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1. Introduction
KAM theory (after Kolmogrov, Arnol’d, and Moser) states that, under mild non-degene-
racy assumptions, Hamiltonian systems close to integrable have their phase space almost
completely filled by invariant quasi-periodic tori. Starting from three degrees of freedom
for autonomous Hamiltonians the existence of such tori on an energy surface does not
prevent the orbits from circulating between the tori inside the surface. Indeed, it was
conjectured by Arnol’d that a ‘general’ Hamiltonian should have a dense orbit on a
‘general’ energy surface [A]. A large amount of work has been dedicated to proving this
conjecture (giving a precise meaning to the word ‘general’), but the picture is not yet
completely clear, especially when it comes to real analytic Hamiltonians (see for example
[BKZ] and references therein).

In his ICM list of problems [H], Herman asks: Can one find an example of a
C∞-Hamiltonian H in a small Ck-neighborhood, k ≥ 2, of H0 = ‖r‖2/2 such that on
the energy surface {H = 1} the Hamiltonian flow has a dense orbit?
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A remarkable result in this direction is due to [KZZ]: they present an example of a
Hamiltonian H of the form H(θ , r) = (〈r , r〉/2) + h(r , θ) ∈ C∞ with a trajectory dense
in a subset of the energy surface of large measure.

Here we present examples, with a degenerate integrable part, but with even more chaotic
behavior for the perturbed system. Namely, we show that in a class of perturbations of rota-
tors, the generic Hamiltonian is topologically weakly mixing on every energy surface. We
also give examples of perturbed rotators for which the dynamics is diffusive at all times.

We now give the exact definitions of these properties and state our results precisely.

Definition 1.1. (Topological weak mixing) We say that the flow �t
H is topologically

weakly mixing if there exists a sequence (tn)n∈N such that for any two open sets A, B on
the same (arbitrarily chosen) energy surface EH (c) = {(θ , r) | H(θ , r) = c}, there exists
N = N(A, B) such that �

tn
H (A) ∩ B 	= ∅ for all n ≥ N .

Definition 1.2. (Diffusion at all times) We say that the flow �t
H exhibits diffusion at all

times if for any open set A ⊂ Td × Rd and any R ≥ 0, there exists T = T (A, R) such that
|πr(�

t
H (A))| > R for all t ≥ T . Here πr denotes the projection onto the r-variables.

Given ρ > 0, denote by Cω
ρ the space of bounded real functions on Rd × Rd , that are

Zd -periodic in the first d-vector of components, and can be extended to holomorphic func-
tions on Dρ = {(θ , r) ∈ (Cd , Cd) | maxj {|θj |, |rj |, j = 1, . . . d} ≤ ρ} as Zd -periodic
with respect to the real part, with the norm ‖f ‖ρ = sup{|f (θ , r)|, (θ , r) ∈ Dρ}.

Let Oω
ρ,δ = {f ∈ Cω

ρ | ‖f ‖ρ < δ} be a neighborhood of zero in the space of analytic
functions with the above norm. This is a Baire space. Fixing ρ = 1 without loss of
generality, we write ‖f ‖ = ‖f ‖1, and Oω

δ for Oω
1,δ .

THEOREM A. There exists a dense set Y ⊂ Rd , d ≥ 3, (Y continuum) such that for any
ω ∈ Y , for any δ > 0, there exists a real analytic function h : Td → R, such that h ∈ Oω

δ ,
with the following property: the Hamiltonian flow �t

H (θ , r) defined by the Hamiltonian

H = 〈r , ω〉 + h(θ)

exhibits diffusion at all times.

By a generic set in this paper we mean a dense Gδ set.

THEOREM B. For any d ≥ 3, for a generic ω ∈ Rd , any δ > 0 and generic h1(θ), h2(θ) ∈
Oω

δ , the flow �t
H of the Hamiltonian

H(θ , r) = 1
1 + h1(θ)

(〈r , ω〉 + h2(θ))

is topologically weakly mixing.

Note that the energy surface in the statement above is unbounded, which drove us to
treat the topological version of weak mixing rather than the classical notion.

Diffusion at all times shows that the rigidity property of the rotator (convergence of the
dynamics to identity along a subsequence of times) can be destroyed on all energy surfaces
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by a small perturbation. However, our examples are not topologically mixing, and it would
be very interesting to produce examples that are topologically mixing on energy surfaces.

An interesting question concerns the possibility of similar examples in a neighborhood
of an elliptic equilibrium. If the components of the frequency vector at the equilibrium are
all of the same sign, the energy surfaces are bounded. We hope that the methods of [FS]
can be used to construct smooth examples of topologically weakly mixing Hamiltonians in
this context as well.

