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Abstract

Recent innovations in 3D imaging technology have created unprecedented potential for better
understanding weed responses to management tactics. Although traditional 2D imaging
methods for mapping weed populations can be limited in the field by factors such as shadows
and tissue overlap, 3D imagingmitigates these challenges by using depth data to create accurate
plant models. Three-dimensional imaging can be used to generate spatiotemporal maps of weed
populations in the field and target weeds for site-specific weed management, including
automated precision weed control. This technology will also help growers monitor cover crop
performance for weed suppression and detect late-season weed escapes for timely control,
thereby reducing seedbank persistence and slowing the evolution of herbicide resistance.
In addition to its many applications in weed management, 3D imaging offers weed
researchers new tools for understanding spatial and temporal heterogeneity in weed
responses to integrated weed management tactics, including weed–crop competition and
weed community dynamics. This technology will provide simple and low-cost tools for
growers and researchers alike to better understand weed responses in diverse agronomic
contexts, which will aid in reducing herbicide use, mitigating herbicide-resistance evolu-
tion, and improving environmental health.

Introduction

Recent innovations in remote sensing and imaging technology have created unprecedented
opportunities for growers to make data-driven decisions about integrated weed management
(IWM). The use of digital imaging to map and monitor weeds allows growers to use precision
weed control tactics at a field scale while accounting for spatial and temporal variation in weed
populations (Andújar et al. 2016; Comba et al. 2019). Until recently, most remote sensing for
weed detection and mapping has used 2D approaches such as normalized difference vegetation
index (NDVI) and hyperspectral imaging (Andújar et al. 2018; Comba et al. 2019; Smith et al.
2018). However, 2D techniques lack depth information and cannot accurately estimate plant
volume or biomass (size), nor can they detect lower layers of the plant canopy (Paturkar
et al. 2020; Smith et al. 2018). Moreover, variations in light levels, overlapping leaves and stems,
and shadows canmake 2D techniques ineffective for distinguishing individual plants in the field
(Smith et al. 2018; Zhang et al. 2016).

To mitigate these challenges, 3D imaging techniques are being developed that include the
added dimension of depth (Armean et al. 2021). Cost-effective and efficient methods such
as structure-from-motion (SfM) and stereo vision are being used to reconstruct 3D models
of plants and plant canopies based on many images taken in succession. By incorporating depth
data to create models of plant canopies in the field, 3D imaging offers researchers and growers a
powerful tool for mapping spatial heterogeneity of weeds in response to management tactics
(Armean et al. 2021; Zhang et al. 2016). In this article, we discuss applications of 3D photogram-
metric imaging in weed management (e.g., weed detection and mapping for targeted removal),
as well as weed research (e.g., modeling of weed–crop competition to predict yield loss). In addi-
tion, we discuss applications of 3D imaging for weed management in orchards and grasslands to
illustrate the breadth of potential uses of this technology.
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Overview of 3D Imaging Techniques

Three-dimensional imaging uses sensor data obtained to generate
models of objects based on point clouds, which are large data sets of
points in 3D space (Comba et al. 2019). These can be created using
laser-based techniques such as light detection and ranging
(LIDAR) or by photogrammetric techniques using computer
vision algorithms (Andújar et al. 2013; Comba et al. 2019;
Paturkar et al. 2020; Table 1). LIDAR, which has been used in agri-
culture and forestry, emits laser pulses directed toward an object
(e.g., a plant), which are reflected back to the sensor to obtain depth
information (Andújar et al. 2013). Although LIDAR is extremely
accurate and can be used to scan wide areas in the field, it requires
sophisticated equipment and is costly (Andújar et al. 2013;
Paturkar et al. 2020).

