Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-23T23:10:45.123Z Has data issue: false hasContentIssue false

Part III

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 379 - 484
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

21.7 References

Castellanos-Gomez, A., Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett., 6 (2015), 42804291.CrossRefGoogle ScholarPubMed
Keyes, R., The electrical properties of black phosphorus. Phys. Rev., 92 (1953), 580584.Google Scholar
Liu H, H., Du, Y., Deng, Y., and Peide, D. Y.. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 44 (2015), 27322743.Google Scholar
Xia, F., Wang, H., and Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5 (2014), 4458.Google Scholar
Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. Castro, and Özyilmaz, B., Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett., 104 (2014), 103106.Google Scholar
Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., and Zhang, Y., Black phosphorus field-effect transistors. Nat. Nanotechnol., 9 (2014), 372377Google Scholar
Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J. O., Narasimha-Acharya, K. L., Blanter, S. I., Groenendijk, D. J., Buscema, M., Steele, G. A., Alvarez, J. V., Zandbergen, H. W., Palacios, J. J., and van der Zant, H. S. J., Isolation and characterization of few-layer black phosphorus. 2D Materials, 1(2) (2014), 025001.Google Scholar
Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., and Ye, P. D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8 (2014), 40334041.Google Scholar
Rudenko, A. N. and Katsnelson, M. I.. Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus. Phys. Rev. B, 89 (2014), 201408.Google Scholar
Qiao, J., Kong, X., Hu, Z.-X., Yang, F., and Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5 (2014), 4475.Google Scholar
Low, T., Rodin, A. S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., and Neto, A. H. Castro, Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B, 90 (2014), 075434.CrossRefGoogle Scholar
Buscema, M., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S., and Castellanos-Gomez, A.. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 14 (2014), 33473352.Google Scholar
Low, T., Engel, M., Steiner, M., and Avouris, P.. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B., 90 (2014), 081408.Google Scholar
Engel, M., Steiner, M., and Avouris, P., Black phosphorus photodetector for multispectral: high-resolution imaging. Nano Lett., 14 (2014), 6414.Google Scholar
Yuan, H., Liu, X., Afshinmanesh, F., Li, W., Xu, G., Sun, J., Lian, B., Curto, A. G., Ye, G., Hikita, Y., and Shen, Z.. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol., 10 (2015), 707713.Google Scholar
Hahn, T. and Paufler, P., International Tables for Crystallography, Vol. A. Space-Group Symmetry. Dordrecht: D. Reidel Publishing Co. (1984).Google Scholar
Sengupta, A., Audiffred, M., Heine, T., and Niehaus, T. A., Stacking dependence of carrier transport properties in multilayered black phosphorous. J. Phys.: Condens. Mat., 28 (2016), 075001.Google Scholar
Fei, R. and Yang, L., Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett., 14 (2014), 28842889.CrossRefGoogle ScholarPubMed
Rodin, A. S., Carvalho, A., and Neto, A. H. Castro, Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112 (2014), 176801.CrossRefGoogle ScholarPubMed
Tran, V., Soklaski, R., Liang, Y., and Yang, L., Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89 (2014), 235319.Google Scholar
Çak1r, D., Sevik, C., and Peeters, F. M., Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Phys. Rev. B, 92 (2015), 165406.Google Scholar
Rudenko, A. N., Yuan, S., and Katsnelson, M. I., Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. Phys. Rev. B, 92 (2015), 085419.Google Scholar
Li, P. and Appelbaum, I., Electrons and holes in phosphorene. Phys. Rev. B, 90 (2014), 115439.CrossRefGoogle Scholar
Pereira, J. M. Jr. and Katsnelson, M. I., Landau levels of single layer and bilayer phosphorene. Phys. Rev. B, 92 (2015), 075437.Google Scholar
Cai, Y., Zhang, G., and Zhang, Y.-W., Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep., 4 (2014), 6677.CrossRefGoogle ScholarPubMed
Hu, Z.-X., Kong, X., Qiao, J., Normanda, B., and Ji, Wei, Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale, 8 (2016), 27402750.Google Scholar
Dai, J. and Zeng, X. C., Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett., 5 (2014), 12891293.CrossRefGoogle ScholarPubMed
Kittel, C.. Introduction to Solid State Physics. Wiley (2005).Google Scholar
Giuliani, G. and Vignale, G., Quantum Theory of the Electron Liquid. Cambridge: Cambridge University Press (2005).Google Scholar
Low, T., Roldán, R., Wang, H., Xia, F., Avouris, P., Moreno, L. M., and Guinea, F., Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett., 113 (2014), 106802.Google Scholar
Low, T. and Avouris, P., Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8 (2014), 10861101.Google Scholar
Grigorenko, A. N., Polini, M., and Novoselov, K. S., Graphene plasmonics. Nature Photonics, 6 (2012), 749758.CrossRefGoogle Scholar
Bludov, Y. V., Ferreira, A., Peres, N. M., and Vasilevskiy, M. I.. A primer on surface plasmon-polaritons in graphene. Int. J. Mod. Phys. B, 27 (2013), 1341001.Google Scholar
Koppens, F. H., Chang, D. E., and de Abajo, F. J. Garcia. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett., 11 (2011), 33703377.Google Scholar
Mikhailov, S. A. and Ziegler, K.. New electromagnetic mode in graphene. Phys. Rev. Lett., 99 (2007), 016803.Google Scholar
Mishchenko, A., Cao, Y., Yu, G. L., Woods, C. R., Gorbachev, R. V., Novoselov, K. S., Geim, A. K., and Levitov, L. S.. Nonlocal response and anamorphosis: the case of few-layer black phosphorus. Nano Lett., 15 (2015), 69916995.Google Scholar
Lv, H. Y., Lu, W. J., Shao, D. F., and Sun, Y. P., Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B, 90 (2014), 085433.Google Scholar
Manjanath, A., Samanta, A., Pandey, T., and Singh, A. K., Semiconductor to metal transition in bilayer phosphorene under normal compressive strain. Nanotechnology, 26 (2015), 075701.Google Scholar
Xiao, J., Long, M., Zhang, X., Ouyang, J., Xu, H., and Gao, Y., Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Sci. Rep., 5 (2015), 09961.Google Scholar
Berkelbach, T. C., Hybertsen, M. S., and Reichman, D. R.. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B, 88 (2013), 045318.CrossRefGoogle Scholar
Chernikov, A., Berkelbach, T. C., Hill, H. M., Rigosi, A., Li, Y., Aslan, O. B., Reichman, D. R., Hybertsen, M. S., and Heinz, T. F.. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 113 (2014), 076802.Google Scholar
Tran, V., Fei, R., and Yang, L.. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater., 2 (2015), 044014.CrossRefGoogle Scholar
Yang, J., Xu, R., Pei, J., Myint, Y. W., Wang, F., Wang, Z., Zhang, S., Yu, Z., and Lu, Y.. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 4 (2015), e312.CrossRefGoogle Scholar
Keldysh, L. V., Coulomb interaction in thin semiconductor and semimetal films. JETP Lett., 29 (1978), 658.Google Scholar
Cudazzo, P., Tokatly, I. V., and Rubio, A., Phys. Rev. B, 84 (2011), 085406.CrossRefGoogle Scholar
Rodin, A. S., Carvalho, A., and Neto, A. H. Castro. Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B, 90 (2014), 075429.Google Scholar
Chaves, A., Low, T., Avouris, P., Çakir, D., and Peeters, F. M., Anisotropic exciton Stark shift in black phosphorus. Phys. Rev. B, 91 (2015), 155311.Google Scholar
Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S., Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 43 (1991), 72317242.Google Scholar
Zhu, L., Zhang, G., and Li, B., Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B, 90 (2014), 214302.Google Scholar
