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Understanding magnetised laser–plasma interactions is important for controlling
magneto-inertial fusion experiments and developing magnetically assisted radiation and
particle sources. For nanosecond pulses at non-relativistic intensities, interactions are
dominated by coherent three-wave interactions, whose nonlinear coupling coefficients
became known only recently when waves propagate at oblique angles with the magnetic
field. In this paper, backscattering coupling coefficients predicted by warm-fluid theory
are benchmarked using particle-in-cell simulations in one spatial dimension, and excellent
agreements are found for a wide range of plasma temperatures, magnetic field strengths
and laser propagation angles, when the interactions are mediated by electron-dominant
hybrid waves. Systematic comparisons between theory and simulations are made possible
by a rigorous protocol. On the theory side, the initial boundary value problem of linearised
three-wave equations is solved, and the transient-time solutions allow the effects of growth
and damping to be distinguished. On the simulation side, parameters are carefully chosen
and calibration runs are performed to ensure that comparisons are well controlled. Fitting
simulation data to analytical solutions yields numerical growth rates that match theory
predictions within error bars. Although warm-fluid theory is found to be valid for a wide
parameter range, genuine kinetic effects have also been observed.
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1. Introduction

Laser–plasma interactions (LPIs) are usually studied without a background magnetic
field, partly because the relevant field strengths are over hundreds of teslas that are
difficult to attain, and partly because cyclotron motion significantly complicates physical
processes, making the interactions difficult to understand. However, in recent experiments
where a seed magnetic field is imposed to enhance thermal and particle confinements
in laser-driven inertial fusion experiments (Chang et al. 2011; Hohenberger et al. 2012),
understanding magnetised LPIs (MagLPIs) has become necessary. In experiments that are
designed using codes that incorporate magnetisation effects on hydrodynamics but not
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including magnetisation effects on LPIs, the observed hot spot shape is more elongated
along the magnetic field than expected (Moody et al. 2022). Subsequent experiments using
manually adjusted laser drive manage to restore the symmetry, suggesting that MagLPIs
likely contribute to the discrepancy.

Strong magnetic fields directly affect LPIs in addition to changing plasma conditions.
In indirect-drive experiments, external coils apply a seed magnetic field of B0 ≈ 30 T.
This seed field is amplified to the 102-T level during the laser drive, when expanding
plasmas from the hohlraum wall compresses the magnetic flux near the laser entrance
hole (Strozzi et al. 2015). Moreover, Biermann-battery fields near the laser spot and flux
compression due to the imploding fuel lead to even larger fields at the kilotesla level
(Knauer et al. 2010; Sio et al. 2021). When B0 ∼ 102 T, electron cyclotron frequency
becomes comparable to the frequency of sound waves that mediate Brillouin scattering and
cross-beam energy transfer. Moreover, when B0 ∼ 103 T, the electron cyclotron frequency
becomes comparable to the plasma frequency, leading to modifications of the Langmuir
wave that mediates Raman scattering and two-plasmon decay. The ability to explain and
predict the magnetised version of these commonly encountered long-pulse LPI processes
relies on a basic understanding of MagLPIs that we have just begun to acquire.

Although basic facts about unmagnetised LPIs, such as the linear growth rates
of Raman and Brillouin scatterings, are well known from decades of theoretical,
numerical and experimental studies, simple facts about MagLPIs are poorly understood.
The two exceptions are when waves propagate either perpendicular or parallel to the
background magnetic field. Perpendicular propagation is particularly relevant for magnetic
confinement fusion, where strong radio-frequency pump waves are used for plasma heating
and current drive. Using antenna mounted on vacuum chamber walls, the waves are
launched nearly perpendicular to the magnetic field. In this geometry, the extraordinary
(X) pump can decay to upper-hybrid (UH) and lower-hybrid (LH) waves (Grebogi &
Liu 1980; Hansen et al. 2017), as well as couple with Bernstein waves (Platzman, Wolff
& Tzoar 1968; Stenflo 1981). The other special geometry is when waves propagate
nearly parallel to the magnetic field, which is particularly relevant for astrophysical-type
plasmas, where the pump wave is an Alfvén wave whose frequency is below cyclotron
frequencies. In this case, the pump can couple with sound waves and other Alfvén-type
waves (Hasegawa & Chen 1976; Wong & Goldstein 1986), and the coupling is known
also at oblique angles (Viñas & Goldstein 1991). In the context of LPIs, the pump
waves are lasers, whose frequencies are typically higher than electron-cyclotron frequency.
Most studies of MagLPIs so far are also restricted to special geometries where theories
are greatly simplified. In the perpendicular geometry, X-wave pump lasers undergo
backscattering (Paknezhad 2016; Shi, Qin & Fisch 2017a), forward scattering (Hassoon,
Salih & Tripathi 2009; Babu et al. 2021), second harmonics generation (Jha et al.
2007) and terahertz radiation generation (Varshney et al. 2015). In the parallel geometry,
the electrostatic waves are unmagnetised but the right-handed (R) and left-handed (L)
circularly polarised electromagnetic waves become non-degenerate, changing the coupling
for Raman- and Brillouin-type scatterings (Sjölund & Stenflo 1967; Laham, Al Nasser &
Khateeb 1998). In more general geometry, where waves propagate at oblique angles with
respect to the magnetic field, cyclotron motion makes theoretical analysis significantly
more complicated. Although theories exist (Larsson & Stenflo 1973; Liu & Tripathi 1986;
Stenflo 1994; Brodin & Stenflo 2012), the coupling coefficients are given by cumbersome
formulae that are general but rarely evaluated. Physical understanding of underlying
processes are largely lacking until recently when more convenient formulae are obtained
and evaluated (Shi, Qin & Fisch 2017b; Shi 2019), leading to pictures of MagLPIs that are
both intuitive and quantitative (Shi, Qin & Fisch 2018, 2021). However, it remains unclear
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how accurate these formulae are and to what extent they are applicable. Because lasers
propagate at oblique angles in inertial fusion experiments, it is especially important to
known whether the predicted couplings are correct beyond special angles.

To benchmark analytical formulae, kinetic simulations have been used but systematic
comparisons are difficult. When waves propagate perpendicular (Boyd & Rankin 1985; Jia
et al. 2017) or parallel (Li et al. 2020, 2021) to the magnetic field, qualitative agreements
between theories and simulations have been found. Moreover, at oblique angles, it is
observed that even in regimes where kinetic effects are expected to be important, coupling
coefficients predicted by warm-fluid theory are indicative of kinetic simulation results
(Edwards et al. 2019; Manzo, Edwards & Shi 2022). However, systematic comparisons
between theory and simulations of MagLPIs have not been made, which is the goal
of this paper. Making the comparisons rigorous is difficult for three reasons. First,
nonlinear coupling leads to wave growth, but the effect of growth is mixed with damping
in kinetic simulations. In the absence of collision, magnetised plasma waves are still
damped collisionlessly, whose rate is difficult to calculate because cyclotron motion
mixes with trapping motion and particle trajectories are chaotic in general. Even in the
simple perpendicular geometry, the two limiting cases, where trapping motion dominates
cyclotron motion (Sagdeev & Shapiro 1973; Dawson et al. 1983) or vice versa (Karney
1978, 1979), have drastically different behaviour, and the intermediate regimes are far
less understood. As a larger damping can offset a larger growth, their effects need
to be separated before coupling coefficients can be constrained. Second, the coupling
coefficients derived in theories are specific for eigenmodes but launching eigenmodes
in kinetic simulations is not straightforward when waves propagate at oblique angles.
In previous simulations, the pump laser is launched with simple linear or circular
polarisations from the vacuum region. Upon entering the magnetised plasma, which is a
birefringent medium, the laser excites both eigenmodes, which are elliptically polarised at
oblique angles. Since nonlinear couplings are different depending on the laser polarisation
(Shi & Fisch 2019), exciting multiple modes does not allow a clean comparison. Finally,
additional processes can occur in kinetic simulations, making it difficult to isolate the
process of interest. For example, the pump laser can undergo spontaneous scattering into
other modes. This problem is particularly severe in particle-in-cell (PIC) simulations,
where Monte Carlo sampling noise causes unphysically large spontaneous scattering. As
another problem, collisionless damping causes the distribution function to evolve on a
time scale that is often comparable to wave growth, which is an issue for both PIC and
Vlasov simulations. As coupling coefficients depend on the distribution function, its time
evolution complicates the comparison between theories and simulations.

In this paper, one dimensional PIC simulations are used to benchmark coupling
coefficients predicted by warm-fluid theory, and excellent agreements between simulations
and theory are achieved using a protocol that enables quantitative comparisons. First,
to distinguish effects of damping from growth, analytical solutions of the linearised
three-wave equation are derived in § 2 and are used to fit simulations data. Building
up solutions from initial value problem to boundary value problem, the transient-time
spatial profiles in the backscattering problem, where a seed laser is amplified by a
counter-propagating pump laser, allows damping and growth rates to be constrained
separately. Second, to make numerical results directly comparable to theory, calibration
steps are performed for PIC simulations, which are described in § 3. To ensure that a
single eigenmode is excited, the pump and seed laser polarisations are calibrated. To
account for laser reflections from plasma–vacuum boundaries, laser transmissions are
calibrated. To separate pump and seed from raw data and extract their envelopes, phase
velocities are calibrated. These calibration runs eliminate free parameters during fitting
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and make stimulated runs well controlled. Third, competing processes are monitored
to ensure that only valid data are used for fitting. Simulation parameters are chosen
to reduce the effects of spontaneous scattering, and the seed wavelength is scanned
to excite leading resonances, which are mediated by the Langmuir-like P wave and
the electron-cyclotron-like F wave. In addition, evolution of the distribution function is
monitored to select data within a time window where plasma conditions remain constant.
Fitting well-controlled simulation data to analytical solutions of the same set-up leads to
excellent agreements in § 3.4, where the warm-fluid theory is shown to be valid within
a wide parameter range. The protocol has difficulties for weak resonances, primarily due
to spontaneous scattering and leakages during pump–seed separation. Potential ways to
circumvent the difficulties are discussed in § 4, and further investigations may find that the
warm-fluid theory is valid in even wider parameter spaces. Nevertheless, kinetic effects
such collisionless damping and Bernstein-like resonances are clearly observed, suggesting
the importance of developing and benchmarking kinetic theories of MagLPIs in the future.

2. Analytic solutions of linearised three-wave equations

In the slowly varying amplitude approximation E = E sin θ , where the wave envelope E
varies slowly compared with the wave phase θ = k · x − ωt + θ0, the interaction between
three resonant waves, which satisfy ω1 = ω2 + ω3 and k1 = k2 + k3, is described by the
three-wave equations

dta1 = − Γ

ω1
a2a3, (2.1a)

dta2 = Γ

ω2
a1a3, (2.1b)

dta3 = Γ

ω3
a1a2, (2.1c)

where dt = ∂t + v · ∇ + μ is the advective derivative at group velocity v = ∂ω/∂k and
μ is a phenomenological damping rate. These equations describe the decay of pump
wave a1 into daughter waves a2 and a3, and the inverse process. The dimensionless
a = e|E |u1/2/meωc is the normalised electric-field amplitude. The normalisation is such
that when a > 1, the quiver velocity of electrons, whose charge is −e and mass is
me, becomes comparable to the speed of light c. The normalisation also involves the
wave-energy coefficient u = 1

2 e†He, where H is the Hamiltonian of linear waves and e
is the unit polarisation vector, such that the cycle-averaged energy of the wave is 1

2ε0uE2.
The wave-energy coefficient is simply u = 1 for unmagnetised electromagnetic waves and
cold Langmuir waves. However, for magnetised plasma waves, u usually differs from unity
and can be evaluated using the code by Shi (2022b) for given eigenmodes.

The key parameter in the three-wave equation is the coupling coefficient Γ , which has
units of frequency squared. In magnetised warm-fluid plasmas, Γ is given by the explicit
formula (Shi et al. 2017b; Shi 2019)

Γ =
∑

s

Zsω
2
ps(Θ

s +Φs)

4Ms(u1u2u3)1/2
, (2.2)

where the summation is over all plasma species, with normalised charge Zs = es/e, mass
Ms = ms/me and plasma frequency ω2

ps = e2
s ns0/ε0ms at equilibrium density ns0. In the

numerator, Θ is due to electromagnetic scattering and is equals to the sum of Θ1,2̄3̄
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with its five permutations. Explicitly, Θi,jl = (1/ωj)(cki · f j)(ei · f l), where f = Fe and
F is related to the linear susceptibility by χ = −ω2

pF/ω2, which reduces to F = I for
unmagnetised cold plasmas. The notation ī in subscripts means complex conjugation for
ei and f i with negations for the wave 4-momentum (ωi,ki). Finally, theΦs term in (2.2) is
due to warm-fluid nonlinearities, which is typically smaller than Θ s by a factor of v2

Ts/c
2,

where vTs is thermal speed. The coupling coefficient is evaluable using the code from Shi
(2022b) once plasma conditions and the three resonant waves are specified.