From the form of the perturbations of the rotator in Theorems A and B, we can see
that the Hamiltonians that we construct are, in fact, in the closure of Hamiltonians that
are conjugate to the rotator. Just like reparametrizations of linear flows on the torus, or
abelian skew products above them, our constructions can thus be viewed a posteriori as
particular instances of the Approximation by Conjugation (AbC) method [AK], which is
also called the AK-method in reference to Dmitry Anosov and Anatoly Katok who first
introduced it. The method was already used in the Hamiltonian context by Katok in [K2]
to show the existence of integrable degenerate Hamiltonians with some particular Liouville
frequencies and bounded energy surfaces that can be smoothly perturbed to become
ergodic on the energy surfaces. Subsequent constructions that use the AbC method with
several frequencies appeared in [EFK, FS, FF] to discuss the stability of elliptic equilibria
and invariant tori, in particular those with Diophantine frequency vectors. The examples of
[K2] were constructed following the usual AK-method with successive conjugations of a
circle action, which gives C∞ flows that are rigid in the sense that the dynamics converge
to identity along a subsequence of times. In our constructions, we bypass the smoothness
limitation and the rigidity of the perturbed dynamics by resorting to the reparametrization
technique of translation flows in dimensions larger than 3 used in [F]. This technique
exploits the Liouville phenomenon in several directions [Y] to avoid the Denjoy–Koksma
cancellations that appear in dimension two [K1, Koc].

2. Notation and definitions
To alleviate the notation, we will give the proofs for d = 3 since there is no difference at
all in the proof of the general case.

2.1. General notation.
• For a vector r , its components are denoted by rj , j = 1, 2, 3; for a vector r0 ∈ R3, we

denote its components by r0,j , j = 1, 2, 3.
• For a ∈ R and l > 0, we denote

I (a, l) = a + [0, l] = [a, a + l].

• For a set S in the phase space, let πr(S) stand for the orthogonal projection of S onto
the space of actions (r-space). In a similar way, introduce notation πθ(S), πrj (S),
πθj

(S) for j = 1, . . . , d .
• When we write that p/q is a rational number or (p/q) ∈ Q, we assume that q ∈ N,

q ≥ 1, p ∈ Z, and the numbers p and q are relatively prime.
• Let ω = (ω1, ω2, ω3) ∈ R3 be a rationally independent vector. Then, in particu-

lar, ω3 	= 0, and we can rewrite ω = ω3((ω1/ω3), (ω2/ω3), 1). Without loss of
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generality, the constructions are performed under the assumption that ω is normalized:
ω = (α, α′, 1).

• Denote H0(θ , r) = 〈ω, r〉 = ∑3
j=1 ωj rj .

• We use �t
H (·) to denote the flow map at time t , defined by the Hamiltonian H .

• Fix c ∈ R and consider an energy surface EH (c) = {(θ , r) | H(θ , r) = c}. In our
constructions, ‖H − H0‖1 is small, so EH (c) is uniformly close to EH0(c) = {r |
〈r , ω〉 = c} × T3.

2.2. Arithmetic reminders. Yoccoz pairs of frequencies. Denote

|||kα||| = inf
p∈Z |kα + p|.

For an irrational number α there exists a sequence of rational numbers (pn/qn)n≥1, called
the convergents of α such that

|||qn−1α||| < |||kα||| for all k < qn,

and for any n

1
qn + qn+1

≤ (−1)n(qnα − pn) ≤ 1
qn+1

. (2.1)

Definition 2.1. Let ω = (α, α′, 1) ∈ R3 where α and α′ are irrational real numbers with
the corresponding sequences of convergents (pn/qn)n≥1 and (p′

n/q
′
n)n≥1. We say that ω =

(α, α′, 1) ∈ Y if for all n = 0, . . . , ∞, the denominators of the convergents of α and α′,
respectively, satisfy:

eqn ≤ q ′
n/4, eq ′

n ≤ qn+1/4. (2.2)

By [Y], the set Y is non-empty, of cardinality continuum. This is the set of frequencies
used in Theorem A.

2.3. Intervals and rectangles in an energy surface. Here we describe the standard sets
used in the construction. In particular, intervals are defined to be small one-dimensional
curves that lie in a given energy surface and whose projection onto the five-dimensional
space (θ , r1, r2) is a linear segment parallel either to the θ1 axis or to the θ2 axis. The
coordinate r3 is defined by the requirement that the curve lies in the energy surface. More
precisely, we have the following.
• Given s0 = (θ0, r0) and l > 0, define the intervals

J (1)(s0, l)

= {(θ , r) ∈ I (θ0,1, l) × {θ0,2} × {θ0,3} × {r0,1} × {r0,2} × R | H(θ , r) = H(θ0, r0)},
and

J (2)(s0, l)

