Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T03:38:00.440Z Has data issue: false hasContentIssue false

Section II - IVF Add-ons

Published online by Cambridge University Press:  25 November 2021

Roy Homburg
Affiliation:
Homerton University Hospital, London
Adam H. Balen
Affiliation:
Leeds Centre for Reproductive Medicine
Robert F. Casper
Affiliation:
Mount Sinai Hospital, Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Nagels, HE, Rishworth, JR, Siristatidis, CS, Kroon, B. Androgens (dehydroepiandrosterone or testosterone) for women undergoing assisted reproduction. Cochrane Database Syst Rev. 2015 Nov 26.CrossRefGoogle Scholar
Zhang, Y, Zhang, C, Shu, J, et al. Adjuvant treatment strategies in ovarian stimulation for poor responders undergoing IVF: a systematic review and network meta-analysis. Hum Reprod Update. 2020 Feb 28;26(2):247–63.CrossRefGoogle ScholarPubMed
Gleicher, N, Weghofer, A, Barad, DH. Antimullerian hormone (AMH) defines, independent of age, low versus good live birth chances in women with severely reduced ovarian reserve. Fertil Steril. 2010;94:2824–7.CrossRefGoogle Scholar
Homburg, R, Opoku, A. Battle-worn: setting up a multi-centre randomised controlled trial in the UK. BioNews 2018;967.Google Scholar

References

Li, CJ, Chen, SN, Lin, LT., et al. Dehydroepiandrosterone ameliorates abnormal mitochondrial dynamics and mitophagy of cumulus cells in poor ovarian responders. J Clin Med. 2018;7(10):293.CrossRefGoogle ScholarPubMed
Mostajeran, F, Tehrani, H, Ghoreishi, E. Effects of dehydroepiandrosterone on in vitro fertilization among women aging over 35 years and normal ovarian reserve. J Family Reprod Health. 2018;12:129–33.Google ScholarPubMed
Schwarze, JE, Canales, J, Crosby, J, Ortega-Hrepich, C, Villa, S, Pommer, R. DHEA use to improve likelihood of IVF/ICSI success in patients with diminished ovarian reserve: a systematic review and meta-analysis. JBRA Assist Reprod. 2018;22:369–74.Google ScholarPubMed
Gleicher, N, Weghofer, A, Barad, DH. Dehydroepiandrosterone (DHEA) reduces embryo aneuploidy: direct evidence from preimplantation genetic screening (PGS). Reprod Biol Endocrinol. 2010;8:140.CrossRefGoogle ScholarPubMed
von Wolff, M, Stute, P, Eisenhut, M, Marti, U, Bitterlich, N, Bersinger, NA. Serum and follicular fluid testosterone concentrations do not correlate, questioning the impact of androgen supplementation on the follicular endocrine milieu. Reprod Biomed Online. 2017;35:616–23.CrossRefGoogle Scholar

References

Jeppesen, JV, Kristensen, SG, Nielsen, ME, et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab. 2012;97:1524–31.CrossRefGoogle ScholarPubMed
Kristensen, SG, Mamsen, LS, Jeppesen, JV, et al. Hallmarks of human small antral follicle development: implications for regulation of ovarian steroidogenesis and selection of the dominant follicle. Front Endocrinol (Lausanne). 2018;8:376.CrossRefGoogle ScholarPubMed
Westergaard, LG, Erb, K, Laursen, SB, Rex, S, Rasmussen, PE. Human menopausal gonadotropin versus recombinant follicle-stimulating hormone in normogonadotropic women down-regulated with a gonadotropin-releasing hormone agonist who were undergoing in vitro fertilization and intracytoplasmic sperm injection: a prospective randomized study. Fertil Steril. 2001;76:543–9.CrossRefGoogle ScholarPubMed
Mannaerts, B. A double-blind, randomized, dose-finding study to assess the efficacy of the gonadotrophin-releasing hormone antagonist ganirelix (Org 37462) to prevent premature luteinizing hormone surges in women undergoing ovarian stimulation with recombinant follicle stimulating hormone (Puregon). The ganirelix dose-finding study group. Hum Reprod. 1998;13:3023–31.Google Scholar