To benchmark the value of magnetised three-wave coupling coefficient Γ using
numerical simulations, this paper considers a linearised and one-dimensional problem
whereby the three-wave equations are simplified. First, the pump wave is launched with
an amplitude that is much larger than the daughter waves, in which case a1 remains
approximately a constant. Second, simulations in one spatial dimension are used, meaning
that k ‖ x̂ and the wave envelopes only vary along the x direction. Note that the group
velocity v can have components in other directions, but v · ∇ only picks up its x component
v. With these simplifications, (2.1) becomes a coupled-mode equation Lα = 0 where

L =
(
∂t + v2∂x + μ2 −γ0

−γ0 ∂t + v3∂x + μ3

)
, (2.3)

and α = (α2, α3)
T is a column vector. Here, α = √

ωa is rescaled such that the
off-diagonal elements are the same γ0. As only γ 2

0 is of physical significance, we can
pick the positive sign so that the bare growth rate of daughter waves is

γ0 = |Γ a1|√
ω2ω3

. (2.4)

Without loss of generality, we can always choose to label the daughter waves such
that |v2| ≥ |v3|. Moreover, we can always choose a coordinate such that v2 ≥ 0. With
these choices, �v = v2 − v3 ≥ 0 is non-negative. Solutions to Lα = 0 are different in
forward-scattering (v3 > 0) and backscattering (v3 < 0) cases.

As the equations are linear, they admit exponential solutions that are simple to write
down analytically but difficult to set up numerically. The exponential solutions are of the
form α2 ∝ α3 ∝ exp(γ t + κx) where the temporal and spatial growth rates satisfy

(γ + v2κ + μ2)(γ + v3κ + μ3) = γ 2
0 . (2.5)

This constraint defines a hyperbola in the (κ, γ ) plane. One special case is κ = 0,
where the wave envelopes are uniform in space. The two roots are γ± = −μ̄±Ω , where
μ̄ = 1

2(μ2 + μ3), Ω =
√
γ 2

0 + (�μ/2)2 and �μ = μ2 − μ3. When γ0 < γc, both roots
are negative and correspond to damping. On the other hand, when γ0 > γc, one root
becomes positive, giving rise to parametric instability whose threshold is

γc = √
μ2μ3. (2.6)

The other special case is γ = 0, where the wave envelopes are stationary in time.
Assuming v2v3 �= 0, then for forward scattering v2v3 > 0, the envelopes decay in space
unless γ0 > γc, similar to the previous case. However, the backscattering case v2v3 < 0 is
very different: purely growing or decaying solution no longer exists when γ0 exceeds the
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absolute instability threshold

γa = 1
2

√
|v2v3|

(
μ2

|v2| + μ3

|v3|
)
. (2.7)

When γ0 > γa, the two roots of κ acquire imaginary parts, which means that stationary
exponential solutions become oscillatory in space. The significance of γa will become
apparent in (2.25) when we discuss the backscattering problem. To extract growth rates
from kinetic simulations, which are usually designed to solve initial boundary value
problems, one approach is to choose an initial condition that corresponds to a uniform
α and watch it grow in time. However, the effect of growth is mixed with damping,
whose rate is unknown when waves propagate at oblique angles with the magnetic field.
An alternative approach is to run simulations until the system reaches steady state.
However, the plasma distribution functions also evolve during the process, sometimes
quite substantially (Manzo et al. 2022), so the growth and damping are not only mixed
but are also not constants. To overcome these difficulties, kinetic simulations are fitted
using more general solutions of Lα = 0 by solving initial boundary value problems, whose
solutions are known (Bobroff & Haus 1967; Hinkel, Williams & Berger 1994; Mounaix &
Pesme 1994) but are rederived in the following for clarity. The spatial variations of α allow
the effects of growth and damping to be distinguished, and the transient-time response
before plasma conditions evolve allows the growth and damping rates to be treated as
constants.

2.1. Initial value problem
In the initial value problem, the spatial domain is infinite, and the wave envelopes evolve
in time from their initial conditions

α(x, t = 0) = A(x), (2.8)

where A = (A2,A3)
T. In the degenerate case v2 = v3 = v, after transforming to the

comoving frame x′ = x − vt and t′ = t where ∂t + v∂x = ∂t′ , the equations become
ordinary differential equations (ODEs) in t′. The eigenvalues γ± = −μ̄±Ω of the linear
ODEs are the κ = 0 roots of (2.5), and the general solutions are of the form α(x′, t′) =
A+(x′) exp(γ+t′)+ A−(x′) exp(γ−t′). The coefficients A± are determined by matching
initial conditions, which give the solution

α = exp(−μ̄t)

⎛
⎜⎝coshΩt − �μ

2Ω
sinhΩt

γ0

Ω
sinhΩt

γ0

Ω
sinhΩt coshΩt + �μ

2Ω
sinhΩt

⎞
⎟⎠ A(x − vt). (2.9)

The�v = 0 solution exhibits two features that are more general: a diagonal damping term
and off-diagonal coupling terms that vanish when γ0 = 0. The rest of this paper focuses on
the non-degenerate case �v > 0, because in LPIs v2 is close to the speed of light whereas
v3 is on the scale of thermal velocities, which are much slower.

In the non-degenerate case�v > 0, because the equations are linear, they can be solved
using Fourier transform F [p](k) = ∫ +∞

−∞ dx p(x) exp(−ikx) = p̂(k). In momentum space,
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the equation becomes ∂tα̂ = Kα̂ where

K =
(−ikv2 − μ2 γ0

γ0 −ikv3 − μ3

)
. (2.10)

As the matrix is time independent, the solution is α̂(t) = exp(tK)Â. The matrix
exponential can be computed by diagonalising K whose eigenvalues are λ± = −ikv̄ −
μ̄±

√
γ 2

0 − ω2, where v̄ = 1
2(v2 + v3) and ω = 1

2(k�v − i�μ). Finding eigenvectors of
λ± and diagonalising K, the solution map Φ̂(k, t) = exp(tK) can be written as

Φ̂(k, t) = exp(−(ikv̄ + μ̄)t)
(
∂t − iω γ0
γ0 ∂t + iω

)
Ĝ(k, t), (2.11)

where Ĝ(k, t) = sinh(t
√
γ 2

0 − ω2)/
√
γ 2

0 − ω2. The solution map Φ̂(k, t) satisfies matrix
equation ∂tΦ̂(k, t) = KΦ̂(k, t) and initial condition Φ̂(k, t = 0) = I, where I is the
two-dimensional identity matrix. Note that the behaviour of Ĝ is regular when ω(k) →
±γ0. We can choose the branch cut for the square roots to lie between these two points. As
sinh is an odd function, Ĝ is, in fact, analytic in the complex k plane.

To find the solution in x space, take inverse Fourier transform F−1[p̂](x) =∫ +∞
−∞ (dk/2π)p̂(k) exp(ikx) = p(x). As ω depends on k, it is convenient to change the

integration variable to k′ = 2ω/�v, which gives k = k′ + i�μ/�v. Moreover, it is
convenient to change the reference frame to

τ = �v

2
t, (2.12a)

z = x − v̄t, (2.12b)

which travels at the average velocity of the two waves. Note that z − τ = x − v2t and
z + τ = x − v3t. The phase factor simplifies as exp[ikx − (ikv̄ + μ̄)t] = ρ exp(ik′z) where

ρ = exp
{

1
�v

[μ3(z − τ)− μ2(z + τ)]
}
, (2.13)

which is a damping factor independent of k′. When taking inverse Fourier transform of
(2.11), all matrix elements can be expressed in terms of

g(z, τ ) =
∫ +∞−iε

−∞−iε

dk′

2π
exp(ik′z)

sinh τ
√

m2 − k′2
√

m2 − k′2 (2.14a)

= 1
2

sign(τ )I0(m
√
τ 2 − z2)Θ(τ 2 − z2), (2.14b)

where m = 2γ0/�v, I0 is modified Bessel function and Θ is Heaviside step function. The
shift by ε = �μ/�v is insignificant because the integrand is analytic. The above integral
is calculated in Appendix A. The solution map Φ in configuration space is

Φ(x, t) = ρ

(
∂τ − ∂z m

m ∂τ + ∂z

)
g(z, τ ). (2.15)

The derivatives are evaluated using I′
0(ξ) = I1(ξ) and Θ ′(ξ) = δ(ξ), and an explicit

formula is given by (A7). The function g satisfies the imaginary-mass Klein–Gordon
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equation (∂2
τ − ∂2

z − m2)g(z, τ ) = 0, as shown in (A5). Consequently, the solution map
satisfies LΦ(x, t) = 0 following (A6). The step function Θ enforces the causality that
information outside the light cone τ 2 − z2 = (v2t − x)(x − v3t) does not affect solutions.

Finally, to invert α̂ = Φ̂Â, compute inverse Fourier transform of products, which are
given by convolutions F−1[p̂q̂](x) = ∫ +∞

−∞ dx′ p(x′)q(x − x′). As the phase factor is simpler
in k′ = k − i�μ/�v, in addition to the change of variables in (2.12), it is convenient to
define B̂(k′) = Â(k), which means that B(x) = exp(x�μ/�v)A(x). With α = ρβ, where
ρ is given by (2.13), the solution can be written as

β2(z, τ ) = B2(z − τ)+ m
2

∫ τ

−τ
dz′

[
B2(z − z′)

√
τ + z′

τ − z′ I1(ξ
′)+ B3(z + z′)I0(ξ

′)

]
,

(2.16a)

β3(z, τ ) = B3(z + τ)+ m
2

∫ τ

−τ
dz′

[
B3(z + z′)

√
τ + z′

τ − z′ I1(ξ
′)+ B2(z − z′)I0(ξ

′)

]
,

(2.16b)

where ξ ′ = m
√
τ 2 − z′2. An explicit expression of α in (x, t) coordinate is given later in

(2.19). It is straightforward to check that the expression satisfies the differential equation
and the initial conditions. When B only involves δ or step functions, the integrals
can be readily evaluated. However, for general initial conditions, closed-form analytical
expressions may not exist, so the integrals are evaluated numerically. Compared with
numerical integration of the differential equations, which advances initial conditions step
by step, the integral solution allows fast forwarding, which directly gives the solution at
desired final time. Note that by rescaling z′ = τζ , the numerical integration is always
within the range ζ ∈ [−1, 1], so the cost of evaluating the integral does not increase with
time for smooth initial conditions.

2.2. Initial boundary value problem
Compared with the initial value problem, the boundary value problem is easier to set
up in kinetic simulations. In the initial value problem, the distribution functions need to
be specified meticulously in both the configuration space and the velocity space in order
to ensure that only the desired eigenmodes are excited. In comparison, in a boundary
value problem, only electromagnetic fields at the boundary need to be specified. Using
wave frequencies and polarisations to select excited waves, the desired eigenmodes then
propagate into the initially Maxwellian plasma where interactions occur. With a single
boundary at x = 0, the initial boundary value problem is specified by conditions

α(x > 0, t = 0) = A(x), (2.17a)

α(x = 0, t > 0) = h(t), (2.17b)

where h = (h2, h3)
T. In the forward-scattering case v2 > v3 > 0, these conditions can be

specified separately. However, in the backscattering case v2 > 0 > v3, in order for the
problem to be well-posed, only two conditions can be specified independently.

As the equation Lα = 0 is linear, the initial boundary value problem can be
solved using Laplace transform L[p](k) = ∫ +∞

0 dx p(x) exp(−ikx) = p̃(k). Using the
property of Laplace transform that p̃′(k) = ikp̃(k)− p(0), the equation becomes
∂tα̃ = Kα̃ + H , where K is given by (2.10) and H = (v2h2, v3h3)

T. Using the
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Duhamel’s principle, the inhomogeneous ODE is solved by α̃(t) = Φ̂(t)Ã +∫ t
0 dt′ Φ̂(t − t′)H(t′), where Φ̂ is given by (2.11). To find the solution in configuration

space, take inverse Laplace transformL−1[p̂q̃](x) = ∫
C(dk/2π)F [p](k)L[q](k) exp(ikx) =∫ +∞

0 dx′p(x − x′)q(x′), where the contour C runs below all poles. The solution is

α(x, t) =
∫ ∞

0
dx′ Φ(x − x′, t)A(x′)+

∫ t

0
dt′ Φ(x, t − t′)H(t′), (2.18)

where Φ is given by (2.15). Using LΦ = 0, the expression clearly satisfies Lα = 0.
Moreover, using the explicit expression of Φ in (A7), it is easy to see that Φ(x, t = 0) =
δ(x)I, so the initial conditions are always satisfied. However, the situation for boundary
conditions depends on the sign of v3, as shown in the following.

Using the property that Φ is zero outside the light cone, the above integral solution,
which is equivalent to α(x, t) = ∫ x

−∞ dx′ Φ(x′, t)A(x − x′)+ ∫ t
0 dt′ Φ(x, t′)H(t − t′), is

simplified in the three regions shown in figure 1. First, ahead of the light cone x > v2t,
effects of boundary conditions have not arrived, so only the initial conditions contribute.
In terms of the rescaled variable β, the solution is given by (2.16), and in terms of the
original variables, the solution when x > v2t > 0 is

α(x, t) =
(

exp(−μ2t)A2(x − v2t)
exp(−μ3t)A3(x − v3t)

)
+ γ0

�v

∫ v2t

v3t
dx′ ρ(x′, t)Φ0(x′, t)A(x − x′), (2.19)

where ρ is the damping factor given by (2.13) and Φ0 is the kernel within the light cone
given in (A7). When t = 0, the solution clearly satisfies the initial conditions. Second,
behind the light cone x < v3t, which is within the domain only when v3 > 0, effects of
the initial conditions have propagated away, so only the boundary conditions contribute.
Therefore, when v3t > x > 0, the solution is

α(x, t) =
(

exp(−μ2x/v2)h2(t − x/v2)

exp(−μ3x/v3)h3(t − x/v3)

)
+ γ0

�v

∫ x/v3

x/v2

dt′ ρ(x, t′)Φ0(x, t′)H(t − t′).

