
ation of health and disease over time. A life course approach
starting from birth or even in the prenatal period is required to
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understand how human development and changes in the environ-
ment lead to future health and ill-health, and how environmental
and physical factors impact on congenital and acquired diseases of
childhood. As we advance in the field of personalised medicine, we
need to consider a paradigm shift in precision diagnostics to
incorporate the need to ‘sustain health’ in addition to accurately
diagnosing disease. In this respect, this shift in diagnostics should
encompass the need to ‘diagnose’ good health. The principle of
‘start early and change more’ underpins the value of applying
personalised medicine early in life for a better future.
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