References

Jeppesen, JV, Kristensen, SG, Nielsen, ME, et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab. 2012;97:E1524–31.CrossRefGoogle ScholarPubMed
Mochtar, MH, Danhof, NA, Ayeleke, RO, van der Veen, F, van Wely, M. Recombinant luteinizing hormone (rLH) and recombinant follicle stimulating hormone (rFSH) for ovarian stimulation in IVF/ICSI cycles. In: Cochrane Gynaecology and Fertility Group, ed. Cochrane Database Syst Rev. 2017;18:250105.Google Scholar
van Wely, M, Kwan, I, Burt, AL, et al. Recombinant versus urinary gonadotrophin for ovarian stimulation in assisted reproductive technology cycles. In: van Wely, M, ed. Cochrane Database Syst Rev. 2011;CD005354. John Wiley & Sons: Chichester.Google Scholar
Unpublished data.Google Scholar
Schwarze, JE, Crosby, J, Zegers-Hochschild, F. Addition of neither recombinant nor urinary luteinizing hormone was associated with an improvement in the outcome of autologous in vitro fertilization/intracytoplasmatic sperm injection cycles under regular clinical settings: a multicenter observational analysis. Fertil Steril. 2016;106:15.CrossRefGoogle ScholarPubMed
Unpublished data from my clinic.Google Scholar
Unpublished data from my clinic.Google Scholar
Unpublished data from my clinic.Google Scholar
Unpublished data from my clinic.Google Scholar

References

Domar, AD, Conboy, L, Denardo-Roney, J, Rooney, KL. Lifestyle behaviors in women undergoing in vitro fertilization: a prospective study. Fertil Steril. 2012;97:697701.e691.CrossRefGoogle ScholarPubMed
Domar, AD. Acupuncture and infertility: we need to stick to good science. Fertil Steril. 2006;85:1359–61; discussion 1368–70.CrossRefGoogle ScholarPubMed
Smith, CA, Armour, M, Betts, D. Treatment of women’s reproductive health conditions by Australian and New Zealand acupuncturists. Complement Ther Med. 2014;22:710–18.CrossRefGoogle ScholarPubMed
Smith, CA, Armour, M, Shewamene, Z, Tan, HY, Norman, RJ, Johnson, NP. Acupuncture performed around the time of embryo transfer: a systematic review and meta-analysis. Reprod Biomed Online. 2019;38:364–79.CrossRefGoogle ScholarPubMed
Smith, CA, de Lacey, S, Chapman, M, et al. Effect of acupuncture vs. sham acupuncture on live births among women undergoing in vitro fertilization: a randomized clinical trial. JAMA. 2018;319:1990–8.CrossRefGoogle ScholarPubMed
Jo, J, Lee, YJ. Effectiveness of acupuncture in women with polycystic ovarian syndrome undergoing in vitro fertilisation or intracytoplasmic sperm injection: a systematic review and meta-analysis. Acupunct Med. 2017;35:162–70.CrossRefGoogle ScholarPubMed

References

Cheong, YC, Dix, S, Ng, EHY, Ledger, WL, Farquhar, C. Acupuncture and assisted reproductive technology. Cochrane Database of Systematic Reviews, 2013.CrossRefGoogle Scholar
Peng, JT, Li, TT, Zhang, XL, Li, JJ, Liang, XY. Acupuncture has no significantly positive effect on in vitro fertilization: a review of systematic reviews. J Reproduct Med. 2019;64:5160.Google Scholar
Smith, CA, Armour, M, Shewamene, Z, Tan, HY, Norman, RJ, Johnson, NP. Acupuncture performed around the time of embryo transfer: a systematic review and meta-analysis. Reproduct Biomed. Online 2019;38:364–79.Google ScholarPubMed
Smith, CA, de Lacey, S, Chapman, M, et al. The effects of acupuncture on the secondary outcomes of anxiety and quality of life for women undergoing IVF: a randomized controlled trial. Acta Obstet Gynecol Scand. 2019;98:460–69.CrossRefGoogle ScholarPubMed