(2.20)

The solution clearly satisfies the boundary conditions at x = 0 for this forward-scattering
case. Finally, inside the light cone, both the initial and boundary conditions contribute,
and the solution when v3t < x < v2t is given by

α(x, t) =
(

exp(−μ2x/v2)h2(t − x/v2)

exp(−μ3t)A3(x − v3t)

)

+ γ0

�v

∫ x

v3t
dx′ ρ(x′, t)Φ0(x′, t)A(x − x′)

+ γ0

�v

∫ t

x/v2

dt′ ρ(x, t′)Φ0(x, t′)H(t − t′). (2.21)

In the forward-scattering case v3 > 0, the future light cone is within the domain, so
the initial and boundary conditions can be specified independently. However, in the
backscattering case v3 < 0, the future light cone is intercepted by the boundary. Intuitively,
when information propagates towards left and arrives at the boundary, one cannot
arbitrarily set values at the boundary.
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(a) (b)

FIGURE 1. Solutions are determined by initial and boundary conditions within the past light
cone. For (xa, ta) ahead of x > v2t, the light cone (red) only intercepts the x axis, so the
solution is independent of boundary conditions. For (xb, tb) behind x < v3t, the light cone
(blue) only intercepts the t axis, so the solution is independent of initial conditions. For (xi, ti)
within v3t < x < v2t, the solution depends on both initial and boundary conditions. (a) In the
forward-scattering case, initial and boundary conditions can be specified independently. (b) In
the backscattering case, initial conditions arrive at the boundary so constraints must be satisfied.

2.3. Backscattering problem
When the initial conditions are zero, as is the case in kinetic simulations, the
integral constraints α(x = 0, t > 0) = h(t) for the backscattering case v3 < 0 can
be solved explicitly. By setting x = 0 and A = 0 in (2.21), the constraints can be
simplified as (0, l3(s))T = ∫ s

0 ds′ Ψ 0(s′)l(s − s′), where s = γ t is time normalised by γ =
2γ0

√
v2|v3|/�v, l(s) = eμth(t) is rescaled by damping μ = (μ3v2 + μ2|v3|)/�v, and

Ψ 0(s) = 1
2

⎛
⎜⎜⎝

I1(s) −
√ |v3|
v2

I0(s)√
v2

|v3| I0(s) −I1(s)

⎞
⎟⎟⎠ . (2.22)

Note that μt = sγa/γ0, where γa is the absolute instability threshold given by (2.7). As the
constraint is a convolution, it becomes a product after taking Laplace transform, which
gives (0, l̃3(ω))

T = Ψ̃ 0(ω)l̃(ω). To compute Ψ̃ 0, use integral representation of modified
Bessel function (DLMF 2022, (10.32.2)) that I0(s) = (1/π)

∫ 1
−1 dt exp(−st)/

√
1 − t2 and

perform the s integral first, which gives Ĩ0(σ ) = 1/
√
σ 2 − 1 where σ = iω. Then, Ĩ1(σ ) =

σ/
√
σ 2 − 1 − 1 because I1(s) = I′

0(s). As In(s) 
 es/
√

2πs when s → ∞, the Laplace
transforms converge only when Re(σ ) > 1. Solving the constraint in frequency domain
gives a unique solution

l̃3(ω) =
√
v2

|v3|(σ −
√
σ 2 − 1)l̃2(ω), (2.23)

which means that if we specify the boundary condition for α2, then the boundary condition
for α3 is completely determined. Taking inverse Laplace transform, whose details are
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shown in Appendix B, the self-consistent boundary condition is

l3(s) =
√
v2

|v3|
∫ s

0
ds′ I1(s′)

s′ l2(s − s′). (2.24)

When the normalised time s = 0, the boundary condition l3(0) = 0 is initially quiescent.
At later time, α3 builds up due to wave growth and advection. As shown in Appendix B,
we can also express l2 in terms of l3. However, in kinetic simulations, it is much easier to
specify the boundary conditions for electromagnetic waves and let the plasma evolve to
fulfill the above boundary condition.

Having expressed h3 in terms of h2, the solution of α is a functional of h2 only.
The integrals simplify when h2 is δ or Θ functions. As δ functions cannot be
resolved numerically, let us focus on the case h2(t) = h0Θ(t), which is used later
to set up kinetic simulations. Using (2.24) with l2(s) = h0 exp(sγa/γ0)Θ(s), h3(t) =
h0

√
v2/|v3|

∫ γ t
0 ds′ exp(−s′γa/γ0)I1(s′)/s′. Substituting h into (2.21), changing integration

variable to ϕ′ = γ (t′ − x/v2), and rotating the triangular double integral in a way that
leads to (B5) gives

α2(x < v2t) = h0 exp(−μ2x/v2)

[
1 + 1

2

∫ γ (t−x/v2)

0
dϕ exp(−ϕγa/γ0)D2(ϕ, ϑ)

]
,

(2.25a)

α3(x < v2t) = h0 exp(−μ2x/v2)

√
v2

|v3|
1
2

∫ γ (t−x/v2)

0
dϕ exp(−ϕγa/γ0)D3(ϕ, ϑ), (2.25b)

whereas α(x > v2t) = 0 ahead of the wave front. In these expressions, γ =
2γ0

√
v2|v3|/�v, ϑ = γ0x/

√
v2|v3|, D2(ϕ, ϑ) = √

1 + 2ϑ/ϕI1(
√
ϕ2 + 2ϕϑ)− M2(ϕ, ϑ)

and D3(ϕ, ϑ) = I0(
√
ϕ2 + 2ϕϑ)− M3(ϕ, ϑ), where the kernel functions are

M2(ϕ, ϑ) =
∫ 1

0
dr I0(

√
r2ϕ2 + 2rϕϑ)

I1(ϕ(1 − r))
1 − r

, (2.26a)

M3(ϕ, ϑ) =
∫ 1

0
dr

I1(
√

r2ϕ2 + 2rϕϑ)√
1 + 2ϑ/rϕ

I1(ϕ(1 − r))
1 − r

. (2.26b)

The differential properties of the kernel functions (C3) and (C4) ensures that (2.25)
satisfies Lα = 0. Moreover, the special values D2(ϕ, 0) = 0 and D3(ϕ, 0) = 2I1(ϕ)/ϕ
(C1) and (C2) ensure that the boundary conditions are satisfied. Using these special
values, we see α3 → +∞ when t → +∞ at x = 0 if ς = γa/γ0 < 1, whereas α3 →
h0

√
v2/|v3|(ς −

√
ς 2 − 1) if ς ≥ 1. More generally when x ≥ 0, the solutions approach

steady state if and only if γ0 does not exceed the absolute instability threshold. The
solutions are of the form α2 = h0 exp(−μ2x/v2)(1 +�2) and α3 = h0 exp(−μ2x/v2)�3.
Examples of the growth function �j are plotted in figures 2 and 3.

The integral solutions for the step-function problem are greatly simplified when v3 → 0,
which is a good approximation for LPIs where v2 � |v3|. Inside the domain, ϑ → ∞ but
γ → 0, whereas γϑ = 2γ 2

0 x/v2 is finite. As the integrands in (2.26) approach zero when
ϕ → 0 at fixed ϕϑ , both M2 and M3 become zero. Then, D2 → ξ I1(ξ)/ϕ and D3 → I0(ξ),
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FIGURE 2. The growth function �j(x) in the step-function backscattering problem for
(a) the seed laser and (b) the plasma wave at selected time slices when v2 = 3 × 108 m s−1,
γ0 = 1013 rad s−1 andμ2 = 0. As time increases,�j propagates in space and grows in amplitude.
The growth is always zero ahead of the wave front x = v2t. Moreover, �2(0) is always zero due
to the boundary condition. In contrast, �3(0) builds up from zero as time increases. Compared
with the dampingless case (red lines), having an appreciable μ3 (blue lines) reduces the growth.
Compared with the v3 = 0 case (blue lines), having a small v3 (cyan circles) slightly affects the
solutions at early time. At later time, the discrepancies build up because γ0 ≈ 1.3γa exceeds the
absolute instability threshold.

(a) (b)

FIGURE 3. The growth function �j(t) in the step-function backscattering problem for
(a) the seed laser and (b) the plasma wave at x = 20 μm when v2 = 3 × 108 m s−1, μ3 =
5 × 1012 rad s−1 and μ2 = 0. When v3 = −v2/10 (symbols), the absolute instability threshold is
γa ≈ 7.8 × 1012 rad s−1. When γ0 = 7 × 1012 rad s−1 (cyan) is below the threshold, the growth
approaches steady state. In contrast, when γ0 = 1013 rad s−1 (magenta) exceeds the threshold,
�j continues to increase. When v3 = 0 (lines), γa becomes infinite so the growth always
saturates. The case with γ0 = 1013 rad s−1 (red) has a larger steady-state value than the case
with γ0 = 7 × 1012 rad s−1 (blue). The effects of a small but finite v3 only become significant at
later time.
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where ξ = √
2ϕϑ . Writing integrals in (2.25) in terms of ξ gives

�2 =
∫ ψ

0
dξ exp(−νξ 2)I1(ξ), (2.27a)

�3 = v2

2γ0x

∫ ψ

0
dξ ξ exp(−νξ 2)I0(ξ), (2.27b)

where ψ = 2γ0
√
(t − x/v2)x/v2 and ν = μ3v2/4xγ 2

0 . Observe that ψ = √
μ3tr/ν where

tr = t − x/v2 is the retarded time since the wave front passes, and 1/4ν is the spatial
gain exponent in steady state when μ2 = 0. After integration by parts, �3 = (γ0/μ3)[1 −
I0(ψ) exp(−νψ2)+�2]. It is straightforward to verify that (2.27) solves Lα = 0 when
v3 = 0. When t → +∞, the solutions approach steady states, which are always finite
because γa → ∞. Using Gaussian integrals of modified Bessel function (DLMF 2022,
(10.43.24)), �2 = exp(1/4ν)− 1 − R. As shown in Appendix C, the residual R =∫ +∞
ψ

dξ exp(−νξ 2)I1(ξ) decays as exp(−μ3tr) when μ3tr � max(1, γ 2
0 x/μ3v2). The

steady states α2(x,+∞) = (μ3/γ0)α3(x,+∞) = h0 eκx, where κ = (γ 2
0 /μ3 − μ2)/v2,

are consistent with linear stability analysis of (2.5). The formulae in (2.27) are
further simplified in two limiting cases. (1) When ν → +∞, namely, when spatial
gain is negligible, integrals are dominated by values near ξ 
 0. The growths �2 

(γ 2

0 x/μ3v2)(1 − exp(−μ3tr)) → 0 and �3 
 (γ0/μ3)(1 − exp(−μ3tr)). (2) When μ3 →
0, the Gaussian weight becomes unity. Using properties of modified Bessel function
(DLMF 2022, (10.43.1)), the integrals are evaluated to �2 = I0(ψ)− 1 and �3 =
(v2/2γ0x)ψI1(ψ). When ψ 
 0, which occurs near the boundary or the wave front,
�2 
 γ 2

0 trx/v2 and �3 
 γ0tr grow linearly in time. At given t, the maximum of
1 +�2 is attained at x = 1

2v2t, which propagates at half the wave group velocity. The
maximum value attained at ψ = γ0t is I0(γ0t) 
 eγ0t/

√
2πγ0t when t → +∞. Although

the exponential growth eγ0t is intuitive, the suppression by 1/
√

2πγ0t is perhaps not one
would naïvely expect from linear instability analysis.

3. Kinetic simulations of stimulated backscattering

To benchmark the formula for magnetised three-wave coupling coefficients in the
backscattering geometry, analytic solutions of the step-function problem are used to fit
kinetic simulations in the same set-up, where the simulations are performed using the
PIC code EPOCH (Arber et al. 2015). For the step-function problem, the initial condition
is simply a quiescent Maxwellian plasma, whose density is chosen to be ne = ni =
n0 = 1019 cm−3 and temperature Te = Ti = T0 will be scanned. The two species have the
mass ratio Mi = mi/me = 1837 of hydrogen plasmas. In the one-dimensional simulation
domain, the plasma occupies x ∈ [0,Lp] with a constant n0 and T0, and two vacuum gaps
each of length Lv are placed on either side, where Lp = 80λ1, Lv = 10λ1 and λ1 = 1 μm is
the vacuum pump wavelength. The slowly varying envelope approximation requires that
Lp � λ1. A constant magnetic field of strength B0 is applied in the x–z plane at an angle
θB with respect to the x axis. The special case B0 = 0 is unmagnetised, and the special
angle θB = 0 means wave vectors are parallel to the magnetic field. Both B0 and θB will be
scanned.

To achieve a constant pump amplitude, the laser is launched from the right domain
boundary and ramped up from zero using a tanh profile whose temporal width equals to
the laser period. The smooth ramp reduces oscillations due to numerical artefacts yet is fast
enough to be viewed as a step function for the slowly varying envelope. After propagating
across the vacuum gap, most pump energy transmits into the plasma, and a small fraction is
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reflected from the plasma–vacuum boundary. The reflected pump leaves the domain from
its right boundary, and the transmitted pump amplitude is measured from simulation data.
Using analytical wave energy coefficient, the pump amplitude is normalised to a1, which
enters the growth rate γ0 in (2.4). When the pump reaches the plasma–vacuum boundary
on the left, most energy exists the plasma, but a small fraction is reflected. As its wave
vector is flipped, the reflected pump does not interact with the seed laser resonantly but
copropagates with the seed in +x direction.

