
Robust design of complex
socio-technical systems against
seasonal effects: a network
motif-based approach
Yinshuang Xiao and Zhenghui Sha

Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin,
TX, USA

Abstract
Seasonal effects can significantly impact the robustness of socio-technical systems (STS) to
demand fluctuations. There is an increasing need to develop novel design approaches that
can support capacity planning decisions for enhancing the robustness of STS against
seasonal effects. This paper proposes a new network motif-based approach to supporting
capacity planning in STS for an improved seasonal robustness. Network motifs are under-
lying nonrandom subgraphs within a complex network. In this approach, we introduce
three motif-based metrics for system performance evaluation and capacity planning deci-
sion-making. The first one is the imbalance score of amotif (e.g., a local service network), the
second one is the measurement of a motif’s seasonal robustness, and the third one is a
capacity planning decision criterion. Based on these three metrics, we validate that the
sensitivity of STS performance against seasonal effects is highly correlated with the imbal-
anced capacity between service nodes in an STS. Correspondingly, we formulate a design
optimisation problem to improve the robustness of STS by rebalancing the resources at
critical service nodes. To demonstrate the utility of the approach, a case study onDivvy bike-
sharing system in Chicago is conducted. With a focus on the size-3 motifs (a subgraph
consisting three docked stations), we find that there is a significant correlation between the
difference of the number of docks among the stations in a motif and the return/rental
performance of such a motif against seasonal changes. Guided by this finding, our design
approach can successfully balance out the number of docks between those stations that have
caused the most severe seasonal perturbations. The results also imply that the network
motifs can be an effective local structural representation in support of STS robust design.
Our approach can be generally applied in other STS where the system performances are
significantly impacted by seasonal changes, for example, supply chain networks, transpor-
tation systems and power grids.

Key words: socio-technical system, seasonal effect, systems robustness, network motif,
bike-sharing system

1. Introduction
The notion of socio-technical is originally proposed by Trist & Bamforth (1951) in
the context of labor studies with the idea that both knowledge accumulation
and the improvement of work situations should be embraced in a research project.
Over the years, there are two typical types of studies related to the socio-technical
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concept that can be distinguished. The first type mainly focuses on improving the
efficiency of projectmanagement (Keating et al. 2001; Hassannezhad et al. 2019). It
highlights the complex interactions between the subjective perceptions of workers
and the objective characteristics of work processes (Pan& Scarbrough 1998). In the
second type, instead of only considering the operation-side actors (employees in
firms, researchers, policymakers, etc.), a complete understanding of the human
factors within the socio-technical methodology is achieved by taking the demand-
side actors (end users, customers, special-interest groups, etc.) into account
(Carayon 2006; Geels & Kemp 2007), but analysing complexity also concurrently
increases because of this additional consideration.

When the socio-technical approach is applied to the system development
discipline, the term socio-technical system (STS), as an extension of the socio-
technical principle and conventional complex systems, is invited. Inheriting the
integrative nature of socio-technical concepts, STS combines the social and
technical features into the engineering design framework. On the one hand,
considering this combination is beneficial because it makes the simulation
models and design approaches more consistent to the real situation. On the other
hand, it becomes challenging since complexity is introduced by the unpredictable
features of the social aspects. This complexity runs through the three broad stages
in the system engineering lifecycle: analysis, design and evaluation (Baxter &
Sommerville 2011; ElMaraghy et al. 2012), and continues to affect the function-
ality of the entire system. It is also this complexity that raises a high requirement
of the system robustness against various disturbances (Kalsi, Hacker, & Lewis
1999; Gribble 2001).

One typical disturbance that can impact numerous systems across domains is
seasonal effects. Taken the bike-sharing system (BSS) as an example, as shown in
Figure 1, seasonal effects not only require the systematic design of station
distribution and the capacity of each station to fight against varied weather
conditions, but could also generate demand fluctuation in different months that
affects BSS’s operational performance. Another example is the electric vehicles
that, according to a recent study (Hao et al. 2020), the electricity consumption of
electrical taxis in spring and fall is about 15.2 kWh per 10 km, which is 3.3% and
30% lower than that in summer and winter, respectively. Thus, seasonal effects
request that the battery functionality is adaptive to varied climates. Similarly,
other systems that can be affected by seasonal changes include power grids,
agriculture systems (Ten Napel et al. 2011; Urruty, Tailliez-Lefebvre, & Huyghe
2016), ecosystems (Ahlström et al. 2012) and transportation systems (Sun,
Wandelt, & Linke 2015; Markolf et al. 2019).

In this paper, we focus on the transportation-based STS where the concept of
‘transportation’ here is much broader than the conventional one. It can refer to the
systems that transport passengers and freight such as the air transportation system,
and also represents the exchange of information and energy transmission like the
interconnected power grids (Blume 2017). One common feature of these systems is
that they are composed of multiple connected single service subsystems, and each
subsystem is designed with certain capacity constrained by resources. Here, the
capacity in systems engineering represents the volume of products that a produc-
tion system generates (Martnez-Costa et al. 2014) or the storage capability of
physical systems, for example, computing system andwarehouses of a supply chain
network. It is the capacity planning decision that plays a critical role for the system
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robustness enhancement of those STSs. Inefficient capacity planning can induce
either underutilised resources or unfulfilled user demands, thus leading the system
to be sensitive to the seasonal changes. Figure 1 explains how seasonal variations
and capacity planning can affect BBS’s performance inmore detail. As shown in the
figure, the significance of the influence, either negative or positive, is directly
related to the number of docks served (i.e., the capacity planned) in each station
of such a BSS.

