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Abstract
In ultra-short laser pulses, small changes in dispersion properties before the final focusing mirror can lead to severe pulse
distortions around the focus and therefore to very different pulse properties at the point of laser-matter interaction yielding
unexpected interaction results. The mapping between far and near-field laser properties intricately depends on the spatial
and angular dispersion properties as well as the focal geometry. For a focused Gaussian laser pulse under the influence of
angular, spatial, and group delay dispersion, we derive analytical expressions for its pulse-front tilt, duration, and width
from a fully analytic expression for its electric field in time-space domain obtained with scalar diffraction theory. This
expression is not only valid in and near the focus but along the entire propagation distance from the focusing mirror to the
focus. Expressions relating angular, spatial, and group delay dispersion before focusing at an off-axis parabola, where
they are well measurable, to the respective values in the pulse’s focus are obtained by a ray tracing approach. Together,
these formulas are used to show in example setups that pulse-front tilts of lasers with small initial dispersion can become
several ten degrees large in the vicinity of the focus while being small directly in the focus. The formulas derived here
provide the analytical foundation for observations previously made in numerical experiments. By numerically simulating
Gaussian pulse propagation and measuring properties of the pulse at distances several Rayleigh lengths off the focus we
verify the analytic expressions.

Keywords: ultra-short laser pulses, pulse-front tilt, group-delay dispersion, third-order dispersion, spatio-temporal
couplings

It is well known that the focusing of femtosecond laser pulses with even slightly tilted pulse front leads to an increase
of the tilt angle during propagation towards the focus, a reversal of the tilt after the focus, and a pronounced impact on the
field distribution in the focus. In particular the influence of pulse-front tilts and spatio-temporal couplings on the focus of
high-power lasers have attracted more and more interest in recent years as several groups have either directly observed an
impact of pulse-front tilts in laser-matter interactions or exploit pulse-front tilted lasers to optimize the interaction. As has
been shown, for example, spatio-temporal couplings hamper reaching maximum intensity in the focus of petawatt-class laser
pulses [1], limit the efficiency or introduce a detuning in higher-harmonic generation [2,3], impact the particle pointing direction
in laser particle acceleration setups [4,5], are utilized in nonlinear and quantum optics [6] as well as to generate attosecond light
pulses [7], and are fundamental to simultaneous spatial and temporal focusing geometries used in ultrashort laser pulse material
processing [8,9].

Additionally, exact knowledge of pulse-front tilt angles resulting from spatio-temporal couplings is required in traveling
wave geometries, where pulse-front tilts are exploited to maximize the overlap of a moving target with a laser pulse [10–14], in
the generation of THz-wave pulses, where pulse-front tilts are exploited to match the group velocity of the pump light pulse
and the phase velocity of the THz radiation [15,16], in laser plasma accelerators, where spatio-temporal couplings can be used
to control particle pointing direction [17–19], and in laser writing, where pulse-front tilt can be exploited to control directional
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asymmetries in written structures [20]. These applications exploiting pulse-front tilts rely on dedicated dispersion management
and diagnostics in the laser system in order to control the pulse’s tilt angle at the target point of interaction.

Today several techniques exist to diagnose pulse-front tilt and other pulse parameters, such as duration, along the beamline
of a high-power laser until the focus [21–26]. Yet it is not clear from theory which tilt angle and pulse duration are to be expected
while the laser pulse propagates from the last focusing mirror into the focus. Existing theory focuses on the calculation of tilt
angles before focusing, where the laser is well collimated, or directly at the focus position [10,27–32], either direct or indirect
through usage of approximations, and is not applicable at distances of the order of the Rayleigh length or more from the focus.
Since Rayleigh lengths in tightly focusing geometries can be as short as tens of micrometers, this is a significant shortcoming.

As we present in this article, tilt and duration of femtosecond pulses can significantly evolve over these distances, resulting in
deviations of pulse parameters at the actual laser-matter interaction point compared to initial expectations. Important typical
affected pulse parameters are, for example, the maximum intensity on target, created plasma density or charge separation
in the target, laser depletion length in the target, or spatio-temporal overlap with an evolving target region. That is, even
if the dispersion properties are known before focusing, they may not be known at the interaction point, so that correlations
between pulse parameters and observations in the laser matter interaction cannot be understood. These kinds of issues become
particularly relevant in applications where targets may not be reliably aligned with an accuracy smaller than the Rayleigh
length [33] or where the laser-matter interaction already starts before the laser pulse reaches its focus, as e. g. in scenarios
where the laser focus is within a gas jet [34–36]. Especially in the latter, spatio-temporal couplings present at the start of the
interaction may significantly impact the laser’s evolution in the target medium.

Here we derive for the first time analytic expressions providing tilt, duration and width of a focused laser pulse under
the influence of spatial, angular and group-delay dispersion. These expressions are valid along the whole propagation
distance from the focusing off-axis parabola (OAP) into the focus. They not only allow quantifying parameters of a pulse
with dispersion in the surroundings of the laser-matter interaction-region, but provide understanding of the spatio-temporal
couplings in real focused laser pulses. Specifically for high-power lasers, where pulse parameters can not be measured
in the vicinity of the focus, these formulas facilitate estimating pulse properties in the interaction region from dispersion
measurements before the final focusing mirror. Since dispersions in the laser pulse are existent in experiments, e. g. originating
from misalignment of laser system components or imperfect optics, the presented results are particularly relevant when relating
laser pulse parameters to observations from the laser-matter interaction, e. g. via simulations, as they allow to adequately model
the laser pulse in the interaction region.

Figure 1 sketches a typical situation encountered in experiments, where a laser pulse with angular dispersion and
consequential spatial dispersion, ADin and SDin respectively, is focused at an off-axis parabola. During propagation to
the focus the pulse-front rotates, spatial dispersion increases, and the pulse duration increases.

For the derivation of the focused pulse parameters during propagation, the problem is split in two work items allowing to
base the calculation on a combination of geometrical optics and wave optics [37–40].

First, the electric field of a defocusing laser pulse with known dispersion in the focus is calculated using the Fresnel
diffraction integral [41] p. 636. This yields analytical relations for the change of dispersion quantities and laser parameters
during propagation. Our results exceed previously published findings in that they are valid along the whole propagation path
from the focusing mirror to the focus and beyond.

Second, the in-focus values of spatial, angular and group-delay dispersion are analytically derived from the respective
quantities just before focusing at the OAP by a ray tracing approach. The expressions we derive for in-focus second and third
order dispersion values exceed typical analysis performed with Kostenbauder ray-pulse matrices [42].

Figure 2 provides an overview of the geometry underlying the analytic calculations in the two steps. It visualizes important
quantities used throughout the derivations.

Deriving pulse properties during propagation

Our derivation of a laser pulse’s tilt angle, duration, and width from given spatial, angular and higher order dispersion starts
by modeling the laser’s scalar electric field distribution in frequency space Ê in the focal plane and propagating this to an
arbitrary distance z from the focus using the Fresnel diffraction integral. We assume that the initial dispersion are present
only along one axis in the transverse plane. This allows for a two-dimensional formulation of laser propagation, where x is
the transverse direction and z the laser propagation axis, on the basis of cylindrical waves in the following. This work can be
extended to three dimensions by treating the other transverse direction (y) with cylindrical waves analogously.
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Distortions in focusing laser pulses due to spatio-temporal couplings 3

Figure 1: Envelope of a focused laser pulse at different points in time along its path. The laser pulse enters the focusing
geometry from the top right traveling towards the focusing mirror below. The input pulse is under the influence of angular
dispersion ADin, and, thus, has a small pulse-front tilt before focusing. Due to ADin, spatial dispersion SDin develops
during propagation by the distance L to the focusing off-axis parabola (OAP). At the OAP the pulse is deflected by 90◦ and
then propagates the parabola’s effective focal distance feff down to the focus. Details of the pulse properties depicted further
downstream assume feff ≪ L and omit pulse-front curvature. During propagation into the focus, pulse-front tilt grows and
reaches a maximum some distance ahead of the focus. Then it reduces and again equals its initial value in the focus. After the
focus this pulse-front rotation continues such that the tilt becomes zero shortly behind the focus and in the following becomes
opposite in direction compared to the tilt before focusing. Also during focusing, the transverse offset of frequencies from the
propagation axis grows in relation to the pulse’s width during propagation from the off-axis parabola to the focus. However,
the effect of propagation with angular dispersion on the value of spatial dispersion is negligible. It remains almost constant at
the focal value SDfoc throughout propagation. After the focus, pulse-front rotation continues until the tilt reaches a maximum,
before it falls off again.

Initial field in the focus in frequency-space domain

We assume the laser frequency spectrum and transverse profile to be Gaussian in the focus,

Ê(x, z = 0, Ω) =ϵΩϵxe
−ıφ

ϵΩ(Ω) =e−
τ2
0
4 (Ω−Ω0)

2

ϵx(x) =e
− [x−x0]2

w2
0 ,

where φ = φ(x, z = 0, Ω) is the initial spectral phase of the pulse, Ω = 2πν the angular frequency, Ω0 the central
laser frequency, (x, z) the position considered with z = 0 marking the focus, τ0 = τFWHM,I/

√
2 ln 2 the Fourier limited

duration and τFWHM,I the full width at half maximum of the field’s time-space domain longitudinal intensity distribution,
w0 = wFWHM,I/

√
2 ln 2 the focal width of the transverse spatial distribution of frequency Ω, wFWHM,I the focal full width

at half maximum of the undisturbed pulse’s time-space domain transverse spatial intensity distribution, and x0 = x0(Ω) the
center position of the spatial distribution of frequency Ω in the focus. The latter is related to spatial dispersion SD, being
defined as the coefficient of the linear term in the expansion of the transverse frequency distribution center xc with respect to
frequency,

SD :=
dxc
dΩ

∣∣∣∣∣
Ω=Ω0

. (1)

Since x0 = xc(z = 0), the initial value of spatial dispersion at z = 0 is SDfoc = x′0.
The laser’s spectral phase φ(x, z = 0, Ω) in the focus is defined by the existence of angular dispersion in the focus

ADfoc. Angular dispersion manifests in the divergence of propagation directions between frequencies, where the propagation
direction of frequency Ω and the central laser frequency Ω0 enclose the angle θ = θ(Ω). Similarly to SD, AD is defined as
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Figure 2: Frequency-space domain visualization of paths of two specific frequencies belonging to the spectrum of a Gaussian
pulse which is under the influence of angular dispersion and spatial dispersion. These frequencies are transversally Gaussian
distributed, and the rays represent the path of the respective distribution center. The pulse’s propagation direction is defined
by the propagation direction z of the central frequency Ω0. The propagation direction of frequency Ω encloses the angle
θ(Ω) with the central frequency’s propagation direction in the focal plane. This expresses immanent angular dispersion
AD := dθ

dΩ

∣∣∣
Ω=Ω0

= θ′ of the focusing Gaussian pulse, which can originate from both angular dispersion θ′in(Ω) or spatial
dispersion x′in(Ω) before the focusing off-axis parabola. In the focal plane z = 0, the spatial offset xc = x0(Ω) between the
centers of beams Ω and Ω0 along the transverse direction x expresses immanent spatial dispersion SD := dxc

dΩ

∣∣∣
Ω=Ω0

= x′0
of the Gaussian pulse, which originates from angular dispersion before the off-axis parabola.

the coefficient of the linear term in the expansion of θ with respect to frequency,

AD :=
dθ

dΩ

∣∣∣∣∣
Ω=Ω0

= θ′ . (2)

We deduce the laser’s initial spectral phase φ from the spectral phase ϕ of a plane wave of frequency Ω propagating at an
angle θ with respect to the z axis

ϕ(x, z,Ω) =
Ω

c
[−x sin θ + z cos θ] .