= {(θ , r) ∈ {θ0,1} × I (θ0,2, l) × {θ0,3} × {r0,1} × {r0,2} × R | H(θ , r) = H(θ0, r0)}.
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• For any s0 = (θ0, r0), l1 > 0 and l2 > 0, define the rectangle

R(s0, l1, l2)

= {(θ , r) ∈ I (θ0,1, l1) × I (θ0,2, l2) × {θ0,3} × {r0,1} × {r0,2} × R | H(θ , r)

= H(θ0, r0)}.
As before, the projection of R(θ0, r0, l1, l2) onto the space (θ , r1, r2) is a flat rectangle
parallel to the (θ1, θ2)-plane; r3 is chosen so that R(θ0, r0, l1, l2) ⊂ EH (c).

We say that the size of the rectangle R(θ0, r0, l1, l2) is l1 × l2.
• Given n and s0 = (θ0, r0), a box Bn(s0) ⊂ EH (c) is defined by

Bn(s0) =
{
(θ , r) | θj ∈ I

(
θ0,j ,

1
n

)
, j = 1, 2, 3,

rj ∈ I

(
r0,j ,

1
n

)
, j = 1, 2, H(θ , r) = H(θ0, r0)

}
. (2.3)

These sets, having full dimension in EH (c), will be used as test sets: in particular, to
prove Theorem B, we will show that at certain times tn, the image of any rectangle
Rn ⊂ EH (c) intersects each box Bn ⊂ EH (c). To do so, we need the notion of
stretching.

Definition 2.2. Given positive l, L, and t , we say that the flow map �t
H is

(1, l, L)-stretching if for any interval J (1) = J (1)(θ0, r0, l) with |r0| ≤ L/10 we have

πr1(�
t
H (J (1))) ⊃ [−L, L],

and the map (θ , r) �→ πr1(�
t
H (θ , r)) is independent of θ2 where θ = (θ1, θ2, θ3). Anal-

ogously, we say that the flow map �t
H is (2, l, L)-stretching if for any interval J (2) =

J (2)(θ0, r0, l) with |r0| ≤ L/10 we have

πr2(�
t
H (J (2))) ⊃ [−L, L],

and the map (θ , r) �→ πr2(�
t
H (θ , r)) is independent of θ1.

3. Proofs of the main theorems
Here we prove the main theorems modulo the technical statements, whose demonstration
is deferred to the next section.

3.1. The construction for Theorem A. Let us fix an arbitrary vector (α, α′, 1) ∈ Y with
(pn/qn)n≥1 and (p′

n/q
′
n)n≥1 being the corresponding sequences of convergents. Let

h(θ) = −
∞∑

n=1

hn(θ) −
∞∑

n=1

h′
n(θ), (3.1)

hn(θ) = e−qn cos 2π(qnθ1 − pnθ3), h′
n(θ) = e−q ′

n cos 2π(q ′
nθ2 − p′

nθ3).
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Theorem A follows from the result below.

THEOREM 3.1. For any ω ∈ Y , for h as in (3.1), the Hamiltonian flow �t
H (θ , r) defined

by the Hamiltonian

H = 〈r , ω〉 + h(θ)

exhibits diffusion at all times.

Remark 3.2. This Hamiltonian can be seen as a limit of an Anosov–Katok-type construc-
tion, that is, it has the form

H = lim H(n), H(n) = H0 ◦ 	n ◦ · · · ◦ 	1,

where 	i are symplectic analytic coordinate changes.

The proof of Theorem 3.1 relies on the following proposition that is proved in §4.1.

PROPOSITION 3.3. For any ω ∈ Y , for h as in (3.1), the Hamiltonian flow �t
H (θ , r)

defined by the Hamiltonian

H = 〈r , ω〉 + h(θ)

satisfies for each n:
(a) for all t ∈ [eqn , qn+1/4], �t

H is (1, 1/qn, qn)-stretching;
(b) for all t ∈ [eq ′

n , q ′
n+1/4], �t

H is (2, 1/q ′
n, q ′

n)-stretching.

Here we show how this proposition implies Theorem 3.1.

Proof of Theorem 3.1. As the sequences (qn) and (q ′
n) satisfy (2.2), the union of the

intervals
⋃

n>N [eqn , qn+1/4] ∪ [eq ′
n , q ′

n+1/4] contains the half-line t > eqN . Proposition
3.3 implies that for each t ∈ [eqn , qn+1/4], �t

H stretches small rectangles in the direction
of r1 with a large factor, and for each t ∈ [eq ′

n , q ′
n+1/4], �t

H stretches small rectangles in
the direction of r2.

Hence, �t
H exhibits stretching with an increasingly strong factor as t → ∞, in at least

one of the two directions r1 and r2. This implies the conclusion of Theorem 3.1.