To mitigate the seasonal fluctuation of the STS performance, we propose a new
approach to improving the system robustness by optimising capacity planning
decisions based on network motif theory. The present study is based on our prior
work (Xiao & Sha 2020) that studies the features of local trip patterns and its
correlations to the system-level performance of a BSS using network motifs. In this
paper, we further develop a network motif-based framework to support STS robust
design in light of seasonal effects. Still, using the bike sharing system as the
application context, we show how the the number of docks of critical stations can
be optimised to mitigate the seasonal influence on the system’s rebalance perform-
ance. This design approach can be generally applied to many other transportation-
based STSs where the system robustness against seasonal effects is a primary
concern, such as air transportation systems and interconnected power grids.

The remainder of this paper is outlined as follows. Section 2 presents the
technical background of the complex network and network motif. In Section 3,
we introduce the proposed robust design approach in detail. In Section 4, the
application of the approach in BSS is presented and the design problem in terms of
capacity planning is formulated. In this section, we also assess the seasonal effect on
the BSS’s rebalance performance and discuss the results for capacity planning
optimisation. At the end, Section 5 concludes the paper with closing thoughts and
directions for future research.

2. Technical background
Complex network is a powerful representation for complex systems because of its
ability in capturing the interconnectivity and relationship among the subsystems

Figure 1. Seasonal effect on bike-sharing system (BSS) with efficient and inefficient capacity planning.
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and individual components. In complex system design and engineering, network
science has exhibited its utility in various applications. For example, Sha et al. (Sha,
Chaudhari, & Panchal 2019; Sha & Panchal 2013a, b; Sha & Panchal 2016)
conducted a broad range of research on network-based engineering design of
complex systems including autonomous system level Internet and the
U.S. domestic air transportation system. Wang et al. performed a series of studies
on applying stochastic network models (e.g., the Exponential Random Graph
Model) to model the customer-product interactions in vehicle market systems
(Wang et al. 2016; Wang et al. 2016; Fu et al. 2017; Bi et al. 2018; Sha et al. 2018;
Wang et al. 2018; Sha et al. 2019; Cui et al. 2020). Regarding the network-based
robustness analysis, Cats, Koppenol, & Warnier (2017) developed a robustness
assessmentmodel that can indicate the changes of network performance in different
link capacity reductions. This model was successfully applied to public transport
systems. In another study, Paparistodimou et al. (2020) proposed a network
generator to support system architectures’ robustness analysis in the initial design
stages. Focusing on design process robustness, Piccolo, Lehmann, & Maier (2018)
presented a bipartite network-based method to investigate the interplay between
people and the design activities and its impact on the robustness of design progress.
These studies validate the feasibility of using complex networks to research STS
robustness. It is worth noting that a distinction exists between the concept of
robustness in our study and that in the network science literature. The robustness
assessments of complex networks focus on evaluating how the removal of nodes,
especially the hub nodes, will impact network topologies, for example, a system’s
ability to react to failures of its components. However, the robustness defined in this
study is investigating whether the nodes with limited capacity can maintain their
functions when imbalanced link information is transmitting among nodes. In other
words, it indicates system’s ability, relating to each single service component’s
capacity planning, to handle the demand fluctuation caused by seasonal effects.

Furthermore, we would like to emphasise the equal importance of both global-
and local-level robustness to a system’s operational performance where they
respectively indicate the capability of all the service nodes or local clusters of nodes
to adapt to the seasonal effects. A better understanding of both of these two levels’
robustness is helpful to guide stakeholders make a tradeoff between the entire
system’s performance and subsystems’ functionalities. In this paper, since our
focus ismore on the robustness investigation of local-level service systems, network
motifs – a fundamental local unit of a network (Wang et al. 2020) – is a natural
adoption of analysing the local-level system performance.

Network motifs are underlying nonrandom subgraphs within the complex
networks. Before named by Milo et al. (2002), network motifs experienced a long
research period (Stone, Simberloff, & Artzy-Randrup 2019), which was originally
considered as certain patterns statistically emerging in real-world networks instead
of the same-sized random networks (Holland & Leinhardt 1974). Since then, motif
research can be divided into twomain subjects where the first one focuses onmotif
structure explanation (Alon 2007; Paranjape, Benson, & Leskovec 2017; Felmlee
et al. 2018), and the second one is keen on motif mining algorithms (Kashtan et al.
2004; Wernicke & Rasche 2006; Choobdar, Ribeiro, & Silva 2012). A motif can be
classified as directed or undirected and can also be categorised by the number of
nodes it consists of. There are three commonly studiedmotifs in existing literature,
including size-2 motifs (dyads), size-3 motifs (triads) and size-4 motifs (tetrads)
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(Felmlee et al. 2018). As the simplest motifs, dyads are essential to the formation of
higher-level motifs and the whole network. Triads, also called ‘transitivity’motifs,
greatly impact the growth of social networks. Tetrads are a newly research focus in
recent years, and relevant research comes from a wide range of disciplines, such as
biology, electronics and social analysis. Given that the triad is regarded as the
foundation in social relationship and the most basic building block of many other
complex networks, we decide to adopt size-3 motifs to study STS. Hence, in this
paper, only size-3 directed motifs are considered. Their structures and IDs are
shown in Table 1 (Rasche & Wernicke 2006).