The seed laser α2 is launched from the left domain boundary using a similar profile but
with a time delay such that its wave front enters the plasma after the pump front has exited.
To measure the transmitted seed amplitude into the plasma, a seed-only run is performed
to fit the boundary condition h0 in the step-function problem. After the calibration steps,
a stimulated run is performed where both the pump and seed lasers are turned on. The
simulation is terminated slightly before the seed front reaches x = Lp, so that the analytical
solution, which is obtained when only the left boundary is present, remains applicable. In
addition, both the electron distribution function fe(vx) and the pump wave amplitude a1(x)
are monitored during the simulations. In many cases, the change of fe and a1 are small.
For example, when the three-wave coupling is weak and the propagation angle θB is small
(figure 4a), the distribution function stays close to the initial Maxwellian. In comparison,
when the coupling is week but angle is close to 90◦ (figure 4d), even though fe remains
largely constant during the interaction, it is broadened from the Maxwellian due to quiver
motion in the pump laser, which has an appreciable longitudinal component. The situation
is different when the coupling is strong. Regardless of the angle, when a large-amplitude
plasma wave is excited, its collisionless damping leads to substantial broadening of fe as
shown in figures 4(b) and 4(c), which correlates with a significant increase of the plasma
energy (figure 4e) and a rapid depletion of the pump laser. The simulation data after the
peak of fe reduces by 5 % or a1 drops by 1 % since interactions began are excluded from
fitting, which assumes constant plasma conditions and pump amplitude.

The choice of pump and seed laser intensities are constrained by three factors. First,
numerical noise of the PIC method gives an upper bound of the pump intensity due
to spontaneous scattering. With a finite number of sampling particles, the plasma
density fluctuates around n0, leading to a noise δE‖ that can spontaneously scatter the
pump laser a1. For scatterings mediated by electron modes, the growth rate is typically
comparable to the cold Raman backscattering rate γR = 1

2 a1(ωpω1)
1/2. The requirement

γRtp � 1 that noise does not grow substantially gives an upper bound for the pump
intensity, where tp 
 Lp/c is the time it takes for the pump to fill the plasma. As
γRtp = π(n0/nc)

1/4(Lp/λ1)a1, where nc = ε0meω
2/e2 ≈ 1.1 × 1021λ−2

μm cm−3 is the critical
density, we need a1 � 10−1 for earlier choices of n0 and Lp. In terms of laser intensity,
because a1 
 8.6 × 10−3λμmI1/2

14 , where I14 is the intensity in units of 1014 W cm−2, we
see that the pump intensity cannot far exceed I14 ∼ 102. Second, PIC noise also imposes
a lower bound for the seed intensity. In each cell, the distribution function is sampled
with N super particles. Even though the mean velocity is zero, the standard error of
the mean is δv = vT/

√
N, where vT/c ≈ 6.3 × 10−2T1/2

keV is the electron thermal speed.
The sampling error leads to a noise current density δj = en0δv, which drives a noise
field δE⊥ = δj/ε0ω at frequency ω through Ampère’s law. In terms of the relativistic
critical field Ec = meωc/e ≈ 3.2 × 1012λ−1

μm V m−1, the error field at the laser frequency
is δE⊥ = Ec(n0vT/ncc)N−1/2 ∼ 107 V m−1 when T0 = 10 eV and N = 102, as shown in the
inset of figure 5(c). As the laser electric field is E = (2I/ε0c)1/2 ≈ 2.7 × 1010I1/2

14 V m−1,
the condition E � δE⊥ requires that the seed intensity be larger than I14 ∼ 10−4, especially
when the plasma is hotter. Finally, the pump and seed amplitudes need to be separated by
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FIGURE 4. Plasma evolves as pump fills and seed grows. (a) When θB = 10◦ and the coupling
is weak, distribution function fe(βx), where βx = vx/c, stays near the initial Maxwellian. (b)
When θB = 10◦ but the coupling is strong, fe broadens rapidly. At t = 0.38 ps (dotted green), fe
is still close to Maxwellian, but when t = 0.54 ps (dashed orange), non-Maxwellian tails develop.
By t = 0.67 ps (solid blue), a plateau-like feature resembles particle trapping in unmagnetised
Landau damping. (c) When θB = 75◦ and the coupling is strong, fe also broadens significantly.
In this case, fe remains largely symmetric due to mixing effects of gyro motion. (d) When
θB = 75◦ but the coupling is weak, fe barely evolves but is no longer Maxwellian due to
longitudinal quiver motion in the pump laser. (e) The plasma areal energy density is initially
thermal UT = 3T0n0Lp ≈ 0.38 × 104 J m−2. As the pump fills in, plasma energy increases due to
quiver motion. In unmagnetised plasma, UQ = 1

2 mec2a2
1n0Lp ≈ 2.4 × 104 J m−2. However, due

to magnetisation, the increase depends on θB. After the seed enters, energy increases further if
plasma waves are strongly excited. In these examples, B0 = 3 kT, T0 = 10 eV, I1 = 1015 W cm−2

and I2 = 5 × 1012 W cm−2. In (a,c), the interactions are mediated by F waves whose branch
index is b3 = 3, namely, the third highest frequency branch in the warm-fluid dispersion relation.
In (b,d), the interactions are mediated by P waves with b3 = 4.

about an order of magnitude. This is because in order for a1 to remain largely constant
during three-wave interactions, we need a1 � a2. However, if a1/a2 is too large, then
filtering out a2 from simulation data becomes challenging due to leakages of a1 through
numerical filters. Combining the three constraints, the intensities of pump I1 and seed
I2 should satisfy 1010 W cm−2 � I2 ∼ 10−2I1 and I1 � 1016 W cm−2. The bounds can be
extended using a larger N. However, the benefit only increases as

√
N but the numerical

cost grows with N linearly.
With the simulation set-up and general considerations discussed above, technical details

are elaborated below with examples, and the data analysis protocol is summarised in Shi
(2022a). All reported results use the resolution of 40 cells per pump laser wavelength
and N = 100 particles per cell. Increasing or decreasing these parameters by a factor of
two does not significantly change results. A larger plasma and simulation box increases
the vulnerability to spontaneous pump scattering, which first shows up as unwanted
oscillations on the right plasma boundary. On the other hand, using a much smaller plasma
starts to violate Lp � λ1, which is required in order for the slowly varying amplitude
approximation to be valid.
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(a)

(b)

(c)

( f )(d)

(e)

FIGURE 5. By launching a linearly polarised pump laser and fitting its Ey (dark green) and
Ez (light green) components (a) within the data region (b), polarisation angles of numerical
eigenmodes can be determined. While the polarisation vector slowly rotates for none eigenmodes
(c) as the wave propagates in x (colour scale), it remains close to a constant ellipse ( f ) when an
eigenmode is launched, whose field components have constant amplitude (d) within the data
region (e). The vertical dashed black lines in (b,e) mark the initial plasma–vacuum boundaries.
The green shaded region is selected based on criteria that it is 4λ within the boundaries, 8λ
behind the wave front and that the 2λ-running average of |E⊥| (black) ramps above 95 % of
its average (magenta). The inset in (c) shows the noise level before the pump arrives, which is
consistent with expected PIC noise when T0 = 10 eV. The polarisation rotation is consistent with
B0 = 3 kT and θB = 30◦. The pump intensity is I1 = 1015 W cm−2.

3.1. Launching linear eigenmodes
As three-wave equations describe amplitudes of linear eigenmodes, the lasers need to
be launched with specified polarisations to excite targeted eigenmodes only. Although
polarisation matching is trivial for unmagnetised plasmas, where the two electromagnetic
eigenmodes are degenerate, special care needs to be taken in magnetised cases where the
R and L elliptically polarised eigenmodes are non-degenerate. If the polarisation is not
matched properly, both R and L waves will be excited, giving rise to four polarisation
combinations with different couplings (Shi & Fisch 2019). As incident lasers are purely
transverse in the vacuum region, only the perpendicular components need to be matched
with plasma eigenmodes. Denoting ψ the elliptical polarisation angle and θ is the wave
phase,

E⊥∝ ŷ sinψ sin θ + k̂ × ŷ cosψ cos θ, (3.1)

where ŷ and k̂ are unit vectors. The expression is symmetric about the x–z plane where
B0 lies. The special value ψ = 0 means that the wave is linearly polarised along k̂ × ŷ,
whereas ψ = π/2 means linear polarisation along ŷ, ψ = π/4 is R circular polarisation
about k̂ and ψ = −π/4 is L circular polarisation.
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Due to numerical dispersion and PIC density fluctuations, the polarisation angles of
numerical eigenmodes are slightly different from analytic results. Launching waves with
analytical ψ leads to a small but sometimes observable polarisation rotation of E⊥,
revealing contaminations from the unintended eigenmode. To determine ψ̃ for numerical
eigenmodes, a calibration step is performed where a linearly polarised wave at frequency
ω is launched with a constant E⊥, which lies along the diagonal of y–z plane. In most
cases, this wave has large overlaps with both numerical eigenmodes, so

Ey = ER sin ψ̃R sin(k̃Rx + θR)+ EL sin ψ̃L sin(k̃Lx + θL), (3.2a)

Ez = ER cos ψ̃R cos(k̃Rx + θR)+ EL cos ψ̃L cos(k̃Lx + θL), (3.2b)

have unknown amplitudes ER and EL and numerical wave vectors k̃R and k̃L are close to
their analytical values kR and kL. The phases θR and θL vary deterministically with ωt,
but the initial phases depend on the unknown expansion coefficients when spanning the
wave in terms of the eigenmodes. Note that each electric-field component is of the form
E = ER(sin k̃Rx cos bR + cos k̃Rx sin bR)+ EL(sin k̃Lx cos bL + cos k̃Lx sin bL), where b = θ
for Ey and b = θ + π/2 for Ez. By fitting a region of the simulation data where the wave
envelopes are constant, as shown by the example in figure 5, the unknown amplitudes
ER and EL, as well as the unknown phases θR and θL, can be determined by linearly
regressing E⊥(x) against a four-dimensional basis (sin k̃Rx, cos k̃Rx, sin k̃Lx, cos k̃Lx). In
practice, the values of k̃R and k̃L are not easily known, so they are determined numerically
by minimising the residual of linear regression using kR and kL as initial guesses. Finally,
using Ey = E sin ψ̃ and Ez = E cos ψ̃ from the best fit, the polarisation angles ψ̃ of
numerical eigenmode is computed. In most cases, ψ̃ is close to the analytical ψ . However,
outliers can occur in limiting cases, such as when B0 → 0 where the degeneracy is week,
or when θB → 90◦ where the ellipticity is weak. In outlier cases, it is usually sufficient to
launch the desired eigenmode using ψ , which is calculated using the code in Shi (2022b).

To verify that only the intended eigenmode is launched and to measure its transmitted
amplitude, pump-only and seed-only eigen-runs are performed, where one laser is
launched with numerically determined polarisation angle ψ̃ and the other laser is turned
off completely. Example transverse fields Ey(x) and Ez(x) are plotted in figure 5. When
the wave is not an eigenmode (figure 5c), the polarisation trajectory precesses. On the
other hand, when the wave is close to an eigenmode, its trajectory is near a stationary
polarisation ellipse. In figure 5( f ), a slow precession can still be observed, but the
contamination from the other eigenmode is small enough that it is not a major source of
error. Using the pump-only eigen-run, the transmitted pump amplitude can be measured
from data shown in figure 5(d). The transmitted amplitude is normalised by analytical
wave energy coefficient to compute a1, which enters γ0 via (2.4). Combining with the
analytical Γ , the expected growth rate is computed to compare with simulations.

In the following, we focus on eigenmodes that are right-handed with respect to the
magnetic field, which usually have the largest pump–seed coupling among the four
possible polarisation combinations. When cos θB > 0, meaning that B0 points towards
+x, the seed laser is right-handed with respect to its wave vector. On the other hand,
because the pump laser propagates in −x direction, the eigenmode is left-handed with
respect to its wave vector. Another way to describe the mode selection is that at a
given wave frequency ω, the eigenmode with smaller k will be launched. This mode has
an electric-field vector that corotates with the gyrating electrons and is therefore more
strongly coupled with the electron-dominant plasma waves, such as the Langmuir-like P
wave and electron-cyclotron-like F wave.
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3.2. Extracting pump and seed envelopes
In stimulated runs where both pump and seed eigenmodes are turned on, we need to
separate their contributions from the total electromagnetic fields, which are what PIC
simulations observe directly. A plausible way of separating the waves is to use Fourier-like
filters. However, because the pump and seed envelopes evolve in space–time due to
three-wave interactions, their line shapes have long tails. Attempting to filter waves in
the Fourier space and then taking inverse transform often introduce spurious oscillations.
As an alternative approach, the pump and seed are directly separated in the configuration
space using both electric- and magnetic-field data. Due to Faraday’s law in one spatial
dimension, wave fields are related in simple ways. For a right-propagating wave, By =
−Ez/v and Bz = Ey/v, where v = ω/k > 0 is the phase velocity of the wave. On the other
hand, for a left-propagating wave, By = Ez/v and Bz = −Ey/v have the opposite signs.
When the signal contains a single right (+) and left (−) waves at constant amplitudes, the
electric fields can be decomposed as Ey = E+

y + E−
y and Ez = E+

z + E−
z , and the magnetic

fields are By = −E+
z /v+ + E−

z /v− and Bz = E+
y /v+ − E−

y /v−. Note that the right and left
waves likely have different phase velocities v+ and v−. After removing static components
of B0, the wave fields satisfy

E+
y = Ey + v−Bz

1 + v−/v+
, E+

z = Ez − v−By

1 + v−/v+
, (3.3a)

E−
y = Ey − v+Bz

1 + v+/v−
, E−

z = Ez + v+By

1 + v+/v−
. (3.3b)

Reconstructions using the above Faraday filter are exact for constant-amplitude waves if v+
and v− are known. However, due to numerical dispersion and PIC noise, v± differ slightly
from analytical values, causing leakage through the Faraday filter.