Hu, Z.-X., Kong, X., Qiao, J., Normand, B., and Ji, W., Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. arXiv:1503.06735 [cond-mat.mtrl-sci] (2015).Google Scholar
Qin, G., Yan, Q.-B., Qin, Z., Yue, S.-Y., Hu, M., and Su, G., Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys, 17 (2015), 48544858.Google Scholar
Jain, A. and McGaughey, A. J. H., Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep., 5 (2015), 8501.Google Scholar
Fei, R. and Yang, L., Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett., 105 (2014), 083120.Google Scholar
Ong, Z.-Y., Cai, Y., Zhang, G., and Zhang, Y.-W., Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C., 118 (2014), 2527225277.Google Scholar
Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R. P., Lundstrom, M. S., Ye, P. D., and Xu, X., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6 (2015), 8572.Google Scholar
Jeong, C., Datta, S., and Lundstrom, M., Full dispersion versus Debye model evaluation of lattice thermal conductivity with a Landauer approach. J. Appl. Phys., 109 (2011), 073718.Google Scholar
Paul, A., Salamat, S., Jeong, C., Klimeck, G., and Lundstrom, M., An efficient algorithm to calculate intrinsic thermoelectric parameters based on Landauer approach. J. Comput. Electron., 11 (2012), 5666.Google Scholar
Conrad, K., Maassen, J., and Lundstrom, M., LanTraP (2014), https://nanohub.org/resources/lantrap.Google Scholar
Jeong, C., Datta, S., and Lundstrom, M., Thermal conductivity of bulk and thin-film silicon: A Landauer approach. J. Appl. Phys., 111 (2012), 093708.Google Scholar
Lee, S., Yang, F., Suh, J., Yang, S., Lee, Y., Li, G., Choe, H. S., Suslu, A., Chen, Y., Ko, C., Park, J., Liu, K., Li, J., Hippalgaonkar, K., Urban, J. J., Tongay, S., and Wu, J., Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat Commun., 6 (2015), 8573.Google Scholar
Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C., and Cahill, D. G., Anisotropic thermal conductivity of exfoliated black phosphorus. arXiv:1510.00051 [cond-mat.mtrl-sci](2015).Google Scholar
He, J., Kanatzidis, M. G., and Dravid, V. P., High performance bulk thermoelectrics via a panoscopic approach. Materials Today, 16 (2013), 166176.Google Scholar
Biwas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P., and Kanatzidis, M. G.. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489 (2012), 414418.Google Scholar
Jeong, C., Kim, R., Luisier, M., Datta, S., and Lundstrom, M., On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys., 107 (2010), 023707.Google Scholar
Maassen, J. and Lundstrom, M., A computational study of the thermoelectric performance of ultrathin Bi2Te3 films. Appl. Phys. Lett., 102 (2013), 093103.Google Scholar
Verma, D. and Dumitrică, T., Directional-dependent thickness and bending rigidity of phosphorene. Phys. Rev. B, 94 (2016), 121404.Google Scholar
Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., Jiang, P. H., Sun, L., and Shi, J., High thermoelectric performance can be achieved in black phosphorus. arXiv:1508.06834 [cond-mat.mtrl-sci] (2015).Google Scholar
Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., Shi, J., Tang, X. F., and Zhang, Q. J., Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep., 4 (2014), 6452.Google Scholar
Fei, R., Faghaninia, A., Soklaski, R., Yan, J.-A., Lo, C., and Yang, L., Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett., 14 (2014), 63936399.CrossRefGoogle ScholarPubMed
Qin, G., Yan, Q.-B., Qin, Z., Yue, S.-Y., Cui, H.-J., Zheng, Q.-R., and Su, G., Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep., 4 (2014), 6946.Google Scholar
Flores, E., Ares, J. R., Castellanos-Gomez, A., Barawi, M., Ferrer, I. J., and Sanchez, C., Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett., 106 (2015), 022102.Google Scholar
Hippalgaonkar, K., Wang, Y., Ye, Y., Zhu, H., Wang, Y., Moore, J., and Zhang, X., Record high thermoelectric powerfactor in single and few-layer MoS2. arXiv:1505.06779 [cond-mat.mtrl-sci] (2014).Google Scholar
Jo, I., Pettes, M. T., Ou, E., Wu, W., and Shi, L., Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett., 104 (2014), 201902.CrossRefGoogle Scholar
Jones, R. M., Mechanics of Composite Materials. 2nd edn. Boca Raton, FL : CRC Press (1998).Google Scholar
Zhang, D.-B. and Dumitricã, T., Elasticity of ideal single-walled carbon nanotubes via symmetry adapted tight-binding objective modeling. Appl. Phys. Lett., 93 (2008), 031919.Google Scholar
Zhang, D.-B., Akatyeva, E., and Dumitricã, T., Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett., 106 (2011), 255503.Google Scholar
Wei, Q. and Peng, X., Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett., 104 (2014), 251915.Google Scholar
Lee, C., Wei, X. D., Kysar, J. W., and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321 (2008), 385388.CrossRefGoogle ScholarPubMed
Castellanos-Gomez, A., Poot, M., Steele, G. A., van der Zant, H. S. J., Agrat, N., and Bollinger, G. R., Elastic properties of freely suspended MoS2 nanosheets. Adv. Mat., 24 (2012), 772775.Google Scholar
Jiang, J.-W. and Park, H. S., Negative Poisson’s ratio in single-layer black phosphorus. Nature Comm., 5 (2014), 47274731.Google Scholar
Yang, Y., Yu, H., York, D., Elstner, M., and Cui, Q., Description of phosphate hydrolysis reactions with the self-consistent-charge density-functional-tight-binding (SCC-DFTB) theory: 1. Parameterization. J. Chem. Theory Comput., 4 (2008), 20672084.Google Scholar
Kou, L., Ma, Y., Smith, S. C., and Chen, C., Anisotropic ripple deformation in phosphorene. J. Phys. Chem. Lett. 6 (2015), 15091513.CrossRefGoogle ScholarPubMed
Sha, Z.-D., Pei, Q.-X., Ding, Z., Jiang, J.-W., and Zhang, Y. W., Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D. 48 (2015), 395303.Google Scholar
Hopcroft, M. A., Nix, W. D., and Kenny, T. W., What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19 (2010), 229238.Google Scholar
Wang, Z. and Feng, P. X.-L., Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy. 2D Mater. 2 (2015), 021001.Google Scholar

22.4 References

Geim, A. and Novoselov, K. S. The rise of graphene. Nat. Mater., 6, 183–91, 2007.Google Scholar
Geim, A. Graphene: status and prospects. Science, 324, 1530–4, 2009.Google Scholar
Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. A roadmap for graphene. Nature, 490, 192200, 2012.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S. V., and Firsov, A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197200, 2005.Google Scholar
Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature, 438, 201–4, 2005.Google Scholar
Schwierz, F. Graphene transistors. Nat. Nanotechnol., 5, 487–96, 2010.Google Scholar
Wu, Y., Lin, Y.-M., Bol, A. A., Jenkins, K. A., Xia, F., Farmer, D. B., Zhu, Y., and Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, 74–8, 2011.Google Scholar
Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229–32, 2008.Google Scholar
Bai, J., Zhong, X., Jiang, S., Huang, Y., and Duan, X. Graphene nanomesh. Nat. Nanotechnol., 5, 190–4, 2010.Google Scholar
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., and Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 8, 1102–20, 2014.Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805, 2010.CrossRefGoogle ScholarPubMed
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147–50, 2011.Google Scholar
Liu, H., Si, M., Najmaei, S., Neal, A. T., Du, Y., Ajayan, P.M., Lou, J., and Ye, P. D. Statistically study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett., 13, 2640–6, 2013.Google Scholar
Splendiani, A., Sun, L., Zhang, Y. B., Li, T. S., Kim, J., Chim, C. Y., Galli, G., and Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271–5, 2010.Google Scholar