In contrast, photogrammetric techniques such as SfM and
stereo vision are low-cost and efficient methods for creating 3D

point clouds of objects (Armean et al. 2021; Paturkar et al. 2020;
Table 1). In SfM, a single camera takes many 2D images of the
object (e.g., a plant) from different viewpoints of known distances
with a specified amount of overlap between images (Armean et al.
2021; Figure 1). A 3D point cloud is generated based on features
that are matched from different images (i.e., views) of the canopy.
The point cloud is a 3D model of the canopy, which can be used to
infer canopy structure and biomass based on depth data (Armean
et al. 2021; Paturkar et al. 2020; Figures 2 and 3). In stereo vision,
a binocular camera takes two images of the plant at once and uses
triangulation to create a depthmap (Teng et al., 2021). The accuracy
of both SfM and stereo vision can be affected by wind conditions in
the field, which cause movement and overlap in the canopy
(Dandrifosse et al. 2020; Paturkar et al., 2020). However, given their
relative simplicity and low cost, photogrammetric techniques have
numerous applications in weed management and weed research.

Table 1. Comparison of photogrammetric techniques and light detection and ranging (LIDAR) for 3D imaging.

Technique Advantages Disadvantages

Photogrammetric techniques
Structure-from-motion (SfM)
Stereo vision

Low costa

Efficienta
Requires many images for an accurate 3D modela

Subject to noise due to leaf overlap, windy conditions, and shadowsa,b,c

LIDAR Excellent accuracyd High costd

Requires sophisticated sensors and componentsa,d

aSource: Paturkar et al. 2020.
bSource: Armean et al. 2021.
cSource: Dandrifosse et al. 2020.
dSource: Andújar et al. 2013.

Camera 
motion

SfM

Stereo vision

3-D point cloud 
reconstruction

3-D point 
landmarks

3-D point 
landmarks

Figure 1. Use of images taken from different angles to create a 3D reconstruction in structure-from-motion (SfM; top) vs. stereo-vision photogrammetry (bottom).
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Applications of 3D Imaging in Weed Management

Weed Detection and Mapping

Timely postemergence weed control is critical in crop production
(López-Granados et al. 2016). Applying herbicides when weeds are

not at the appropriate phenological stage or uniformly without
considering spatial variability over time can interfere with weed
control (López-Granados et al. 2016; Swanton et al. 1999). For
example, if weed control measures are applied too late in the season
to control early-emerging weeds, this can result in weed escapes,
increased soil weed seedbank, and evolution of herbicide resistance
(Neve et al. 2010). Although weeds often occur in spatially
aggregated patches of varying size, shape, density, and species
composition, weed control tactics have traditionally been applied
uniformly in fields due to the difficulty of monitoring populations
in situ and in real time (Thornton et al. 1990).

Photogrammetric 3D imaging allows growers to create real-
timemaps of weeds in the field, rather thanmonitor weedy patches
manually. This can be accomplished early in the season for timely
weed control when crops and weeds are growing at different rates
(Andújar et al. 2016; Li and Tang 2018; Piron et al. 2011). For
example, unmanned aerial vehicles (UAVs) as well as ground
vehicles equipped with red, green, and blue (RGB) cameras have
been successfully used for implementing management tactics
based on within-field variability of weed populations (Castaldi
et al. 2017; López-Granados et al. 2016; Wu et al. 2020).
By detecting and quantifying weedy patches in real time, growers
can make decisions about weed control based on spatial

(A) (B)

(C) (D) (E)

(F) (G) (H)

(I) (J) (K)

Figure 2. Red, green, and blue (RGB) image of soybeans andweeds (A) and corresponding 3D point cloud reconstruction (B). Lower panels show point cloud reconstructions from
different angles, including a top view (C), top view offset 45° from vertical (D), front view (E), under canopy and offset 45° (F), directly under canopy (G), facing canopy from behind
(H), facing canopy offset 45° right (I), side view (J), and facing canopy offset 45° left (K).

Estimate canopy 
biomass

Calculate 
canopy height

RGB images

3-D point cloud 
or depth map

Depth data

Figure 3. Data pipeline for calculating canopy height and estimating biomass in the
field using red, green, and blue (RGB) images and depth data.
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distribution of species types (e.g., broadleaves and grasses) or indi-
vidual species in the field (Andújar et al. 2016; Wu et al. 2020).
Over time, this is likely to lower production costs by reducing labor
and herbicide use.