Expanding this about Ω ≈ Ω0 and evaluating at the focus position z = 0, the laser’s initial spectral phase φ is obtained. Up
to third order it reads, cf. sec. 1.1 of supplement,

φ(x, z = 0, Ω) ≈− x

c
Ω0θ

′(Ω −Ω0)−
1

2

x

c
(2θ′ +Ω0θ

′′) (Ω −Ω0)
2 − 1

6

x

c

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)
(Ω −Ω0)

3

+
1

2
GDDfoc(Ω −Ω0)

2 +
1

6
TODfoc(Ω −Ω0)

3

=:− α
x

w0
+

1

2
GDDfoc(Ω −Ω0)

2 +
1

6
TODfoc(Ω −Ω0)

3

where

α(Ω) =
w0

c

[
Ω0θ

′(Ω −Ω0) +
1

2
(2θ′ +Ω0θ

′′) (Ω −Ω0)
2 +

1

6

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)
(Ω −Ω0)

3
]
. (3)

The quantity α/w0 can be regarded as the series expansion of a frequency’s wave vector x-component kx =
−(Ω/c) sin θ(Ω) ≈ −α(Ω)/w0.

The expansion of the spectral phase in the focus above includes values GDDfoc and TODfoc at z = 0 for group delay
dispersion and third order dispersion in the focus, respectively. Generally, group delay dispersion GDD and third order
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dispersion TOD are defined as

GDD :=
d2φ

dΩ2

∣∣∣∣∣∣
Ω=Ω0

(4)

TOD :=
d3φ

dΩ3

∣∣∣∣∣∣
Ω=Ω0

, (5)

and evolve during propagation. Their values in the focus are determined from known values before the focusing mirror,
emerging e. g. through material dispersion within the laser system, plus contributions from dispersion coupling through
focusing, as will be shown later.

Field at some distance from the focus in frequency-space domain

The field distribution outside the focus is obtained by propagating the initial field with the Fresnel diffraction integral for
cylindrical waves [41,43], cf. sec. 1.2 of supplement,

Ê(x, z,Ω) =

√
Ω

2πc

e−ı(Ω
c z−π

4 )
√
z

∞∫
−∞

Ê(ξ, z = 0, Ω)e−ı Ω
2cz (x−ξ)2 dξ

=

√
Ω

2πc

e−ı(Ω
c z−π

4 )
√
z

ϵΩe
−ı 12GDDfoc(Ω−Ω0)

2

e−ı 16TODfoc(Ω−Ω0)
3

∞∫
−∞

ϵx(ξ)e
ıα ξ

w0 e−ı Ω
2cz (x−ξ)2 dξ

=ϵΩ

1 + z2

z2
R

−1/4

e
−

[
x−

(
x0− c

Ω0w0
αz

)]2[
1

w2
0
(1+z2/z2

R
)
+ı Ω

2c
z

(z2+z2
R

)

]

× e−ıΩc zeıα
x
w0 e

ıα
2

4
z

zR e
ı 12 arctan z

zR e−ı 12GDDfoc(Ω−Ω0)
2

e−ı 16TODfoc(Ω−Ω0)
3

, (6)

where zR = Ωw2
0/(2c) is the Rayleigh length, λ0 = 2πc/Ω0 is the central laser wavelength, and the well known width w(z)

and radius of curvature R(z) of the propagating laser pulse can be identified,

w(z) = w0

√
1 +

z2

z2
R

(7)

R(z) = z

1 + z2R
z2

 . (8)

While these expressions for w and R are frequency dependent in general, we set zR ≈ πw2
0/λ0 to good approximation in (6)

for the following calculations. Equation (6) is a well known result [44]. See the supplemental material for details of this and
the following derivations.

As is evident from the proportionality of the laser’s Gaussian transverse profile center xc(z,Ω) = x0 − αzc/(Ω0w0) to
α in eq. (6), a frequency’s spatial distribution center is subject to higher order dispersion. From this, the scaling of spatial
dispersion with distance from the focus can be derived using eq. (1), which reads to first order

SD(z) = SDfoc −ADfocz .

Furthermore, eq. (6) allows identifying advancement of higher order dispersion with distance from the focus by performing
the respective number of derivatives of the spectral phase φ(x, z,Ω) = −Arg[Ê(x, z,Ω)] with respect to Ω and evaluating
at Ω = Ω0. Accordingly, advancement of GDD and TOD with z are obtained using (4) and (5), respectively, cf. sec. 1.3 of
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supplement,

GDD(z) = GDDfoc + 4
x

w
β3β5 + 2Ω0(2

x

w
β4 + β2

3)β5 − 2β6 (9)

TOD(z) = TODfoc + 12
x

w
β4β5 + 6β2

3β5 + 12Ω0
x

w
β5δ1 + 12Ω0β3β4β5 − 6δ2 , (10)

where

δ1 =
z

6wΩ0

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3 − x′′′0

)
, δ2 =

1

2c

[
θ′ (2θ′ +Ω0θ

′′) z +
1

3

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)
x
]
,

making use of the definitions (13) given below.
The expressions (9) and (10) are more complex than the ones typically used [44] and exhibit a variation over the transverse

pulse profile either due to angular dispersion or the combination of spatial dispersion and diffraction or both. Moreover, even
along the laser propagation axis (x = 0) spatial dispersion contributes to group-delay dispersion,

GDD(z)|x=0 = GDDfoc +
Ω0

c

SD(z)2

R
− Ω0

c
AD2

focz . (11)

This contribution compensates phase run-up outside the focus for off-axis traveling frequencies by taking phase front curvature
into account. Phase run-up outside the focus originates from the term proportional to AD2

focz, which itself represents a
correction of phase due to a corrected traveling distance for off-axis traveling frequencies. Since this traveling distance
correction is based upon a plane wave assumption, it is only valid near the focus, where z ≪ zR, and the correction by the
term ∝ SD2/R is necessary. Far from the focus, where z ≫ zR and R(z) ≈ z, the two corrections cancel each other in the
case of vanishing spatial dispersion in the focus, GDD(z ≫ zR)|x=0,SDfoc=0 = GDDfoc.

The above form of the initial field in the focus E(x, z = 0, Ω) assumes that all frequencies focus at the same position z = 0
along the central frequency’s propagation direction. This holds, as long as the phase fronts of the expanded laser pulse, which
is focused by the OAP, are flat. Typically this requires to keep the distance between the last telescope in the laser system and
the OAP well below a Rayleigh range of the expanded laser pulse. If this is not the case, chromatic aberration will occur and
further distort the pulse, as has been studied for focusing by a lens [45].

Field at some distance from the focus in time-space domain

The field distribution in time-space domain is obtained by Fourier transforming the above field distribution in frequency
domain (6) to time domain,

E(x, z, t) =
1

2π

∫
Ê(x, z,Ω)eıΩtdΩ .

The result presented in the following allows for the first time to read-off analytical relations for the scaling of pulse-front tilt
and pulse duration valid in the close vicinity, as well as far from the focus.

In order to perform the Fourier transform, the in-focus transverse distribution center x0 of a frequency is expanded up
to second order, x0 ≈ x′0(Ω − Ω0) +

1
2x

′′
0(Ω − Ω0)

2, and the definition (3) of α is inserted in the complex argument of
(6) allowing to order terms in powers of (Ω − Ω0). Neglecting every contribution of order three and higher, cf. sec. 1.3 of
supplement, eqs. (71)-(102),

Ê(x, z,Ω) =

1 + z2

z2
R

−1/4

e−
x2

w2 e−ıΩ0
x2

2cR e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−[(β1+2 x
wβ4+β2

3)+ı( 1
2GDDfoc+2 x

wβ3β5+(2 x
wβ4+β2

3)Ω0β5−β6)](Ω−Ω0)
2

× e
−

[
2 x

wβ3+ı
(
β2+

x2

w2 β5+2Ω0
x
wβ3β5

)]
(Ω−Ω0)

,

(12)
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where

β1 =
τ20
4

β2 =
z

c
−Ω0θ

′x

c

β3 = −
SD(z)

w

β4 =
1

2w

(
2θ′

z

Ω0
+Ω0θ

′′ z

Ω0
− x′′0

)
β5 =

w2

2cR

β6 =
1

2c

[
Ω0θ

′2z + (2θ′ +Ω0θ
′′)x

]
,

(13)

the approximated field can be analytically transformed to time domain. The assumption of vanishing third and higher order
dispersion for a particular setup can be verified with the help of eq. (96) from the appendix. From this, it becomes clear that
third order contributions to the envelope and phase are negligible if 128 · [(x/w)δ1+β3β4]/τ30 ≪ 1 and 11 ·TOD(z)/τ30 ≪ 1,
respectively, which assumes that the spectral amplitude is only significant for frequencies |Ω −Ω0| ≤ 4/τ0 (the amplitude
falls below e−4 of its initial value for a larger frequency deviation). In practice, these requirements are fulfilled for standard
high-power, ultrashort laser pulses. For example, the requirements take absolute values of 3×10−6 and 1×10−6, respectively,
when evaluated at a Rayleigh length distance from the focus at the pulse center for a pulse of wavelength λ0 = 800 nm
and duration τFWHM,I = 5 fs (τ0 = 4.25 fs), being tightly focused to w0 = 2 µm and angularly dispersed in the focus
ADfoc = 1 µrad/nm.