Table 1. Size-3 directed motif list

ID Structure Adjacent matrix ID Structure Adjacent matrix

238
0 1 1

1 0 1

1 1 0

140
0 1 0

0 0 1

1 0 0

174
0 1 0

1 0 1

1 1 0

14
0 0 0

0 0 1

1 1 0

46
0 0 0

1 0 1

1 1 0

164
0 1 0

1 0 0

1 0 0

166
0 1 0

1 0 0

1 1 0

12
0 0 0

0 0 1

1 0 0

102
0 0 1

1 0 0

1 1 0

6
0 0 0

0 0 0

1 1 0

78
0 0 1

0 0 1

1 1 0

36
0 0 0

1 0 0

1 0 0

38
0 0 0

1 0 0

1 1 0

The motif IDs determined by Rasche & Wernicke (2006) consider each motif’s adjacent matrix as a binary representation and transform the binary
representation to a decimal number. For example, the binary representation of the decimal number 174 is 010101110, which is consistent with the
adjacent matrix of motif 174. Regarding ordering the motifs in Table 1, from top to button and left to right, we rank them based on the number of their
arrows from large to small.
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There are two common statistics to assess the significance of a networkmotif in
a complex network.

(i)Motif Z-score: Given a graphG and an n-size motifG0, the frequency ofG0 in
G is the number of times that G0 appeared inG, which is denoted by FG G0ð Þ. Then,
considering an ensemble of random graphs corresponding to the null-model of G
beΩ Gð Þ. R Gð Þ is a set that includes N randomised networks, all of which are from
Ω Gð Þ. Accordingly, the Z-score is defined as

ZG G0ð Þ ¼ FG G0ð Þ�uR G0ð Þ
σR G0ð Þ , (1)

where uR G0ð Þ and σR G0ð Þ represent the mean and standard variation of the
frequency in R Gð Þ. In general, a higher Z-score indicates that G0 is a more
significant motif in G. Motifs in a larger network may more easily get a higher
Z-score than that in a smaller network (Milo et al. 2002).

(ii) P-value: P-value indicates the probability of Fr G0ð Þ> FG G0ð Þ, where Fr G0ð Þ
represents the frequency of G0 in a random network r⊂R Gð Þ. P-value can be
obtained by

PG G0ð Þ ¼ 1
N

XN
j¼1

δ Fr G
0ð Þ> FG G0ð Þð Þ, (2)

whereN is the total number of randomnetworks in R Gð Þ. δ is the sign function that
equals to 1 when Fr G0ð Þ> FG G0ð Þ, and 0 otherwise. Normally, one motif is treated
as a significant pattern if its P-value is smaller than a typical level of significance,
normally 0.001, 0.01 or 0.05.

3. The research approach
In this section, we describe our proposed network motif-based approach in a
stepwise framework, as shown in Figure 2.

Step 1: Identifying STS system capacity and seasonal effects

The main objective of this step is to formulate the seasonal robust design problem.
It includes understanding the interconnections between different parts (as shown
in the top-down structure) within an STS and identifying system capacity and
seasonal effects. The in-depth understanding on the system helps lay down the
foundation for the complex network construction in Step 2. During this step, data
preprocessing is needed to organise the dataset by establishing the preprocessing
tenets, for example, data preparation, cleaning, normalisation and transformation
of data, and so on (Garca, Luengo, & Herrera 2015).

Step 2: Translating STS to complex network and mining network
motifs

Based on the understanding of the target system and the robust design that needs to
be addressed, the main tasks in Step 2 are to define and construct the complex
network that best captures the STS structures as well as to mine the specific motif
patterns in the established network. When building the complex network, we first
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need to determine the node, node features, link, whether link carries weight or not,
weight definition and whether the network is directed or undirected. Secondly,
since seasonal data are always time-dependent, two general strategies of handing
such a temporal dynamic trait are often used. The first strategy is to treat the year-
round data as time-series data, and the second one is to create cross-sectional data
at different time steps. Since seasonal information typically changes by month, we
adopt the second strategy with the information aggregated from each month. For
example, 1 year’s dataset can be divided into 12 cross-sectional datasets, which
forms 12 networks denoted as Gi (i ¼ 1,2,…,12).

After the networks are constructed,motifmining tools like FANMOD(Rasche&
Wernicke 2006) and Mfinder (Kashtan et al. 2002) are employed to enumerate
motifs with a particular size in each network. The significance scores (i.e., Z-score
and P-value) of each pattern can be obtained at the same time. It is worth noting that
during themotifmining, linkweights are not used andmotif patterns aremined only
based on link existence. Link weights can be added latter to theminedmotif patterns
for analysis if necessary. In our study, if a motif pattern is found significant in all the
12 networks, it is treated as a significant pattern throughout that entire year.

Figure 2. The framework for socio-technical systems (STS) robust design against seasonal effects by capacity
planning decisions optimisation.

7/27

https://doi.org/10.1017/dsj.2021.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.27


Step 3: Defining the motif-based criteria for system performance,
seasonal robustness and capacity planning

Before defining the criteria, we first introduce two node-level performance metrics
for directed weighted networks. As shown in Figure 3, assuming a networkG has T
nodes and for any node i⊂G, there are a incoming weighted links and b outgoing
weighted links. We define c as the difference between the sum of incoming link
weights and the sum of outgoing link weights. Then, if c¼ 0, node i is defined as a
balanced node; if c < 0, node i is considered to be in-biased node and if c > 0, node i is
named out-biased node. This way we are able to quantify a node’s balance
performance in STS.

