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Microscopy and microanalysis research increasingly depends on sophisticated computational analysis to 

derive meaningful signals from large, complex, multidimensional, and often noisy data sets. Analysis 

methods span a range from physically-motivated approaches with no adjustable parameters, through 

unsupervised machine learning (ML) methods which require careful hyperparameter optimization, to 

supervised ML methods which require labeled training data. 

 

We have employed two different infrastructure approaches to disseminating advanced analysis in 

microscopy. One approach is to support the open source analysis platform hyperspy [1] and the 

associated 4D STEM analysis package pxyem [2] to improve their ability to handle large datasets. With 

the advent of large format and ultrafast direct electron detectors for 4D STEM, datasets that are 100s of 

GB to TBs in size are becoming commonplace. These datasets cannot be held entirely in memory on 

most computers, so a “lazy” approach, in which subsets of the data in chunks are loaded into memory, 

operated on, then unloaded, is required. Hyperspy implemented lazy data processing with the widely-

used dask library. We have updated the hyperspy implementation to operate efficiently on 4D STEM 

data by improving how functions are applied to chunks of data, dividing data into more efficient chunks, 

and implementing support for zarr, a package for fast reading and writing of data using efficient 

compression and multiprocessing. The resulting system implements the powerful analytics and 

development tools provided by dask, scales seamless from desktop computing to high-performance 

computing environments, and supports shared memory multiprocessing on data chunks. It supports all of 

the analysis capabilities of hyperspy and pyxem, including ML analyses like component analysis and 

physics-based analyses like orientation imaging for crystals or fluctuation electron microscopy for 

glasses. 

 

Our other infrastructure approach leverages the Foundry software [3], as summarized in Figure 1. 

Foundry is software built on services to simplify dissemination and reuse of ML models and their 

associated training and test data. Foundry unifies two existing services: the Materials Data Facility, 

which offers large scale storage and permanent accessibility to data, and DLHub, which publishes and 

executes ML models. Foundry associates the data with the model under a single digital object identifier 

(DOI) and provides a unified Python interface for working with both data and models. 

 

Foundry stores and serves ML models from containers, which removes the need to configure a 

computing environment to run a model from just the software distributed through (for example) Github. 

Models can be executed using Foundry-provided computing, on cloud computing resources including 

Google Colab or NSF Jetstream, or using local computing resources with a local install of the Foundry 

execution client. Foundry provides interfaces and containers for models built using the common ML 

libraries Scikit-Learn, Tensorflow, Keras, and PyTorch. It can also host models that execute arbitrary 
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Python code, which accommodates custom pre- and post-processing of data and libraries without 

specialized support. At this point, publishing models requires involvement of Foundry staff or 

collaborators, but direct user upload will be implemented in the future. Models are reviewed for 

appropriateness for the Foundry before being published. 

 

 
Figure 1: Foundry combines published data and models through a single Python interface to enable 

simplified access to training datasets and models for both execution of existing models or publication of 

updated or completely new models. 
 

Foundry datasets must conform to defined shapes and contain specified metadata which are designed to 

ease access and reuse for training ML models, so they are not domain-science specific. Shapes and 

metadata are currently available for tabular data, JSON-based, and hierarchical data (e.g. HDF5). HDF5 

can be used for data sets consisting of images or spectra. In addition to basic labels, the Foundry 

metadata captures splits of the data, for example into subsets for training and validation. 

 

We imagine three general use cases for Foundry. The first use case is reuse of containerized models. The 

user installs Foundry in their Python environment, then calls existing published models with a single line 

of code with nothing else to install. Such models might identify all the atoms in the high-resolution 

image, denoise a noisy spectrum image, or locate all the diffraction disks in a 4D STEM dataset. 

Additional models might take those outputs and use them to quantify defect densities from atom 

positions or determine crystal orientations from disk positions. Foundry-hosted models from different 

researchers and non-Foundry software can be flexibly combined to create complex, powerful analysis 

workflows. 

 

The second use case is dissemination of ML models. Disseminating models and data through Foundry 

follows FAIR principles [4], making them findable, accessible, interoperable, and reusable. FAIR is the 

emerging standard for open science, and FAIR ML models are more likely to find use and impact 

outside the group that developed them. 

 

The third use case is retraining and evolving ML models. By permanently linking data and models, 

Foundry makes it possible for users to train a different type of model on the same training data or to test 
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a new model on the same validation data. This type of head-to-head performance comparison offers 

opportunities for rapid advancement in the state-of-the-art of ML models for microscopy. The ultimate 

use of Foundry is to enable users to augment training data with new data or by combining data sets, then 

use the larger data to retrain existing models or train new models. Foundry offers tools for data set and 

model versioning and citing to ensure proper credit for all researcher’s work [5]. 
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