References

Ramalho-Santos, R, Varum, S, Amaral, S, et al. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod. Update 2009;15(5):553–72.CrossRefGoogle ScholarPubMed
Díaz-Casado, ME, Quiles, JL, Barriocanal-Casado, E, et al. The paradox of coenzyme Q10 in aging. Nutrients. 2019;11(9):2221.CrossRefGoogle ScholarPubMed
Ben-Meir, A, Yahalomi, S, Moshe, B, Shufaro, Y, Reubinoff, B, Saada, A. Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil Steril. 2015;104(3):724–7.CrossRefGoogle ScholarPubMed
Bentov, Y, Hannam, T, Jurisicova, A, Esfandiari, N, Casper, RF. Coenzyme Q10 supplementation and oocyte aneuploidy in women undergoing IVF-ICSI treatment. Clin Med Insights Reprod Health. 2014;8:31–6.CrossRefGoogle ScholarPubMed
Zhang, Y, Zhang, C, Shu, J, et al. Adjuvant treatment strategies in ovarian stimulation for poor responders undergoing IVF: a systematic review and network meta-analysis. Hum Reprod Update. 2020;26(2):247–63.CrossRefGoogle ScholarPubMed
Xu, Y, Nisenblat, V, Lu, C, et al. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol. 2018;16(1):29.CrossRefGoogle ScholarPubMed
Florou, P, Anagnostis, P, Theocharis, P, Chourdakis, M, Goulis, D. Does coenzyme Q10 supplementation improve fertility outcomes in women undergoing assisted reproductive technology procedures? A systematic review and meta-analysis of randomized-controlled trials. J Assist Reprod Genet. 2020;37(10):2377–87.CrossRefGoogle ScholarPubMed
Hernández-Camacho, JD, Bernier, M, López-Lluch, G, Navas, P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9.CrossRefGoogle ScholarPubMed
Fan, L, Feng, Y, Chen, GC, Qin, LQ, Fu, CL, Chen, LH. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;119:128–36.CrossRefGoogle ScholarPubMed
Stephenson, J, Heslehurst, N, Hall, J, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. The Lancet. 2018;391:10132.CrossRefGoogle ScholarPubMed

References

Ben-Meir, A, Yahalomi, S, Moshe, B, Shufaro, Y, Reubinoff, B, Saada, A. Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil Steril. 2015;104(3):724–7.CrossRefGoogle ScholarPubMed
Bentov, Y, Hannam, T, Jurisicova, A, Esfandiari, N, Casper, RF. Coenzyme Q10 supplementation and oocyte aneuploidy in women undergoing IVF-ICSI treatment. Clin Med Insights Reproduct Health. 2014;8:31–6.Google ScholarPubMed
Xu, Y, Nisenblat, V, Lu, C, et al. Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol. 2018;16(1):29.CrossRefGoogle ScholarPubMed
Norman, RJ, Alvino, H, Hull, LM, et al. Human growth hormone for poor responders: a randomized placebo-controlled trial provides no evidence for improved live birth rate. Reprod Biomed. Online. 2019.CrossRefGoogle Scholar
Gat, I, Blanco Mejia, S, Balakier, H, Librach, CL, Claessens, A, Ryan, EA. The use of coenzyme Q10 and DHEA during IUI and IVF cycles in patients with decreased ovarian reserve. Gynecol Endocrinol. 2016;32(7):534–7.CrossRefGoogle ScholarPubMed