To reduce the leakage, a calibration step is performed to determine the numerical phase
velocities. Summing data of a pump-only run with data of a seed-only run before the wave
fronts reach the opposite plasma boundary, ṽ+ and ṽ− are fitted using (3.3). The data
are selected within the plasma region using similar criteria as in figure 5. The best-fit
residuals are typically orders of magnitude smaller than the signals but a few times
above the PIC noise level, as shown by the example in figure 6. The coherent errors are
likely due to how electric- and magnetic-field data are combined. Note that when solving
Maxwell’s equations using a Yee-like mesh, transverse electric fields are discretised on cell
boundaries whereas transverse magnetic fields are discretised on cell centres. Therefore,
interpolations are needed before Bi±1/2 can be summed with Ei. Here, a simple linear
interpolation is used to estimate Bi ≈ (Bi−1/2 + Bi+1/2)/2, which is likely the leading cause
of coherent errors. Using interpolation schemes that better match the PIC algorithm may
further reduce the coherent error.

However, other leakage sources are more important when the calibrated Faraday filter
is applied to data from stimulated runs. Note that the simple relation between E and B
assumes plane waves with constant amplitudes. When the amplitude varies, additional
terms arise, which depends on derivatives of the amplitude. In regimes where the
amplitude varies slowly, these additional terms are small compared with the leading term
but are large compared with the error from interpolation. Moreover, due to reflection and
spontaneous scattering in PIC simulations, waves other than the pump and seed are present
in the system, leading to even larger errors. For example, the pump laser reflects from the
left plasma–vacuum boundary and propagates towards right together with the seed laser.
Typically, the reflected pump amplitude is ∼0.5 % of the incident amplitude, which is
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FIGURE 6. (a) The optimal phase velocities for separating the right (+) and left (−) propagating
waves are fitted using calibration data (black), which is the sum of a pump-only (E1) and a
seed-only (E2) runs before the laser reaches the opposite plasma boundary. The amplitudes of
the pump (dashed blue) and seed (dashed red) are known, and the fitting minimises the total
difference between known and extracted pump (cyan) and seed (magenta) amplitudes. (b) The
best-fit residuals are orders of magnitude smaller than the signals. However, the residuals have
coherent leakages that are a few times larger than the PIC noise level. Fitting results for other
field components are similar. The intensities are I1 = 1015 W cm−2 and I2 = 5 × 1012 W cm−2.

∼7 % of the seed amplitude when I1/I2 = 200. The Faraday filter is far from ideal for
separating co-propagating waves, especially when they have comparable phase velocities.
The leakage leads to spurious oscillations of the seed envelope, which are nevertheless
usually less severe than caused by Fourier filters.

Having separated out pump and seed electric fields, the next step is to extract the
wave envelopes that enter the three-wave equations. For a wave with slowly varying
envelope, its electric field is E(x) = E(x) sin(kx + b)+ ε(x), where ε is an error field.
The envelope E(x) can be estimated by mixing E(x) with a sinusoidal reference,
which gives E(x) sin(kx + b′) = 1

2E(x)[cos(b − b′)− cos(2kx + b + b′)] + ε(x) sin(kx +
b′). Averaging the mixed signal over λ = 2π/k ideally eliminates the last two terms to
give

〈E(x) sin(kx + b′)〉λ = 1
2E(x) cos(b − b′). (3.4)

The reference phase b′ is scanned to maximise the norm of the average, which is attained
when the phases are matched b′ = b up to integer multiples of π. Compared with a simple
moving average, the above lock-in scheme reduces sensitivities to PIC noise and coherent
errors. The numerical wave vector k̃, which is determined when fitting (3.2), is used to
generate the sinusoidal reference. Moreover, to better remove the unwanted terms using
the λ average, a matching grid x̃i with spacing λ/n is used, where the integer n = �λ/�x�
and�x is the original spacing of the PIC grid xi. The reference is generated on grid x̃i and
mixed with E(x̃i), which is estimated from E(xi) using linearly interpolation. Averaging
over λ down samples the data, so the envelope E(x) lives on a grid that is more sparse than
the x̃i grid by a factor of n. Note that due to their wavelengths difference, the pump and
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FIGURE 7. Raw data (a–c) is separated using a Faraday filter into pump (cyan) and seed
(magenta) contributions (d–f ), and envelopes of pump (blue) and seed (red) are extracted using a
lock-in scheme. At t ≈ 0.25 ps (a,d), the pump almost reaches the left plasma boundary and the
seed has not entered. At later time t ≈ 0.48 ps (b,e), the pump fills the plasma and the seed enters
from the left. At final time t ≈ 0.67 ps (c, f ), the seed exits the right boundary and experiences
noticeable growth, and the pump is slightly depleted. In this example, T0 = 10 eV, B0 = 3 kT,
θB = 30◦, I1 = 1015 W cm−2 and I2 = 5 × 1012 W cm−2. The interaction is mediated by a P
wave and the resonant seed wavelength in vacuum is λ2 ≈ 1.09 μm.

seed envelopes live on two separate grids. In addition to the transverse components, the
Ex component is estimated using the lock-in scheme alone, without attempting to separate
right and left contributions. The longitudinal component is small but non-zero when lasers
propagate obliquely with B0. Combining all components, the total scalar wave envelope
E = |E| is determined. Typical results of envelope extraction are shown in figure 7 for the
Ey component. Results are similar for the Ez component, but are more noisy for the much
smaller Ex component. The procedure successfully separates out the pump and seed lasers,
and identifies their envelopes that enclose fast-oscillating fields.

3.3. Fitting data to analytical solutions
Before fitting extracted seed envelopes to analytical solutions, we need to ensure that the
seed frequency is on resonance. Note that (2.1) is for resonant interactions that satisfy
energy–momentum conservation kμ1 = kμ2 + kμ3 where kμ is the wave 4-momentum. When
phase-matching conditions are not satisfied, the waves can still interact, but a detuning
term exp(ixμδkμ) will appear in the three-wave equations. Analytical solutions in the
detuned case are different from what is discussed in § 2, and usually exhibit less seed
growth as a result of phase modulations. To determine the resonant ω∗

2, the seed frequency
is scanned near analytically expected resonances to maximise the growth of seed envelope
E2 in kinetic simulations. To reduce the requisite number of runs, only a few frequencies
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FIGURE 8. The spatial maximum of seed envelope Ê2 is fitted to seed frequency ω2 using
a Lorentzian profile to determine the resonant seed frequency. (a) When B0 = 3 kT and the
interaction is mediated by a P wave, the data matches a simple Lorentzian, and fittings using Ê2
at different time slices yield consistent results (dashed vertical lines), which is averaged to give a
final estimate of ω∗

2 (solid vertical line). This is representative of what happens in most cases. (b)
When B0 = 200 T and the interaction is mediated by an F wave, the data reveal multiple weak
resonances. Data away from the expected warm-fluid peak are excluded from fitting (empty
circles). The included data (solid circles) again yield consistent results across multiple time
slices. In these examples, T0 = 10 eV, θB = 30◦, I1 = 1015 W cm−2 and I2 = 5 × 1012 W cm−2.

are simulated and Ê2(ω2) ∝ [(ω2 − ω∗
2)

2 + μ2]−1 is fitted using a Lorentzian profile. Here,
Ê2 is the spatial maximum of E2 at a given time slice and μ is a phenomenological
linewidth. In most cases, the fitting behaves as expected, as shown in figure 8(a). Using
Ê2 at different time slices yields consistent estimates of ω∗

2 (dashed vertical lines), as long
as E2 has grown substantially above the noise level. In most cases, only nine ω2 values
are scanned within a 3 × 1013-rad s−1 window near the expected resonance. The fitting
uses last four simulation outputs, when the seed has propagated across more than half the
plasma length. The four estimates of ω∗

2 are averaged using equal weight to give a final
estimate (solid vertical line). However, in some cases, more complicated spectra emerge
during the scan, as shown in figure 8(b). In this example, B0 = 200 T and the electron gyro
frequency is a few times smaller than the plasma frequency. In this regime, the kinetic wave
dispersion relation involves multiple Bernstein-like waves near the expected warm-fluid
resonance. In cases such as this, additional ω2 values are scanned to resolve individual
peaks, and only data near the expected resonance (solid circles) is used to fit ω∗

2. Using
data at multiple time slices again yields consistent estimates. As an intriguing observation,
spacings between the side peaks do not seem to have a simple dependence on B0 and θB,
and often appears to change with time. These features remain to be investigated in the
future.

Using a resonant seed to set up stimulated runs, the extracted seed envelopes are placed
into analytic frame to prepare for fitting, as shown in figure 9. Note that in the step-function
problem, the plasma–vacuum boundary is sharply at x = 0 and a constant-amplitude seed
arrives at the boundary when t = 0. These idealised set-ups are necessarily softened in
simulations, where the plasma expands into the vacuum forming a sheath region, and the
seed is ramped up using a tanh profile whose temporal width equals to the seed period to
smooth out numerical artefacts. For the spatial axis, to avoid boundary effects, data within
4λ1 � λD from the initial plasma–vacuum boundaries are excluded, where λD is the Debye
length. Hence, the data frame xd is shifted from the analytic frame xa = xd + x0 by an
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FIGURE 9. Normalised seed amplitude α2/h0 in the analytical frame (xa, ta). The step-like
feature near the wave front is a visualisation artefact when only nine time slices are plotted.
The wave front xa = ṽ2ta (white line) is fitted to determine the numerical group velocity ṽ2. This
example is the same run as in figure 7.

offset x0. For the time axis, because the seed is launched after the pump has propagated
across the plasma, the data frame td is delayed from the analytic frame ta = td − t0 for
some offset t0. To place data into the analytic frame, the seed wave front xa = ṽ2ta is fitted
to determine both offsets and the numerical group velocity ṽ2, which is close to but not
equal to the analytical group velocity v2 = ∂ω/∂kx due to numerical dispersions. The seed
wave front is identified as the location where the seed envelope E2 drops below half its
boundary value, and the thickness of the wave front is identified as the spatial separation
where E2 attains 10 % and 90 % of its boundary value. Only data behind the wave front
by twice its thickness are used for fitting. Finally, we need to normalise the electric field
envelope E2. Note that the analytical solution of the step-function problem can be written
in terms of the ratio α2/h0, where h0 is the boundary value. In simulations, the value
at the domain boundary is an input, but the value at the plasma–vacuum boundary is not
controlled, because only a fraction of the incident seed laser is transmitted into the plasma.
The boundary value inside the plasma is determined using the seed-only eigen-run. Using
calibration data similar to what is shown in figure 5(d), the transmitted seed amplitude is
measured and used to normalise envelopes in the stimulated run. Note that the calibration
needs to be performed each time when plasma conditions are changed or the seed laser is
varied.

Having extracted α2/h0 from the stimulated run, the data in the analytic frame are fitted
to (2.27). Here, the simplification v3 = 0 is made because |v3| � v2. From figure 2, we
see that v3 = 0 is already a good approximation even when v3 = −v2/10. For a warm-fluid
plasma with moderate temperature T0 ∼ 10 eV, the ratio v3/v2 ∼ O(10−2) is much smaller,
so the limiting-form growth function provides an even better approximation. Evaluating
the growth function requires a single numerical integral, which is much cheaper than
computing the double integral in (2.25) that gives the exact solution at finite v3 < 0. As
another simplification, the physical collision module is turned off in PIC simulations,
so lasers are undamped beyond spurious numerical collisions. Setting μ2 = 0 gives
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FIGURE 10. (a) The growth function extracted from simulation data (circles) is well matched
by the analytical solutions (lines) using best-fit parameters. Results are shown for three
representative time slices as the seed propagates and grows. The fitting quality at other time
slices are similar. (b) Residuals of best fit are an order of magnitude smaller than the signal,
and are dominated by leakage during pump–seed separation. The reflected pump amplitude
is ∼7 % of the seed. In this example, T0 = 100 eV, B0 = 3 kT, θB = 30◦, I1 = 1015 W cm−2,
I2 = 5 × 1012 W cm−2 and the interaction is mediated by a P wave. The best-fit parameters are
ṽ2 ≈ 2.97 × 108 m s−1, μ̃3 ≈ 5.17 × 1012 rad s−1 and γ̃0 ≈ 9.25 × 1012 rad s−1.