Further defining,

γ1 = 1 + 8
x

w

β4

τ20
+ 4

β2
3

τ20

γ2 =
(1
2
GDDfoc + 2

x

w
β3β5 + (2

x

w
β4 + β2

3)Ω0β5 − β6

) 4

τ20

= GDD(z)
2

τ20

γ3 = −2
x

w

β3
τ0

= 2
SD(z)

w2τ0
x

γ4 =

(
t− β2 −

x2

w2
β5 − 2Ω0

x

w
β3β5

)
1

τ0

allows to write the field in time domain in a compact form. The time-space domain field is, cf. sec. 1.3 of supplement, eqs.
(103)-(108),

E(x, z, t) =
1

τ0
√
π

1 + z2

z2
R

 (γ21 + γ22
)−1/4

e
ıΩ0

(
t− z

c−
x2

2cR

)
e
ı 12

(
arctan z

zR
−arctan

γ2
γ1

)

× e
− x2

w2γ1
(1+8 x

wβ4/τ
2
0 )e

−

τ0γ4−
(τ0γ3)(τ2

0γ2)

τ2
0
γ1

2
τ2
0 (γ1+γ2

2
/γ1) e

ı
[(γ2

4−γ2
3)γ2+2γ3γ4γ1]
(γ2

1
+γ2

2
) ,

(14)

provided γ1 > 0, otherwise the Fourier transform over the Gaussian spectrum cannot be performed analytically since the
frequency-space domain field (12) grows exponentially with (Ω−Ω0)

2. For a detailed explanation, see sec. 1.3 of supplement,
eq. (103). Future work may model the spectrum with a different function in order to remove the requirement γ1 > 0.

The only problematic term with respect to the requirement γ1 > 0 is the middle term in γ1 being proportional to β4,
which also appears in the nominator of the exponent of the transverse profile ∼ e−x2

in (14). In general, this term cannot be
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neglected and its contribution can become significant in certain regimes, e. g. for pulses with a duration of the order of only a
few femtoseconds or shorter. These regimes demand to verify γ1 > 0 when using the analytic expression for the total field or
those for the pulse’s spatio-temporal properties further below.

There is, however, the ’long pulse’ regime where the term proportional to β4 can be neglected and γ1 remains positive
always. In this regime,

∣∣∣8β4/τ20 ∣∣∣ ≪ 1, which can be rewritten as 8π |Ω0ADfoc| (w0/λ0)(Ω0τ0)
−2 ≪ 1, with |Ω0ADfoc| =

|tanψtilt,ADfoc
| representing pulse-front tilt in the focus due to ADfoc alone. That is, the middle term proportional to β4

will not be of relevance in γ1 as long as the ADfoc induced angle of pulse-front tilt ψtilt,ADfoc
satisfies |tanψtilt,ADfoc

| ≪
λ0(Ω0τ0)

2/(8πw0), meaning that the tilt angle needs to be of the order of the ratio of pulse duration (measured in number of
laser oscillations) over pulse width (measured in wavelengths) and provided that the pulse duration extends over several laser
oscillations. Exemplary, for a λ0 = 0.8 µm, τFWHM,I = 30 fs (τ0 = 25.5 fs) pulse with a focal width of πw0 ≡ 60λ0 the
’long pulse’ regime is reached if ψtilt,ADfoc

≪ 82◦, and the requirement relaxes further for smaller focal spot diameters.
To our knowledge, the term 8(x/w)(β4/τ

2
0 ) in γ1 has not been taken into account in previous analysis of spatio-temporal

couplings and its appearance outside the long pulse regime could only be recognized from the fully analytic treatment
presented here.

While expressions for typically interesting intensity related pulse parameters are derived from the time-space domain field
(14) in the following, it has several more areas of applicability. For example, one can derive the phase related wavefront
rotation [29] or feed the field into self-consistent simulations of pulse propagation or laser matter interaction.

Duration, width, and tilt of the propagating pulse

From (14) the duration T and width W of the propagating Gaussian laser pulse with spatial, angular, and group-delay
dispersion in the focus are readily identified. These are the denominators of the fractions in the exponents of the last and
next to last real exponential,

τ2 =τ20 γ1 = τ20

(
1 + 8

x

w

β4

τ20
+ 4

SD(z)2

w2τ20

)
(15)

T 2 =τ20

(
γ1 +

γ22
γ1

)
= τ2 + 4

GDD(z)2

τ2
(16)

W 2 =w2 τ2

τ20 + 8 x
wβ4

, (17)

However, W generally is not a typical Gaussian pulse width, as it still depends on the transverse coordinate x. This
rather shows, that the transverse envelope does not keep a Gaussian shape during propagation but evolves to something
more complex.1 Yet these deviations from a Gaussian profile are not of relevance in the long pulse regime where the term
proportional to β4 can be neglected. Then W quantifies the width of a normal Gaussian transverse profile. That is, the laser
pulse keeps a Gaussian transverse profile and the spatio-temporal couplings do not alter the transverse profile to something
more complex during propagation.

The expression for pulse duration (16) is structurally equal to previously published results [44], but comprises more complex
expressions for τ and GDD(z), eqs. (15) and (9) respectively. In the long pulse regime, τ assumes the well known form
τ2 = τ20 + 4SD(z)2/w2, and represents pulse elongation due to spatial dispersion alone. In cases where pulse elongation
takes place via group velocity dispersion in a dispersive material, the proportion of spatial dispersion is zero and τ = τ0.

From the numerator of the exponent of the last real exponential in (14) the time delay t0 of the pulse maximum can be
identified.

τ0γ4 −
(τ0γ3)(τ

2
0 γ2)

τ20 γ1
=: t− t0 ,

where

t0 =
z

c
−Ω0ADfoc

x

c
+

x2

2cR
− Ω0

c

SD(z)

R
x+ 4

SD(z)

w2

GDD(z)

τ2
x .

1By setting x = W in (17) and solving the resulting cubic equation in W/w can yield a value for W that corresponds to its original meaning for a
Gaussian beam, i. e. as the distance from the pulse center along the transverse direction where the intensity reduces to 1/e2 compared to its center value.
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Distortions in focusing laser pulses due to spatio-temporal couplings 9

The time delay is directly connected to pulse-front tilt by

tanψtilt =
d(ct0)

dx

∣∣∣∣∣∣
x=0

,

which yields, cf. sec. 1.4 of supplement,

tanψtilt = −Ω0ADfoc −Ω0
SD(z)

R
+ 4c

SD(z)

w2

(
GDD(z)

τ2

)
x=0

. (18)

In this expression, the first term represents a constant base value of pulse-front tilt due to angular dispersion which is the true
value of pulse-front tilt in the center of the focal plane [27]. The remaining terms represent deviations from the focal plane
center value due to radial offset of the point of evaluation or pulse propagation.

The second term is zero in the focus, but non-zero outside. For a specific frequency, it represents an effective angle of
propagation due to increasing SD during propagation, just as AD represents an angle of propagation. It can be the major
source of pulse-front tilt outside the focus, as observed for the setups in the next section. Its derivation is a main result of this
work.

The structure of the third term is in line with previous findings [44]. However, the definition for GDD(z)|x=0 is extended in
this work by the contribution of spatial dispersion, i. e. the term proportional to SD2/R in (11).

Note, the definition of pulse-front tilt is not unique. The above definition is with respect to time delay t0 of the pulse
maximum along the transverse direction at some position z, but pulse-front tilt can be defined with respect to longitudinal
spatial offset z0 between pulse maximum and pulse center along the transverse direction at some time t, too. The relation
between the two definitions is

tanαtilt =
d(z0)

dx

∣∣∣∣∣∣
x=0

= − tanψtilt .

Deriving pulse dispersion in the focus of an off-axis parabola

Using the above formulas to estimate pulse properties during propagation of a tightly focused laser pulse requires knowledge
about the dispersion in the focus. Usually, these dispersion properties in the focus are unknown but estimated from the
dispersion properties before the focusing mirror, where these can be measured. Using a ray tracing approach, dispersion
parameters in the focus are derived in the following from the known dispersion parameters before focusing, which couple
during reflection at the focusing mirror. We denote parameters before focusing with subscript ‘in’, and parameters in the
focus with subscript ‘foc, coupl’. The in-focus dispersion values derived in this section will be used in the next section as
input for the in-focus dispersion values in the pulse parameter formulas, eqs. (18) and (16), where the latter are denoted with
subscript ‘foc’.

We will assume focusing of the laser pulse at an off-axis parabola (OAP) as is standard for high-power laser systems. The
pulse has only first order contributions x′in and θ′in to spatial and angular dispersion, respectively, before focusing. Group-
delay dispersion before focusing GDDin is not explicitly taken into account as it does not evolve, but can simply be added to
the in-focus value of group delay dispersion GDDfoc,coupl, i. e. GDDfoc = GDDfoc,coupl + GDDin. Similar for TODfoc.
Obtaining estimates for dispersion-coupling induced in-focus values of spatial dispersion SDfoc,coupl, angular dispersion
ADfoc,coupl, group-delay dispersion GDDfoc,coupl, and third-order dispersion TODfoc,coupl relies on analytic tracing of rays
representing the propagation of the center of a frequency’s transverse spatial distribution. Figure 3 sketches sample rays and
defines all quantities used in the following derivation of dispersion properties in the focus.

Angular dispersion

In the focus, the rays of frequency Ω and Ω0 enclose the propagation angle θ being required to calculate angular dispersion
by eq. (2). The propagation angle is determined from the difference between the angles enclosed by the OAP’s optical axis
and the deflected rays of Ω and Ω0. Since there is angular dispersion already present before deflection at the mirror, the angle
enclosed by the deflected ray of frequency Ω and the OAP’s optical axis is ψdefl − θin, which leads to

θ(Ω) = ψdefl − θin − ψdefl,0 .

The deflection angle of frequency Ω is given by

ψdefl = 2δ , (19)
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10 K. Steiniger et al.