3.2. The construction for Theorem B. Consider ω = (α, α′, 1), and suppose that there
exist sequences (pn/qn)n≥1 and (p′

n/q
′
n)n≥1 such that

q4
n ≤ q ′

n, |qnα − pn| ≤ e−2q ′
n , |q ′

nα
′ − p′

n| ≤ e−q ′
n . (3.2)

We start by observing that the set S of pairs (α, α′) with this assumption contains a generic
set in R2. This implies, of course, that the set of numbers ω = (ω1, ω2, ω3) = ω3 (α, α′, 1)

such that (α, α′) ∈ S and ω3 ∈ R, is generic in R3.

LEMMA 3.4. There exists a generic (dense Gδ) set Ŝ ⊂ S ⊂ R2 of pairs (α, α′) satisfying
the following: there exist sequences (pn/qn)n≥1 and (p′

n/q
′
n)n≥1 of rational numbers such

that estimate (3.2) holds for all n.
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Proof. We want to describe the set S of pairs (α, α′) such that for any N there exist p/q

and p′/q ′ ∈ Q such that q > N , q ′ ≥ q4, p, p′ ∈ Z, and

|α − p/q| ≤ e−2q ′
/q, |α′ − p′/q ′| ≤ e−q ′

/q ′.

The set S contains the following set Ŝ:

⋂
N≥1

( ⋃
q≥N

⋃
p∈Z

⋃
q ′≥q4

⋃
p′∈Z

(
p

q
− e−2q

q
,

p

q
+ e−2q

q

)
× ≤

(
p′

q ′ − e−q ′

q ′ ,
p′

q ′ + e−q ′

q ′

))
,

which is a countable intersection (in N) of open dense sets.

Here we present an explicit example of a Hamiltonian whose flow is topologically
weakly mixing. It is easy to see that such examples can be produced arbitrarily close to
H0. From this, the genericity of Hamiltonians with the weak mixing property is obtained
in the standard way.

Having fixed ω ∈ R3 as in (3.2), let

φ(θ) = 1 +
∞∑

n=1

qne
−q ′

n cos 2π(qnθ1 − pnθ3), (3.3)

and for κn := q2
n , introduce

h̃(θ) = −
∞∑

n=1

h̃n(θ) −
∞∑

n=1

h̃′
n(θ), (3.4)

h̃n(θ) = κne
−q ′

n cos 2πκn(qnθ1 − pnθ3), h̃′
n(θ) = e−q ′

n cos 2π(q ′
nθ2 − p′

nθ3).

Note that because ‖h̃n‖1 ≤ κne
−q ′

ne2πκn(qn+pn) ≤ q2
ne4πq3

n−q ′
n , assumption q4

n ≤ q ′
n

implies that ‖ ∑∞
n=1 h̃n(θ)‖1 < ∞. Clearly, this implies that ‖h̃(θ)‖1 < ∞.

THEOREM 3.5. For ω as in (3.2), φ as in (3.3), h̃ as in (3.4), the Hamiltonian flow
�t

H̃
(θ , r) defined by

H̃ = 1
φ(θ)

(〈r , ω〉 + h̃(θ)) (3.5)

is topologically weakly mixing.
More precisely, for tn = eq ′

n , n ≥ 1, we have: for any two open sets A and B on the
same energy surface there exists N = N(A, B) such that

�
tn

H̃
(A) ∩ B 	= ∅ for all n ≥ N .

Assuming Theorem 3.5, we show how it yields Theorem B.

Proof of Theorem B. It follows from classical arguments (cf. [Ha]) that weak mixing for
the flows as in Theorem B holds for a Gδ-set of functions (h1, h2) ∈ Oω

δ (0)2. It is left to
show the density of weak mixing for (h1, h2) ∈ Oω

δ (0)2 for a fixed δ. To do this, note that
for any ε > 0, both (φ(θ) − 1) and h̃(θ) can be chosen ε-close to zero in the fixed norm: it
is enough to choose q1 large enough. Moreover, from the proof of Theorem 3.5 it follows
that the same result holds true if we change φ(θ) and h̃(θ) by φ(θ) + P(θ) ∈ Oω

δ (0) and
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h̃(θ) + Q(θ) ∈ Oω
δ (0) with P and Q trigonometric polynomials. This implies the density

of the weak mixing property.

The proof of Theorem 3.5 relies on the following two propositions that are proved in
§§4.1 and 4.2, respectively.

PROPOSITION 3.6. For ω as in (3.2), φ as in (3.3), h̃ as in (3.4), H̃ as in (3.5), and
tn = eq ′

n , we have:
(a) �

tn

H̃
is (1, 1/q3

n , qn)-stretching;

(b) �
tn

H̃
is (2, 1/q ′

n, q ′
n)-stretching.