Next, we extend this node classification to network motifs. Supposed there is a
size-3 motif comprising three nodes,Node 1,Node 2 andNode 3.A fully connected
motif structure is shown in Figure 4. If weight ¼ 0 can be used to represent a
nonexistent link (e.g., if w12 ¼ 0, it means there is no link from Node 1 to Node 2),
then all the 13 size-3 directed motifs can be described with the following repre-
sentation. According to the corresponding c values, Nodes 1, 2 and 3 are divided
into three sets: I(m), O(n) and B(l), where m, n and l represent the number of in-
biased nodes, out-biased nodes and balanced nodes in each set, andmþ nþ l¼ 3
holds. Moreover, the relationship among the three c values follows:

c1þ c2þ c3 ¼ 0: (3)

Figure 3. Categorising a node based on its balance performance.

Figure 4. A general motif structure.
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Based on these definitions, two metrics, α and β, are created (see Equations (4)
and (5)) to grade every single motif in which α depicts the out-biased score and β
indicates the in-biased score.

α¼ 1
n

X
∣cO∣, (4)

β¼ 1
m

X
∣cI ∣, (5)

where co or cI indicates the nodes’ c values that falling into the setO(n) or I(m). The
higher the scores are, the less balanced is themotif. Based on Equation (3), it can be
proved that a linear relation exists between α and β (see Appendix A). The
advantages of adopting these two metrics reflect in two aspects. First, they are
good indicators of the local-level system performance and can help designers locate
the worst performed subpatterns. Second, not only can these two criteria capture
the link weights, but they also integrate the topological characteristics of specific
motifs.

At the system level, assuming a complex network G consists of K number of
motif g (g is the motif ID in Table 1), two motif-based system performance criteria
can be obtained below. Similarly, αg and βg hold a linear relationship, and a higher
value indicates a worse balance performance.

Out‐biased score : αg ¼ 1
K

XK
j¼1

αg,j, (6)

In‐biased score : βg ¼
1
K

XK
j¼1

βg,j: (7)

Based on the motif-based system performance criteria, the seasonal robustness
criterion, as a quantitative representation of the seasonal effect, is defined as the
standard deviation of the year-round in- or out-biased score of a motif1. For
example, according to Step 2, we can get 12 monthly networks Gi (i¼ 1,2,…,12)
and the yearly significantmotif patterns. For each significantmotif, its aggregated in-
or out-biased score over the 12 consecutive months can be calculated, and the
resulting standard deviation from the 12 months, therefore, indicates the system
robustness against seasonal changes.

Finally, we define the capacity planning criterion based on the capacity (v) of
each service node in a network G. We denote the average capacity difference of a
motif as

d¼ ∣v1� v2∣þ ∣v1� v3∣þ ∣v2� v3∣
3

, (8)

where vi (i¼ 1,2,3) is the capacity of each node i in a size-3 motif. Correspond-
ingly, in the network G consisting of K motif g, the average capacity difference of
motif g is

1 Because of the linear relationship, the year-round distributions of αg and βg should have a consistent
trend, and only the amplitudes are different.
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dg ¼ 1
K

XK
j¼1

dg,j: (9)

To providemore insights into how the threemotif-basedmetrics be utilised and
extended to different systems, a quick overview of the metric interpretations along
with their application examples are summarised in Table 2

Step 4: Formulating the design problem and solving
for optimal decisions

This step’s objectives are twofold: (i) investigate the correlation between seasonal
effects (represented by the seasonal robustness criterion) and the capacity planning

Table 2. The interpretations of the metric in different applications

Motif-based metrics Interpretation Application examples

Imbalance score

The motif-based imbalance score is
proposed to quantitively describe
the local service networks’
rebalance performance, that is, the
difference between the in-flow and
out-flow information/traffic of a
local system. This metric can
quantitively evaluate the local
service networks’ performance
of STSs.

• In the interconnected power grid, the
motif-based imbalance score is the
average difference of transmitting-in
and -out power within a local service
power grid.

• In BSS, the motif-based imbalance score
is the average difference of numbers of
rental and return bikes of a local-level
service system (e.g., a system including
three service stations).

Seasonal robustness
criterion

The motif-based seasonal robustness
criterion is the standard deviation
of the year-round imbalance score.
It is a quantitative representation
of the seasonal effect where a
larger value indicates a local
service system is more sensitive to
the seasonal demand fluctuation.

• In the interconnected power grid, the
motif-based seasonal robustness criter-
ion represents how the average differ-
ence of transmitting-in and -out power
of a local service power grid fluctuates
along with seasonal changes.

• In BSS, the motif-based seasonal
robustness criterion represents the vari-
ation of the average difference of the
rental and return bikes within a local
service system along with seasonal
changes.

Capacity planning
criterion

The motif-based capacity planning
criterion describes the average
capacity difference in a local
service network. It is an efficient
indicator of whether the local
service system’s resource
distribution is balanced or not.

• In the interconnected power grid, the
motif-based capacity planning criterion
is the average difference of themaximise
energy storage ability within a local
power grid.

• In BSS, the motif-based capacity plan-
ning criterion is the average difference of
the dock numbers within a local service
system.

Abbreviations: BSS, bike-sharing system; STS, socio-technical systems.
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criterion, as identified in Step 3 and (ii) formulate the design problem and solve it to
obtain optimal decisions for improving the system’s robustness against seasonal
disturbance. It would be ideal that the factors influencing the system’s robustness
are known from existing domain knowledge, so such factors will be formulated into
the design problem as the decision variable to be optimised. Otherwise, correlation
analysis and/or causal inference need to be applied to identify the key design
variables.

