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Spectroscopic electron tomography (ET) has recently gained momentum thanks to the advances in 
instrumentation in electron energy loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy 
(EDX) [1]. It however requires long exposure times and high beam currents compared to conventional 
ET, and results in huge multidimensional sets of data even when selecting relatively large tilt increments. 
It is therefore necessary to use sophisticated machine learning and tomography algorithms for spectral 
dimensionality reduction and 3D reconstruction.  
 
In this work, we applied different multivariate statistical analysis strategies to a STEM-EELS tomographic 
dataset, and illustrated the strengths and weaknesses of total variation minimization (TVM) [2] algorithm 
for the 3D volume reconstruction. 
 
A silicon fin-shaped structure implanted with arsenic (As) as n-type dopant and encapsulated in silicon 
oxide (SiO2), was chosen as a test object. A needle-shaped sample was prepared by focused ion beam 
(FIB) and transferred onto an on-axis tomography holder. The experiment was performed at 200kV using 
a double-corrected FEI microscope equipped with a Gatan Quantum energy filter. 23 STEM-EELS 
datacubes, covering a tilt range of 180°, were acquired using Gatan Microscopy Suite software. A frame 
size of 60x90 pixels was selected, with a pixel size of 1 nm and an acquisition time of 0.05sec/pixel for 
the energy range of 300-1324eV and 0.5sec/pixel for the energy range of 1100-2124eV. Spectral unmixing 
using non-negative matrix factorization (NMF) [3] and spectral vertex components analysis (VCA) [4] 
was performed to decompose the data into a given number of spectral components and abundance maps 
following a linear mixing model. Both VCA and NMF ensured a physical meaning of the extracted 
spectral components by imposing a non-negativity constraint in NMF and assuming endmembers are 
present among the observed pixels in VCA. In Figure 1, we show the results obtained with VCA, after 
subsampling in energy to allow a reasonable computing time: 4 spectral components were extracted from 
the core-loss spectra, corresponding to Si (b), As (c), SiO2 (d) chemical phases, and the vacuum signal (c) 
which was used to mask the input images (similar decomposition was achieved with NMF). The tilt series 
of the Si, SiO2 and As abundance maps were aligned in ImageJ and reconstructed using TVM, and the 
more conventional simultaneous iterative reconstruction technique (SIRT) [5] for comparison. Figure 2 
shows the volume rendering of the fin obtained with SIRT (a) and TVM (b), and selected y-z (c,d) and x-
z (e,f) cross-sections through the reconstructions. The piece-wise constant constraint imposed in TVM led 
to a noise reduction for the three phases and a better quality reconstruction of the As precipitates, for 
which sparsity in the gradient domain is justified. TVM is however not optimized for analyzing chemical 
diffusion and implantation. Important parameters such as 3D-dopant distribution inside the fin structure, 
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lateral profile and sidewall dose could be erroneously overestimated with TVM (Figure 2(d)). To 
overcome these limitations, alternative sparsifying transforms such as wavelets and curvelets will be tested 
and benefits/drawbacks of each method will be discussed. 
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Figure 1. STEM-EELS tomography of a FinFET. (a) STEM-HAADF image, (b-e) VCA abundance 
maps (corresponding to Si, As, mask and SiO2) and the corresponding spectral components (g) extracted 
from the entire STEM-EELS tomographic dataset. (f) shows a superposition of Si (blue), SiO2 (green) 
and As (red) maps. 

Figure 2. Voxel rendering of the SIRT (a) and TVM (b) reconstructions of the FinFET (Si (blue), SiO2 
(green) and As (orange)); y-z slice through the SIRT (c) and TVM (d) reconstruction of the As chemical 
volume; x-z slice through the SIRT (e) and TVM (f) reconstruction of the As chemical volume at the y 
position corresponding to the yellow line in (c). 
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