PROPOSITION 3.7. For ω as in (3.2), φ as in (3.3), h̃ as in (3.4), the Hamiltonian flow
�t

H̃
(θ , r) defined by

H̃ = 1
φ(θ)

(〈r , ω〉 + h̃(θ))

satisfies for tn = eq ′
n the following. For any rectangle Rn := R(θ0, r0, 1/qn, 1/qn) with

|r0| ≤ n and any box Bn (see notation in §2.3) there exists a rectangle R′
n ⊂ Rn of size

1/q3
n × 1/q3

n such that

πθ(�
tn

H̃
(R′

n)) ⊂ πθ(Bn).

Proof of Theorem 3.5. Fix Rn and Bn as previously.
By Proposition 3.7, there exists a rectangle R′

n ⊂ Rn of size 1/q3
n × 1/q3

n such that

πθ(�
tn

H̃
(R′

n)) ⊂ πθ(Bn).

By Proposition 3.6, we can find a rectangle R̄n ⊂ R′
n such that

πr(�
tn

H̃
(R̄n)) ⊂ πr(Bn).

Hence

�
tn

H̃
(R̄n)) ⊂ Bn

and the proof is finished.

4. Stretching
4.1. Stretching in the action directions.

LEMMA 4.1. Let p/q, (p′/q ′) ∈ Q and ω = (α, α′, 1) and aq , bq ′ satisfy

e−q ≥ aq ≥ 4|qα − p|, e−q ′ ≥ bq ′ ≥ 4|q ′α′ − p′|.
Define

H(θ , r) = 〈r , ω〉 − aq cos 2π(qθ1 − pθ3) − bq ′ cos 2π(q ′θ2 − p′θ3).

Then the following hold:
(a) for each t ∈ [a−1

q , 1/(4|qα − p|)] the flow map �t
H is (1, 1/q, 2q) stretching;

(b) for each t ∈ [b−1
q ′ , 1/(4|q ′α′ − p′|)], the flow map �t

H is (2, 1/q ′, 2q ′) stretching.
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Proof of Lemma 4.1. The Hamiltonian H defines the following system of equations (we
omit r3 from the considerations):⎧⎪⎪⎨

⎪⎪⎩
θ̇ = ω,

ṙ1 = −2πqaq sin 2π(qθ1 − pθ3),

ṙ2 = −2πq ′bq ′ sin 2π(q ′θ2 − p′θ3).

(4.1)

This system can be integrated explicitly: the solution with initial conditions (θ(0), r(0)) =
(θ0, r0) satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ = θ0 + tω,

r1(t) = c1 + qaq

qα − p
cos 2π((qθ0,1 − pθ0,3) + t (qα − p)),

r2(t) = c2 + q ′bq ′

q ′α′ − p′ cos 2π((q ′θ0,2 − p′θ0,3) + t (q ′α − p′)),

(4.2)

where ck is a constant such that rk(0) = r0,k , k = 1, 2. Note that r1(t) = πr1(�
t
H (r0, θ0))

is independent of θ0,2, and r2(t) = πr2(�
t
H (r , θ)) is independent of θ0,1.

Fix an arbitrary t ∈ [a−1
q , 1/(4(qα − p))] and s0 = (r0, θ0) with |r0| < q/10, and

consider the interval J (1) = J (1)(s0, 1/q), see notation in §2.3. Assume qα − p > 0
(the opposite case is similar). There exists a point s+ = (θ+, r0) ∈ J (1) with θ+ =
(θ+

1 , θ0,2, θ0,3) such that

qθ+
1 − pθ03 = −1/4 mod 1.

Then cos 2π(qθ+
1 − pθ03) = 0. Consider the trajectory of the above flow with the initial

condition (θ(0), r(0)) = (θ+, r0). For the first action component this reads: r1(0) = c1 =
r0,1, which implies

|c1| = |r0,1| ≤ |r0| ≤ q/10.

Assumption t ∈ [a−1
q , 1/(4(qα − p))] implies, in particular, (2πt(qα − p)) ∈

[0, π/2]. Using the fact that sin(x) ≥ x/2 for all x ∈ [0, π/2], we obtain

qaq

qα − p
cos 2π((qθ+

1 − pθ03) + t (qα − p))

= qaq

qα − p
sin 2πt(qα − p) ≥ πtqaq ≥ 3q.

As |c1| < q/10, we obtain πr1(�
t
H (s+)) > 2q.

In the same way, there is a point s− ∈ J (1) such that πr1(�
t
H (s−)) < −2q. The result

follows by continuity.

Here we prove Proposition 3.3 that was used for the proof of Theorem 3.1.