4. Case study
In this study, the Chicago Bike Share program, Divvy Bikes, is selected to demon-
strate the proposed approach. The Divvy Bikes’ data is publicly achievable
(Divvy_Bike 2020), and the data from 2014 to 2017 are adopted due to the
availability of capacity information (i.e., the number of docks) at each station.
Figure 5 shows the station distribution of Divvy Bikes in the third and fourth
quarters of 2017 and the number of stations in each year. In this study, we aim to
mitigate the sensitivity of the system’s rebalance performance to seasonal effects.

4.1. Data preprocessing

The station and trip data packages contain information like station geographic
coordinates, the number of docks, trip start and end station IDs, trip time and
duration, and user basic information (e.g., gender and birth year). We follow four
steps to process the raw data of each year. The final data frame consists of
12 monthly trip datasets, each of which has three columns, including start station
ID, end station ID, and the reoccurring frequency of each unique trip.

(i) Basic trip information extraction. The essential data, such as the trip start and
end station IDs, the number of docks, and start and end times are extracted
from the raw dataset.

Figure 5. Divvy Bike system information.
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(ii) Data cleaning. We delete those trips with missing data and the the testing
stations (e.g., station 512 is a station for testing purpose only) along with their
associated trips.

(iii) Monthly trip network data preparation. In this step, we split trips by month
based on their starting time.

(iv) Trip reoccurring frequency calculation. We count the number of times that a
trip between a pair of stations occurs in each month.

4.2. Trip network building and motif mining

Based on the monthly trip datasets, the monthly trip networks are constructed. In
each network, stations are represented as nodes, and a trip between two stations is
defined as a link and its reoccurring frequency in a month is the link weight. Since
the trip from Station A to Station B is different from the trip from B to A, the
resulting trip network is a directed network.

To focus on the network that captures the most significant traffics, we delete
those links that have less occurred trips, such as those links with just one-time
transit. The threshold for such a link removal process is set as the minimummean
(u) of the link weights among the 12 monthly trip networks in the interested years:

u¼Min uij
� �

, i¼ index of  years, j¼ 1,2,…,12, (10)

where uij is the link weight mean of the jth network in year i. For example, from
2014 to 2017, u¼ 3.03. Then, all the links withweights lower than 3.03 are removed
from the network. Figure 6 illustrates the link weight distribution of Divvy Bikes in
July 2017. It reveals that the statistical features of link weights will not be altered by
removing the links with weights below the threshold. Figure 7 shows the visual-
isation of the reduced trip network.

After obtaining the weighted directed trip networks, their binary counterparts
(i.e., the same network without link weights) are used for motif mining, which

Figure 6. Weight distribution of Divvy Bike trip network (Jul, 2017, total edges:
57,225).
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reports the motif structures, Z-scores, P-values, and the adjacent matrix list of all
existing motifs. In this study, the motif mining tool FANMOD is adopted. Table 3
shows the 13 size-3 directed motif IDs in every month of 2017, ranked from top to
bottom based on their Z-scores from high to low. The bold IDs are insignificant
motifs under the level of significance 0.001.

According to the results, we observe that the motifs with high transitivity2 are
more likely to be significant and ranked higher in the trip network. This is also the
reason that motif 78 is always ranked lowest in all networks. The similar phenom-
enon is also observed in the years from 2014 to 2016, as shown in Appendix B. In
the following analysis, only the significant motif patterns in over 2 years, including
motifs 238, 102, 174, 166, 38, 46 and 140, are considered.

4.3. Identifying BSS design parameters and seasonal effect

In our prior work (Xiao& Sha 2020), it is found that seasonal changes can influence
the average distances of trip motifs. For example, users tend to ride a longer
distance in warmer seasons. Moreover, seasonal changes can impact the traffic
of local networks, which is a critical factor to the system rebalance performance. As
to the design parameter, based on the correlation analysis (see Table 4), it is found
that the number of docks of each station plays an important role in the rebalance
problem because it directly relates to the availability of bikes that a user can rent or
return in a station.

Figure7.Avisualisation of Divvy Bike trip network after removing the links with less occurred trips (Jul, 2017,
total edges: 27,415).

2 A triad involving nodes i, j and k is transitive if whenever i connects to j and j connects to k then i
connects to k (Wasserman, Faust, et al. 1994). A digraph has a high transitivity if most triads it contains
is transitive.
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Figure 8 shows the average dock difference of those significant motifs in the
12 months of 2017 following Equations (8) and (9). It is observed that the average
dock difference curves from top to bottom correspond to the rank of transitivity of

Table 3. Divvy Bike motif Z-score ranks of each month in 2017

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

238 238 238 46 46 166 46 46 46 46 238 238

102 102 102 102 102 102 166 166 166 102 102 102

46 46 46 166 166 238 102 102 102 166 166 166

174 166 166 238 238 38 238 238 238 238 46 46

166 174 174 38 38 140 38 38 38 38 174 174

38 38 38 174 174 46 140 140 140 174 38 38

140 140 140 140 140 12 12 174 174 140 140 140

12 12 12 12 12 174 174 12 12 12 12 12

6 6 6 6 14 14 14 14 6 6 6 36

36 36 36 14 6 164 164 6 14 14 36 6

164 14 14 164 164 6 6 164 164 164 14 164

14 164 164 36 36 36 36 36 36 36 164 14

78 78 78 78 78 78 78 78 78 78 78 78

Table 4. Divvy Bike yearly correlation coefficient between seasonal effect and motif dock differences

Year 2014 2015 2016 2017

Correlation coefficient 0.848 0.921 0.914 0.922

Figure 8. Divvy Bike yearly motif dock difference curves (2017).
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the motifs from high to low. For example, motif 238, the pattern with the highest
transitivity in the trip networks, has the largest dock difference in the entire year of
2017, while motifs 140 and 38 have the smallest differences. While the causation
needs to be further investigated, one possible reason for such a correlation could be
that the stations with large capacities are more likely located in high-demand areas,
thus more users will return or rent bikes. So, they are hub stations and will connect
tomany other stations.Meanwhile, there is amajority of stations within the system
having low capacities. Therefore, these stations and hubs form a large proportion of
motifs with high transitivity and large capacity differences.