Preventing seed production in late-season weed escapes is
crucial for mitigating herbicide resistance (Kutugata et al. 2021).
Allowing late-season weed seed production increases the proba-
bility of herbicide-resistant mutants, particularly in species with
prolific seed production. However, growers often ignore weed
escapes, because escapes rarely reduce crop yield (Bagavathiannan
and Norsworthy 2012). Nonetheless, detecting and managing
late-season weed escapes and minimizing replenishment of the soil
seedbank is important for reducing long-term weed persistence
(Kutugata et al. 2021). Besides detecting individual plants,
RGB-based imaging has the potential to estimate seed output
of late-season weed escapes, which can direct precision weed
management tactics to reduce the weed seedbank (Kutugata
et al. 2021).

Automated Weed Control

The ability to detect and map weed populations in real time using
3D imaging has numerous applications in automated weed control.
In addition to UAVs, ground-based robots equipped with RGB
cameras have been used for automated weed removal through
targeted herbicide spraying or mechanical in-row removal
(Castaldi et al. 2017; Li and Tang 2018; Wu et al. 2020).
Automated weeding systems allow growers added flexibility for
weed control in both conventional and organic production. For
example, lightweight robots can be used in the field when it is
too wet for conventional equipment, allowing for more timely
weed control. These systems can also dramatically reduce the
overall cost of weed control, particularly in organic production
or in specialty crops where there are fewer herbicide options
(Fennimore et al. 2017; Lowenberg-DeBoer et al. 2020).

Three-dimensional imaging can improve the accuracy of auto-
mated systems in differentiating weeds by size class in real time.
Unlike 2D approaches, which are less likely to differentiate species
and capture size differences in field conditions, 3D imaging can be
used to detect in-row canopy structure and characteristics of indi-
vidual weed species at different stages (Wu et al. 2020). This is
critical for weed control because of the relatively short window
of time during which weed removal by herbicides and cultivation
is effective (Kudsk and Streibig 2003; López-Granados et al. 2016).
For example, postemergence herbicide labels typically refer to
weed size as a critical factor for application timing, outside of
which weed escapes are more likely to occur. Using automated
systems with 3D imaging, rather than 2D or visual assessments,
will enable growers to apply site-specific weed control at the
optimum timing, as well as monitor troublesome weed patches
in subsequent years.

Monitoring Weed Suppression with Cover Crops

Cover crops offer a promising strategy for weed management,
because they compete with weeds for resources and inhibit weed
seed germination and seedling growth (Teasdale et al. 1998).
However, cover crop performance can be variable in the field,
leading to weed escapes. Therefore, monitoring cover crop growth
(i.e., biomass) is a crucial factor for predicting weed suppression
spatially in the field (Mirsky et al. 2013). Three-dimensional
imaging techniques are being developed to measure cover crop
performance based on biomass and canopy structure (Cooper

et al. 2017; Roth and Streit 2018). By mapping cover crop biomass
throughout the season or at least at the moment of termination,
growers will be able to better quantify and map spatial hetero-
geneity in the field, particularly areas where the cover crop is
underperforming (i.e., low biomass) and where occurrence of weed
escapes is most likely.

In cover crop–based reduced-tillage production systems, 3D
imaging can be used to map weed escapes for targeted spraying
or mechanical removal. Late-season weed escapes (i.e., weeds that
survived early-season weed control or emerged later in the season)
are the largest contributors to the soil seedbank. Therefore,
detecting them is crucial for preventing replenishment of the seed-
bank, especially for weeds that pose a high risk for evolving resis-
tance to herbicides (Bagavathiannan and Norsworthy 2012).
By using 3D imaging to map areas where cover crops are under-
performing, which have higher risk for weed escapes, growers can
better prepare and conduct site-specific control actions to prevent
the production of new weed seed. Furthermore, detecting weed
escapes using 3D imaging will help with selecting the best control
or removal tool based on weed size. Finally, monitoring cover crop
growth and uniformity can help growers predict crop yield and
biomass production and determine the optimal timing of cover
crop termination as part of their weed management programs.