Proof of Proposition 3.3. Let us prove statement (a), the second statement is similar. As
qn/pn is a convergent of α, by (2.1) we have for all n that qn+1 ≤ 1/|qnα − pn|. Condition
(2.2) implies that eqn ≤ qn+1/4, so we have

[eqn , qn+1/4] ⊂ [eqn , 1/(4|qnα − pn|)].
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Consider Hn(θ , r) = 〈r , ω〉 − hn(θ) − h′
n(θ), where hn, h′

n are defined by (3.1). Fix
r = r0 with |r0| < q/10. The first component of �t

Hn
(θ , r0), that is, rn,1(θ , r0, t) :=

πr1(�
t
Hn

(θ , r0)), is given by

rn,1(θ , r0, t) = cn(θ , r0) + qne
−qn

qnα − pn

cos 2π((qnθ1 − pnθ3) + t (qnα − pn))

:= cn(θ , r0) + fn(θ , t),

where cn(θ , r0) is such that rn,1(θ , r0, 0) = r0. By Lemma 4.1, for each t ∈ [ eqn , qn+1/4 ]
the flow map �t

Hn
is (1, 1/qn, 2qn) stretching, that is, in any interval J (1)(r0, θ0, 1/qn)

with |r0| ≤ qn/10 there are points s+ = (r0, θ+) and s− = (r0, θ−) such that

rn,1(s
+, t) ≥ 2qn, rn,1(s

−, t) ≤ −2qn.

Hence, in particular,

fn(θ
+, t) − fn(θ

+, t) = rn,1(s
+, t) − rn,1(s

+, 0) ≥ 2qn − qn/10 = 1.9qn.

Let us show that for these t , �t
H has the same stretching properties as �t

Hn
(with 2qn

replaced by qn). The first component of �t
H (θ , r0), that is, r1(θ , r0, t) := πr1(�

t
H (θ , r0),

is given by the formula

r1(θ , r0, t) = c(θ , r0) +
∞∑

k=1

qke
−qk

qkα − pk

cos 2π((qkθ1 − pkθ3) + t (qkα − pk))

:= c(θ , r0) +
∞∑

k=1

fk(θ , t) = c(θ , r0) + fn(θ , t) + Cn(θ , t) + Dn(θ , t),

where Cn(θ , t) = ∑n−1
k=1 fn(θ , t), Dn(θ , t) = ∑∞

k=n+1 fk(θ , t), and c(θ , r0) is a constant
such that r1(θ , r0, 0) = r0,1.

Consider Cn(θ , t). By (2.1), 1/|qkα − pk| ≤ 2qk+1 for all k ≥ 1, so for any θ we have

|Cn(θ , t) − Cn(θ , 0)| ≤ 2
n−1∑
k=1

∣∣∣∣ qke
−qk

qkα − pk

∣∣∣∣ ≤ 4
n−1∑
k=1

qke
−qkqk+1 ≤ qn/100

owing to the growth condition on qk .
Now consider Dn(t). By (2.1), for any k ≥ 1 we have |qkα − pk| ≤ (1/qk+1). Hence,

for any t ≤ qn+1 we have

|Dn(θ , t) − Dn(θ , 0)| ≤ t sup |D′
n(θ , t̃ )|

≤ 2πt

∞∑
k=n+1

∣∣∣∣ qke
−qk

qkα − pk

∣∣∣∣|qkα − pk| ≤ 2πqn+1

∞∑
k=n+1

qke
−qk < 1.
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This implies that for any r0 with |r0| ≤ q/10 we have

r1(s
+, t) − r1(s

+, 0) ≥ fn(θ
+, t) − fn(θ

+, t) − |Cn(θ , t) − Cn(θ , 0)|
− |Dn(θ , t) − Dn(θ , 0)| ≥ 1.9qn − 0.01qn − 1 > 1.5qn.

As, by assumption, |r1(s
+, 0)| = |r0| ≤ qn/10, we obtain

r1(s
+, t) ≥ qn.

By the same argument, r1(s
−, t) ≤ −qn. Thus, �t

H is (1, 1/qn, qn) stretching.

In the following, we prove an analog of Proposition 3.3 for the Hamiltonian H̃ of
Theorem 3.5. To begin with, note that our choice of φ and h̃ implies that the Hamiltonian
system of H̃ has a particularly simple form.

LEMMA 4.2. For ω as in (3.2), φ as in (3.3), h̃ as in (3.4), the Hamiltonian flow �t

H̃
(θ , r)

defined by

H̃ = 1
φ(θ)

(〈r , ω〉 + h̃(θ))

satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = 1
φ(θ)

ω,

ṙ1 = −2π

φ(θ)

∞∑
n=1

qn(Cqne
−q ′

n sin 2π(qnθ1 − pnθ3) + κ2
ne−q ′

n sin 2πκn(qnθ1 − pnθ3)),

ṙ2 = −2π

φ(θ)

∞∑
n=1

q ′
ne

−q ′
n sin 2π(q ′

nθ2 − p′
nθ3),

where C = H̃ (θ , r). We omit the expression for r3 because it is not used in the following.