Yoon, Y., Ganapathi, K., and Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett., 11, 3768–73, 2011.Google Scholar
Du, Y., Liu, H., Neal, A. T., Si, M., and Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett., 34, 1328–30, 2013.CrossRefGoogle Scholar
Du, Y., Yang, L., Zhang, J., Liu, H., Majumdar, K., Kirsch, P. D., and Ye, P. D. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett., 35, 599601, 2014.Google Scholar
Du, Y., Yang, L., Liu, H., and Ye, P. D. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. APL Materials, 2, 092510, 2014.Google Scholar
Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., and Ye, P. D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033–41, 2014.Google Scholar
Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., and Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372–7, 2014.Google Scholar
Xia, F., Wang, H., and Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458, 2014.Google Scholar
Gomez, A. et al. Isolation and characterization of few-layer BP. 2D Mat., 1, 025001, 2014.Google Scholar
Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. C., and Özyilmaz, B. Electrical field effect in ultra-thin black phosphorus. Appl. Phys. Lett., 104, 103106, 2014.Google Scholar
Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc., 36, 1344–63, 1914.Google Scholar
Warschauer, D. Electrical and optical properties of crystalline BP. J. Appl. Phys., 34, 1853–60, 1963.Google Scholar
Nishii, T., Maruyama, Y., Inabe, T., and Shirotani, I. Synthesis and characterization of BP intercalation compounds. Synth. Met., 18, 559–64, 1987.Google Scholar
Narita, S. et al. Electrical and optical properties of BP single crystals. Physica, 117B–118B, 422–4, 1983.Google Scholar
Baba, M., Nakamura, Y., Takeda, Y., Shibata, K., Morita, A., Koike, Y., and Fukase, T. Hall effect and two-dimensional electron gas in BP. J. Phys.: Condens. Matter, 4, 1535–44, 1992.Google Scholar
Maruyama, Y., Suzuki, S., Kobayashi, K., and Tanuma, S. Synthesis and some properties of BP single crystals. Physica, 105B, 99102, 1981.Google Scholar
Morita, A. Semiconducting BP. Appl. Phys. A: Mater. Sci. Process., 39, 227–42, 1986.Google Scholar
Shirotani, I. Growth of large single crystals of BP at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst., 86, 203–11, 1982.Google Scholar
Akahama, Y., Endo, S., and Narita, S. Electrical properties of single-crystal BP under pressure. Physica B + C, 139–140, 397400, 1986.Google Scholar
Li, L., Ye, G., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X., and Zhang, Y. Quantum oscillation in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol., 10, 608–13, 2015.Google Scholar
Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R. K., and Lau, C. N. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mat., 2, 011001, 2015.Google Scholar
Chen, X., Wu, Y., Wu, Z., Xu, S., Wang, L., Han, Y., Ye, W., Han, T., He, Y., Cai, Y., and Wang, N. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6, 7315, 2015.Google Scholar
Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett., 15, 4914–21, 2015.Google Scholar
Doganov, R. A., O’Farrell, E. C. T., Koening, S. P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F., Watanabe, K., Taniguchi, T., Neto, A. H. C., and Özyilmaz, B. Transport properties of pristine few-layer black phosphorus by ver Waals passivation in an inert atmosphere. Nat. Commun., 6, 6647, 2014.Google Scholar
Du, Y., Liu, H., Deng, Y., and Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano, 8, 10035–42, 2014.Google Scholar
Deng, Y., Luo, Z., Conrad, N. J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P. M., Lou, J., Xu, X., and Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 8, 8292–9, 2014.Google Scholar
Haratipour, N., Robbins, M. C., and Koester, S. J. Black phosphorus p-MOSFET with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electron Device Lett., 36, 411–13, 2015.Google Scholar
Wang, H., Wang, X., Xia, F., Wang, L., Jiang, H., Xia, Q., Chin, M. L., Dubey, M., and Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett., 14, 6424–9, 2014.Google Scholar
Das, S., Demarteau, M., and Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano, 8, 11730–8, 2014.CrossRefGoogle ScholarPubMed
Bridgman, P. W. Further note on black phosphorus. J. Am. Chem. Soc., 38, 609–12, 1914.Google Scholar
Keyes, R. W. The electric properties of black phosphorus. Phys. Rev., 92, 580–4, 1953.Google Scholar
Shirotani, I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst., 86, 203–11, 1982.Google Scholar
Li, X., Deng, B., Wang, X., Chen, S., Vaisman, M., Karato, S.-I., Pan, G., Lee, M. L., Cha, J., Wang, H., and Xia, F. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mat., 2, 031002, 2015.Google Scholar
Krebs, H., Weitz, H., and Worms, K. H. Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors. Anorg. Allg. Chem., 280, 119–33, 1955.Google Scholar
Brown, A. and Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Cryst., 19, 684–5, 1965.Google Scholar
Maruyama, Y., Suzuki, S., Kobayashi, K., and Tanuma, S. Synthesis and some properties of black phosphorus single crystal. Physica B, 105, 99102, 1981.Google Scholar
Maruyama, Y., Inabe, T., Nishii, T., He, L., Dann, A. J., Shirotani, I., Fahy, M. R., and Willis, M. R. Electrical conductivity of black phosphorus–silicon compound. Synthetic Met., 29, 213–18, 1989.Google Scholar
Maruyama, Y., Inabe, T., He, L., and Oshima, K. Electrical conductivity of black phosphorous–germanium compound. Synthetic Met., 43, 4067–70, 1991.Google Scholar
Lange, S., Schmidt, P., and Nilges, T. Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem., 46, 4028–35, 2007.Google Scholar
Nilges, T., Kersting, M., and Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem., 181, 1707–11, 2008.Google Scholar
Köpf, M., Eckstein, N., Pfister, D., Grotz, C., Krüger, I., Greiwe, M., Hansen, T., Kohlmann, H., and Nilges, T. Access and in situ growth of phosphorene-precursor black phosphorus. J. Crystal Growth, 405, 610, 2014.Google Scholar
Yang, Z., Hao, J., Yuan, S., Lin, S., Yau, H. M., Dai, J., and Lau, S. P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 27, 3748–54, 2015.Google Scholar
Qiu, G., Nian, Q., Deng, Y., Jin, S., Charnas, A. R., Cheng, G., Ye, P. D. Synthesis of black phosphorus films by ultra-fast laser exfoliation. In preparation.Google Scholar
Liu, H., Du, Y., Deng, Y., and Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 44, 2732–43, 2015.Google Scholar
Takao, Y., Asahina, H., and Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn, 50, 3362–9, 1981.Google Scholar
Asahina, H., Shindo, K., and Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn, 51, 1192–9, 1982.Google Scholar
Goodman, N. B., Ley, L., and Bullett, D. W. Valence-band structures of phosphorus allotropes. Phys. Rev. B, 27, 7440–50, 1983.Google Scholar
Rodin, A. S., Carbalho, A., and Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112, 176801, 2014.Google Scholar
Favron, A, Gaufres, E., Fossard, F., Levesque, P. L., Heureux, A. P., Tang, N. Y.-W., Loiseau, A., Leonelli, R., Francoeur, R. S., and Martel, R. arXiv:1408.0345, 2014.Google Scholar
Wood, J. D., Wells, S. A., Jariwala, D., Chen, K. S., Cho, E., Sangwan, V. K., Liu, X., Lauhon, L. J., Marks, T. J., and Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 14, 6964–70, 2014.Google Scholar
Molle, A., Grazianetti, C., Chiappe, D., Cinquanta, E., Cianci, E., Tallarida, G., and Fanciulli, M. Hindering the oxidation of silicene with non-reactive encapsulation. Adv. Funct. Mater., 23, 4340–4, 2013.Google Scholar
Liu, H., Neal, A. T., Si, M., Du, Y., and Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electron Device Lett., 35, 795–7, 2014.Google Scholar