Applications of 3D Imaging in Weed Research

Three-dimensional imaging offers weed researchers a potentially
transformative tool for understanding spatial variability in weed
responses tomanagement tactics. Because weeds are highly hetero-
geneous in the field, creating spatiotemporal models of weed
responses can improve our understanding of the underlying
patterns in this variability. Rather than measuring weed responses
by point estimates in the field, researchers can use 3D imaging to
capture the spatial heterogeneity of weed species, density, and
biomass in real time. This will help advance our understanding
of weed responses to IWM tactics, such as weed–crop competition
and predicted yield loss and weed community dynamics.

Modeling Weed–Crop Competition and Predicting Yield Loss

Accurately modeling weed interference in crops as soon as
possible after crop emergence is crucial for predicting yield loss.
Early-season weeds affect crop yield much more than weeds that
emerge after a critical period (typically a few weeks), as they
compete with the crop for a longer period and can cause
problems if allowed to produce seed (Kropff and Spitters 1990;
Veeranampalayam Sivakumar et al. 2020). Modeling the inter-
actions between weed density, duration of weed competition,
and crop yield can help estimate yield loss as a function of weed
competition over continuous time, rather than discrete time points
(Weaver et al. 1992). This can provide more accurate and well-
informed weed thresholds for growers to assess the optimal timing
of weed control tactics (Swanton et al. 2015; Weaver et al. 1992).

Many empirical models have been developed for quantifying
crop loss based on weed density and relative emergence timing
with respect to the crop (Kropff and Spitters 1990). However,
because weeds typically emerge in successive flushes, descriptive
models based on weed density do not provide a complete picture
for predicting yield loss, because weeds of different sizes exhibit
different competitive ability (Kropff and Spitters 1990). Another
approach has been to create dynamic simulations of competition
for light and water bymeasuring physiological processes. Although
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these ecophysiological models are helpful at providing information
for descriptive models of competition, they can be difficult to
derive and are overly detailed for practical management applica-
tions (Kropff and Spitters 1990). Competition models that account
for plant height and relative leaf cover can provide a more accurate
prediction of crop yield loss. Early quantification of relative leaf
area of crops and weeds has been shown to be an accurate way
to predict crop yield loss and account for differences in weed emer-
gence (Kropff and Spitters 1990). Although predictions of yield loss
must be made soon after crop emergence, the competitiveness of
weeds and crops largely depends on their share of leaf area in the
canopy when the weed–crop canopy closes (Kropff 1988; Spitters
and Aerts 1983). Therefore, modeling weed–crop competition
requires quantifying the changes in relative leaf area of weeds
versus crops between the time of crop emergence and canopy
closure (Kropff and Spitters 1990).

Three-dimensional imaging will allow researchers to model
weed–crop competition by estimating vegetation cover, particu-
larly leaf area index. Modeling the weed–crop canopy, including
each plant’s height, density, and leaf area in space as a function
of time, will allow researchers to study changes in canopy structure
and compare physiological andmorphological changes in response
to competition for light, especially before canopy closure. These
approaches will be able to provide real-time nondestructive
sampling of biomass and leaf cover at any time point, rather
than having to harvest and weigh plants at set times. Improved
weed–crop competition models will also be useful for growers
for monitoring weed interference and predicting yield loss in
specific crop cultivars. For example, UAV-derived SfM 3D imaging
has been used to compare weed competitiveness in wheat
(Triticum aestivum L.) cultivars by measuring morphological
and physiological traits associated with early vigor (Aharon
et al. 2020). RGB imaging has also been used to compare weed
competitiveness in legumes (Travlos et al. 2017).