Proof of Lemma 4.2. Recall that the value of H̃ (θ , r) = 1/φ(θ)(〈r , ω〉 + h̃(θ)) := C is
constant on the solutions of the corresponding system of equations. For j = 1, 2 we have
ṙj = −∂θj

H̃ , where

∂θj
H̃ = − 1

φ2 ∂θj
φ (〈r , ω〉 + h̃) + 1

φ
∂θj

h̃ = − 1
φ

(C ∂θj
φ − ∂θj

h̃).

Explicit substitution finishes the proof.

In the next lemma (which is an analog of Lemma 4.1) we study the action components
of the above system in a simplified form: we consider only the nth term in the sums above.
The study of the angle components is postponed to Proposition 3.7.

LEMMA 4.3. Let ω = (α, α′, 1), where α and α′ are irrational. Assume that there exist
rational numbers p/q and p′/q ′ satisfying (3.2) with qn and q ′

n replaced by q and q ′,
respectively. Let φ(θ) : T3 �→ R be a smooth function satisfying 3/4 ≤ |φ(θ)| ≤ 2 for all
θ ∈ T3. Denote κ = q2, take any C ∈ R with |C| ≤ q1/2, and r0 ∈ R3 with |r0| ≤ q/10,
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and let �t
S(θ0, r0) be the flow of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = 1
φ(θ)

ω,

ṙ1 = −2π

φ(θ)
q(Cqe−q ′

sin 2π(qθ1 − pθ3) + κ2e−q ′
sin 2πκ(qθ1 − pθ3)),

ṙ2 = −2π

φ(θ)
q ′e−q ′

sin 2π(q ′θ2 − p′θ3)

(4.3)

with initial conditions �0
S(θ0, r0) = (θ0, r0). Then for t = eq ′

the following hold:
(a) �t

S is (1, 1/qκ , 2q)-stretching;
(b) �t

S is (2, 1/q ′, 2q ′)-stretching.

Proof of Lemma 4.3. The proof is analogous to that of Lemma 4.1. The only difference
is that in this case θ̇ (t) is not constant. Let us study the r1-component of �t

S(θ0, r0)

(the analysis of r2(t) is similar). Fix an arbitrary (θ0, r0) with |r0| ≤ q/10 and let J̃ (1) =
J (1)(θ0, r0, 1/κq).

As 3/4 ≤ |φ(θ)| ≤ 2, the mean value theorem implies that the angle variables satisfy

θ(θ0; t) = θ0 + t ξ(θ0, t)ω,

where 3/4 ≤ |ξ(θ , t)| ≤ 2 for all θ , t .
Given an initial condition r1(θ , r0, 0) = r0,1, the system defines

r1(θ , r0; t) = c1 + Cq2e−q ′

qα − p
cos 2π(qθ1(θ ; t) − pθ3(θ ; t))

+ qκe−q ′

qα − p
cos 2πκ(qθ1(θ ; t) − pθ3(θ ; t))

:= c1(θ , r0) + g1(θ , r0; t) + g2(θ , r0; t),

where c1(θ , r0) is the constant such that r1(θ , r0, 0) = r0,1. Note that g2(θ0, r0, t) is the
leading term in the above expression. Assume that qα − p > 0, the opposite case is
similar. Clearly, there exists a point s+ = (θ+, r0) ∈ J̃ (1) with θ+ = (θ+

1 , θ02, θ03) such
that

κ(qθ+
1 − pθ03) = −1/4 mod 1.

We show that r1(θ
+, r0; eq ′

) > 2q.
First consider the term g2. Note that g2(θ

+, r0, 0) = 0. For θ(θ+; t) = θ+ +
t ξ(θ+; t)ω we have

κ(qθ1(θ
+; t) − pθ3(θ

+; t)) = (−1/4 + κtξ(θ+; t)(qα − p)) mod 1.
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Then for t = eq ′
we have

g2(θ
+, r0; t) = qκe−q ′

qα − p
cos 2πκ(qθ1(θ

+; t) − pθ3(θ
+; t))

= qκe−q ′

qα − p
sin(2πκtξ(θ+, t)(qα − p))

≥ qκe−q ′

qα − p
πκtξ(θ+, t)(qα − p) ≥ qκ2e−q ′

t = q5.

We used the evident estimate sin(x) ≥ x/2 for x ∈ [0, π/2], and

2πκtξ(θ+, t) (qα − p) ≤ 4πκeq ′
e−2q ′ = 4πq2e−q ′ ∈ [0, π/2].