Wang, H., Wang, X., Xia, F., Wang, L., Jiang, H., Xia, Q., Chin, M. L., Dubey, M., and Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett., 14, 6424–9, 2014.Google Scholar
Luo, X., Rahbarihagh, Y., Hwang, J. C. M., Liu, H., Du, Y., and Ye, P. D. Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron Device Lett., 35, 1314–16, 2014.Google Scholar
Kim, J. S., Liu, Y., Zhu, W., Kim, S., Wu, D., Tao, L., Dodabalapur, A., Lai, K., and Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep., 5, 8989–95, 2015.Google Scholar
Li, L., Yang, F., Ye, G., Zhang, Z., Watanabe, K., Taniguchi, T., Wang, Y., Chen, X., and Zhang, Y. arXiv:1504.04731, 2015.Google Scholar
Li, L., Ye, G., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X., and Zhang, Y. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol., 10, 608–13, 2015.Google Scholar
Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R. K., and Lau, C. N. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mat. 2 011001, 2015.Google Scholar
Chen, X., Wu, Y., Wu, Z., Xu, S., Wang, L., Han, Y., Ye, W., Han, T., He, Y., Cai, Y., and Wang, N. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6, 7315, 2015.Google Scholar
Cao, Y., Mishchenko, A., Yu, G. L., Khestanova, E., Rooney, A. P., Prestat, E., Kretinin, A. V., Blake, P., Shalom, M. B., Woods, C., Chapman, J., Balakrishnan, G., Grigorieva, I. V., Novoselov, K. S., Piot, B. A., Potemski, M., Watanabe, K., Taniguchi, T., Haigh, S. J., Geim, A. K., and Gorbachev, R. V. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere, Nano Lett., 15, 4914–21, 2015.Google Scholar
Schroder, D. K. Semiconductor Material and Device Characterization. Wiley Interscience, 1990.Google Scholar
Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R., Lundstrom, M. S., Ye, P. D., and Xu, X. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6, 8572, 2015.Google Scholar
Wu, J., Mao, N., Xie, L., Xu, H., and Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., 127, 2396–9, 2015.Google Scholar
Feng, Y., Zhou, J., Du, Y., Miao, F., Duan, C. G., Wang, B., and Wan, X. Raman spectra of few-layer phosphorene studied from first-principles calculations. J. Phys.: Condens. Matter, 27, 185302, 2015.Google Scholar
Wang, X., Jones, A. M., Seyler, K. L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., and Xia, F. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 10, 517–21, 2015.Google Scholar
Li, L., Kim, J., Jin, K., Ye, G., Qiu, D. Y., Jornada, F., Shi, Z., Chen, L., Zhang, Z., Yang, F., Watanabe, K., Taniguchi, T., Ren, W., Louie, S. G., Chen, X., Zhang, Y., and Wang, F. Direct observation of layer-dependent electronic structure in phosphorene. Nat. Nanotechnol., 12, 2125, 2017.Google Scholar
Flores, E. et al. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett., 106, 022102, 2015.Google Scholar
Qin, G. et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys., 17, 4854–8, 2015.Google Scholar
Jain, A. and McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep., 5, 8501, 2015.Google Scholar
Ong, Z., Cai, Y., Zhang, G., and Zhang, Y. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C, 118, 25272, 2014.Google Scholar
Liu, T.-H. and Chang, C.-C. Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale 7, 10648–54, 2015.Google Scholar
Lee, S. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573, 2015.Google Scholar
Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C., and Cahill, D.G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater., 27, 8017–22, 2015.Google Scholar
Rodin, A. S., Carvalho, A., and Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112, 176801, 2014.Google Scholar
Fei, R. and Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett., 14, 28842889, 2014.Google Scholar
Peng, X., Wei, Q., and Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B, 90, 085402, 2014.Google Scholar
Caklr, D., Sahin, H., and Peeters, F. M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B, 90, 205421, 2014.Google Scholar
Wei, Q. and Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett., 104, 251915, 2014.Google Scholar
Kou, L., Ma, Y., Smith, S. C., and Chen, C. Anisotropic ripple deformation in phosphorene. The J. of Phys. Chem. Lett., 5, 1509–13, 2015.Google Scholar
Jiang, J. and Park, H. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun., 5, 4727, 2014.CrossRefGoogle ScholarPubMed
Fei, R. and Yang, L. Lattice vibration modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett., 105, 083120, 2014.Google Scholar
Wang, Y., Cong, C., Fei, R., Yang, W., Chen, Y., Cao, B., Yang, L., and Yu, T. Remarkable anistropic phono response in uniaxially strained few-layer black phosphorus. Nano Research, 8, 3944–53, 2015.Google Scholar
Du, Y., Maassen, J., Wu, W., Luo, Z., Xu, X., Ye, P.D., Auxetic black phosphorus: A 2D material with negative Poisson’s ratio. Nano Lett., 16, 6701–8, 2016.Google Scholar
Conley, H. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 13, 3626–30, 2013.Google Scholar
Ni, Z. et al. Uniaxial strain on graphene: Raman spectroscopy study and band gap opening. ACS Nano, 2, 2301–5, 2008.Google Scholar

23.5 References

Koenig, S P, Doganov, R A, Schmidt, H, Castro Neto, A H, and Özyilmaz, B 2014 Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104 103106.Google Scholar
Liu, H, Neal, A T, Zhu, Z, Luo, Z, Xu, X, Tománek, D, and Ye, P D 2014 Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8 4033–41.Google Scholar
Castellanos-Gomez, A, Vicarelli, L, Prada, E, Island, J O, Narasimha-Acharya, K L, Blanter, S I, Groenendijk, D J, Buscema, M, Steele, G A, Alvarez, J V, Zandbergen, H W, Palacios, J J, and van der Zant, H S J 2014 Isolation and characterization of few-layer black phosphorus. 2D Mater. 1 025001.Google Scholar
Buscema, M, Groenendijk, D J, Blanter, S I, Steele, G A, van der Zant, H S J, and Castellanos-Gomez, A 2014 Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14 3347–52.Google Scholar
Gillgren, N, Wickramaratne, D, Shi, Y, Espiritu, T, Yang, J, Hu, J, Wei, J, Liu, X, Mao, Z, Watanabe, K, Taniguchi, T, Bockrath, M, Barlas, Y, Lake, R K, and Ning Lau, C 2014 Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2 011001.Google Scholar
Liu, H, Du, Y, Deng, Y, and Ye, P D 2015 Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44 2732–43.Google Scholar
Ling, X, Wang, H, Huang, S, Xia, F, and Dresselhaus, M S 2015 The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112 201416581.Google Scholar
Kim, J, Baik, S S, Ryu, S H, Sohn, Y, Park, S, Park, B-G, Denlinger, J, Yi, Y, Choi, H J, and Kim, K S 2015 Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349 723–6.Google Scholar
Li, L, Ye, G J, Tran, V, Fei, R, Chen, G, Wang, H, Wang, J, Watanabe, K, Taniguchi, T, Yang, L, Chen, X H, and Zhang, Y 2015 Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10 608–13.Google Scholar
Chen, X, Wu, Y, Wu, Z, Han, Y, Xu, S, Wang, L, Ye, W, Han, T, He, Y, Cai, Y, and Wang, N 2015 High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6 7315.Google Scholar
Li, L, Yang, F, Ye, G J, Zhang, Z, Zhu, Z, Lou, W-K, Li, L, Watanabe, K, Taniguchi, T, Chang, K, Wang, Y, Chen, X H, and Zhang, Y 2015 Quantum Hall effect in black phosphorus two-dimensional electron gas. arXiv 1504.07155.Google Scholar
Yang, Z, Hao, J, Yuan, S, Lin, S, Yau, H M, Dai, J, and Lau, S P 2015 Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27 3748–54.Google Scholar
Du, Y, Liu, H, Deng, Y, and Ye, P D 2014 Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8 10035–42.Google Scholar
Wang, H, Wang, X, Xia, F, Wang, L, Jiang, H, Xia, Q, Chin, M L, Dubey, M, and Han, S 2014 Black phosphorus radio-frequency transistors. Nano Lett. 14 6424–9.Google Scholar