Weed Community Dynamics

In addition to weed–crop competition, 3D imaging can help
researchers better characterize weed community dynamics.
Weed community structure can be influenced by environmental
factors (e.g., soil type), disturbance events (e.g., tillage), coloniza-
tion, and competition interactions (Cléments et al. 1994).
Understanding changes in weed community structure is crucial
for making IWM decisions in order to maintain weed populations
below economic thresholds (Swanton and Murphy 1996).
Therefore, it is crucial to understand how weed community
structure changes in response to environmental factors and
management tactics in the short and long term, and how these fluc-
tuations influence succession of weed species and biodiversity
(Swanton and Murphy 1996).

Three-dimensional imaging can be used to create descriptive
models of weed community dynamics. By using data for leaf
texture and density, and differences in plant height as proxies
for community diversity and structure, 3D techniques can more
accurately describe weed communities in real time. This informa-
tion can be used to model community changes over many time
points in response to IWM tactics or environmental factors. For
example, one area of concern in conservation tillage is potential
weed interference by perennials, grasses, and wind-borne species
(Swanton and Murphy 1996). Three-dimensional quantification
of differences in growth habit, plant height, and canopy structure
and complexity can be used to describe the spatial and temporal

variability of weed species, particularly in perennial systems.
By monitoring weed community dynamics over time, researchers
can predict changes in community structure and develop appro-
priate management strategies (Swanton and Murphy 1996).

Applications of 3D Imaging in Other Agricultural Systems

Three-dimensional imaging has the potential to improve weed
management in a wide range of agricultural systems besides field
crops (Table 1). In this section, we will discuss applications of 3D
imaging for weed management in two contrasting systems:
orchards and grasslands.

Weed Management in Orchards

Weed management in orchards is crucial for healthy tree growth
and fruit yield, as well as soil and water quality. Orchard weeds can
compete aggressively with trees for resources, provide habitat for
pests, and shade and stunt young trees (Riczu et al. 2015). Poorly
controlled orchard weeds can hamper operations of irrigation
equipment and automated sprayers and interfere with the accurate
placement of water, fertilizers, and pesticides (Brunharo et al. 2020;
Liu et al. 2022). Therefore, intensive weed control is necessary in
orchards both during establishment and throughout their life span.
Although sequential herbicides are widely used in orchards, as are
mowing and mulching, variable distribution of weeds necessitates
precision control tactics (Brunharo et al. 2020; Rehman et al. 2019;
Zeng et al. 2020). Three-dimensional imaging has much potential
for improving precision weed control in orchards by accounting
for canopy architectural features such as canopy density and depth.
For example, LIDAR has been used in orchards to identify weed
species, estimate weed cover, and create detailed canopy density
maps to inform precision spraying equipment (Riczu et al. 2015;
Zeng et al. 2020). However, machine vision using RGB-D cameras
is also being developed to map orchards based on canopy height
and volume. These systems are being used to guide sensor-driven
intelligent spraying of herbicides and pesticides (Rehman et al.
2019; Tagarakis et al. 2022; Zeng et al. 2020).

