Continuous collective analysis of chemical reactions

14 May 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Modularized synthesis of small organic molecules is transforming our capacity to create medicines and materials. Disruptive acceleration of this molecule building strategy will broadly unlock its functional potential and requires integration of many new assembly chemistries. Recent advances in high-throughput chemistry stand to enable selection of appropriate chemical reaction conditions from the vast range of potential options. However, a disconnect between the rates of exploration and evaluation has limited progress. Here we report how intrinsic fragmentation features of chemical building blocks generalizes their analysis to yield sub-second readouts of reaction outcomes. Central to this advance was identifying that groups typically attached to boron, nitrogen, and oxygen atoms fragment in a specific and selective manner by mass spectrometry, enabling target agnostic analysis. Combining these features with acoustic droplet ejection mass spectrometry we could eliminate slow chromatographic steps and continuously evaluate chemical reaction outcomes in multiplexed formats. This allowed rapid assignment of reaction conditions to molecules derived from ultra-high throughput chemical synthesis experiments.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Contains protocols, procedures and NMR data.
Actions
Title
NMR Spectra
Description
1H, 13C and 19F NMR Spectra
Actions
Title
Supplementary Tabular Data
Description
Tabular Data relating to all figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.