Na, J, Lee, Y T, Lim, J A, Hwang, D K, Kim, G-T, Choi, W K, and Song, Y-W 2014 Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8 11753–62.Google Scholar
Kamalakar, M V, Madhushankar, B N, Dankert, A, and Dash, S P 2014 Engineering Schottky barrier in black phosphorus field-effect devices for spintronic applications.Google Scholar
Island, J O, Steele, G A, Zant, H S J van der, and Castellanos-Gomez, A 2015 Environmental instability of few-layer black phosphorus. 2D Mater. 2 011002.Google Scholar
Avsar, A, Vera-Marun, I J, Tan, J Y, Watanabe, K, Taniguchi, T, Castro Neto, A H, and Özyilmaz, B 2015 Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9 4138–45.Google Scholar
Li, L, Yu, Y, Ye, G J, Ge, Q, Ou, X, Wu, H, Feng, D, Chen, X H, and Zhang, Y 2014 Black phosphorus field-effect transistors. Nat. Nanotechnol. 9 372–7.Google Scholar
Kamalakar, M V, Madhushankar, B N, Dankert, A, and Dash, S P 2015 Low schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small 11 2209–16.Google Scholar
Xia, F, Wang, H, and Jia, Y 2014 Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5 4458.Google Scholar
Zhu, W, Yogeesh, M N, Yang, S, Aldave, S H, Kim, J, Sonde, S S, Tao, L, Lu, N, and Akinwande, D 2015 Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15 1883–90.Google Scholar
Chaves, A, Low, T, Avouris, P, Çakır, D, and Peeters, F M 2015 Anisotropic exciton Stark shift in black phosphorus. Phys. Rev. B 91 155311.CrossRefGoogle Scholar
Wang, X, Jones, A M, Seyler, K L, Tran, V, Jia, Y, Zhao, H, Wang, H, Yang, L, Xu, X, and Xia, F 2015 Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10 517–21.Google Scholar
Schuster, R, Trinckauf, J, Knupfer, M, and Büchner, B 2015 Anisotropic particle–hole excitations in black phosphorus. Phys. Rev. Lett. 115 026404.Google Scholar
Tran, V, Soklaski, R, Liang, Y, and Yang, L 2014 Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89 235319.Google Scholar
Cakir, D, Sevik, C, and Peeters, F M 2015 Remarkable effect of stacking on the electronic and optical properties of few layer black phosphorus. arXiv 1506.04707Google Scholar
Keyes, R W 1953 The electrical properties of black phosphorus. Phys. Rev. 92 580–4.Google Scholar
Asahina, H and Morita, A 1984 Band structure and optical properties of black phosphorus. J. Phys. C Solid State Phys. 17 1839–52.Google Scholar
Morita, A 1986 Semiconducting black phosphorus. Appl. Phys. A Solids Surfaces 39 227–42.Google Scholar
Mak, K F, Lee, C, Hone, J, Shan, J, and Heinz, T F 2010 Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105 136805.Google Scholar
Splendiani, A, Sun, L, Zhang, Y, Li, T, Kim, J, Chim, C-Y, Galli, G, and Wang, F 2010 Emerging photoluminescence in monolayer MoS2. Nano Lett. 10 1271–5.Google Scholar
Kuc, A, Zibouche, N, and Heine, T 2011 Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83 14.Google Scholar
Rudenko, A N, and Katsnelson, M I 2014 Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89 201408.Google Scholar
Qiao, J, Kong, X, Hu, Z-X, Yang, F, and Ji, W 2014 High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5 4475.Google Scholar
Yang, J, Xu, R, Pei, J, Myint, Y W, Wang, F, Wang, Z, Zhang, S, Yu, Z, and Lu, Y 2015 Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4 e312.Google Scholar
Zhang, C D, Lian, J C, Yi, W, Jiang, Y H, Liu, L W, Hu, H, Xiao, W D, Du, S X, Sun, L L, and Gao, H J 2009 Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 113 18823–6.Google Scholar
Liang, L, Wang, J, Lin, W, Sumpter, B G, Meunier, V, and Pan, M 2014 Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14 6400–6.Google Scholar
Castellanos-Gomez, A 2015 Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6 4280–91Google Scholar
Liu, B, Köpf, M, Abbas, A N, Wang, X, Guo, Q, Jia, Y, Xia, F, Weihrich, R, Bachhuber, F, Pielnhofer, F, Wang, H, Dhall, R, Cronin, S B, Ge, M, Fang, X, Nilges, T and Zhou, C 2015 Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27 4423–9.Google Scholar
Chen, Z, Lin, Y-M, Rooks, M J, and Avouris, P 2007 Graphene nano-ribbon electronics. Phys. E Low-Dimensional Syst. Nanostructures 40 228–32.Google Scholar
Castro, E, Novoselov, K, Morozov, S, Peres, N, dos Santos, J, Nilsson, J, Guinea, F, Geim, A, and Neto, A 2007 Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99 216802.Google Scholar
Oostinga, J B, Heersche, H B, Liu, X, Morpurgo, A F, and Vandersypen, L M K 2008 Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7 151–7.Google Scholar
Wang, Q H, Kalantar-Zadeh, K, Kis, A, Coleman, J N, and Strano, M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7 699712Google Scholar
Lv, R, Robinson, J A, Schaak, R E, Sun, D, Sun, Y, Mallouk, T E, and Terrones, M 2015 Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48 5664.Google Scholar
Shockley, W and Queisser, H J 1961 Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32 510.Google Scholar
Soole, J B D and Schumacher, H 1991 InGaAs metal–semiconductor–metal photodetectors for long wavelength optical communications. IEEE J. Quantum Electron. 27 737–52.Google Scholar
Warschauer, D 1963 Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34 1853.Google Scholar
Sugai, S and Shirotani, I 1985 Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53 753–5.Google Scholar
Zhang, S, Yang, J, Xu, R, Wang, F, Li, W, Ghufran, M, Zhang, Y-W, Yu, Z, Zhang, G, Qin, Q and Lu, Y 2014 Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8 9590–6.Google Scholar
Low, T, Rodin, a S, Carvalho, A, Jiang, Y, Wang, H, Xia, F, and Neto, a H C 2014 Tunable optical properties of multilayers black phosphorus. Phys. Rev. B 075434 15.Google Scholar
Yuan, H, Liu, X, Afshinmanesh, F, Li, W, Xu, G, Sun, J, Lian, B, Curto, A G, Ye, G, Hikita, Y, Shen, Z, Zhang, S-C, Chen, X, Brongersma, M, Hwang, H Y, and Cui, Y 2015 Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10 707–13.Google Scholar
Tran, V and Yang, L 2014 Scaling laws for the band gap and optical response of phosphorene nanoribbons Phys. Rev. B 89 245407.Google Scholar
Bao, Q L, Zhang, H, Wang, B, Ni, Z H, Lim, C H Y X, Wang, Y, Tang, D Y, and Loh, K P 2011 Broadband graphene polarizer Nat. Photonics 5 411.Google Scholar
Ross, J S, Wu, S, Yu, H, Ghimire, N J, Jones, A M, Aivazian, G, Yan, J, Mandrus, D G, Xiao, D, Yao, W, and Xu, X 2013 Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4 1474.Google Scholar
Ross, J S, Klement, P, Jones, A M, Ghimire, N J, Yan, J, Mandrus, D G, Taniguchi, T, Watanabe, K, Kitamura, K, Yao, W, Cobden, D H, and Xu, X 2014 Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9 268–72.Google Scholar
Vogt, P, De Padova, P, Quaresima, C, Avila, J, Frantzeskakis, E, Asensio, M C, Resta, A, Ealet, B, and Le Lay, G 2012 Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108 155501.Google Scholar
Lopez-Sanchez, O, Lembke, D, Kayci, M, Radenovic, A, and Kis, A 2013 Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8 497501.Google Scholar
Koppens, F H L, Mueller, T, Avouris, P, Ferrari, A C, Vitiello, M S, and Polini, M 2014 Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9 780–93.Google Scholar
Tsai, D-S, Liu, K-K, Lien, D-H, Tsai, M-L, Kang, C-F, Lin, C-A, Li, L-J, and He, J-H 2013 Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7 3905–11.Google Scholar
Huo, N, Yang, S, Wei, Z, Li, S-S, Xia, J-B, and Li, J 2014 Photoresponsive and gas sensing field-effect transistors based on multilayer WS₂ nanoflakes. Sci. Rep. 4 5209.Google Scholar
Furchi, M M, Polyushkin, D K, Pospischil, A, and Mueller, T 2014 Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14 6165–70.Google Scholar
Buscema, M, Island, J O, Groenendijk, D J, Blanter, S I, Steele, G A, van der Zant, H S J, and Castellanos-Gomez, A 2015 Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44 3691–718.Google Scholar