�2 = α2/h0 − 1. The right-hand side of this expression is determined from simulation
data to give �̃2, and the left-hand side is the analytical formula, which contains three
parameters v2, μ3 and γ0. As ṽ2 is already determined from fitting the wave front, only two
parameters remain to be fitted. The fitting is treated as an optimisation problem, where
parameters are searched near their expected values to minimise the residual ‖�̃2 −�2‖,
where ‖f ‖ = (1/nxnt)[

∑nx
i=1

∑nt
j=1 |f (xi, tj)|2]1/2. The discrepancy �̃2 −�2 is set to zero

outside the region where data are valid. As discussed earlier, the data are valid when x is
sufficiently far away from both the plasma boundaries and the seed front, and when t is
after seed experiences noticeable growth but a1(x) and fe(vx) remains largely unchanged.
Typical best-fit results are shown in figure 10, where the simulation data (circles) are well
matched by analytical solutions (lines), and the residuals are dominated by leakages during
pump–seed separation.

To quantify uncertainty, the fit residual is scanned over a range of parameter values
to estimate error bars. As parameters move away from their best-fit values, the fit
residual increases. Error bars are defined as the parameter range beyond which the
residual doubles its minimum. Using this definition, in the limit where data exactly match
analytical solutions, the residual is zero and the error bar is also zero. In the opposite
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FIGURE 11. Uncertainties of fitting parameters are quantified by scanning the fit residual. (a,c)
When T0 = 10 eV is cold, damping is weak and poorly constrained. The best fit is far below the
vertical scale and is consistent with a negligible μ3. Nevertheless, γ0 is well constrained and
matches analytical growth rate (vertical solid line). (b,d) When T0 = 100 eV is hotter, damping
becomes stronger. In this case, both γ0 and μ3 are well constrained. The best fit (blue dot)
matches the analytical growth rate within error bar, which is defined as the range where fit
residual doubles its minimum. (c,d) Using the best fit μ3, a one-dimensional scan along γ0 gives
marginal fit residuals and error bars (horizontal dashed line). In these examples, B0 = 3 kT,
θB = 30◦, I1 = 1015 W cm−2, I2 = 5 × 1012 W cm−2 and interactions are mediated by P waves.
(b,d) are the same run as in figure 10.

limit where simulation and theory poorly match, the residual is large and the error
bar is wide. Two examples are shown in figure 11, where the resonant interactions are
mediate by Langmuir-like P waves. When the temperature T0 = 10 eV is cold (figure 11a),
collisionless damping of the plasma wave is minuscule. In this case, the residual remains
small for a wide range of μ3 values, and the best fit is μ̃3 ≈ 1.36 × 10−2 rad s−1, which
is consistent with zero damping. On the other hand, the residual increases rapidly when
γ0 deviates from its best-fit value γ̃0 ≈ 9.22 × 1012 rad s−1, which is close to the analytical
value γ a

0 ≈ 9.53 × 1012 rad s−1 (solid vertical line). The marginal error bar is shown in
figure 11(c), where μ3 is fixed at its best-fit value and γ0 is scanned. The residual is
convex near γ̃0 (dashed vertical line) and γ a

0 is within the error bar (dashed horizontal
line). When T0 = 100 eV is hotter (figure 11b), collisionless damping is stronger, so both
γ0 and μ3 are constrained. As discussed earlier, magnetised collisionless damping is not
easy to compute, so the procedure here provides a unique method for measuring the
damping rate, which in this case is best fitted by μ̃3 ≈ 5.17 × 1012 rad s−1. The best-fit
γ̃0 ≈ 9.25 × 1012 rad s−1 matches the analytical value γ a

0 ≈ 9.05 × 1012 rad s−1 within the
marginal error bar shown in figure 11(d). The marginal residual is always convex and
usually skewed towards smaller γ0. The two-dimensional landscape of the residual is flat
along a valley in the γ0–μ3 space. This is intuitive because a larger damping cancels the
effect of a larger growth. In the asymptotic limit t → +∞, the exponential solution eκx
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only depends on the ratio κ = γ 2
0 /μ3v2, so γ0 and μ3 are not independently constrained. In

other words, the separate constrains come from solutions at earlier time. As discussed after
(2.27), the growth function �2 is symmetric about x = 1

2v2t in the absence of damping.
As μ3 increases, the growth behind x = 1

2v2t is reduced more, leading to an asymmetric
profile of �2. The asymmetry in the transient-time profile is what allows the effects of μ3
and γ0 to be distinguished.

3.4. Scanning physical parameters
Having described in detail how simulations are set up and how data are processed, the
protocol is applied to scan physical parameters and compare simulations with theory.
First, it is useful to verify that the pump and seed intensities are selected properly. As
discussed at the beginning of this section, the pump and seed intensities are constrained
by 1010 W cm−2 � I2 ∼ 10−2I1 � 1014 W cm−2. Within this range, the bare growth rate
γ0 ∝ a1 ∝ I1/2

1 scales with the pump intensity I1 but is independent of I2. This theory
prediction is confirmed by results shown in figure 12, where black lines are from the theory
and orange symbols with error bars are simulation results. In figure 12(a), the seed
intensity is fixed at I2 = 5 × 1012 W cm−2 and the agreement is excellent within the range
I1 is scanned. Note that the black line is not a fit of data. A hint of deviation can be
seen from the last data point at I1 = 8 × 1015 W cm−2, where data start to drop below
the theory line. This behaviour is expected because a pump that is too intense causes
large spontaneous scattering that depletes the pump. Signatures of spontaneous scattering
are clearly visible in the inset, which shows the Fourier power spectrum of transverse
electric fields within the plasma region. At I1 = 5 × 1014 W cm−2(blue), the spectrum is
clean and dominated by the pump and seed near ck = 2 × 1015 rad s−1 and the plasma wave
near ck = 4 × 1015 rad s−1. In comparison, at I1 = 8 × 1015 W cm−2(red), extra waves are
excited due to spontaneous scattering. These extra waves remove energy that would
otherwise be used to grow the seed, and they also constitute a messy background that
jeopardises the data analysis. In figure 12(b), the agreement remains excellent within the
range I2 is scanned, where the pump intensity is fixed at I1 = 1015 W cm−2. The error
bars remain largely constant due to two competing effects. At stronger seed intensities,
pump depletion occurs earlier so more data are excluded from fitting, resulting in fewer
constraints and larger error bars. On the other hand, at weaker seed intensities, the leakage
during pump–seed separation more severely distorts the seed profile, causing poorer fits
and larger error bars. The two competing effects cause error bars to remain roughly
constant within this I2 range. Effects of leakage can be clearly seen in the inset. The
normalised envelope α2/h0 is relatively smooth when I2 = 1013 W cm−2 (magenta), but
the spurious oscillations become more severe when I2 = 6.25 × 1011 W cm−2 (cyan). The
artefacts are primarily due to reflected pump that copropagates with the seed, which cannot
be separated using (3.3) and (3.4), causing spurious oscillations. Limited by these effects,
simulations below use I1 = 1015 W cm−2 and I2 = 5 × 1012 W cm−2.

Second, the protocol is used to scan plasma temperature T0 to determine the range of
validity of warm-fluid theory (figure 13). At low temperature, collisionless damping of
plasma waves are negligible and the μ3 error bars are large. On the other hand, when
T0 > 102 eV, damping starts to dominate growth and data start to deviate from warm-fluid
theory. At T0 ∼ 103 eV, the seed barely grows unless the pump is stronger. However, a
stronger pump suffers more from spontaneous scattering, leading to systematic errors
and large uncertainties. Therefore, the applicability of the protocol does not far exceed
the temperature range reported here. Within this range, the expected γ0 from warm-fluid
theory (line) agrees with simulation data (squares) up to T0 = 300 eV, where hints of
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FIGURE 12. The bare growth rate γ0 ∝ I1/2
1 scales with pump intensity (a) and is independent

of the seed intensity (b) within the range where simulations are described by the linearised
three-wave equations. Theory predictions (black lines) match simulation results (orange
symbols) within error bars. At large pump intensity I1, spontaneous scattering depletes the pump
and excites additional waves, as shown in the inset of (a) where the Fourier power spectra are
plotted for transverse electric fields within the plasma region. At larger seed intensity I2, pump
depletion occurs earlier, which reduces the amount of data that can be used for fitting analytical
solutions. On the other hand, at smaller I2, the leakage during pump–seed separation is more
detrimental, as shown in the inset of (b) where the normalised envelopes α2/h0 suffer from
spurious oscillations. In this set of scans, T0 = 10 eV, B0 = 3 kT, θB = 30◦, the vacuum seed
wavelength is λ2 ≈ 1.088 μm and the interaction is mediated by a P wave.

disagreements emerge. It is remarkable that even when collisionless damping has become
significant, which is a purely kinetic phenomenon, the three-wave coupling remains well
described by the warm-fluid theory. In subsequent scans, the plasma temperature is fixed
at T0 = 10 eV where damping is negligible.

Third, the protocol is used to scan the background magnetic field strength B0 for
interactions that are mediated by electron-dominant resonances (figure 14). In weak
magnetic fields, the b3 = 3 resonance, namely, the α3 eigenmode whose frequency is the
third highest at a given wave vector, is the Langmuir-like P wave. In particular, at B0 = 0,
this resonance is precisely mediated by the Langmuir wave that gives rise to Raman
backscattering in unmagnetised plasmas. When B0 �= 0 and θB �= 0, this eigenmode is
modified due to cyclotron motion, but its frequency only weakly dependents on B0, as
shown in figure 14(b). Beyond B0 ≈ 10 MG, the eigenmodes cross over, and the b3 = 3
resonance becomes the electron-cyclotron-like F wave, whose frequency ω3 increases
almost linearly with B0. Complementarily, the b3 = 4 resonance is the F wave in weak
B0 and crosses over to become the P wave in strong magnetic fields. Within the B0 range
scanned here, the interaction mediated by the F wave provides a smaller coupling than
the P wave at the same B0. In particular, at B0 = 0, the F wave vanishes and provides zero
coupling. The exception is near B0 = 10 MG when the two eigenmodes strongly hybridise.
Although they remain two distinct eigenmodes, their couplings during frequency crossover
become equal. Immediately after the crossover, P-wave coupling recovers its unmagnetised
strength and continues to increase, whereas F-wave coupling drops before starting to
increase again. In stronger fields not shown here, γ0 continues to increase and F-wave
coupling surpasses P-wave coupling (Shi & Fisch 2019). In even stronger fields, the F-wave
frequency approaches ω1/2 and two-magnon decays are encountered (Manzo et al. 2022),
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FIGURE 13. The growth rate γ0 (left axis) and damping rate μ3 (right axis) as functions of
the plasma temperature T0. Coloured symbols with error bars are simulation results and the
orange line is the expected growth rate from warm-fluid theory. When T0 increases by tenfold,
μ3 increases by orders of magnitude. On the other hand, γ0 decreases only slightly, and data
are well matched by theory until the last two points. In this set of scans, B0 = 3 kT, θB = 30◦,
I1 = 1015 W cm−2, I2 = 5 × 1012 W cm−2 and the interactions are mediated by P waves.
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FIGURE 14. (a) Growth rate γ0 and (b) resonant seed frequency ω2 as functions of the
background magnetic field B0 when interactions are mediated by electron-dominant P and F
waves. Analytical results (lines) match simulation data (symbols). Error bars are shown for γ0
but are too small to show for ω2. The index b3 labels the wave branch of α3. For example, b3 = 4
means α3 is the fourth highest-frequency branch of the warm-fluid dispersion relation. In this set
of scans, T0 = 10 eV, θB = 30◦, I1 = 1015 W cm−2 and I2 = 5 × 1012 W cm−2.
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FIGURE 15. Same as figure 14, but for θB = 〈k,B0〉 scan at fixed B0 = 3 kT.

for which kinetic effects are dominant. After the F-wave frequency increases beyond ω1/2,
it can no longer mediate resonant interactions, so only the P resonance remains. As B0
further increases, mediation by P wave continues to strengthen, and a strong resonance is
encountered when electron gyro frequency approaches ω1 (Edwards et al. 2019). Beyond
that point, the 1-μm pump frequency is below the R-wave cutoff, so only L-wave pump
can propagate, whose coupling is substantially weaker. In the range scanned in figure 14,
kinetic effects are not overwhelming and the agreement is excellent. Note that the lines are
not fits of data. Although error bars for γ0 can perhaps be reduced, growth rates extracted
from simulations already match detailed features of analytical predictions.

Finally, the protocol is used to scan θB, the angle between the magnetic field and the
wave vectors, when interactions are mediated by the two highest-frequency resonances
(figure 15). The magnetic field is fixed at B0 = 3 kT, where the electron cyclotron
frequency is larger than the plasma frequency. In this case, the b3 = 3 resonance is the
electron-cyclotron wave when θB = 0 and becomes the UH wave when θB = 90◦. The other
resonance with branch index b3 = 4 is the Langmuir wave when θB = 0 and becomes the
LH wave when θB = 90◦. The coupling provided by the electron-cyclotron wave is zero,
because the interaction is both polarisation forbidden and energy forbidden (Shi et al.
2018). The coupling provided by the LH wave is finite, but smaller than UH mediation
by a factor that is roughly proportional to (ωLH/ωUH)

1/2 � 1 (Shi et al. 2017b). On the
other hand, the coupling provided by the electron-dominant UH wave is strong, and has a
comparable strength as unmagnetised Raman scattering. As θB increases, the hybridisation
between cyclotron motion and electrostatic oscillation changes. The growth mediated by
the b3 = 3 resonance increases, whereas the growth mediated by the b3 = 4 resonance
decreases. The simulation data (symbols) and analytical results (lines) agree within error
bars. Note that the lines are not fits of data. The data point at b3 = 4 and θB = 90◦ is
missing because the LH coupling is too weak and the resonance cannot be unambiguously
identified.
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4. Discussion

Although strong resonances can be fitted using the protocol described in this
paper, weak resonances are challenging to extract. In warm-fluid plasmas, weak
resonances include the LH wave, as well as sound-like waves, Alfvén-like waves and
ion-cyclotron-like waves. In these resonances, ion motion is important, so the coupling
are typically smaller than electron-dominant modes by factors proportional to 1/

√
Mi �

1. Weak resonances are difficult to isolate because they compete with much stronger
spontaneous scattering in PIC simulations. Within the limited time window before
spontaneous scattering overwhelms simulation results, the stimulated scattering mediated
by a weak resonance barely experiences any growth, and is therefore difficult to observe
amidst leakages during pump–seed separation.