References

Lerchbaum, E, Obermayer-Pioetsch, B. Mechanisms in endocrinology: Vitamin D and fertility: a systematic review. Eur J Endocrinol. 2012;166(5):765–78.CrossRefGoogle Scholar
Holick, M, Binkley, NC, Bischoff-Ferrari, HA, et al. Full guideline: evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.CrossRefGoogle Scholar
Chu, J, Gallos, I, Tobias, A, Tan, B, Eapen, A, Coomarasamy, A. Vitamin D and assisted reproductive treatment outcome: a systematic review and meta-analysis, Hum Reprod. 2018;33(1):6580.CrossRefGoogle ScholarPubMed
Chu, J, Gallos, I, Tobias, A, et al. Vitamin D and assisted reproductive treatment outcome: a prospective cohort study. Reprod Health. 2019;16(1):106.CrossRefGoogle ScholarPubMed
NICE. Vitamin D: supplement use in specific population groups. NICE Public Health Guideline. 2014; www.nice.org.uk/guidance/ph56.Google Scholar

References

Bodnar, LM, Catov, JM, Simhan, HN, et al. Maternal vitamin D deficiency increases the risk of pre-eclampsia. J Clin Endocrinol Metab. 2007;92:3517–22.CrossRefGoogle Scholar
Kosta, K, Yavropoulou, MP, Anastasiou, O, Yovos, JG. Role of vitamin D treatment in glucose metabolism in polycystic ovary syndrome. Fertil Steril. 2009;92:1053–8.Google Scholar
Robinson, CJ, Wagner, CL, Hollis, BW, et al. Maternal vitamin D and fetal growth in early-onset severe pre-eclampsia. Am J Obstet Gynecol. 2011;204:566.CrossRefGoogle Scholar
Chu, J, Gallo, I, Tobias, A, et al. Vitamin D and assisted reproductive treatment outcome: a prospective cohort study. Reprod Health. 2019;16:106.CrossRefGoogle ScholarPubMed
RCOG. Vitamin D in pregnancy. Scientific Impact Paper No 43. June 2014. RCOG.Google Scholar

References

Ander, SE, Diamond, MS, Coyne, CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019 Jan 11;4(31):eaat6114.CrossRefGoogle ScholarPubMed
Colucci, F. The role of KIR and HLA interactions in pregnancy complications. Immunogenetics. 2017 Aug;69(8–9):557–65.CrossRefGoogle ScholarPubMed
Vento-Tormo, R, Efremova, M, Botting, RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53.CrossRefGoogle ScholarPubMed
Seshadri, S, Sunkara, SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014 May–June;20(3):429–38.CrossRefGoogle ScholarPubMed
Tang, AW, Alfirevic, Z, Quenby, S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: a systematic review. Hum Reprod. 2011;26(8):1971–80.CrossRefGoogle ScholarPubMed

References

ESHRE Guideline Group on RPL. ESHRE guideline: recurrent pregnancy loss. Human Reproduction Open, 2018;2018(2). doi: 10.1093/hropen/hoy004.Google Scholar
Seshadri, S, Sunkara, SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(3):429–38.CrossRefGoogle ScholarPubMed
Feyaerts, D, Benner, M, van Craenbroek, B, et al. Human uterine lymphocytes acquire a more experienced and tolerogenic phenotype during pregnancy. Sci Rep. 2017;7(1):2884.CrossRefGoogle ScholarPubMed
Marron, K, Walsh, D, Harrity, C. Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J Assist Reprod Genet. 2019;36(2):199210.CrossRefGoogle ScholarPubMed
Kwak‐Kim, JYH, Chung-Bang, HS, Ng, SC, et al. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum Reprod. 2003;18(4):767–73.CrossRefGoogle ScholarPubMed