Buscema, M, Groenendijk, D J, Steele, G A, van der Zant, H S J, and Castellanos-Gomez, A 2014 Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5 4651.Google Scholar
Low, T, Engel, M, Steiner, M, and Avouris, P 2014 Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90 081408.Google Scholar
Engel, M, Steiner, M, and Avouris, P 2014 Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14 6414–7.Google Scholar
Hong, T, Chamlagain, B, Lin, W, Chuang, H-J, Pan, M, Zhou, Z, and Xu, Y-Q 2014 Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6 8978–83.Google Scholar
Xia, F, Mueller, T, Lin, Y-M, Valdes-Garcia, A, and Avouris, P 2009 Ultrafast graphene photodetector. Nat. Nanotechnol. 4 839–43.Google Scholar
Mueller, T, Xia, F, and Avouris, P 2010 Graphene photodetectors for high-speed optical communications. Nat. Photonics 4 297301.Google Scholar
Gan, X, Shiue, R-J, Gao, Y, Meric, I, Heinz, T F, Shepard, K, Hone, J, Assefa, S, and Englund, D 2013 Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7 883–7.Google Scholar
Pospischil, A, Humer, M, Furchi, M M, Bachmann, D, Guider, R, Fromherz, T, and Mueller, T 2013 CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7 892–6.Google Scholar
Wang, X, Cheng, Z, Xu, K, Tsang, H K, and Xu, J-B 2013 High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7 888–91.Google Scholar
Groenendijk, D J, Buscema, M, Steele, G A, Michaelis de Vasconcellos, S, Bratschitsch, R, van der Zant, H S J, and Castellanos-Gomez, A 2014 Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14 5846–52.Google Scholar
Choi, W, Cho, M Y, Konar, A, Lee, J H, Cha, G-B, Hong, S C, Kim, S, Kim, J, Jena, D, Joo, J, and Kim, S 2012 High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24 5832–6.Google Scholar
Zhang, W, Huang, J-K, Chen, C-H, Chang, Y-H, Cheng, Y-J, and Li, L-J 2013 High-gain phototransistors based on a CVD MoS₂ monolayer. Adv. Mater. 25 3456–61.Google Scholar
Perea-López, N, Lin, Z, Pradhan, N R, Iñiguez-Rábago, A, Laura Elías, A, McCreary, A, Lou, J, Ajayan, P M, Terrones, H, Balicas, L, and Terrones, M 2014 CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1 011004.Google Scholar
Chang, Y-H, Zhang, W, Zhu, Y, Han, Y, Pu, J, Chang, J-K, Hsu, W-T, Huang, J-K, Hsu, C-L, Chiu, M-H, Takenobu, T, Li, H, Wu, C-I, Chang, W-H, Wee, A T S, and Li, L-J 2014 Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8 8582–90.Google Scholar
Xia, J, Huang, X, Liu, L-Z, Wang, M, Wang, L, Huang, B, Zhu, D-D, Li, J-J, Gu, C-Z, and Meng, X-M 2014 CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6 8949–55.Google Scholar
Abderrahmane, A, Ko, P J, Thu, T V, Ishizawa, S, Takamura, T, and Sandhu, A 2014 High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology 25 365202.Google Scholar
Perea-López, N, Elías, A L, Berkdemir, A, Castro-Beltran, A, Gutiérrez, H R, Feng, S, Lv, R, Hayashi, T, López-Urías, F, Ghosh, S, Muchharla, B, Talapatra, S, Terrones, H, and Terrones, M 2013 Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23 5511–17.Google Scholar
Zhang, W, Chiu, M-H, Chen, C-H, Chen, W, Li, L-J, and Wee, A T S 2014 Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8 8653–61Google Scholar
Lee, H S, Min, S-W, Chang, Y-G, Park, M K, Nam, T, Kim, H, Kim, J H, Ryu, S, and Im, S 2012 MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12 3695–700.Google Scholar
Yin, Z, Li, H, Li, H, Jiang, L, Shi, Y, Sun, Y, Lu, G, Zhang, Q, Chen, X, and Zhang, H 2012 Single-layer MoS2 phototransistors. ACS Nano 6 7480.Google Scholar
Youngblood, N, Chen, C, Koester, S J, and Li, M 2015 Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9 247–52.Google Scholar
Vivien, L, Polzer, A, Marris-Morini, D, Osmond, J, Hartmann, J M, Crozat, P, Cassan, E, Kopp, C, Zimmermann, H, and Fédéli, J M 2012 Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20 1096.Google Scholar
Assefa, S, Xia, F, and Vlasov, Y A 2010 Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464 80–4.Google Scholar
Rathi, S, Lee, I, Lim, D, Wang, J, Ochiai, Y, Aoki, N, Watanabe, K, Taniguchi, T, Lee, G-H, Yu, Y-J, Kim, P, and Kim, G-H 2015 Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices. Nano Lett. 15 5017–24.Google Scholar
Yu, W J, Liu, Y, Zhou, H, Yin, A, Li, Z, Huang, Y, and Duan, X 2013 Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol 8 952–8.Google Scholar
Britnell, L, Ribeiro, R M, Eckmann, A, Jalil, R, Belle, B D, Mishchenko, A, Kim, Y-J, Gorbachev, R V, Georgiou, T, Morozov, S V, Grigorenko, A N, Geim, A K, Casiraghi, C, Neto, A H C, and Novoselov, K S 2013 Strong light–matter interactions in heterostructures of atomically thin films. Science 340 1311–14.Google Scholar
Massicotte, M, Schmidt, P, Vialla, F, Schädler, K G, Reserbat-Plantey, A, Watanabe, K, Taniguchi, T, Tielrooij, K J, and Koppens, F H L 2015 Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 16.Google Scholar
Baugher, B W H, Churchill, H O H, Yang, Y, and Jarillo-Herrero, P 2014 Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9 262–7.Google Scholar
Pospischil, A, Furchi, M M, and Mueller, T 2014 Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9 257–61.Google Scholar
Deng, Y, Luo, Z, Conrad, N J, Liu, H, Gong, Y, Najmaei, S, Ajayan, P M, Lou, J, Xu, X, and Ye, P D 2014 Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8 8292–9.Google Scholar
Gehring, P, Urcuyo, R, Duong, D L, Burghard, M, and Kern, K 2015 Thin-layer black phosphorous/GaAs heterojunction p–n diodes. Appl. Phys. Lett. 106 233110.Google Scholar
Yao, Y, Hoffman, A J, and Gmachl, C F 2012 Mid-infrared quantum cascade lasers. Nat. Photonics 6 432–9.Google Scholar
Soref, R 2010 Mid-infrared photonics in silicon and germanium. Nat. Photonics 4 495–7.Google Scholar
Padilha, J E, Fazzio, A, and da Silva, A J R 2015 van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 114 066803.Google Scholar
Chen, P, Xiang, J, Yu, H, zhang, J, Xie, G, Wu, S, Lu, X, Wang, G, Zhao, J, Wen, F, Liu, Z, Yang, R, Shi, D, and Zhang, G 2015 Gate tunable MoS2–black phosphorus heterojunction devices. 2D Mater. 2 034009.Google Scholar
Yan, R, Fathipour, S, Han, Y, Song, B, Xiao, S, Li, M, Ma, N, Protasenko, V, Muller, D A, Jena, D, and Xing, H G 2015 Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15 5791–8.Google Scholar
Konstantatos, G, Badioli, M, Gaudreau, L, Osmond, J, Bernechea, M, Garcia de Arquer, F P, Gatti, F, and Koppens, F H L 2012 Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7 363–8.Google Scholar
Sundaram, R S, Engel, M, Lombardo, A, Krupke, R, Ferrari, A C, Avouris, P, and Steiner, M 2013 Electroluminescence in single layer MoS2. Nano Lett. 13 1416–21.Google Scholar
Jo, S, Ubrig, N, Berger, H, Kuzmenko, A B, and Morpurgo, A F 2014 Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14 2019–25.Google Scholar
Cheng, R, Li, D, Zhou, H, Wang, C, Yin, A, Jiang, S, Liu, Y, Chen, Y, Huang, Y, and Duan, X 2014 Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14 5590–7.Google Scholar
Köpf, M, Eckstein, N, Pfister, D, Grotz, C, Krüger, I, Greiwe, M, Hansen, T, Kohlmann, H, and Nilges, T 2014 Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 405 610.Google Scholar
Li, X, Deng, B, Wang, X, Chen, S, Vaisman, M, Karato, S, Pan, G, Larry Lee, M, Cha, J, Wang, H, and Xia, F 2015 Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2 031002.Google Scholar
Favron, A, Gaufrès, E, Fossard, F, Lévesque, P L, Phaneuf-L’Heureux, A-L, Tang, N Y-W, Loiseau, A, Leonelli, R, Francoeur, S, and Martel, R 2014 Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects. arXiv:1408.0345v2 [cond-mat.mes-hall].Google Scholar
Wood, J D, Wells, S A, Jariwala, D, Chen, K-S, Cho, E, Sangwan, V K, Liu, X, Lauhon, L J, Marks, T J, and Hersam, M C 2014 Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14 6964–70.Google Scholar