Weed Management in Grasslands/Rangelands

Timely detection of weeds is crucial for managing grasslands, as
weeds can diminish grazing capacity. However, weeds in grass-
lands tend to be patchy, making monitoring difficult. Therefore,
it is important for farmers to have efficient methods for mapping
grassland weeds to make decisions about grazing and weed control
(Schellberg et al. 2008; Yuba et al. 2020). In a recent study by Yuba
et al. (2020), UAV-based RGB imagery with SfM was used to
generate 3D point clouds to map patches of the harmful weed
fountain grass [Pennisetum alopecuroides (L.) Spreng.] in pastures.
This technology has also been used to detect and map weeds in rice
(Oryza sativa L.) fields (Kawamura et al. 2020). Despite the rela-
tively few studies using 3D imaging for weeds in grasslands, this
technology has considerable potential benefits. For example, 3D
imaging can be used to monitor grassland health. Traditionally,
“clip and weigh” methods are used to estimate biomass, as it is a
key indicator for grassland health and is correlated with canopy
height (Lussem et al. 2020). However, these methods are labor-
intensive and do not account for variability due to grazing, species
composition, and environmental factors (Bareth and Schellberg
2018; Schellberg et al. 2008). Recently, LIDAR has been used
to estimate grassland species using 3D point clouds and
canopy height and volume data (Paturkar et al. 2020;
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Schulze-Brüninghoff et al. 2019). Additionally, UAV-based SfM
and stereo imaging have been used to quantify canopy height varia-
tion, which can be used as a surrogate factor for aboveground
biomass (Bareth and Schellberg 2018; Cooper et al. 2017). In a
study by Lussem et al. (2020), UAV-based SfM and multiview ster-
eopsis were shown to predict forage biomass based on height with
results comparable to ground-truth measurements. Although this
technology is still largely untested in grasslands, continuing devel-
opment of UAV-based imaging holds promise for opening new
paths for sustainable weed control and monitoring in grassland
systems (Cooper et al. 2017).

Caveats

Several important caveats must be considered when using 3D
imaging in weedmanagement and research. First, canopy structure
can impact efficiency and accuracy of 3D reconstructions. When
the canopy is too dense for light to penetrate the upper layers,
the lower layers might not be fully detected by the camera and
might be absent from the point cloud. For example, in soybean
[Glycine max (L.) Merr.] that have reached canopy closure,
only the upper layers are included in the 3D reconstruction
(Figure 4). In plants with a sparser canopy, more light penetration
allows for the lower layers to be captured in the 3D reconstruction
(Figure 4). Second, environmental factors can affect the efficiency
and accuracy of 3D reconstructions. Leaf movement due to wind is
perhaps one of the most common ways in which leaf shapes are
obscured and images blurred, producing noise (Armean et al.
2021; Paturkar et al. 2020). Also, overlapping leaves and shadows
can interfere with identification of plant features (Armean et al.
2021; Paturkar et al. 2020). Third, morphological features such
as leaf shape and leaf orientation can interfere with 3D
reconstruction (Andújar et al. 2018; Armean et al. 2021). For
example, it can be more difficult to construct monocotyledonous
plants with respect to dicotyledonous plants due to the elongated
and thinner leaf morphology (Andújar et al. 2018). In addition,
leaves that are oriented more vertically are not always correctly
identified, because there is not enough information to distinguish

them from stems and branches (Armean et al. 2021). Continued
technological developments will likely improve the accuracy of
3D modeling in light of these challenges. It must be highlighted
that despite these limitations, 3D imaging provides a much more
informative description of vegetation architecture than RGB
images alone. As image processing and mapping become increas-
ingly efficient, these techniques will offer a simple yet powerful tool
that is widely accessible to growers.

Future Research and Conclusions

We are at a turning point in weed management where state-of-the-
art 3D imaging techniques are making it possible to create spatio-
temporal maps of weeds using relatively low-cost equipment.
In contrast to traditional 2D imaging techniques, 3D imaging
captures depth and canopy structure, allowing more accurate
estimates of plant height and volume at the species level. This tech-
nology offers growers and researchers alike unprecedented oppor-
tunities for real-time, cost-effective mapping and monitoring
of weeds and their impact on crop growth and development.
By capturing spatial heterogeneity of weeds in the field, 3D imaging
will enable growers to create accurate weed population maps for
timely site-specific weed control, in addition to improved targeted
weed removal and spraying. Moreover, 3D imaging will enable
growers to classify individual weeds based on size, which will allow
for more targeted weed control tactics that reduce labor and use of
herbicides. In addition, 3D imaging will improve our under-
standing of weed responses to IWM tactics and predict yield losses
resulting from weed–crop competition. As 3D imaging technology
continues to improve, it will provide new opportunities for growers
and researchers with tools to better understand the complexities of
weed biology in the field and develop better-informed tactics
for weed control. These tools hold great potential to aid in the
collective effort of reducing agricultural inputs and improving
environmental health.
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