Figure 3: Propagation of rays of different frequency during focusing of a laser pulse at an off-axis parabola. The central
frequency’s incident ray (orange) propagates parallel to the axis of the OAP. The incidence plane is perpendicular to the ray
and located at the point of incidence of the ray on the OAP surface. The ray encloses with the OAP’s surface normal the angle
δ, which determines the angle of deflection ψdefl,0 = 2δ. During subsequent propagation into the focus the central frequency
ray covers the effective focal distance feff,0 = f/ cos2(ψdefl,0/2). The focal plane is perpendicular to the central frequency
ray and located in the OAP’s focus. A second ray belonging to frequency Ω (green) encloses the angle θin with the central
frequency ray and has a transverse spatial offset of xin at the incidence plane. The propagation angle θin is negative in this
setup. Compared to the central frequency ray the second ray propagates an additional distance Lin until it is incident on the
mirror surface. Its deflection angle ψdefl, effective focal distance feff , propagation angle θ, and propagation distance until
the focal plane Lfoc differ from the central frequency ray. The point where the second ray pierces the focal plane defines its
transverse spatial offset x0.

where the tangent of δ can be determined from the slope of the mirror surface at the position of incidence ξ

δ = arctan
ξ

2f
. (20)

The position of incidence is obtained by computing the intersection point between the ray and the mirror surface, i. e. by
equating

(
zray +

ξ20
4f

)
tan θin =ξ − (ξ0 − xin) , and zOAP =− ξ2

4f
,

where the z axis points along the axis of propagation of the incident central frequency ray but originates at the vertex of the
parabola. The resulting equation for the incidence position is

0 =
tan θin
4f

ξ2 + ξ − (ξ0 − xin)−
tan θin
4f

ξ20

⇔ 0 =a
ξ2

f2
+ b

ξ

f
+ c ,

where

a =
tan θin

4
b = 1

c = −ξ0 − xin
f

− tan θin
4

ξ20
f2

.
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Distortions in focusing laser pulses due to spatio-temporal couplings 11

This quadratic equation in ξ/f has the solution

ξ =2f
−1 +

√
1− tan θinc

tan θin

≈p+
(
q − p2

4f

)
θin , where p = ξ0 − xin and q =

ξ20
4f

,

(21)

with which δ and thus ψdefl can be calculated for any frequency Ω, cf. eqs. (20) and (19), respectively. We assume ξ0 to be
given from the manufactured deflection angle and effective focal distance for the central frequency,

ξ0 = feff,0 sinψdefl,0 .

With the above solution for the incidence point on the parabola surface, angular dispersion in the focus can be calculated

ADfoc,coupl =
d

dΩ

[
2 arctan

(
ξ

2f

)
− θin − ψdefl,0

]
Ω=Ω0

= − 1

feff,0
x′in − θ′in (22)

Spatial dispersion

Calculating spatial dispersion according to (1) requires to determine the spatial offset x0 of frequency Ω in the focal plane.
According to fig. 3, the spatial offset x0 can be determined from x̃0,

x0 =
x̃0
cos θ

,

which is itself determined by x̃0 = feff sin θin. Thus,

SDfoc,coupl =
d

dΩ

[
feff sin θin

cos θ

]
Ω=Ω0

= feff,0θ
′
in . (23)

Group-delay dispersion

Calculating group-delay dispersion according to (4) requires to determine the phase advance of every frequency from the
incidence plane to the focal plane which can be calculated from a frequency’s optical path length. The path of a ray starts
where its phase front intersects with the incidence position of the central frequency ray on the mirror surface and it ends where
its phase front intersects with the focus, see fig. 3. The path length of a frequency Ω is divided in two sections Lin and Lfoc.
The former is the distance from the starting point until the ray intersects with the parabola surface, while the latter is the
distance from the parabola surface until the focal plane. The phase advance is

φ(Ω) =
Ω

c
(Lin + Lfoc) , (24)

where

Lin(Ω) = −xin sin θin +
ξ20 − ξ2

4f cos θin
, Lfoc(Ω) = feff cos θin ,

with which

GDDfoc,coupl =
d2φ

dΩ2

∣∣∣∣∣∣
Ω=Ω0

= −Ω0

c

[
feff,0θ

′
in

2
+ 2θ′inx

′
in

]
. (25)

Third order dispersion

For future real and numerical experiments the value of third order dispersion in the focus can be of interest. It is evaluated by
applying (5) on the phase advance (24),

TODfoc,coupl =
d3φ

dΩ3

∣∣∣∣∣∣
Ω=Ω0

= 3
θ′in
c

[
Ω0ξ0

θ′inx
′
in

f
− feff,0θ

′
in − 2x′in

]
. (26)
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12 K. Steiniger et al.

Figure 4: Pulse-front tilt and pulse duration in the course of propagation of a 0.8 µm, τFWHM,I = 30 fs, Din =
100mm laser pulse through the focus of the short focal range setup without spatial dispersion before the focusing
mirror. Colors of lines represent angular dispersion values before focusing ADin = 5 · 10−3, 1 · 10−2, 2.5 · 10−2, 5 ·
10−2, 0.1, 0.25, 0.5, 1 µrad/nm. Originating from ADin, there is angular dispersion, and hence pulse-front tilt, in the focus
ADfoc = −ADin. Correspondingly, the position of zero pulse-front tilt along the beamline is outside the focus as shown in
the inset. Since absolute values of pulse-front tilt in the focus |ψtilt| are below 0.05◦ for all values of ADin, this offset is
negligible in practice for this particular example.

Showcasing pulse-front tilt and pulse duration scaling

In exemplary long and short focal range setups, pulse-front tilt and pulse duration during propagation of a focusing pulse
through its focus are presented in the following. As is shown, pulse-front tilts can become several tens of degrees large in the
close vicinity of a couple of ten microns around the focus. Pulse-front tilts on this order were observed in previous numerical
experiments [8], but could not be fully analytically explained.

The laser pulse is focused at an OAP and for the calculation we assume that dispersion parameters before reflection at the
OAP, i. e. angular dispersion ADin and spatial dispersion SDin, are known. From these the dispersion values in the focus are
deduced by (22), (23), and (25) using θin = ADin and x′in = SDin. The in-focus dispersion values ADfoc,coupl, SDfoc,coupl,
and GDDfoc,coupl, respectively, are then plugged into (16) and (18) in order to determine pulse duration and tilt, respectively,
during propagation.

All setups will use a laser pulse with a central wavelength λ0 = 0.8 µm, duration τFWHM,I = 30 fs, and width Din =
πwin = 100mm (99 % power transmission through aperture of this diameter for Gaussian beams) before focusing.

Short focal length setup

This setup’s OAP has feff,0/Din = 2.5 (= f/#), focusing the incident pulse to a width wFWHM,I = 2.35 µm and resulting in
a Rayleigh length zR = 16 µm.

Figure 4 visualizes pulse-front tilt and pulse duration in the course of propagation through the focus for angular dispersion
values before focusing ranging from ADin = 5 · 10−3 µrad/nm to 1 µrad/nm without spatial dispersion before focusing, i. e.
SDin = 0. While small values of ADin below 10−2 µrad/nm result in a maximum pulse-front tilt of −3.6◦ at a Rayleigh
length before the focus, higher values such as 0.25 µrad/nm result in a large maximum pulse-front tilt of −51◦ at about the
same position. Angular dispersion before focusing of 1 µrad/nm results in an even larger maximum pulse front tilt of −61◦

at 3.5 Rayleigh length before the focus. Generally it can be observed, that larger values of ADin result in larger maximum
pulse-front tilt farther away from the focus. In all of these examples, group-delay dispersion in the focus GDDfoc,coupl due
to ADin is negligible, as it is only −0.2 fs2 for the largest ADin. To ease comparison to numerical results shown later, the
in-focus value GDDfoc is therefore set to zero in the calculations.

The major source of these large pulse-front tilts is the appearance of spatial dispersion, i. e. the term −Ω0SD/R in (18). In
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Distortions in focusing laser pulses due to spatio-temporal couplings 13

Figure 5: Pulse-front tilt and pulse duration in the course of propagation through the focus of the long focal range setup
without spatial dispersion before focusing. Parameters are equal to the short focal range setup, see fig. 4.

this term, SD andR together define a maximum propagation angle, which at the same time is the maximum angle enclosed by
a phase front and the laser propagation axis. Just as for −Ω0θ

′, this angle leads to a maximum time delay along the transverse
direction and therefore pulse-front tilt. This pulse-front tilt caused by spatial dispersion varies during propagation due to the
varying radius of curvature R. It reaches its maximum at a Rayleigh length from the focus, where the respective time delay is
largest due to R being smallest, and it vanishes in the focus where R is infinite such that there is no time delay.

The third term in (18) constitutes a damping of the leading second term. For larger angular dispersion before focusing it
provides for the shift of maximum pulse-front tilt to positions beyond the Rayleigh length, which is the position where the
second term peaks.

In contrast to pulse-front tilt, increase of pulse duration is only relevant for the two largest ADin values, with a maximum
of 3.5τ0 in the focus for ADin = 1 µrad/nm.

The source of pulse elongation is again spatial dispersion, described by (15) alone since GDD is assumed to vanish in
the focus. Spatial dispersion leads to a loss of overlap between spatial distributions of frequencies which thins out the local
spectrum. This effect is largest in the focus where the spatial frequency distributions are smallest, thus the local spectrum is
smallest and the pulse duration longest.

The above setup neglects SDin, i. e. spatial dispersion generated by angular dispersion during propagation from
the laser system’s compressor until the OAP. Assuming 10 m distance from the compressor until the OAP, spatial
dispersion before focusing at the OAP due to propagation with angular dispersion is SDin = −ADin · 10m =
−0.05,−0.1,−0.25,−0.5,−1,−2.5,−5,−10 µm/nm. This spatial dispersion before focusing will not influence spatial
dispersion in the focus, according to (23), but it will increase angular dispersion, and therefore pulse-front tilt, in the focus.
Pulse-front tilts in the focus are ψtilt = 0.01, 0.02, 0.04, 0.09, 0.18, 0.45, 0.90, 1.79◦, respectively. Since these are still small,
the overall picture of the scaling remains equal compared to the setup with SDin = 0. Especially maximum values of
pulse-front tilt and duration do not change.

Long focal range setup

This setup’s OAP has feff,0/Din = 250, focusing the incident pulse to a width wFWHM,I = 19 µm and resulting in a Rayleigh
length zR = 1.0mm.

Figure 5 visualizes pulse-front tilt and pulse duration in the course of propagation through the focus for the same range of
angular dispersion values before focusing as for the short focal range setup and without spatial dispersion before focusing.
Due to equal laser parameters, the scaling is qualitatively equal to the short focal range setup. Only the maximum value
of pulse-front tilt is reduced, since radius of pulse-front curvature scales quadratic in focal distance while spatial dispersion
scales linear for equal laser parameters before focusing. In total this results in less time delay between frequencies along the
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transverse direction, reducing pulse-front tilt.
Pulse duration in focus remains equal between long and short focal range setups, as the ratio of spatial dispersion and width

in focus, which determines pulse elongation, is independent of focal length.
Considerations on group-delay dispersion in the focus and spatial dispersion before focusing outlined for the short focal

range setup can be identically applied to this long focal range setup.