4.4. Trip motifs performance and robustness analysis

In this section, by following Step 3 in Section 3, we calculate the local BSS rental and
return performance scores, which correspond to the motif-based in- and out-
biased values. In a BSS, a higher rental or return score indicates that a serious
rebalance issue could occur in a trip motif. Figure 9 shows the rebalance perform-
ance scores of the seven significant trip motifs.

As indicated in both Figure 9a,b, the trip motif’s rebalance performance is
potentially related to the motif structure. Taken motifs 46, 166 and 140 as
examples, both motifs 46 and 166 have apparent unbalanced structures where
Node 1 only has in- or out-arrows (see Figure 10). This leads them to be vulnerable
to the return and rental problems. In contrast, the number of in- and out-arrows of
all nodes inmotif 140 are the same, somotif 140 is expected to have a low rebalance
performance score. However, there are also a few exceptions. For example, motif
238 has a balanced structure but still experiences return and rental problems in
several months from April to November. These abnormal fluctuations remind us
of the potential seasonal effects, so we use the standard deviation of the return/
rental performance scores in a year to quantify such fluctuations, as shown in the
second row of Table 5. A larger deviation means that a trip motif is more sensitive
to seasonal changes.

4.5. Design problem formulation

To confirm the targeted design variable, we firstly conducted a correlation analysis
between the system robustness and the average capacity difference. Since the
robustness score is measured based on yearly data, the mean of the capacity
differences of every significant motif during the entire year is calculated, as listed
in the third row of Table 5. Based on this table, the correlation coefficient between
the system robustness and the capacity planning criterion in 2017 can be obtained,
and similarly, for the data from 2014 to 2016.

The results are summarised in Table 4 and reveal a significantly high correl-
ation between the capacity difference and the system’s robustness. In other words,
if a trip motif has a large average capacity difference, its rebalance performance
would bemore sensitive to seasonal changes. This observation has led to our design
objective – to optimise the capacity of the stations in the motifs that are most
influential to the system’s robustness. To this end, we split the task into two
subtasks: (i) identify the stations that need to be optimised for their number of
docks and (ii) plan the capacity, that is, the number of docks for those stations,
either by adding docks or removing docks, tominimise the average dock difference.

15/27

https://doi.org/10.1017/dsj.2021.27 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.27


In the first subtask, the motif pattern that is the most sensitive to seasonal
changes is chosen (assuming its ID is gseason). Then, we determine the objective
motifs with the largest dock differences every month and identify the station IDs
that construct those motifs. Based on the number of times those identified stations
appear in the objectivemotifs in eachmonth, two decision rules3 are used to decide
which stations’ capacity needs to be optimised.

Figure 9. Divvy Bike yearly motif rebalance performance (2017).

3 These two rules can be extended. For example, instead of choosing the most frequently appearing
stations, the most and the second most frequently appearing stations can be chosen in both rules to
achieve more deduction in capacity difference.
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(i) The first rule is that among all 12 months, if a station appears in the most
number of months, then it will be regarded as the critical station and its
capacity will be taken into account for optimisation. From the first rule, we will
identify a set of critical stations, S1.

(ii) In the second rule, the stations appearing most frequently in each month are
chosen as critical stations, and the corresponding station set is defined as S2.
Finally, we define all the critical stations being represented as S¼ S1∪S2.

In the second subtask, assuming the significant motif set is M, including m
different types of motifs, we identify the significant motifs (from M) in which a
critical station s (s∈S) appears, and put the same type of motifs with the ID g∈M in
one set,Ms,g . Next, we define the decision variable xs as the number of docks that
station s need to add (xs > 0) or remove (xs < 0). Then, the updated average
capacity difference of the motif g, ds,g,j, can be calculated by following
Equation (11), where s1, s2 and s3 represent three stations’ IDs in a motif.
Depending on whether s1, s2 and s3 belong to the critical station set S or not,
ds,g,j is calculated differently.

Figure 10. Trip motif structure analysis.

Table 5. Divvy Bike seasonal robustness criteria and capacity planning criteria of significant trip motifs
(2017)

Motif ID 238 174 46 166 102 38 140

Seasonal robustness score (the
standard deviation of β value)

2.622 1.160 0.476 0.847 0.694 0.331 0.282

Capacity planning criterion 26.931 22.177 17.458 16.467 16.497 11.974 11.452
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ds,g,j xs1ð Þ¼ 1
3
∣ vs1 þxs1ð Þ� v2∣½

þ∣ vs1 þxs1ð Þ� v3∣þ ∣v2� v3∣�
if s1∈S

ds,g,j xs1 ,xs2ð Þ¼ 1
3
∣ vs1 þxs1ð Þ� vs2 þxs2ð Þ∣½

þ∣ vs1 þxs1ð Þ� v3∣þ ∣ vs2 þxs2ð Þ� v3∣�
if s1, s2∈S

ds,g,j xs1 ,xs2 ,xs3ð Þ¼ 1
3
∣ vs1 þxs1ð Þ� vs2 þxs2ð Þ∣½

þ∣ vs1 þxs1ð Þ� vs3 þxs3ð Þ∣
þ∣ vs2 þxs2ð Þ� vs3 þxs3ð Þ∣�

if s1, s2, s3∈S

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(11)