To estimate the other terms in r1(θ
+, r0; t), note that |c1 + g1(θ

+, r0; 0)| = |r0,1| ≤
q/10. By (4.3), the derivative ġ1(θ

+, r0, t) satisfies |ġ1(θ
+, r0, t)| ≤ 2πCq2e−q ′ ≤

2πq3e−q ′
. For t = eq ′

we have �g1(θ
+, r0, t) := |g1(θ

+, r0, t) − g1(θ
+, r0, 0)| ≤

2πtq2e−q ′ = 2πq2 and, finally,

r1(θ
+, r0; t) = c1 + g1(θ

+, r0, t) + g2(θ
+, r0, t)

= r0,1 + �g1(θ
+, r0, t) + g2(θ

+, r0, t)

≥ g2(θ
+, r0, t) − |r0,1| − |�g1(θ

+, r0, t)| ≥ q5 − q/10 − 2πq3 > 2q.

In the same way, there is a point (θ−, r0) ∈ J̃ (1) such that the solution r1(θ
−, r0; t) with

the initial condition r1(θ
−, r0; 0) = r0,1 satisfies r1(θ

−, r0; eq ′
) ≤ −2q. This implies that

�t
S is (1, 1/κq, 2q) stretching. In the same way, one verifies that �t

S is (2, 1/q ′, 2q ′)
stretching.

Proof of Proposition 3.6. The proof of Proposition 3.6 follows from Lemma 4.3 exactly
as Proposition 3.3 followed from Lemma 4.1.

4.2. Stretching in the angle directions. In this section, we prove Proposition 3.7.
Namely, we study the behavior of πθ(�

t

H̃
), which is the solution of the equation

θ̇ = 1
φ(θ)

ω. (4.4)

As this flow does not depend on r , we fix an arbitrary r0 and omit it from the notations. To
shorten the notation from §2.3, we denote

�t
φ(θ0) := πθ(�

t
H (r0, θ0)),

Bθ ,n(θ0) := πθ(Bn(r0, θ0)),

Rθ(θ0, l, l′) := πθ(R(r0, θ0, l, l′)).
Note that Rθ(θ0, l, l′) is indeed a flat rectangle.

Proof of Proposition 3.7. As h̃(θ) does not depend on the r variables, the restriction of the
flow of H̃ = (1/φ(θ))(〈r , ω〉 + h̃(θ)) onto T3 is the same as that of H̄ = (1/φ(θ))〈r , ω〉.
We study the latter.
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First observe that, considering the global section {θ3 = 0}, one can see the flow of H̄

to be equivalent to a special flow T t
(α,α′),ϕ above the translation T(α,α′) on T2 and under a

ceiling function of the form

ϕ(θ) = 1 +
∞∑

n=1

qne
−q ′

n cos 2π(qnθ1). (4.5)

The phase space M(α,α′),ϕ of T t
(α,α′),ϕ is T2 × R with the identification (θ1, θ2, s +

ϕ(θ1, θ2)) ∼ (θ1 + α, θ2 + α′, s). These flows were studied in [F] and the proof of the
proposition follows from [F]. For completeness, we sketch the proof here. Observe that, as
proved in Proposition 3.7 of [F], for intervals In ⊂ R of length (1/2 − 2/n)q−1

n of the form
|||qnθ1||| ∈ [1/n, 1

2 − (1/n)] or |||qnθ1||| ∈ [ 1
2 + (1/n), 1 − (1/n)], and for m ∈ [tn/2, 2tn],

it holds for some constant C > 0 that for every θ1 ∈ In,

C−1 q2
n

n
≤ |∂θ1ϕm(θ)| ≤ Cq2

n , (4.6)

where ϕm denotes the mth Birkhoff sum of the function ϕ. The latter estimate follows
from the very good rational approximation of ω1, because (2.1) implies that |||qnω1||| ≤
e−q ′

n/4. Now, the left-hand side of (4.6) implies that T
tn
(α,α′),ϕ(In × {θ2} × {s}), for any

θ2 ∈ T and any s ≤ C, is a union of more than
√

qn almost vertical strips that follow
the orbit of In under the base translation T(α,α′). As

√
qn � exp ◦ exp(n), we get that

T
tn
(α,α′),ϕ(In × {θ2} × {s}) is e−2n dense in the space M(α,α′),ϕ . This fact, plus the right-hand

side of (4.6), together with the fact that there is no shear in the θ2 direction (the ceiling
function depends only on θ1), imply that for any box Bθ ,n, and for any s ∈ R, there exists
a rectangle R′

n of size 1/q3
n × 1/q3

n such that

T
tn
(α,α′),ϕ(R′

n × {s}) ⊂ Bθ ,n.

Going back to the original flow on Td , this implies the requirement of the proposition.
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