Comparing analytical results with numerical simulations

The obtained pulse-front tilt and pulse duration of the short focal range setup are cross-checked by numerically Fourier
transforming the propagated pulse in Fourier space (6) for the setup with ADin = 1 µrad/nm and measuring pulse-front tilt
and pulse duration from the obtained time-space domain spatio-temporal intensity envelope on a grid. This intensity envelope
is obtained from the complex field distribution by taking the absolute square. Taking from this 2D intensity distribution
two 1D intensity distributions at constant transverse positions xcenter and xout, allows measuring pulse-front tilt. We chose
xcenter = 0 and xout = w0. By determining the respective times tcenter and tout at which the intensity reaches its maximum
along these two 1D intensity distributions, the pulse front tilt angle can be approximated by

tanψtilt,num =
c (tcenter − tout)

xcenter − xout
. (27)

Pulse duration is measured by the least square fit of a Gaussian curve I0 exp(− (t− tcenter)
2
/(2σI,t)) to the 1D intensity

distribution at xcenter, where I0 equals the maximum of the intensity distribution. The fit determines σI,t which is related to
the pulse duration of the field by T = 2σI,t.

Figure 6 visualizes intensity envelope distributions at different distances z from the focus together with measured and
predicted contours for the pulse-front as well as measured values of pulse-front tilt and duration. Agreement between measured
and predicted values can be observed, from which we conclude successful verification of the analytic formulas derived in this
work.

The remaining differences between measured and predicted values originate from finite sampling of the intensity distribution
along the t-axis. The arrival time of the intensity maximum at some x can only be determined with an uncertainty about the
size of the time sampling step which results in an uncertainty on the pulse-front tilt angle. It is of the order of one degree or
less in our setup.

Note, since the pulse’s width in the focus is significantly smaller than its length, the visible envelope ellipse is not aligned
with the drawn contour of the pulse front. However, for each x the highest intensity is indeed on this contour which just
defines this contour as the pulse front. Further note, the difference in the analytically calculated absolute value of pulse-front
tilt angle between z = −zR and z = zR originates from the fact that the position where pulse-front tilt vanishes is slightly
behind the focus at z > 0.

Conclusions

We presented analytical expressions allowing to evaluate electric field, width, duration and tilt of dispersive, tightly focused,
short pulse, Gaussian lasers in the vicinity and far from their focus in time-space domain, which was not possible before. With
the help of these expressions we were able to link large pulse front tilts of several ten degrees, appearing within a few Rayleigh
lengths distance from the focus of a laser pulse featuring only weak angular dispersion, to be caused by the accompanying
spatial dispersion. Numerical evaluation of the tilt and duration of Gaussian pulses propagated in simulations verified the
predictions provided by the analytic expressions which proves their applicability.

The possibility of generating large pulse-front tilts in the vicinity of the laser’s focus with moderate to low pulse elongation
is thereby interesting on its own, as generating and utilizing pulses with large pulse-front tilts becomes simpler in “out-of-
focus” interaction geometries without the cost of large pulse elongation usually connected to large pulse-front tilt.

Moreover, the presented analytic expressions of the dispersion variation during propagation or of the full electric field can
be of general use to e. g. simply estimate pulse properties at any position along the beamline of a given laser system, or to
study the interaction of these pulses with other fields or matter in complex geometries and with correct phase contributions
analytically or in simulations.
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Figure 6: Distribution of the time-space domain intensity envelope along the transverse direction x and time t at different
distances z from the focus. Pulse parameters are equal to fig. 4 with ADin = 1 µrad/nm. All distributions are normalized to
the respective expected maximum value in the focus E(x = 0, z = 0, t = 0)2, cf. (6). Colored lines mark pulse front contours
as expected from analytic and numeric determination of pulse-front tilt angle, (18) and (27) respectively. In addition, the
duration of the field envelope is provided, which is obtained from the least square fit of a Gaussian curve to the 1D intensity
distribution along x = 0.
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A. Derivation of formulas

A.1. Definition of a Gaussian pulse’s electric field in frequency-space domain at input plane

Most generally in this scalar theory, the pulse’s electric field in spectral domain is written as

Ê(r⃗, Ω) = ÊA(r⃗, Ω)e−ıφ(r⃗,Ω) ,

where Ê is the spectral amplitude and φ the spectral phase of the pulse, Ω = 2πν the angular frequency and r⃗ the position considered.
The pulse’s frequency dependent spectral phase

φ =
Ω

c
e⃗Ω · r⃗

resembles a plane wave’s phase where e⃗Ω is the propagation direction of frequency Ω. The pulse’s central frequency Ω0 propagates along z. Assuming a pulse with
angular dispersion AD, every other frequency’s propagation direction encloses an angle θ(Ω) with the central frequency’s propagation direction, allowing to write

φ(Ω) =
Ω

c
[−x sin θ(Ω) + z cos θ(Ω)] .

Expanding this about Ω ≈ Ω0,

φ(Ω) ≈ φ(Ω0) +
dφ

dΩ

∣∣∣∣∣
Ω=Ω0

(Ω −Ω0) +
1

2

d2φ

dΩ2

∣∣∣∣∣∣
Ω=Ω0

(Ω −Ω0)
2 +

1

6

d3φ

dΩ3

∣∣∣∣∣∣
Ω=Ω0

(Ω −Ω0)
3 + . . .

requires evaluation of the derivatives

dφ

dΩ
=

1

c
[−x sin θ + z cos θ] +

Ω

c
[−x cos θ − z sin θ] θ′ (28)

d2φ

dΩ2
=

1

c
[−x cos θ − z sin θ] θ′ +

1

c
[−x cos θ − z sin θ] θ′ +

Ω

c
[x sin θ − z cos θ] θ′

2
+
Ω

c
[−x cos θ − z sin θ] θ′′ (29)

=
2

c
[−x cos θ − z sin θ] θ′ +

Ω

c
[x sin θ − z cos θ] θ′

2
+
Ω

c
[−x cos θ − z sin θ] θ′′ (30)

=
1

c
[−x cos θ − z sin θ] [2θ′ +Ωθ′′] +

Ω

c
[x sin θ − z cos θ] θ′

2 (31)

d3φ

dΩ3
=

1

c
[x sin θ − z cos θ]

[
2θ′

2
+Ωθ′θ′′

]
+

1

c
[−x cos θ − z sin θ] [2θ′′ + θ′′ +Ωθ′′′]

+
1

c
[x sin θ − z cos θ] θ′

2
+
Ω

c
[x cos θ + z sin θ] θ′

3
+
Ω

c
[x sin θ − z cos θ] 2θ′θ′′ (32)

=
1

c
[x sin θ − z cos θ]

[
2θ′

2
+Ωθ′θ′′ + θ′

2
+ 2Ωθ′θ′′

]
+

1

c
[−x cos θ − z sin θ] [3θ′′ +Ωθ′′′] +

Ω

c
[x cos θ + z sin θ] θ′

3 (33)

=
1

c
[x sin θ − z cos θ]

[
3θ′

2
+ 3Ωθ′θ′′

]
+

1

c
[−x cos θ − z sin θ]

[
3θ′′ +Ωθ′′′ −Ωθ′

3
]

(34)
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at Ω = Ω0.

φ(Ω0) =
z

c
Ω0 (35)

dφ

dΩ

∣∣∣∣∣
Ω=Ω0

=
z

c
− x

c
Ω0θ

′ (36)

d2φ

dΩ2

∣∣∣∣∣∣
Ω=Ω0

= −x
c
(2θ′ +Ω0θ

′′)− z

c
Ω0θ

′2 (37)

d3φ

dΩ3

∣∣∣∣∣∣
Ω=Ω0

= −z
c

(
3θ′

2
+ 3Ω0θ

′θ′′
)
− x

c

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)
, (38)

where θ′ = dθ
dΩ

∣∣∣
Ω=Ω0

now. In essence,

φ(Ω) ≈z
c
Ω0 +

(z
c
− x

c
Ω0θ

′
)
(Ω −Ω0)−

1

2

[z
c
Ω0θ

′2 +
x

c
(2θ′ +Ω0θ

′′)
]
(Ω −Ω0)

2 (39)

− 1

6

[z
c

(
3θ′

2
+ 3Ω0θ

′θ′′
)
+
x

c

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)]
(Ω −Ω0)

3 + . . . (40)

The spectral amplitude ÊA = ϵΩ(Ω)ϵx(x) of the pulse incorporates its Gaussian spectrum

ϵΩ(Ω) = e−
τ2
0
4 (Ω−Ω0)

2

,

where τ0 = τFWHM,I/
√
2 ln 2 represents the Fourier limited duration, respectively, and its Gaussian transverse envelope

ϵx(x) = e
− [x−x0(Ω)]2

w2
0 ,

where x0 and w0 represent a frequency’s spatial distribution center position and width, respectively.
In the input plane at z = 0, the pulse’s electric field is assumed to be

Ê(x, z = 0, Ω) = ϵΩ(Ω)e
− [x−x0(Ω)]2

w2
0 eı

w0
c [Ω0θ

′(Ω−Ω0)+
1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3] x

w0 (41)

= ϵΩ(Ω)e
− x0(Ω)2

w2
0 e

− x2

w2
0 e

2x0(Ω)
w0

x
w0

+ı
w0
c [Ω0θ

′(Ω−Ω0)+
1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3] x

w0 . (42)
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Using x′ = x/w0,

Ê(x = w0x
′, z = 0, Ω) = ϵΩ(Ω)e

− x0(Ω)2

w2
0 e−x′2

e
2x0(Ω)

w0
x′+ı

w0
c [Ω0θ

′(Ω−Ω0)+
1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3]x′

(43)

= ϵΩ(Ω)e−α1e−x′2
e(α2+ıα3)x

′
, (44)

where

α1 =
x0(Ω)2

w2
0

(45)

α2 =
2x0(Ω)

w0
= 2

√
α1 (46)

α3 =
w0

c

[
Ω0θ

′(Ω −Ω0) +
1

2
(2θ′ +Ω0θ

′′) (Ω −Ω0)
2 +

1

6

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)
(Ω −Ω0)

3
]
. (47)

A.2. Calculation of the propagated pulse’s electric field in frequency-space domain

Propagation of the pulse with the Rayleigh-Sommerfeld diffraction integral yields the field in a distance z from the focus