Finally, the updated average dock difference for motifs in set Ms,g can be
obtained

ds,g ¼ 1
ms,g

Xms,g

j¼1

ds,g,j, (12)

where ms,g is the number of motifs in Ms,g .
Since the objective is tominimise the average dock difference of those identified

trip motifs, a multiobjective optimisation is formulated in Equation (13):

minds1,g1 ¼ min
1

ms1,g1

Xms1,g1

j¼1
ds1,g1,j

…

minds1,gm ¼ min
1

ms1,gm

Xms1,gm

j¼1
ds1,gm ,j

…

mindsl ,g1 ¼ min
1

msl ,g1

Xmsl ,g1

j¼1
dsl ,g1,j

…

mindsl ,gm ¼ min
1

msl ,gm

Xmsl ,gm

j¼1
dsl ,gm ,j

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
S:T: xs1≥� vs1 ,…,xsl≥�vsl and xs1 ,…,xsl∈Z,

(13)

where s1,…, sl∈S, g1,…,gm∈M and vs1 ,…,vsl are the original dock numbers of
station s1,…, sl . Z denotes Integer. In Equation (13), all the relevant motifs in M,
even if they are not gseason, are considered. This is because while we are changing
the number of docks for those stations inmotif gseason, there is a possibility that the
average dock difference in the other motifs which include the stations of gseason
increases too.

To solve this optimisation problem, we adopt the weightingmethod (Miettinen
2012) to transform the multiobjective optimisation problem to a single-objective
one in Equation (14). Suppose all objective functions in Equation (13) are equally
important, and

Pm�l
i¼1 qi ¼ 1, then qi ¼ q¼ 1

m�l (i¼ 1,…,m� l). Equation (14) is a
typical nonlinear integer optimisation problem, and the genetic algorithm, ga
function in MATLAB (2020) is applied to solve this problem.
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minD xs1 ,…,xslÞ¼ min q ds1,g1 þds1,gm þ…þdsl ,g1 þdsl ,gm
� �� �

,
�

S:T: xs1≥� vs1 ,…,xsl≥� vsl and xs1 ,…,xsl∈Z,

(14)

In our case study, based on Figure 9, we identify M¼ 238,174,46,166,f
102,38,140g and motif 238 is the target motif we need to focus on because it is
the most sensitive one in light of seasonal changes. Table 6 lists all the critical
stations which form motif 238 and yield the largest dock difference. From Table 6,
we can observe that, station 3, the most frequently appeared station (9 months out
of 12), should be considered as a critical station, that is, S1 ¼ 3f g. Regarding the
stations that appearmost in eachmonth, takingMarch as an example, we identified
15 critical motif 238s, and station 35 and 172 are the most frequently appeared
stations in all of the 15 critical motifs. Thus, they are considered as critical stations.
Similarly, another four critical stations are identified, thus
S2 ¼ 3,35,45,97,172,263f g. By combining these two sets, we obtain the final
critical station set S¼ S1∪S2 ¼ 3,35,45,97,172,263f g.

By solving the optimisation problem in Equation (14), we obtain the optimal
capacity planning decision for the decision variables xs1 ,…, xs6 . The results are
shown in Table 7, alongwith the original and updated number of docks. To verify if
the redesigned capacity can effectively decrease the average dock difference of the
significant trip motifs or not, we recalculate the trip motifs’ mean values of the
updated number of docks in a year, as shown in Table 8. By comparing the updated
dock differences with the original ones, it is found that the decreases are achieved
for all significant motifs, and the dock difference of motif 238 is decreased by 4.6%.
With such a decrease, the enhance of the system robustness against seasonal effects
is expected to be achieved effectively.

5. Conclusion
It is the uncertainty and complicated interactions within an STS that make the
system vulnerable to various perturbations. The occurrence of certain perturba-
tions can significantly influence the STS performance, and the seasonal effect is a
common one because it directly impacts human behaviour in STS. In this study, we
develop a new design framework for improving STS robustness against seasonal
changes based on the networkmotif theory. Using the concepts ofmotif, we created
three metrics for system performance evaluation and capacity planning decision-
making. The first one is the imbalance score of a motif (e.g., a local service
network), the second one is the measurement of a motif’s seasonal robustness,
and the third one is a design parameter-based capacity planning decision criterion.
We apply our developed approach to a real-world STS, Divvy Bikes, a Chicago Bike
Share program, to improve the system’s rebalance performance and its robustness
against seasonal changes. The results from this study show that our approach can
effectively reduce the average dock differences among the stations of critical trip
motifs (i.e., local trip networks), thereby improving the system’s robustness.

The main contributions of this paper are summarised in three aspects: (i) We
introduce a network motif-based approach for guiding the STS robust design,
emphasising optimising system capacity planning toweaken the impact fromdemand
fluctuations caused by seasonal changes. (ii)Wepropose a set ofmotif-based criteria to
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Table 6. Station list of constructing the motif 238s with the largest dock difference values

Due to the space limitation, stations with appearing frequencies less than 5 in April, May and June are ignored, and this ignorance has no effect on critical station identification.
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help evaluate system’s performance and the impact of seasonal effects on it. (iii) High
correlation between the seasonal effects and the average dock difference of motifs is
discovered in BSS, from which a multiobjective design problem is formulated to aid
capacity planning decisions for improved system robustness.