The difficulties may be circumvented in a number of ways. First, numerical noise can
be reduced to suppress unphysical spontaneous scattering. This can be achieved using
less-noisy Vlasov simulations. However, Vlasov codes can be expensive when an oblique
background magnetic field is present, because the simulations need to include at least
one spatial dimension and three velocity directions. Alternatively, PIC simulations with a
substantially larger number of particles N can be used to reduce numerical fluctuations.
However, this can also be expensive because PIC noise only decreases slowly with√

N. Second, plasma parameters can be chosen in regimes where electron modes are
strongly damped or chirped. For example, at kiloelectronvolt temperature that is relevant
for fusion, collisionless damping rates for electron modes are stronger than the growth
rates. In comparison, due to heavy ion masses, ion-dominant modes are less damped. The
balance between damping and growth can make ion-dominant modes competitive with
electron-dominant modes, and therefore survive numerical artefacts. It remains to be seen
whether couplings predicted by warm-fluid theory are reliable in regimes where kinetic
effects are expected to be important.

In addition, nonlinear solutions of the three-wave equations can be used to fit
simulations, which allow the seed intensity to be much stronger such that stimulated
scattering dominates spontaneous scattering. The three-wave equations are nonlinear
partial differential equations, which are difficult to solve analytically. Nevertheless, in
some cases, analytical solutions may be obtained using the inverse scattering method
(Kaup, Reiman & Bers 1979), and the set-up might be possible to realise in kinetic
simulations. Moreover, numerical solutions of the three-wave equations can be used to
fit kinetic simulations. Note that analytical solutions of wave-like equations are typically
given in integral form, which may not have simple closed-form expressions. Even for
the linearised three-wave problem, the integrals need to be evaluated numerically, except
for a few limiting cases. The necessity of numerical integration makes it appealing to
bypass analytical steps to directly solve the nonlinear equations using numerical methods.
Parameters such as the coupling coefficient may be scanned such that numerical solutions
of three-wave equations match kinetic simulations, which involve many more variables.
Once the analytical formula for magnetised coupling coefficient is benchmarked, the much
cheaper numerical solutions can be used in lieu of the much more expensive kinetic
simulations to study three-wave interactions of interest.

Finally, interactions in higher spatial dimensions remain to be investigated, which
involves additional physics that are important for magnetised inertial confinement fusion
and can also be exploited as a technique to reduce numerical artefacts. For example, during
cross-beam energy transfer, the pump and seed lasers propagate in different directions.
When a background magnetic field is present in yet another direction, the interaction is
intrinsically multidimensional. After Lorentz boost into a reference frame where the two
lasers are counter propagating, the plasma has a background flow and the static magnetic
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field partially transforms into an electric field. However, the initial boundary value problem
in a finite plasma slab is more difficult to transform. In this case, higher-dimensional
simulations are conceptually simpler even though they are more costly. In addition,
using extra spatial dimensions, pump and seed may become easier to separate. Note
that the reflected laser propagates at the specular angle. If the seed is at a different
angle, then it can be separated from the reflected pump, which is difficult to achieve
in one spatial dimension. Using the different propagation angles, contamination from
spontaneous scattering may also be mitigated. In unmagnetised plasmas, spontaneous
scattering is usually strongest in the backward direction. Although magnetisation changes
the preferred scattering angle, there is usually a direction where spontaneous scattering
peaks. Away from that direction, the seed laser suffers less from spontaneous scattering,
so weak resonances may then become extractable.

In summary, this paper derives analytical solutions of the linearised three-wave
equations in one spatial dimension, and use the solutions to benchmark magnetised
coupling coefficients predicted by warm-fluid theory. A protocol is developed to set
up, calibrate and process PIC simulations, so that simulation data can be fitted to
analytical solution in the same set-up. The rigorous protocol yields excellent agreement
between theory and simulations in the backscattering geometry for a wide range of
plasma temperature T0, magnetic field strength B0 and propagation angle θB. Growth rates
predicted by warm-fluid theory match fully kinetic simulations even when collisionless
damping becomes significant. The protocol is applicable to strong resonances that suffer
less from spontaneous scattering and pump–seed leakage. It remains to be investigated
whether the agreement can be extended to weaker resonances and to higher temperatures.
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Appendix A. Solution map of the coupled-mode equation

In this appendix, we evaluate the Fourier integral in (2.14) and analyse properties of Φ
in (2.15), which gives the solution map of the linear differential operator L in (2.3). We
focus on the non-degenerate case �v = v2 − v3 > 0.

The coupled-mode equation Lα = 0 can be mapped to the standard wave equation.
Using the transformed coordinates given by (2.12), the advective derivatives become ∂t +
v2∂x = 1

2�v(∂τ + ∂z) and ∂t + v3∂x = 1
2�v(∂τ − ∂z). Moreover, after changing variable

α = ρβ, where ρ is given by (2.13), the damping terms are removed and

(∂τ + ∂z)β2 = mβ3, (A1a)

(∂τ − ∂z)β3 = mβ2. (A1b)

Substituting one equation into the other, β satisfies (∂2
τ − ∂2

z − m2)β = 0, which is the
Klein–Gordon equation with an imaginary mass term. As the equation is invariant under
Lorentz transformations, it can be solved in any inertial frame.

Using Lorentz transformations, we can evaluate the integral in (2.14) in the complex
k′ plane in three space–time regions. First, when (τ, z) is a space-like separation, namely
|τ | < |z|, we can Lorentz boost into a reference frame where τ ′ = 0. In this frame, the
integrand is zero, so g = 0. Transforming back to the original frame

g(z, τ ) = 0, |τ | < |z|, (A2)

which enforces the causality that information outside the light cone does not contribute
to the solution. Second, when (τ, z) is a time-like separation, namely |τ | > |z|,
we can Lorentz boost into a reference frame where z′ = 0. The direction of time
is preserved if τ ′ = ±√

τ 2 − z2 takes the same sign as τ . Then, the integrand
becomes an even function and g(τ ′/m) = (1/π)[

∫ 1
0 dζ sinh(τ ′√1 − ζ 2)/

√
1 − ζ 2 +∫ +∞

1 dζ sin(τ ′√ζ 2 − 1)/
√
ζ 2 − 1]. Changing the variable to ζ = √

1 + χ 2, the second
integral equals the imaginary part of

∫ +∞
0 dχ exp(iτ ′χ)/

√
1 + χ 2. As the integrand is

analytic away from the branch cut, the contour can be closed to become an integral
along the imaginary χ = iη axis, as shown in figure 16. When τ ′ > 0, exp(iτ ′χ)
decays when η > 0, so the closure is in the first quadrant. For η ∈ (1,∞), the integral
is real, so the only contribution comes from η ∈ [0, 1), which gives the imaginary
part as

∫ 1
0 dη exp(−τ ′η)/

√
1 − η2. Substituting this into g(τ ′/m) and changing variable

ζ = √
1 − η2 in the first integral, we have g(τ ′/m) = (1/π)

∫ 1
0 dη cosh(τ ′η)/

√
1 − η2 =

1
2 I0(τ

′), where I0 is modified Bessel function (DLMF 2022, (10.32.2)). Similarly, when
τ ′ < 0, the contour integral is closed in the fourth quadrant, giving rise to an overall
negative sign. In the original frame,

g(z, τ ) = 1
2 sign(τ )I0(m

√
τ 2 − z2), |τ | > |z|. (A3)

Finally, for light-like separation |τ | = |z|, exp(ik′z) = cos k′τ ± i sin k′τ . As ĝ(k′)
is an even function, g(z = ±τ/m) = (1/π)[

∫ 1
0 dζ cos(τζ ) sinh(τ

√
1 − ζ 2)/

√
1 − ζ 2 +∫ +∞

1 dζ cos(τζ ) sin(τ
√
ζ 2 − 1)/

√
ζ 2 − 1]. Changing the variable to ζ = √

1 + χ 2,
the second integral equals the imaginary part of 1

2

∫ +∞
0 dχ{exp[iτ(

√
1 + χ 2 +

χ)] − exp[iτ(
√

1 + χ 2 − χ)]}/√1 + χ 2. As
√

1 + χ 2 + χ 
 2χ when χ → ∞, the
contour can be closed in first quadrant when τ > 0 to move the integral
along χ = iη axis, as shown in figure 16. For η ∈ (1,+∞), the integral is
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FIGURE 16. Contour integral in the complex χ plane. The integrands have a branch cut between
χ = ±i, but are otherwise analytic. As integrals along contours are zero, an integral along the
real χ axis can be moved to the imaginary χ = iη axis by closing the contour at R → ∞ and
ε → 0. When τ > 0, the closure is in the first quadrant as shown in this figure, whereas when
τ < 0 the closure is in the fourth quadrant.

real, so the only contribution comes from η ∈ [0, 1), which gives the imaginary
part as

∫ 1
0 dη cos(τ

√
1 − η2) exp(−τη)/√1 − η2. On the other hand,

√
1 + χ 2 −

χ 
 1/2χ when χ → ∞, so closing the contour along χ = R eiθ gives a finite
boundary term i

∫ π/2
0 dθ χ exp[iτ(

√
1 + χ 2 − χ)]/

√
1 + χ 2 → i

∫ π/2
0 dθ = iπ/2 when

R → ∞. The imaginary part of the second χ integral is therefore −π/2 +∫ 1
0 dη cos(τ

√
1 − η2) exp(τη)/

√
1 − η2. Summing the two χ integrals leads to a

cancellation with the first ζ = √
1 − η2 integral, leaving a constant 1

4 . Similarly, when
τ < 0, the contour integration is closed in the fourth quadrant, giving rise to an overall
negative sign. Therefore, along the light cone

g(z, τ ) = 1
4 sign(τ ), |τ | = |z|. (A4)

Using I0(0) = 1 and the definition of Heaviside step function with Θ(0) = 1
2 , the inverse

Fourier transform in all space–time regions is combined into a single expression.
The above g satisfies the imaginary-mass Klein–Gordon equation, and consequently

Φ is the solution map of the coupled-mode equation. Using ∂xΘ(x) = δ(x) and
property of the δ function δ( f (x)) = ∑

i δ(x − xi)/|f ′(xi)|, where the summation
is over all roots of f (x), we have ∂τΘ(τ

2 − z2) = (τ/|τ |)[δ(τ − z)+ δ(τ + z)] and
∂zΘ(τ

2 − z2) = (τ/|τ |)[δ(z + τ)− δ(z − τ)]. Hence, derivatives of g are 2∂τg =
m2|τ |Θ(τ 2 − z2)I′

0(ξ)/ξ + δ(τ − z)+ δ(τ + z), where ξ = m
√
τ 2 − z2, and 2∂zg =

−sign(τ )m2zΘ(τ 2 − z2)I′
0(ξ)/ξ + δ(z + τ)− δ(z − τ). Moreover, using f (z, τ )∂τ δ(τ −

z) = 1
2δ(τ − z)(∂z − ∂τ )f (z, τ ) and similar properties of the δ function, we can calculate

the second-order partial derivatives. As the modified Bessel function satisfies I′′
0 (ξ)+

I′
0(ξ)/ξ = I0(ξ), after cancelling the δ functions,

(∂2
τ − ∂2

z − m2)g(z, τ ) = 0, (A5)

which is consistent with (∂2
τ + k′2 − m2)ĝ(k′, τ ) = 0, where ĝ(k′, τ ) is in the integrand of

(2.14). To verify that Φ in (2.15) is the solution map of L in (2.3), commuting the damping
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factor ρ in (2.13) with L gives the differential operator

Lρ = �v

2
ρ

(
∂τ + ∂z −m

−m ∂τ − ∂z

)
. (A6)

Acting L on Φ leads to a diagonal differential operator on g in (A5) and gives LΦ = 0.
Finally, using earlier expressions of ∂τg and ∂zg, (2.15) is evaluated to

1
ρ

Φ(x, t) = γ0

�v
sign(t)Θ[(v2t − x)(x − v3t)]Φ0(x, t)+

(
δ(v2t − x) 0

0 δ(x − v3t)

)
,

(A7a)

Φ0(x, t) =

⎛
⎜⎜⎝

I1(ξ)

√
x − v3t
v2t − x

I0(ξ)

I0(ξ) I1(ξ)

√
v2t − x
x − v3t

⎞
⎟⎟⎠ , (A7b)

where ξ(x, t) = (2γ0/�v)
√
(v2t − x)(x − v3t). The kernel Φ0 is in the interior of the light

cone, whose contribution vanishes when the coupling is zero. The δ–function terms are
on the boundaries of the light cone, which track the wave fronts as the waves advect.