Ê(x, z,Ω) =

√
Ω

2πc

e−ı(Ω
c z−π

4 )
√
z

∞∫
−∞

Ê(ξ, z = 0, Ω)e−ı Ω
2cz (x−ξ)2 dξ (48)

(
ξ′ =

ξ

w0
⇒ dξ = w0dξ

′ ⇒
)
=

√
1

π

√
Ω

Ω0

√
Ω0w2

0

2cz
e−ı(Ω

c z−π
4 )

∞∫
−∞

Ê(w0ξ
′, z = 0, Ω)e

−ı Ω
Ω0

Ω0w2
0

2cz

(
x
w0

−ξ′
)2
dξ′ (49)

(
zR =

Ω0w
2
0

2c
⇒

)
=

√
1

π

√
Ω

Ω0

√
zR
z
e−ı(Ω

c z−π
4 )

∞∫
−∞

Ê(w0ξ
′, z = 0, Ω)e

−ı Ω
Ω0

zR
z

(
x2

w2
0

− 2x
w0

ξ′+ξ′2
)
dξ′ (50)

=

√
1

π

√
Ω

Ω0

zR
z
e−ı(Ω

c z−π
4 )e

−ı Ω
Ω0

zR
z

x2

w2
0

∞∫
−∞

Ê(w0ξ
′, z = 0, Ω)e

−ı Ω
Ω0

zR
z

(
ξ′2− 2x

w0
ξ′

)
dξ′ (51)

=

√
1

π

√
α4e

−ı(Ω
c z−π

4 )e
−ıα4

x2

w2
0

∞∫
−∞

Ê(w0ξ
′, z = 0, Ω)e−ı(α4ξ

′2−α5ξ
′) dξ′ (52)
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where

α4 =
Ω

Ω0

zR
z

(53)

α5 =
Ω

Ω0

zR
z

2x

w0
= α4

2x

w0
(54)

Insert the input field from above

Ê(x, z,Ω) =

√
1

π

√
α4e

−ı(Ω
c z−π

4 )e
−ıα4

x2

w2
0 ϵΩ(Ω)e−α1

∞∫
−∞

e−ξ′2e(α2+ıα3)ξ
′
e−ı(α4ξ

′2−α5ξ
′) dξ′ (55)

=

√
1

π

√
α4e

−ı(Ω
c z−π

4 )e
−ıα4

x2

w2
0 ϵΩ(Ω)e−α1

∞∫
−∞

e−(1+ıα4)ξ
′2
e[α2+ı(α3+α5)]ξ

′
dξ′ (56)

(
α6 = α3 + α5 = α3 + α4

2x

w0
⇒

)
=

√
Ω

Ω0

√
1

π

√
zR
z
e−ı(Ω

c z−π
4 )e

−ı Ω
Ω0

zR
z

x2

w2
0 ϵΩ(Ω)e−α1

∞∫
−∞

e−(1+ıα4)ξ
′2
e(α2+ıα6)ξ

′
dξ′ (57)

Compute the integral

=

√
1

π

√
α4e

−ı(Ω
c z−π

4 )e
−ıα4

x2

w2
0 ϵΩ(Ω)e−α1

√
π
e
− ı

4
(α2+ıα6)2

(−ı+α4)

√
1 + ıα4

cancel
√
π, rewrite the last denominator and move exp[ıπ/4] into it

=
√
α4e

−ıΩc ze
−ıα4

x2

w2
0 ϵΩ(Ω)e−α1e

− ı
4

(α2+ıα6)2

(−ı+α4)

[
e−ıπ/2 (1 + ıα4)

]−1/2
(58)

=
√
α4e

−ıΩc ze
−ıα4

x2

w2
0 ϵΩ(Ω)e−α1e

− ı
4

(α2+ıα6)2

(−ı+α4)

[
−ı− ı2α4

]−1/2
(59)

=
√
α4e

−ıΩc ze
−ıα4

x2

w2
0 ϵΩ(Ω)e−α1e

− ı
4

(α2+ıα6)2

(−ı+α4) [α4 − ı]
−1/2 (60)

=
√
α4e

−ıΩc ze
−ıα4

x2

w2
0 ϵΩ(Ω)e−α1e

− ı
4

(α2+ıα6)2

(−ı+α4)

[√
α2
4 + 1e−ı arctan 1

α4

]−1/2

(61)
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Cancel in amplitude

= α
1/2
4 e−ıΩc ze

−ıα4
x2

w2
0 ϵΩ(Ω)e−α1e

− ı
4

(α2+ıα6)2

(−ı+α4)

[
α2
4 + 1

]−1/4
eı

1
2 arctan 1

α4 (62)

= ϵΩ(Ω)

[
1 +

1

α2
4

]−1/4

e−ıΩc ze−α1e
− ı

4
(α2+ıα6)2

(−ı+α4) e
−ıα4

x2

w2
0 eı

1
2 arctan 1

α4 (63)

Insert relations for α2, α6, and α5

= ϵΩ(Ω)

[
1 +

1

α2
4

]−1/4

e−ıΩc ze−α1e
− ı

4

[2√
α1+ı(α3+α4

2x
w0

)]
2

(α4−ı) e
−ıα4

x2

w2
0 eı

1
2 arctan 1

α4 (64)
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Now uncrustify the middle exponential in order to retrieve a nice-to-read and interpretable form of the field.

e−α1e
− ı

4

[2√
α1+ı(α3+α4

2x
w0

)]
2

(α4−ı) e
−ıα4

x2

w2
0 (65)

= e−α1e
− ı

4

[2√
α1+ı2α4( α3

2α4
+ x

w0
)]

2

(α4−ı) e
−ıα4

x2

w2
0 (66)

= e−α1e
− ı

4

{2
√

α1+ı2α4[( α3
2α4

+ x
w0

−√
α1)+√

α1]}2

(α4−ı) e
−ıα4

x2

w2
0 (67)

= e−α1e
− ı

4

[2√
α1+ı2α4

√
α1+ı2α4( α3

2α4
+ x

w0
−√

α1)]
2

(α4−ı) e
−ıα4

x2

w2
0 (68)

= e−α1e
− ı

4

[2√
α1(1+ıα4)+ı2α4( α3

2α4
+ x

w0
−√

α1)]
2

(α4−ı) e
−ıα4

x2

w2
0 (69)

= e−α1e
− ı

4

[
4α1(1+ıα4)2−8

√
α1(α4−ı)α4( α3

2α4
+ x

w0
−√

α1)−4α2
4(

α3
2α4

+ x
w0

−√
α1)

2
]

(α4−ı) e
−ıα4

x2

w2
0 (70)

= e−α1e
− ı

4

[
−4α1(α4−ı)2−8

√
α1(α4−ı)α4( α3

2α4
+ x

w0
−√

α1)−4α2
4(

α3
2α4

+ x
w0

−√
α1)

2
]

(α4−ı) e
−ıα4

x2

w2
0 (71)

= e−α1eıα1(α4−ı)e
ı2

√
α1α4

(
α3
2α4

+ x
w0

−√
α1

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

x2

w2
0 (72)

= eıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

−√
α1

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

x2

w2
0 (73)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

x2

w2
0 (74)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

[(
α3
2α4

+ x
w0

−√
α1

)
−

(
α3
2α4

−√
α1

)]2
(75)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

[(
α3
2α4

+ x
w0

−√
α1

)2
−2

(
α3
2α4

+ x
w0

−√
α1

)(
α3
2α4

−√
α1

)
+

(
α3
2α4

−√
α1

)2]
(76)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
e
−ıα4

[(
−2

α3
2α4

−2 x
w0

+2
√
α1

)(
α3
2α4

−√
α1

)
+

(
α3
2α4

−√
α1

)2]
(77)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
e
−ıα4

[
−2

α3
2α4

−2 x
w0

+2
√
α1+

α3
2α4

−√
α1

](
α3
2α4

−√
α1

)
(78)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
e
−ıα4

[
−2 x

w0
−

(
α3
2α4

−√
α1

)](
α3
2α4

−√
α1

)
(79)
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= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
e
−ıα4

[
−2 x

w0

α3
2α4

+2 x
w0

√
α1−

(
α2
3

4α2
4

−2
α3
2α4

√
α1+α1

)]
(80)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
e
−ıα4

[
−2 x

w0

α3
2α4

+2 x
w0

√
α1−

α2
3

4α2
4

+2
α3
2α4

√
α1−α1

]
(81)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
e
−ıα4

[
−2 x

w0

α3
2α4

+2 x
w0

√
α1−

α2
3

4α2
4

+2
α3
2α4

√
α1−α1

]
(82)

= e−ıα1α4e
ı2

√
α1α4

(
α3
2α4

+ x
w0

)
e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
eı

x
w0

α3e
−ı2

√
α1α4

(
α3
2α4

+ x
w0

)
eı

α2
3

4α4 eıα4α1 (83)

= e
ıα2

4

( α3
2α4

+ x
w0

−√
α1)

2

(α4−ı) e
−ıα4

(
α3
2α4

+ x
w0

−√
α1

)2
eı

x
w0

α3eı
α2
3

4α4 (84)

= e

(
α3
2α4

+ x
w0

−√
α1

)2( ıα2
4

(α4−ı)
−ıα4

)
eı

x
w0

α3eı
α2
3

4α4 (85)

= e

(
α3
2α4

+ x
w0

−√
α1

)2( ıα2
4−ıα4(α4−ı)

(α4−ı)

)
eı

x
w0

α3eı
α2
3

4α4 (86)

= e

(
α3
2α4

+ x
w0

−√
α1

)2( ıα2
4−ıα2

4−α4
(α4−ı)

)
eı

x
w0

α3eı
α2
3

4α4 (87)

= e

(
α3
2α4

+ x
w0

−√
α1

)2(
− α4(α4+ı)

(α4−ı)(α4+ı)

)
eı

x
w0

α3eı
α2
3

4α4 (88)

= e
−

(
α3
2α4

+ x
w0

−√
α1

)2 (α2
4+ıα4)

(α2
4
+1) eı

x
w0

α3eı
α2
3

4α4 (89)

= e
−

(
α3
2α4

+ x
w0

−√
α1

)2( α2
4

(α2
4
+1)

+ı
α4

(α2
4
+1)

)
eı

x
w0

α3eı
α2
3

4α4 (90)

= e
−

(
α3
2α4

+ x
w0

−√
α1

)2(
1

(1+1/α2
4
)
+ı

α4
(α2

4
+1)

)
eı

x
w0

α3eı
α2
3

4α4 (91)

In conclusion, the propagating field in Fourier space can be written

Ê(x, z,Ω) = ϵΩ(Ω)