Doganov, R A, O’Farrell, E C T, Koenig, S P, Yeo, Y, Ziletti, A, Carvalho, A, Campbell, D K, Coker, D F, Watanabe, K, Taniguchi, T, Castro Neto, A H, and Özyilmaz, B 2015 Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6 6647.Google Scholar

24.9 References

Radisavljevic, B, Radnovic, A, Brivio, J, Giacometti, V and Kis, A, Nature Nanotechnol. 6 147 (2011).Google Scholar
Li, L, Yu, Y, Ye, G-J, Ge, Q, Ou, X, Wu, H, Feng, D, Chen, X-H and Zhang, Y, Nature Nanotechnol. 9 372 (2014).Google Scholar
Takeda, K and Shiraishi, K, Phys. Rev. B 50 14916 (1994).Google Scholar
Guzman-Verri, G and Lew Yan Voon, L, Phys. Rev. B 76 075131 (2007).Google Scholar
Cahangirov, S, Topsakal, M, Aktürk, E, Sahin, H and Ciraci, S, Phys. Rev. Lett. 102 236804 (2009).Google Scholar
Vogt, P, De Padova, P, Quaresima, C, Avila, J, Frantzeskakis, E, Asensio, M C, Resta, A, Ealet, B and Le Lay, G, Phys. Rev. Lett. 108 155501 (2012).Google Scholar
Le Lay, G, Surface Sci. 132 169 (1983).Google Scholar
Liu, Z-L, Wang, M-X, Xu, J-P, Ge, J-F, Le Lay, G, Vogt, P, Qian, D, Gao, C-L, Liu, C and Jia, J-F, New J. Phys. 16 075006 (2014).Google Scholar
Wu, K-H Chin. Phys. B 24 086802 (2015).Google Scholar
Liu, Z-L, Wang, M-X, Liu, C, Jia, J-F, Vogt, P, Quaresima, C, Ottaviani, C, Olivieri, B, De Padova, P and Le Lay, L, APL Mater. 2 092513 (2014).Google Scholar
Li, H, Fu, H-X and Meng, S, Chin. Phys. B 24 086102 (2015).Google Scholar
Le Lay, G, Salomon, E, De Padova, P, Layet, J-M and Angot, T, Aust. J. Chem. 67 1370 (2014).Google Scholar
Fleurence, A, Friedlein, R, Ozaki, T, Kawai, H, Wang, Y, and Yamada-Takamura, Y, Phys. Rev. Lett. 108 245501 (2012).Google Scholar
Meng, L, Wang, Y, Zhang, L, Du, S, Wu, R, Li, L, Zhang, Y, Li, G, Zhou, H, Hofer, W A and Gao H-J, Nano Lett. 13 685 (2013).Google Scholar
Le Lay, G, Cahangirov, S, Xian, L and Rubio, A, IEEE Conference Publications, International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 108 (2014) DOI: 10.1109/3M-NANO.2014.7057339.Google Scholar
Fukaya, Y, Mochizuki, I, Maekawa, M, Wada, K, Hyodo, T, Matsuda, I and Kawasuso, A, Phys. Rev. B 88 205413 (2013).Google Scholar
Kawahara, K, Shirasawa, T, Arafune, R, Lin, C-L, Takahashi, T, Kawai, M and Takagi, N, Surface Sci. 623 25 (2014).Google Scholar
Resta, A, Leoni, T, Barth, C, Ranguis, A, Becker, C, Bruhn, T, Vogt, P and Le Lay, G, Sci. Rep. 3 2399 (2013).Google Scholar
Lin, C-L, Arafune, R, Kawai, M and Takagi, N, Chin. Phys. B 24 087307 (2015).Google Scholar
Guo, Z X, Furuya, S, Iwata, J I and Oshiyama A, Phys. Rev. B 87 235435 (2013).Google Scholar
Huang, L-F, Gong, P-L and Zeng, Z, Phys. Rev. B 91 205433 (2015).Google Scholar
Arafune, R, Lin, C-L, Kawahara, K, Tsukahara, N, Minamitani, E, Kim, Y, Takagi, N and Kawai, M, Surface Sci. 608 297 (2013).Google Scholar
Lalmi, B, Oughaddou, H, Enriquez, H, Kara, A, Vizzini, S, Ealet, B and Aufray, A, Appl. Phys. Lett. 97 223109 (2010).Google Scholar
Le Lay, G, De Padova, P, Resta, A, Bruhn, T and Vogt, P, J. Phys. D: Appl. Phys. 45 392001 (2012).Google Scholar
Hoffmann, R, Angew. Chem. Int. Ed. 52 93 (2013).Google Scholar
Jamgotchian, H, Colignon, Y, Hamzaoui, N, Ealet, B, Hoarau, J Y, Aufray B and Bibérian J P, J. Phys.: Condens. Matter 24 172001 (2012).Google Scholar
Moras, P, Mentes, T O, Sheverdyaeva, P M, Locatelli, A, Carbone C, J. Phys.: Condens. Matter 26 185001 (2014).Google Scholar
Acun, A, Poelsema, B, Zandvliet, H J W and van Gastel, R, Appl. Phys. Lett. 103 263119 (2013).Google Scholar
Mannix, A J, Kiraly, B, Fisher, B L, Hersam, M C and Guisinger, N P, ACS Nano 8 7538 (2014).Google Scholar
Rahman M, S, Nakagawa, T, and Mizuno, S, Jpn. J. Appl. Phys. 54 015502 (2015).Google Scholar
Drummond, N D, Zolyomi, V, Fal’ko, V I, Phys. Rev. B 85 075423 (2012).Google Scholar
Liu, C C, Feng, W and Yao, Y G, Phys. Rev. Lett. 107 076802 (2011).Google Scholar
Ezawa, M, New J. Phys. 14 033003 (2012).Google Scholar
Kou, L, Ma, Y, Yan, B, Tan, X, Chen, C and Smith, S C, ACS AppL. Mater. Interfaces 7 19226 (2015).Google Scholar
Avila, J, De Padova, P, Cho, S, Colambo, I, Lorcy, S, Quaresima, C, Vogt, P, Resta, A, Le Lay, G and Asensio, M C, J. Phys.: Condens. Matter 25 (2013) 262001.Google Scholar
Huang, S, Kang, W and Yang, L, Appl. Phys. Lett. 102 133106 (2013).Google Scholar
Houssa, H, Dimoulas, A and Molle, A, J. Phys.: Condens. Matter 27 253002 (2015).Google Scholar
Cahangirov, S, Audiffred, M, Tang, P, Iacomino, A, Duan, W, Gabriel Merino, G and Rubio, A, Phys. Rev. B 88 035432 (2013).Google Scholar
Lin, C L, Arafune, R, Kawahara, K, Kanno, M, Tsukahara, N, Minamitani, E, Kim, Y, Kawai, M and Takagi, N, Phys. Rev. Lett. 110 076801 (2013).Google Scholar
Ishida, H, Hamamoto, Y, Morikawa, Y, Minamitani, E, Arafune, R and Takagi, N, New J. Phys. 17 015013 (2015).Google Scholar
Yu, W-Z, Yan, J-A and Gao, S-P, Nanoscale Res. Lett. 10 351 (2015).Google Scholar
Qiu, J, Fu, H, Xu, Y, Oreshkin, A I, Shao, T, Li, H, Meng, S, Chen, L, and Wu, K, Phys. Rev. Lett. 114 126101 (2015).Google Scholar
Beato-Medina, D, Salomon, E, Le Lay, G and Angot, T, J. Electron Spectrosc. Relat. Phenom. November 2016, DOI: 10.1016/j.elspec.2016.11.002.Google Scholar
Vogt, P, Capiod, P, Berthe, M, Resta, A, De Padova, P, Bruhn, T, Le Lay, G and Grandidier, B, Appl. Phys. Lett. 104 021602 (2014).Google Scholar
Salomon, E, El Ajjouri, R, Le Lay, G. and Angot, T, J. Phys.: Condens. Matter 26 185003 (2014).Google Scholar
Feng, B, Ding, Z, Meng, S, Yao, Y, He, X, Cheng, P, Chen, L and Wu, K, Nano Lett. 12 3507 (2012).Google Scholar
De Padova, P, Avila, J, Resta, A, Razado-Colambo, I, Quaresima, C, Ottaviani, C, Olivieri, B, Bruhn, T, Vogt, P, Asensio, M C and Le Lay, G, J. Phys.: Condens. Matter 25 382202 (2013).Google Scholar
De Padova, P, Ottaviani, C, Quaresima, C, Olivieri, B, Imperatori, P, Salomon, E, Angot, T, Quagliano, L, Romano, C, Vona, A, Muniz-Miranda, M, Generosi, A, Paci, B and Le Lay, G, 2D Mater. 1 021003 (2014).Google Scholar
Zhuang, J, Xu, X, Du, Y, Wu, K, Chen, L, Hao, W, Wang, J, Yeoh, W K, Wang, X, and Dou, S X, Phys. Rev. B 91, 161409(R) (2015).Google Scholar
Chen, L, Li, H, Feng, B, Ding, Z, Qiu, J, Cheng, P, Wu, K, and Meng, S, Phys. Rev. Lett. 110 085504 (2013).Google Scholar
Borensztein, Y, Curcella, A, Royer, S and Prévot, G, Phys. Rev. B 92 155497 (2015).Google Scholar
Chen, J, Du, Y, Li, Z, Li, W, Feng, B, Qiu, J, Cheng, P, Dou, SX, Chen, L and Wu, K, Sci. Rep. 5 13590 (2015).Google Scholar
Fu, H, Chen, L, Chen, J, Qiu, J, Ding, Z, Zhang, J, Wu, K, Li, H and Meng, S, Nanoscale 7 15880 (2015).Google Scholar
Zhang, L-D, Yang, F and Yao, Y, Phys. Rev. B 92 104504 (2015).Google Scholar
Chen, L, Feng, B and Wu, K, Appl. Phys. Lett. 102 081602 (2013).Google Scholar
Dávila, M E, Xian, L, Cahangirov, S, Rubio, A and Le Lay, G, New J. Phys. 16 095002 (2014).Google Scholar
Derivaz, M, Dentel, D, Stephan, R, Hanf, M-C, Mehdaoui, A, Sonnet, P and Pirri, C, Nano Lett. 15 2510 (2015).Google Scholar
Li, L, Lu, S-Z, Pan, J, Qin, Z, Wang, Y-Q, Wang, Y, Cao, G, Du, S and Gao, H-J, Adv. Mater. 26 4820 (2014).Google Scholar
Švec, M, Hapala, P, M. Ondráček, M, Merino, P, Blanco-Rey, M, Mutombo, P, M. Vondráček, M, Polyak, Y, Cháb, V, Martín Gago, J A and Jelínek, P, Phys. Rev. B 89 201412(R) (2014).Google Scholar
Bampoulis, P, Zhang, L, Safaei, A, van Gastel, R, Poelsema, B, and Zandvliet, H J W, J. Phys.: Condens. Matter 26 442001 (2014).Google Scholar
Acun, A, Zhang, L, Bampoulis, P, Farmanbar, M, van Houselt, A, Rudenko, A N, Lingenfelder, M, Brocks, G, Poelsema, b, Katsnelson, M I and Zandvliet, H J W, J. Phys.: Condens. Matter. 27 (44) (2015).Google Scholar
Zhang, L, Bampoulis, P, van Houselt, A and Zandvliet, H J W, Appl. Phys. Lett. 107 111605 (2015).Google Scholar