Appendix B. Well-posed boundary conditions

In order for the backscattering problem v3 < 0 to be well-posed, the boundary
conditions need to satisfy constrains. In frequency domain, the constraints (0, l̃3(ω))

T =
Ψ̃ 0(ω)l̃(ω) are degenerate, which give (2.23) whose inverse is

l̃2(ω) =
√

|v3|
v2
(σ +

√
σ 2 − 1)l̃3(ω), (B1)

where σ = iω. To find the relation between boundary conditions in time domain, take
inverse Laplace transform L−1[p̃(σ )](s) = ∫

C(dσ/2πi) exp(sσ)p̃(σ ), where the contour C
runs from −i∞ to +i∞ on the right-hand side of all poles. First, we need to find the inverse
transforms of f̃±(σ ) = σ ± √

σ 2 − 1. Note that f̃ ′
−(σ ) = −Ĩ1(σ ). In other words, f̃ ′

−(σ ) =
∂σ

∫ +∞
0 ds exp(−sσ)I1(s)/s, so L[I1(s)/s](σ ) = ∫

dσ f̃ ′
−(σ ) = f̃−(σ )+ c−. To see that the

integration constant c− is zero, note that when σ → +∞, Laplace transforms approach
zero, so is f̃−(σ ). Therefore, the inverse transform is∫

C

dσ
2πi

exp(sσ)(σ −
√
σ 2 − 1) = I1(s)

s
. (B2)

Using the above result and L−1[σ ](s) = ∂s
∫ +∞

−∞ (dω/2π) exp(iωs) = δ′(s), the inverse
Laplace transform of f̃+(σ ) = 2σ − f̃−(σ ) is∫

C

dσ
2πi

exp(sσ)(σ +
√
σ 2 − 1) = 2δ′(s)− I1(s)

s
. (B3)

When s > 0, the inverse transform of products is L−1[p̃q̃](s) = ∫ s
0 ds′ p(s′)q(s − s′).

Therefore, the inverse Laplace transform of (2.23) is given by (2.24), and the inverse
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transform of (B1) is

l2(s) =
√

|v3|
v2

[
2l′3(s)−

∫ s

0
ds′ I1(s′)

s′ l3(s − s′)
]
. (B4)

To show that (B4) and (2.24) is an inversion pair, the following identity is needed.
Substituting l2 into l3, the double integral of l3(s − s′ − s′′) can be simplified by changing
the integration variables from s′ and s′′ to χ = s′ + s′′ and η = s′ − s′′, where the triangular
domain of the double integral ds′ ds′′ = 1

2 dη dχ is rotated to χ ∈ [0, s] and η ∈ [−χ, χ ].
The inner η integral is

∫ χ

−χ
dη

I1

(
χ + η

2

)
χ + η

I1

(
χ − η

2

)
χ − η

= I0(χ)

χ
− 2I1(χ)

χ 2
. (B5)

To show the above identity, express I1(s)/s in terms of its inverse Laplace transform
using (B2), where 1

2(χ ± η) is paired with σ±. Moving the σ± integrals outwards and
computing the η integral first leads to exp[χ(σ+ + σ−)/2]

∫ χ
−χ dη exp[η(σ+ − σ−)/2] =

2[exp(χσ+)− exp(χσ−)]/(σ+ − σ−). By the σ+ ↔ σ− symmetry of the outer integrals,
it is sufficient to consider the exp(χσ+) term, which can be moved outside the σ−
integral. Closing the contour from right in the complex σ− plane,

∫
C−
(dσ−/2πi)[σ− −

(σ 2
− − 1)1/2]/(σ+ − σ−) = 1

2 [σ+ − (σ 2
+ − 1)1/2], where the factor 1

2 comes from the fact
that a pole is enclosed only when the contour C− is on the left of C+. To show that the
remaining integral

∫
C+
(dσ+/4πi) exp(χσ+)[σ+ − (σ 2

+ − 1)1/2]2 equals to the right-hand
side of (B5), compute its Laplace transform F̃(σ+) = ∫ +∞

0 dχ exp(−χσ+)[I0(χ)/χ −
2I1(χ)/χ

2]. Taking derivatives to remove denominators gives F̃′′(σ+) = −Ĩ′
0(σ+)−

2Ĩ1(σ+), which can be integrated twice to give F̃(σ+) = σ 2
+ − σ+(σ 2

+ − 1)1/2 + c1σ+ + c2

using Ĩ0 and Ĩ1 found before (2.23). The integration constants c1 = 0 and c2 = − 1
2 are

determined using the condition F̃(+∞) = 0, which gives F̃(σ+) = 1
2 [σ+ − (σ 2

+ − 1)1/2]2

as desired. Finally, substituting (B5) into the l3(s − s′ − s′′) integral partially cancels with
the l′3(s − s′) term after integration by parts, and what remains are the boundary terms
l3(s)− 2l3(0)I1(s)/s. The second term vanishes because l3(0) = 0, which is a consequence
of (2.24). We have thus shown that l3[l2] = l3. Similarly, substituting l3 into l2 and using
(B5), the converse can also be shown.

Verifying that l2 and l3 satisfy the constraints in the time domain requires the
following identity. For the first constraint 0 = ∫ s

0 ds′[I1(s′)l2(s − s′)− √|v3|/v2I0(s′)l3(s −
s′)], express l3 in terms of l2 using (2.24) and change the double integral of l2(s − s′ − s′′)
from s′ and s′′ to χ = s′ + s′′ and η = s′ − s′′. The constraint is satisfied because

∫ χ

−χ
dη I0

(
χ + η

2

) I1

(
χ − η

2

)
χ − η

= I1(χ). (B6)

The proof of this identity is similar to (B5), where I0(s) and I1(s)/s are expressed in terms
of their inverse Laplace transforms and the η integral is performed before closing the
σ± contours. Finally, for the second constraint 2l3(s) = ∫ s

0 ds′[
√
v2/|v3|I0(s′)l2(s − s′)−

I1(s′)l3(s − s′)], express l2 in terms of l3 using (B4). After integration by part for the l′3(s −
s′) term, which yields a boundary term and an integral that cancels the remaining terms
due to (B6), it is easy to see that this constraint is also satisfied.
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Appendix C. Properties of kernel functions

To verify that (2.25) satisfies boundary conditions, special values of M2 and M3 are
needed. At the boundary, ϑ = 0 and M2(ϕ, 0) = ∫ 1

0 dr I0(rϕ)I1(ϕ(1 − r))/(1 − r). The
integral recovers (B6) after changing variable to ϕ′ = (2r − 1)ϕ, so

M2(ϕ, 0) = I1(ϕ). (C1)

Hence, D2(ϕ, 0) = 0 and α2(x = 0, t) = h0 satisfies the boundary condition. Similarly,
changing the integration variable to ϕ′ gives

M3(ϕ, 0) =
∫ ϕ

−ϕ
dϕ′ I1

(
ϕ + ϕ′

2

) I1

(
ϕ − ϕ′

2

)
ϕ − ϕ′ = I0(ϕ)− 2

I1(ϕ)

ϕ
. (C2)

The proof of this identity is similar to (B5) and (B6). Substituting D3(ϕ, 0) = 2I1(ϕ)/ϕ

into (2.25) recovers α3(x = 0, t) = h3(t). The other special values are at ϕ → 0. Using
I1(ϕ) 
 ϕ/2, M2(0, ϑ) = M3(0, ϑ) = 0, D2(0, ϑ) = ϑ and D3(0, ϑ) = 1.

To verify that (2.25) solves Lα = 0, differential properties of the kernel functions are
needed. Using dy

∫ b( y)
a( y) dx f (x, y) = ∫ b

a dx ∂yf (x, y)+ b′( y)f (b, y)− a′( y)f (a, y) where a
and b are evaluated at y, the derivatives ∂tα2 and ∂xα2 can be easily computed, where
the latter involves ∂ϑD2(ϕ, ϑ). Using the properties of modified Bessel functions,

∂ϑM2(ϕ, ϑ) = M3(ϕ, ϑ), (C3a)

∂ϑD2(ϕ, ϑ) = D3(ϕ, ϑ), (C3b)

which ensures (∂t + v2∂x + μ2)α2 = γ0α3 is satisfied by (2.25). To show that (∂t +
v3∂x + μ3)α3 = γ0α2 is also satisfied, note that (v3∂x + μ3) exp(−μ2x/v2) gives a term
proportional to

∫ γ (t−x/v2)

0 dϕ D3(ϕ, ϑ)∂ϕ exp(−ϕγa/γ0), which can be computed using
integration by parts. Using the special value D3(0, ϑ) = 1 and identities

(2∂ϕ − ∂ϑ)D3(ϕ, ϑ)− D2(ϕ, ϑ) = M2(ϕ, ϑ)− (2∂ϕ − ∂ϑ)M3(ϕ, ϑ) = 0, (C4)

the α3 equation is straightforward to verify. To show the first equality in (C4),
use the definitions of D2 and D3 before (2.26) and (2∂ϕ − ∂ϑ)I0 = √

1 + 2ϑ/ϕI1. To
show the second equality, (2∂ϕ − ∂ϑ)M3(ϕ, ϑ) = ∫ 1

0 dr{[I′
0(2∂ϕ∂ϑξ − ∂2

ϑξ)+ I′′
0 (2∂ϕξ −

∂ϑξ)∂ϑξ ]I1/(1 − r)+ 2I′
0I′

1∂ϑξ}, where the argument of I0 is ξ =
√

r2ϕ2 + 2rϕϑ and the
argument of I1 is ϕ(1 − r). Using derivatives of ξ and the differential equation for I0,
the two terms in the square bracket combine to r2ϕ[(2r − 1)ϕ + 2ϑ]I0/ξ

2 − 2r2ϕ2(r −
1)I′

0/ξ
3. The remaining term is

∫ 1
0 dr I′

0I′
1∂ϑξ = − ∫ 1

0 dr (rI′
0/ξ)∂rI1 = ∫ 1

0 dr I1∂r(rI′
0/ξ),

because the boundary terms are zero. This term equals
∫ 1

0 dr I1[(1 − rϕϑ/ξ 2)I0 −
r2ϕ2I′

0/ξ
3]. Summing all contributions, the I′

0 terms cancel and (2∂ϕ − ∂ϑ)M3(ϕ, ϑ) =∫ 1
0 dr cI0I1/(1 − r), where c = r2ϕ[(2r − 1)ϕ + 2ϑ]/ξ 2 + 2(1 − r)(1 − rϕϑ/ξ 2) = 1.

Using the definition of M2 in (2.26), the second equality in (C4) is thus proved.
Finally, let us analyse the limit t → +∞ for two special cases. First, at the boundary,

α3(x = 0, t) = h0
√
v2/|v3|Δ(γ t, ς), where Δ(s, ς) = ∫ s

0 ds′ exp(−ςs′)I1(s′)/s′ and ς =
γa/γ0 measures damping relative to growth. When γ0 > γa is above the absolute
instability threshold, the integral diverges and Δ(+∞, ς < 1) = +∞. On the other
hand, when γ0 ≤ γa, the integral converges and is given by (B2) as Δ(+∞, ς ≥ 1) =
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ς −
√
ς 2 − 1. At the threshold γ0 = γa, using property of modified Bessel function

(DLMF 2022, (10.43.8)), the special value isΔ(s, ς = 1) = 1 − exp(−s)[I0(s)+ I1(s)] 

1 − √

2/πs, so the steady state is approached only at an algebraic rate. Second, at
zero plasma wave velocity v3 = 0, the solutions are given by (2.27). When t →
+∞, the integrals are evaluated using property of modified Bessel function (DLMF
2022, (10.43.24)) and I1/2(x) = √

2/πx sinh x. To see how fast the solutions approach
steady states, consider the residual R = ∫ +∞

ψ
dξ exp(−νξ 2)I1(ξ). The residual diminishes

exponentially as exp(−νψ2) = exp(−μ3tr) when ψ � ξ∗, where tr = t − x/v2 is the
retarded time. The threshold ξ∗ maximises the integrand of R and is the unique root
of I0(ξ∗)/I1(ξ∗) = 1/ξ∗ + 2νξ∗. When ν � 1, namely when the spatial gain is small,
ξ∗ 
 1/

√
2ν, so the growth saturates when tr � 1/μ3. On the other hand, when ν �

1, namely when the spatial gain is large, ξ∗ 
 1/2ν, so the growth saturates when
tr � γ 2

0 x/μ2
3v2. To give a better approximation of R when ν � 1, note that ξ >

ψ � ξ∗ � 1 so I1(ξ) 
 exp(ξ)/
√

2πξ . Changing the integration variable gives R 

(1/2

√
2π) exp(1/4ν)

∫ +∞
ζ0

dζ exp(−ζ )[ζ( 1
2 + √

νζ )]−1/2, where ζ0 = ν(ψ − 1/2ν)2 =
μ3tr − √

μ3tr/ν + 1/4ν. When νζ0 � 1
4 , which is equivalent to tr � 4γ 2

0 x/μ2
3v2, the 1

2

term is negligible, and the integral is evaluated to R 
 (1/2
√

2π) exp(1/4ν)ν−1/4Γ ( 1
4 , ζ0)

using the incomplete gamma function Γ (n, z) = ∫ +∞
z dζ ζ n−1 exp(−ζ ) 
 zn−1 exp(−z).
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