References

Thum, MY, Bhaskaran, S, Abdalla, HI., et al. An increase in the absolute count of CD56dimCD16+CD69+ NK cells in the peripheral blood is associated with a poorer IVF treatment and pregnancy outcome. Hum Reprod. 2004 Oct;19(10):2395–400.CrossRefGoogle ScholarPubMed
Zhou, P, Wu, H, Lin, X, Wang, S, Zhang, S. The effect of intralipid on pregnancy outcomes in women with previous implantation failure in in vitro fertilization/intracytoplasmic sperm injection cycles: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020 Sept;252:187–92.CrossRefGoogle ScholarPubMed
Roussev, RG, Acacio, B, Ng, SC, Coulam, CB. Duration of intralipid’s suppressive effect on NK cell’s functional activity. Am J Reprod Immunol. 2008 Sept;60(3):258–63.CrossRefGoogle ScholarPubMed
Roussev, RG, Ng, SC, Coulam, CB. Natural killer cell functional activity suppression by intravenous immunoglobulin, intralipid and soluble human leukocyte antigen-G. Am J Reprod Immunol. 2007 April;57(4):262–9.CrossRefGoogle ScholarPubMed
Singh, N, Davis, AA, Kumar, S, Kriplani, A. The effect of administration of intravenous intralipid on pregnancy outcomes in women with implantation failure after IVF/ICSI with non-donor oocytes: A randomised controlled trial. Eur J Obstet Gynecol Reprod Biol. 2019 Sept;240:4551.CrossRefGoogle ScholarPubMed
Mekinian, A, Cohen, J, Alijotas-Reig, J, et al. Unexplained recurrent miscarriage and recurrent implantation failure: is there a place for immunomodulation? Am J Reprod Immunol. 2016 July;76(1):828.CrossRefGoogle Scholar
Ndukwe, G. Recurrent embryo implantation failure after in vitro fertilisation: improved outcome following intralipid infusion in women with elevated T helper 1 response. Hum Fertil. 2011;14:21–2.Google Scholar

References

Kuroda, K, Venkatakrishnan, R, James, S, et al. Elevated peri-implantation uterine natural killer cell density in human endometrium is associated with impaired corticosteroid signalling in decidualizing stromal cells. J Clin Endocrinol Metab. 2013;98(11):4429–37.CrossRefGoogle Scholar
Granato, D, Blum, S, Rössle, C, et al. Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. JPEN J Parenter Enteral Nutr. 2000;24:113–8.CrossRefGoogle ScholarPubMed
Achilli, C, Duran-Retamal, M, Saab, W, Serhal, P, Seshadri, S. The role of immunotherapy in in vitro fertilization and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2018;110(6):10891100.CrossRefGoogle Scholar
Dakhly, DM, Bayoumi, YA, Sharkawy, M, et al Intralipid supplementation in women with recurrent spontaneous abortion and elevated levels of natural killer cells. Int J Gynaecol Obstet. 2016 Dec; 135(3):324–7.CrossRefGoogle ScholarPubMed
Martini, AE, Jasulaitis, S, Fogg, LF, Uhler, ML, Hirshfeld-Cytron, JE. Evaluating the utility of Intralipid infusion to improve live birth rates in patients with recurrent pregnancy loss or recurrent implantation failure. J Hum Reprod Sci. 2018;11(3):261–8.CrossRefGoogle ScholarPubMed

References

Barash, A, Dekel, N, Fieldust, S, Segal, I, Schechtman, E, Granot, I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril. 2003;79(6):1317–22.CrossRefGoogle Scholar
Nastri, CO, Lensen, SF, Gibreel, A, et al. Endometrial injury in women undergoing assisted reproductive techniques. Cochrane Database of Systematic Reviews 2015, Issue 3.CrossRefGoogle Scholar
Li, W, Suke, S, Wertaschnigg, D, et al. Randomised controlled trials evaluating endometrial scratching: assessment of methodological issues. Hum Reprod. 2019;34(12):2372–80.CrossRefGoogle ScholarPubMed
Mahran, A, Ibrahim, M, Bahaa, H. The effect of endometrial injury on first cycle IVF/ICSI outcome: a randomized controlled trial. Int J Reprod Biomed. 2016;14(3):193–8.Google ScholarPubMed
Lensen, S, Osavlyuk, D, Armstrong, S, et al. A randomized trial of endometrial scratching before in vitro fertilization. N Engl J Med. 2019;24;380(4):325–34.CrossRefGoogle ScholarPubMed