[
1 +

1

α2
4

]−1/4

e
−

(
α3
2α4

+ x
w0

− x0(Ω)
w0

)2[
1

(1+1/α2
4
)
+ı

α4
(1+α2

4
)

]
e−ıΩc zeıα3

x
w0 eı

α2
3

4α4 eı
1
2 arctan 1

α4 (92)

= ϵΩ(Ω)

[
1 +

1

α2
4

]−1/4

e
−

[
x−

(
x0(Ω)− c

Ω0w0
α3z

)]2[
1

w2
0
(1+1/α2

4
)
+ı Ω

2cz(1+α2
4
)

]
e−ıΩc zeıα3

x
w0 eı

α2
3

4α4 eı
1
2 arctan 1

α4 (93)
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where the second form allows to identify

w(z) = w0

√
1 +

z2

z2
R

(94)

R(z) = z

1 + z2R
z2

 (95)

and repeating here for completeness

α3 =
w0

c

[
Ω0θ

′(Ω −Ω0) +
1

2
(2θ′ +Ω0θ

′′) (Ω −Ω0)
2 +

1

6

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)
(Ω −Ω0)

3
]

(96)

α4 =
Ω

Ω0

zR
z

= Ω
w2

0

2cz
≈ zR

z
. (97)

A.3. Transformation of the propagated pulse’s electric field to time-space domain

The field in time-space domain is obtained by Fourier transforming the frequency domain field

E(x, z, t) =
1

2π

∫
Ê(x, z,Ω)eıΩtdΩ (98)

(Ω′ = (Ω −Ω0)τ0 ⇒) =
1

2π

eıΩ0t

τ0

∫
Ê(x, z,

1

τ0
Ω′ +Ω0)e

ıΩ′ t
τ0 dΩ′ (99)

In order to perform the Fourier transform, the exponents of the frequency domain field is rewritten in powers of (Ω −Ω0). In the following, we will keep only terms
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of order (Ω −Ω0)
3 or lower.

Ê(x, z,Ω) = e−
τ2
0
4 (Ω−Ω0)

2

1 + z2

z2
R

−1/4

× e
−

[
x− dx0

dΩ (Ω−Ω0)− 1
2

d2x0
dΩ2 (Ω−Ω0)

2− 1
6

d3x0
dΩ3 (Ω−Ω0)

3+[Ω0θ
′(Ω−Ω0)+

1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3] z

Ω0

]2[
1

w2 +ı
(Ω−Ω0)

2cR +ı
Ω0
2cR

]
× e−ı

(Ω−Ω0)
c ze−ı

Ω0
c zeı[Ω0θ

′(Ω−Ω0)+
1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3] xc (100)

× eı[Ω0θ
′(Ω−Ω0)+

1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3]

2 z
2Ω0c e

ı 12 arctan z
zR

=

1 + z2

z2
R

−1/4

e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−
τ2
0
4 (Ω−Ω0)

2

× e−ı zc (Ω−Ω0)

× e
−

[
x
w+ 1

w

(
Ω0θ

′ z
Ω0

− dx0
dΩ

)
(Ω−Ω0)+

1
2w

(
2θ′ z

Ω0
+Ω0θ

′′ z
Ω0

− d2x0
dΩ2

)
(Ω−Ω0)

2+ z
6wΩ0

(
3θ′′+Ω0θ

′′′−Ω0θ
′3− d3x0

dΩ3

)
(Ω−Ω0)

3
]2[

1+ı w2

2cR (Ω−Ω0)+ıΩ0
w2

2cR

]
× eı[Ω0θ

′(Ω−Ω0)+
1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3] xc

× eı[Ω0θ
′(Ω−Ω0)+

1
2 (2θ

′+Ω0θ
′′)(Ω−Ω0)

2+ 1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3)(Ω−Ω0)
3]

2 z
2Ω0c (101)

≈
1 + z2

z2
R

−1/4

e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−
τ2
0
4 (Ω−Ω0)

2

× e−ı( z
c−Ω0θ

′ x
c )(Ω−Ω0)

× e
−

[
x
w+ 1

w

(
Ω0θ

′ z
Ω0

− dx0
dΩ

)
(Ω−Ω0)+

1
2w

(
2θ′ z

Ω0
+Ω0θ

′′ z
Ω0

− d2x0
dΩ2

)
(Ω−Ω0)

2+ z
6wΩ0

(
3θ′′+Ω0θ

′′′−Ω0θ
′3− d3x0

dΩ3

)
(Ω−Ω0)

3
]2[

1+ı w2

2cR (Ω−Ω0)+ıΩ0
w2

2cR

]
× eı

1
2 (2θ

′+Ω0θ
′′) x

c (Ω−Ω0)
2

× eı
1
6 (3θ

′′+Ω0θ
′′′−Ω0θ

′3) x
c (Ω−Ω0)

3

× e
ı
{
[Ω0θ

′(Ω−Ω0)]
2
+Ω0θ

′(2θ′+Ω0θ
′′)(Ω−Ω0)

3
}

z
2Ω0c (102)
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=

1 + z2

z2
R

−1/4

e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−
τ2
0
4 (Ω−Ω0)

2

× e−ı( z
c−Ω0θ

′ x
c )(Ω−Ω0)

× e
−

[
x
w+ 1

w

(
Ω0θ

′ z
Ω0

− dx0
dΩ

)
(Ω−Ω0)+

1
2w

(
2θ′ z

Ω0
+Ω0θ

′′ z
Ω0

− d2x0
dΩ2

)
(Ω−Ω0)

2+ z
6wΩ0

(
3θ′′+Ω0θ

′′′−Ω0θ
′3− d3x0

dΩ3

)
(Ω−Ω0)

3
]2[

1+ı w2

2cR (Ω−Ω0)+ıΩ0
w2

2cR

]
× eı

1
2c [Ω0θ

′2z+(2θ′+Ω0θ
′′)x](Ω−Ω0)

2

× eı
1
2c [θ

′(2θ′+Ω0θ
′′)z+ 1

3 (3θ
′′+Ω0θ

′′′−Ω0θ
′3)x](Ω−Ω0)

3

(103)

=

1 + z2

z2
R

−1/4

e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−β1(Ω−Ω0)
2

× e−ıβ2(Ω−Ω0)

× e−[
x
w+β3(Ω−Ω0)+β4(Ω−Ω0)

2+δ1(Ω−Ω0)
3]

2
[1+ıβ5(Ω−Ω0)+ıΩ0β5]

× eıβ6(Ω−Ω0)
2

× eıδ2(Ω−Ω0)
3

(104)

where

β1 =
τ20
4

(105)

β2 =
z

c
−Ω0θ

′x

c
(106)

β3 =
1

w

(
Ω0θ

′ z

Ω0
− dx0
dΩ

)
(107)

β4 =
1

2w

(
2θ′

z

Ω0
+Ω0θ

′′ z

Ω0
− d2x0
dΩ2

)
(108)

β5 =
w2

2cR
(109)

β6 =
1

2c

[
Ω0θ

′2z + (2θ′ +Ω0θ
′′)x

]
(110)

δ1 =
z

6wΩ0

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3 − d3x0

dΩ3

)
(111)

δ2 =
1

2c

[
θ′ (2θ′ +Ω0θ

′′) z +
1

3

(
3θ′′ +Ω0θ

′′′ −Ω0θ
′3
)
x
]
. (112)
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If only first order dispersions are present, then

β1 =
τ20
4

(113)

β2 =
z

c
−Ω0θ

′x

c
(114)

β3 =
1

w

(
θ′z − dx0

dΩ

)
(115)

β4 =
θ′z

wΩ0
(116)

β5 =
w2

2cR
(117)

β6 =
1

2c

(
Ω0θ

′2z + 2θ′x
)

(118)

δ1 = − z

6w
θ′

3 (119)

δ2 =
1

2c

(
2θ′

2
z − 1

3
Ω0θ

′3x
)
. (120)

Proceeding with writing in powers

Ê(x, z,Ω) ≈
1 + z2

z2
R

−1/4

e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−β1(Ω−Ω0)
2

× e−ıβ2(Ω−Ω0)

× e
−

[
x2

w2 +2 x
wβ3(Ω−Ω0)+2 x

wβ4(Ω−Ω0)
2+β2

3(Ω−Ω0)
2+(2 x

w δ1+2β3β4)(Ω−Ω0)
3
]
[1+ıβ5(Ω−Ω0)+ıΩ0β5]

× eıβ6(Ω−Ω0)
2

× eıδ2(Ω−Ω0)
3

(121)

=

1 + z2

z2
R

−1/4

e−
x2

w2 e−ıΩ0
x2

2cR e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−2 x
wβ3(Ω−Ω0)e−ı(β2+

x2

w2 β5+2Ω0
x
wβ3β5)(Ω−Ω0)

× e−(β1+2 x
wβ4+β2

3)(Ω−Ω0)
2

e−ı(2 x
wβ3β5+2Ω0

x
wβ4β5+Ω0β

2
3β5−β6)(Ω−Ω0)

2

× e−2( x
w δ1+β3β4)(Ω−Ω0)

3

e−ı(2 x
wβ4β5+β2

3β5+2Ω0
x
wβ5δ1+2Ω0β3β4β5−δ2)(Ω−Ω0)

3

. (122)

Terms of order (Ω −Ω0)
3 are kept in the above expression, in order to read off the change of third order dispersion with propagation.

The following neglects these terms of order (Ω −Ω0)
3, as these cannot be analytically Fourier transformed. Of course, for a specific set of laser pulse parameters it
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must be verified that these terms are indeed negligible and do not significantly contribute to the laser pulse’s amplitude and phase in frequency-space domain. Limiting
expressions for estimating the validity of the approximation can be obtained by assuming that only frequencies Ω = Ω0 ± 4

τ0
contribute to the spectral amplitude. The

contribution of frequencies outside this bandwidth is close to zero due to the Gaussian spectrum ϵΩ(|Ω −Ω0| ≤ 4
τ0
) ≤ e−4. Replacing (Ω − Ω0)

3 → 64
τ3
0

in (122)
yields a limiting expression 128 [(x/w)δ1 + β3β4] /τ

3
0 ≪ 1 for the real part of the spectral amplitude and 11 · TOD(z)/τ30 ≪ 1 for the spectral phase after identifying

the term in parentheses as 1
6TOD(z).