There are two limitations in this study. First, in the STS robustness analysis, only
seasonal effects are considered.However, in reality, it is common that several types of
disturbances, such as the explicit interaction of BSS with other public transportation
systems and varying population growth in different areas, could co-exist and
influence a system’s performance in a more unpredictable and dynamic manner.
Second, in the robust design, it is expected to have a predictive model for the trip
network so that after docks are added or removed at the critical stations, the resulting
imbalance scores can be updated and the local trip networks’ performance can be re-
evaluated to further verify the effectiveness of the design solutions. Taking this work
as a starting point, wewould like to develop a dynamic approach, in conjunctionwith
the temporal motif concept, to support STS short-term robustness analysis. In this
case, more temporal uncertainties, such as varying demands at different periods of a
day or systemself-rebalancing strategy (e.g., bike-sharing companyutilising trucks to
rebalance the number of bikes in different stations), will be considered. Furthermore,
we would also like to pursue a more comprehensive framework to guide the robust
design of complex STS by taking into account more influence disturbances.
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Appendix A. Validating the linear relationship between α
and β
Based on Equation (3), all the possible calculation of α and β, depending on
whether c values are larger than 0 or not, are enumerated as follows:

(i) If c1 > 0, c2 < 0, and c3 < 0:

β¼ c1, α¼ 1
2
∣c2þ c3∣, (A1)

So, β¼ 2α: (A2)

Similar relationship can be achieved when c2 > 0, c1 < 0 and c3 < 0 or c3 > 0,
c1 < 0 and c2 < 0.

(ii) If c1 > 0, c2 > 0, and c3 < 0:

β¼ 1
2
c1þ c2ð Þ, α¼ ∣c3∣, (A3)

So, β¼ 1
2
α: (A4)

Similar relationship can be achieved when c1 > 0, c3 > 0 and c2 < 0 or c2 > 0,
c3 > 0 and c1 < 0.

(iii) If c1 ¼ 0, c2 > 0 < 0ð Þ and c3 < 0 > 0ð Þ:
β¼ c2, α¼ ∣c3∣, (A5)

So, β¼ α: (A6)

Similar relationship can be achieved when c1 > 0 < 0ð Þ, c2 ¼ 0 and c3 < 0 > 0ð Þ
or c1 > 0 < 0ð Þ, c2 < 0 > 0ð Þ and c3 ¼ 0.

(iv) If c1 ¼ 0, c2 ¼ 0 and c3 ¼ 0:

β¼ α¼ 0: (A7)

Therefore, the linear relationship between α and β is validated.
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Appendix B. Divvy Bikemotif Z-score ranks in 2014–2016
From Table B1 to Table B3, the same trend described in Section 4.2 is further
verified that the motifs with higher transitivity are more likely to be significant.
This is also the reason that motif 238 and 46 are always ranked highest while motif
78 lowest in almost all networks.

Table B1. Divvy Bike motif Z-score ranks of each month in 2014

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

238 238 238 46 46 46 46 46 166 46 238 238

102 174 46 238 166 166 166 166 46 102 166 102

174 46 102 102 102 102 238 102 238 166 102 46

38 102 166 166 238 238 102 238 102 238 46 166

46 38 174 38 38 38 14 164 38 38 174 174

166 166 38 174 12 164 164 14 12 14 38 38

140 140 140 140 164 14 38 12 14 12 12 140

36 12 12 12 14 12 140 38 164 164 140 12

12 36 6 14 140 140 12 140 140 140 36 36

6 6 36 164 174 174 6 174 174 174 6 6

164 164 164 6 6 6 174 6 36 6 164 164

14 14 14 36 36 36 36 36 6 36 14 14

78 78 78 78 78 78 78 78 78 78 78 78

Table B2. Divvy Bike motif Z-score ranks of each month in 2015

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

238 238 238 238 46 46 46 46 46 46 102 238

102 174 166 166 166 166 166 166 166 166 166 102

166 102 102 46 102 102 102 102 102 102 238 46

174 46 46 102 238 238 238 238 238 238 46 166

46 166 174 38 38 38 38 38 38 38 174 174

38 38 38 174 140 140 140 140 140 174 38 38

140 140 140 140 174 12 12 12 174 140 140 140

12 12 12 12 12 174 174 174 12 12 12 12

36 36 36 164 164 164 164 164 164 14 6 6

6 6 6 14 14 14 14 14 14 6 36 36

14 164 164 36 6 6 6 6 6 164 164 164

164 14 14 6 36 36 36 36 36 36 14 14

78 78 78 78 78 78 78 78 78 78 78 78
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Table B3. Divvy Bike motif Z-score ranks of each month in 2016

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

238 238 102 102 46 46 46 46 46 46 46 238

102 102 46 46 166 166 102 102 102 102 102 102

174 166 238 166 102 102 166 166 166 166 166 166

166 46 166 238 238 238 238 238 238 238 238 174

46 174 38 38 38 38 38 38 38 38 38 46

38 38 174 174 140 12 140 174 140 174 174 38

140 140 140 140 174 140 174 140 174 140 140 140

12 12 12 12 12 174 12 12 12 12 12 12

36 36 6 6 14 14 164 6 14 36 6 36

6 6 36 164 164 164 14 14 6 14 36 6

14 164 14 36 6 6 6 164 164 6 14 14

164 14 164 14 36 36 36 36 36 164 164 164

78 78 78 78 78 78 78 78 78 78 78 78
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