References

Barash, A, Dekel, N, Fieldust, S, Segal, I, Schechtman, E, Granot, I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril. 2003 June;79(6):1317–22.CrossRefGoogle Scholar
Brighton, PJ, Maruyama, Y, Fishwick, K, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife. 2017 Dec 11;6. pii: e31274.CrossRefGoogle ScholarPubMed
Lensen, S, Venetis, C, Ng, EHY, et al. Should we stop offering endometrial scratching prior to in vitro fertilization? Fertil Steril. 2019 June;111(6):1094–101.CrossRefGoogle ScholarPubMed
Odendaal, J, Quenby, S, Sammaritano, L, Macklon, N, Branch, DW, Rosenwaks, Z. Immunologic and rheumatologic causes and treatment of recurrent pregnancy loss: what is the evidence? Fertil Steril. 2019 Dec;112(6):1002–12.CrossRefGoogle ScholarPubMed
Lensen, S, Osavlyuk, D, Armstrong, S, et al. A randomized trial of endometrial scratching before in vitro fertilization. N Engl J Med. 2019 Jan 24;380(4):325–34.CrossRefGoogle ScholarPubMed
Macklon, NS, Fauser, BCJM. Context-based infertility care. Reprod Biomed Online. 2020;40(1):25.CrossRefGoogle ScholarPubMed

References

Keay, SD, Harlow, CR, Wood, PJ, Jenkins, JM, Cahill, DJ. Higher cortisol:cortisone ratios in the preovulatory follicle of completely unstimulated IVF cycles indicate oocytes with increased pregnancy potential. Hum Reprod. 2002;17(9):2410–14.CrossRefGoogle ScholarPubMed
Kalampokas, T, Pandian, Z, Keay, SD, Bhattacharya, S. Glucocorticoid supplementation during ovarian stimulation for IVF or ICSI. 2017 3(3), CD004752. The Cochrane Database of Systematic Reviews.Google ScholarPubMed
Quenby, S, Nik, H, Innes, B, et al. Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod. 2009;24:4554.CrossRefGoogle ScholarPubMed
Tang, AW, Alfirevic, Z, Turner, MA, Drury, JA, Small, R, Quenby, S. A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum Reprod. 2013;28(7):1743–52.CrossRefGoogle ScholarPubMed

References

Simón, C, Dominguez, F, Remohi, J, Pellicer, A. Embryo effects in human implantation: embryonic regulation of endometrial molecules in human implantation. Ann NY Acad Sci. 2001 Sept;943:116.CrossRefGoogle ScholarPubMed
Glujovsky, D, Farquhar, C, Quinteiro Retamar, AM, Alvarez Sedo, CR, Blake, D. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database of Systematic Reviews 2016, Issue 6. Art. No.: CD002118.CrossRefGoogle Scholar
Capalbo, A, Hoffmann, ER, Cimadomo, D, Ubaldi, FM, Rienzi, L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update. 2017 Nov 1;23(6):706–22.CrossRefGoogle ScholarPubMed
Romanelli, V, Poli, M, Capalbo, A. Preimplantation genetic testing in assisted reproductive technology. Panminerva Med. 2019;61:3041.CrossRefGoogle ScholarPubMed
Macklon, N, Brosens, J. The human endometrium as a sensor of embryo quality. Biol Reprod. 2014;91(4):98, 1–8.CrossRefGoogle ScholarPubMed
Robertson, SA, Jin, M, Yu, D, et al. Corticosteroid therapy in assisted reproduction-immune suppression is a faulty premise. Hum Reprod. 2016;31(10):2164–73.CrossRefGoogle Scholar
Boomsma, CM, Keay, SD, Macklon, NS. Peri-implantation glucocorticoid administration for assisted reproductive technology cycles. Cochrane Database of Systematic Reviews 2012, Issue 6. Art. No.: CD005996.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×