The field to be integrated is

Ê(x, z,
1

τ0
Ω′ +Ω0)e

ıΩ′ t
τ0 =

1 + z2

z2
R

−1/4

e−
x2

w2 e−ıΩ0
x2

2cR e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−2 x
w

β3
τ0

Ω′
e
ı
(
t−β2− x2

w2 β5−2Ω0
x
wβ3β5

)
1
τ0

Ω′

× e
−

(
1+2 x

w
β4
β1

+
β2
3

β1

)
β1
τ2
0

Ω′2

× e
−ı(2 x

wβ3β5+2Ω0
x
wβ4β5+Ω0β

2
3β5−β6) 1

τ2
0

Ω′2

(123)

=

1 + z2

z2
R

−1/4

e−
x2

w2 e−ıΩ0
x2

2cR e−ı
Ω0
c ze

ı 12 arctan z
zR

× e
−

[(
1+2 x

w
β4
β1

+
β2
3

β1

)
1
4+ı(2 x

wβ3β5+2Ω0
x
wβ4β5+Ω0β

2
3β5−β6) 1

τ2
0

]
Ω′2

× e

[
−2 x

w
β3
τ0

+ı
(
t−β2− x2

w2 β5−2Ω0
x
wβ3β5

)
1
τ0

]
Ω′

(124)

=

1 + z2

z2
R

−1/4

e−
x2

w2 e−ıΩ0
x2

2cR e−ı
Ω0
c ze

ı 12 arctan z
zR

× e−
1
4 (γ1+ıγ2)Ω

′2
e(γ3+ıγ4)Ω

′
(125)

where

γ1 = 1 + 2
x

w

β4
β1

+
β2
3

β1
= 1 + 8

x

w

β4

τ20
+ 4

β2
3

τ20
(126)

γ2 =
(
2
x

w
β3β5 + 2Ω0

x

w
β4β5 +Ω0β

2
3β5 − β6

) 4

τ20
(127)

γ3 = −2
x

w

β3
τ0

(128)

γ4 =

(
t− β2 −

x2

w2
β5 − 2Ω0

x

w
β3β5

)
1

τ0
(129)
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Using the relation

+∞∫
−∞

e−
1
4 (γ1+ıγ2)x

2

e(γ3+ıγ4)xdx = 2
√
π

e
(γ3+ıγ4)2

(γ1+ıγ2)√
(γ1 + ıγ2)

, if γ1 > 0 . (130)

the Fourier transform of the frequency domain field is

E(x, z, t) =
1

2π

eıΩ0t

τ0

1 + z2

z2
R

−1/4

e−
x2

w2 e−ıΩ0
x2

2cR e−ı
Ω0
c ze

ı 12 arctan z
zR

∫
e−

1
4 (γ1+ıγ2)Ω

′2
e(γ3+ıγ4)Ω

′
dΩ′ (131)

=
1

2π

eıΩ0t

τ0

1 + z2

z2
R

−1/4

e−
x2

w2 e−ıΩ0
x2

2cR e−ı
Ω0
c ze

ı 12 arctan z
zR 2

√
π

e
(γ3+ıγ4)2

(γ1+ıγ2)√
(γ1 + ıγ2)

(132)

=
1

τ0
√
π

1 + z2

z2
R

−1/4

e
ıΩ0

(
t− z

c−
x2

2cR

)
e
ı 12 arctan z

zR e−
x2

w2 e
(γ3+ıγ4)2

(γ1+ıγ2) [γ1 + ıγ2]
−1/2 (133)

=
1

τ0
√
π

1 + z2

z2
R

−1/4

e
ıΩ0

(
t− z

c−
x2

2cR

)
e
ı 12 arctan z

zR e−
x2

w2 e
(γ3+ıγ4)2

(γ1+ıγ2)

[(
γ21 + γ22

)1/2
eı arctan

γ2
γ1

]−1/2

(134)

=
1

τ0
√
π

1 + z2

z2
R

 (γ21 + γ22
)−1/4

e
ıΩ0

(
t− z

c−
x2

2cR

)
e
ı 12

(
arctan z

zR
−arctan

γ2
γ1

)
e−

x2

w2 e
(γ3+ıγ4)2

(γ1+ıγ2) (135)
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Concentrating on the last two exponentials

e−
x2

w2 e
(γ3+ıγ4)2

(γ1+ıγ2) = e−
x2

w2 e
(γ3+ıγ4)2

(γ1+ıγ2)

(γ1−ıγ2)

(γ1−ıγ2) (136)

= e−
x2

w2 e
(γ2

3−γ2
4+ı2γ3γ4)(γ1−ıγ2)

(γ2
1
+γ2

2
) (137)

= e−
x2

w2 e
[γ2

3γ1−γ2
4γ1+2γ3γ4γ2+ı(2γ3γ4γ1−[γ2

3−γ2
4 ]γ2)]

(γ2
1
+γ2

2
) (138)

= e−
x2

w2 e

[γ2
3γ1−(γ2

4−2γ4
γ3γ2
γ1

)γ1+ı(2γ3γ4γ1−[γ2
3−γ2

4 ]γ2)]
(γ2

1
+γ2

2
) (139)

= e−
x2

w2 e

[
γ2
3γ1−

(
γ2
4−2γ4

γ3γ2
γ1

+( γ3γ2
γ1

)
2
−( γ3γ2

γ1
)
2

)
γ1+ı(2γ3γ4γ1−[γ2

3−γ2
4 ]γ2)

]
(γ2

1
+γ2

2
) (140)

= e−
x2

w2 e

γ2
3γ1+

(γ3γ2)2

γ1
−

(
γ2
4−2γ4

γ3γ2
γ1

+( γ3γ2
γ1

)
2

)
γ1+ı(2γ3γ4γ1−[γ2

3−γ2
4 ]γ2)


(γ2

1
+γ2

2
) (141)

= e−
x2

w2 e

γ2
3

γ1+
γ2
2

γ1

−(γ4− γ3γ2
γ1

)
2
γ1+ı(2γ3γ4γ1−[γ2

3−γ2
4 ]γ2)


(γ2

1
+γ2

2
) (142)

= e−
x2

w2 +
γ2
3

γ1 e
−
(γ4− γ3γ2

γ1
)
2

(γ1+γ2
2
/γ1) e

ı
[(γ2

4−γ2
3)γ2+2γ3γ4γ1]
(γ2

1
+γ2

2
) (143)

(insert γ3 in the left exponent) = e
− x2

w2

(
1−4

β2
3

τ2
0
γ1

)
e
−
(γ4− γ3γ2

γ1
)
2

(γ1+γ2
2
/γ1) e

ı
[(γ2

4−γ2
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(γ2

1
+γ2

2
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(insert γ1 in the left exponent) = e
− x2

w2γ1

(
1+8 x

w
β4
τ2
0

+4
β2
3

τ2
0

−4
β2
3
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2
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= e
− x2

w2γ1
(1+8 x

wβ4/τ
2
0 )e

−
(γ4− γ3γ2

γ1
)
2
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2
/γ1) e
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= e
− x2
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(1+8 x

wβ4/τ
2
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From this expression the width W and pulse duration T of the pulse in time domain can be identified

W 2 = w2
1 + 8 x

w
β4

τ2
0

+ 4
β2
3

τ2
0

1 + 8 x
w

β4

τ2
0

= w2
τ20 + 8 x

wβ4 + 4β2
3

τ20 + 8 x
wβ4

(148)

T 2 =

(
τ20 γ1 +

τ40 γ
2
2

τ20 γ1

)
(149)

= τ20 + 8
x

w
β4 + 4β2

3 + 16

[
2 x
wβ3β5 +

(
2 x
wβ4 + β2

3

)
Ω0β5 − β6

]2
τ20 + 8 x

wβ4 + 4β2
3

(150)

Although the width W can only be called a width if the second order term to spatial dispersion, β4, is neglected. However, it is not negligible in general.
For the solution of the inverse Fourier transform (131) to be valid, γ1 > 0 needs to be ensured where the term proportional to β4 can become problematic if z, x or

Ω0θ
′ are negative.

8
x

w

β4

τ20
= 8

x

w

1

2w

(
2θ′

z

Ω0
+Ω0θ

′′ z

Ω0
− d2x0
dΩ2

)
1

τ20
(151)

⇒ 8
x

w

1

w
θ′
z

Ω0

1

τ20
(152)

= 8
x

w

Ω0θ
′

Ω2
0τ

2
0

z

w
≲
z

w
(153)

=
z

w0

√
1 + z24c2

Ω2
0w

4
0

(154)

=
z/w0√

(Ω0w0/c)2 + 4(z/w0)2
(Ω0w0/c) (155)

If 4 z
w0

≪ Ω0

c w0 and Ω0

c w0 ≳ 1 , then z ≪ w0 and the considered term = z/w0 ≪ 1 meaning that the middle term is negligible with respect to the first term in γ1
(= 1). If 4 z

w0
≫ Ω0

c w0, then the considered term = Ω0

c w0 ≳ 1 meaning that the middle term could potentially become a problem. However, this also means z
w0

≫ 1
in which case β2

3 ≫ β4 as can be estimated for first order angular dispersion, i.e. θ′′ = dx0

dΩ = 0. Actually, β4 ≪ β2
3 if and only if z

w ≫ Ω0θ
′ which will not be true

very close to the focus z ≪ w if Ω0θ
′ ∼ 1. Therefore, this term should never become a problem.

Nevertheless, the value of β4 and β4/β2
3 is always verified in the numerical examples.

A.4. Extraction of the analytic relation for pulse front tilt

Pulse front tilt can be derived from the exponent of the longitudinal Gauss envelope. Thereto, it is rewritten as

τ0γ4 −
(τ0γ3)(τ

2
0 γ2)

τ20 γ1
= t− β2 −

x2

w2
β5 − 2Ω0

x

w
β3β5 −

(
−2 x

wβ3
)
4
(
−β6 + 2 x

wβ3β5 + (2 x
wβ4 + β2

3)Ω0β5
)

τ20 + 8 x
wβ4 + 4β2

3

=: t− t0
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where

t0 = β2 +
x2

w2
β5 + 2Ω0

x

w
β3β5 + 8

(
x
wβ3

) (
β6 − 2 x

wβ3β5 − (2 x
wβ4 + β2

3)Ω0β5
)

τ20 + 8 x
wβ4 + 4β2

3

(156)

and the tangent of the tilt angle is given by

tanψtilt =
d(ct0)

dx

∣∣∣∣∣∣
x=0

.

In the expression for t0, only β2 and β6 depend on x. That is, the derivatives of all other βk with respect to x vanish. The derivative of the last term evaluated at
x = 0 vanishes, too, except for the case where the derivative of its first factor occurs in the product rule.

tanψtilt = c
d

dx
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(159)
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