Ye, X-S, Shao, Z-G, Zhao, H, Yang, L. and Wang, C-L, RSC Adv. 4, 21216 (2014).Google Scholar
Liu, C-C, Jiang, H and Yao, Y, Phys. Rev. B 84 195430 (2011).Google Scholar
Ezawa, M, J. Supercond. Nov. Magn. 28 1249 (2015).Google Scholar
Dávila, M E and Le Lay, G, Sci. Rep. 6 20714 (2016).Google Scholar
Zhu, F-F, Chen, W-J, Xu, Y, Gao, C-L, Guan, D-D, Liu, C-H, Qian, D, Zhang, S-C and Jia, J-F, Nature Materials 14 1020 (2015).Google Scholar
Fang, Y, Huang, Z-Q, Hsu, C-H, Li, X, Xu, Y, Zhou, Y, Wu, S, Chuang, F-C and Zhu, Z-Z, Sci. Rep. 5 14196 (2015).Google Scholar

25.7 References

Kresse, G, Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science. 1996 July, 6(1): 1550.Google Scholar
Heyd, J, Scuseria, GE, Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. The Journal of Chemical Physics. 2006 June 7, 124(21): 219906.Google Scholar
Shishkin, M, Kresse, G. Self-consistent GW calculations for semiconductors and insulators. Physical Review B. 2007 June 4, 75(23): 235102.Google Scholar
Takeda, K, Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B. 1994 November 15, 50(20): 14916–22.Google Scholar
Durgun, E, Tongay, S, Ciraci, S. Silicon and III–V compound nanotubes: Structural and electronic properties. Physical Review B. 2005 August 12, 72(7): 075420.Google Scholar
Cahangirov, S, Topsakal, M, Aktürk, E, Şahin, H, Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Physical Review Letters. 2009 June 12, 102(23): 236804.Google Scholar
Cahangirov, S, Topsakal, M, Ciraci, S. Armchair nanoribbons of silicon and germanium honeycomb structures. Physical Review B. 2010 May 25, 81(19): 195120.Google Scholar
Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New Journal of Physics. 2012 March 1, 14(3): 033003.Google Scholar
Vogt, P, De Padova, P, Quaresima, C, Avila, J, Frantzeskakis, E, Asensio, MC, et al. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Physical Review Letters. 2012 April 12, 108(15): 155501.Google Scholar
Cahangirov, S, Audiffred, M, Tang, P, Iacomino, A, Duan, W, Merino, G, et al. Electronic structure of silicene on Ag(111): Strong hybridization effects. Physical Review B. 2013 July 18, 88(3): 035432.Google Scholar
Feng, B, Ding, Z, Meng, S, Yao, Y, He, X, Cheng, P, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nanoletters. 2012 June 4, 12: 3507–11.Google Scholar
Chen, L, Liu, C-C, Feng, B, He, X, Cheng, P, Ding, Z, et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Physical Review Letters. 2012 August 3, 109(5): 056804.Google Scholar
Cahangirov, S, Özçelik, VO, Xian, L, Avila, J, Cho, S, Asensio, MC, et al. Atomic structure of the 3 × 3 phase of silicene on Ag(111). Physical Review B. 2014 July 28. 90(3): 035448.Google Scholar
Kaltsas, D, Tsetseris, L. Stability and electronic properties of ultrathin films of silicon and germanium. Physical Chemistry Chemical Physics. 2013, 15(24): 9710–15.Google Scholar
Özçelik, VO, Ciraci, S. Local reconstructions of silicene induced by adatoms. The Journal of Physical Chemistry C. 2013 December 2, 117: 26305–15.Google Scholar
Vogt, P, Capiod, P, Berthe, M, Resta, A, De Padova, P, Bruhn, T, et al. Synthesis and electrical conductivity of multilayer silicene. Applied Physics Letters. 2014 January 13, 104(2): 021602.Google Scholar
Cahangirov, S, Özçelik, VO, Rubio, A, Ciraci, S. Silicite: The layered allotrope of silicon. Physical Review B. 2014 August 22, 90(8): 085426.Google Scholar
De Padova, P, Ottaviani, C, Quaresima, C, Olivieri, B. 24 h stability of thick multilayer silicene in air. 2D Materials. 2014, 1: 021003.Google Scholar
Tao, L, Cinquanta, E, Chiappe, D, Grazianetti, C, Fanciulli, M, Dubey, M, et al. Silicene field-effect transistors operating at room temperature. Nature Nanotechnology. 2015 March 1;10(3):227–31.Google Scholar
Dávila, ME, Xian, L, Cahangirov, S, Rubio, A, Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics. 2014 September 1, 16(9): 095002.Google Scholar
Özçelik, VO, Kecik, D, Durgun, E, Ciraci, S. Adsorption of group IV elements on graphene, silicene, germanene, and stanene: Dumbbell formation. The Journal of Physical Chemistry C. 2014 December 19. 119: 845–53.Google Scholar
Derivaz, M, Dentel, D, Stephan, R, Hanf, M-C, Mehdaoui, A, Sonnet, P, et al. Continuous germanene layer on Al(111). Nanoletters. 2015 March 30, 15: 2510–16.Google Scholar
Zhu, F-F, Chen, W-J, Xu, Y, Gao, C-L, Guan, D-D, Liu, C-H, et al. Epitaxial growth of two-dimensional stanene. Nature Materials. 2015 October 1, 14(10): 1020–5.Google Scholar
Bekaroglu, E, Topsakal, M, Cahangirov, S, Ciraci, S. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Physical Review B. 2010 February 24, 81(7): 075433.Google Scholar
Shaikhutdinov, S, Freund, HJ. Ultrathin silica films on metals: The long and winding road to understanding the atomic structure. Advanced Materials. 2013 January 4, 25(1): 4967.Google Scholar
Özçelik, VO, Cahangirov, S, Ciraci, S. Stable single-layer honeycomblike structure of silica. Physical Review Letters. 2014 June 20, 112(24): 246803.Google Scholar
Şahin, H, Cahangirov, S, Topsakal, M, Bekaroglu, E, Aktürk, E, Senger, RT, et al. Monolayer honeycomb structures of group-IV elements and III–V binary compounds: First-principles calculations. Physical Review B. 2009 October 28, 80(15): 155453.Google Scholar
Yang, B, Boscoboinik, JA, Yu, X, Shaikhutdinov, S, Freund, HJ. Patterned defect structures predicted for graphene are observed on single-layer silica films. Nanoletters. 2013 August 14, 13: 4422–7.Google Scholar
Özçelik, VO, Durgun, E, Ciraci, S. Modulation of electronic properties in laterally and commensurately repeating graphene and boron nitride composite nanostructures. The Journal of Physical Chemistry C. 2015 June 2, 119: 13248–56.Google Scholar
Tusche, C, Meyerheim, HL, Kirschner, J. Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets. Physical Review Letters. 2007 July 13, 99(2): 026102.Google Scholar
Topsakal, M, Cahangirov, S, Bekaroglu, E, Ciraci, S. First-principles study of zinc oxide honeycomb structures. Physical Review B. 2009 December 11, 80(23): 235119.Google Scholar
Özçelik, VO, Ciraci, S. Size dependence in the stabilities and electronic properties of α-graphyne and its boron nitride analogue. The Journal of Physical Chemistry C. 2013 January 23, 117: 2175–82.Google Scholar
Li, L, Yu, Y, Ye, GJ, Ge, Q, Ou, X, Wu, H, et al. Black phosphorus field-effect transistors. Nature Nanotechnology. 2014 May 1, 9(5): 372–7.Google Scholar
Zhu, Z, Tománek, D. Semiconducting layered blue phosphorus: A computational study. Physical Review Letters. 2014 May 1, 112(17): 176802.Google Scholar
Aktürk, , Özçelik, VO, Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Physical Review B. 2015 June 25, 91(23): 235446.Google Scholar
Özçelik, VO, Aktürk, , Durgun, E, Ciraci, S. Prediction of a two-dimensional crystalline structure of nitrogen atoms. Physical Review B. 2015 September 15, 92(12): 125420.Google Scholar
Ataca, C, Şahin, H, Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. The Journal of Physical Chemistry C. 2012 April 16, 116: 8983–99.Google Scholar
Mak, KF, Lee, C, Hone, J, Shan, J, Heinz, TF. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters. 2010 September 24, 105(13): 136805.Google Scholar
Wang, Z, Zhao, K, Li, H, Liu, Z, Shi, Z, Lu, J, et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. Journal of Materials Chemistry. 2011, 21(1): 171–80.Google Scholar
Coleman, JN, Lotya, M, O’Neill, A, Bergin, SD, King, PJ, Khan, U, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011 February, 331(6017): 568–71.Google Scholar
Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011 March 1, 6(3): 147–50.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×