Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-12T08:24:13.847Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 March 2018

G. Richard Scott
Affiliation:
University of Nevada, Reno
Christy G. Turner II
Affiliation:
Arizona State University
Grant C. Townsend
Affiliation:
University of Adelaide
María Martinón-Torres
Affiliation:
University College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Anthropology of Modern Human Teeth
Dental Morphology and Its Variation in Recent and Fossil <I>Homo sapien</I>
, pp. 337 - 386
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, I.H.M., and Risnes, S. (1979a). The depth of the lingual fossa in permanent incisors of Norwegians. I. Method of measurement, statistical distribution and sex dimorphism. American Journal of Physical Anthropology 50, 335340.CrossRefGoogle ScholarPubMed
Aas, I.H.M., and Risnes, S. (1979b). The depth of the lingual fossa in permanent incisors in Norwegians. II. Differences between central and lateral incisors, correlations, size asymmetry and variability. American Journal of Physical Anthropology 50, 341348.CrossRefGoogle Scholar
Abe, Y. (2000). Genetic and nutritional factors determining tooth size in rats. Shikoku Dental Research 13, 112.Google Scholar
Ackermann, R.R. (2010). Phenotypic traits of primate hybrids: Recognizing admixture in the fossil record. Evolutionary Anthropology 19, 258270.CrossRefGoogle Scholar
Ackermann, R.R., Rogers, J., and Cheverud, J.M. (2006). Identifying the morphological signatures of hybridization in primate and human evolution. Journal of Human Evolution 51, 632645.CrossRefGoogle ScholarPubMed
Ackermann, R.R., Mackay, A., and Arnold, M.L. (2016). The hybrid origin of “modern” humans. Evolutionary Biology 43, 111.CrossRefGoogle Scholar
Adler, A. (2005). Dental anthropology in Scotland: morphological comparisons of Whithorn, St. Andrews and the Carmelite Friaries. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Aksianova, G.A. (1978). Some dental material in connection with the problem of the ancient populations of northern Europe. Journal of Human Evolution 7, 525528.CrossRefGoogle Scholar
Aksianova, G.A. (1979). Peoples of the basin of the Pechora and lower Ob. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 93113 (in Russian).Google Scholar
Aksianova, G.A., Zubov, A.A., Segeda, S.P., Peskina, M.Y., and Khaldeeva, N.I. (1979). Slavic peoples of the European part of the USSR. Russians. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 931 (in Russian).Google Scholar
Alexandersen, V. (1962). Root conditions in human lower canines with special regard to double-rooted canines. II. Occurrence of double-rooted lower canines in Homo sapiens and other primates. Sætryk af Tandlægebladet 66, 729760.Google Scholar
Alexandersen, V. (1963). Double-rooted human lower canine teeth. In Brothwell, D.R., ed., Dental Anthropology. New York: Pergamon Press, pp. 235244.CrossRefGoogle Scholar
Al Oumaoui, I. (2009). Afinidades Entre Poblaciones Antiguas de la Península Ibérica: Antropología Dental. Doctoral thesis, Departmento de Prehistoria y Arqueología, Universidad de Granada, Granada, Spain.Google Scholar
Al-Shahrani, I., Dirks, W., Jepson, N., and Khalaf, K. (2014). 3D-geomorphometrics tooth shape analysis on hypodontia. Frontiers in Physiology 5, 112.CrossRefGoogle ScholarPubMed
Alsoleihat, F., and Khraisat, A. (2013). The phenetic distances of the living Druze from other human populations suggest a major genetic drift from the Western Eurasian ancestral dental category. HOMO – Journal of Comparative Human Biology 64, 377390.CrossRefGoogle Scholar
Alt, K.W. (1991). Verwandtschaftsanalyse an Skelettmaterial: Methodenentwicklung auf der Basis Odontologist Merkmale. Freiburg: Habil Schrift.Google Scholar
Alt, K.W., and Pichler, S.L. (1998). Artificial modifications of human teeth. In Alt, K.W., Rösing, F.W., and Teschler-Nicola, M., eds., Dental Anthropology: Fundamentals, Limits, and Prospects. Vienna: Springer, pp. 387415.CrossRefGoogle Scholar
Alt, K.W., and Vach, W. (1991). The reconstruction of ‘‘genetic kinship’’ in prehistoric burial complexes: problems and statistics. In Bock, H.-H. and Ihm, P., eds., Classification, Data Analysis, and Knowledge Organization. Berlin: Springer-Verlag, pp. 299310.CrossRefGoogle Scholar
Alt, K.W., and Vach, W. (1992). Non-spatial analysis of ‘‘genetic kinship’ in skeletal remains. In Schader, M., ed., Analysis and Modeling Data and Knowledge. Berlin: Springer-Verlag, pp. 247256.Google Scholar
Alt, K.W., and Vach, W. (1995a). Odontologic kinship analysis in skeletal remains: concepts, methods, and results. Forensic Science International 74, 99113.CrossRefGoogle ScholarPubMed
Alt, K.W., and Vach, W. (1995b). Detection of kinship structures in skeletal remains. In Jacob, B. and Bonte, W., eds., Advances in Forensic Sciences: Vol. 7. Forensic Odontology and Anthropology. Berlin: Köster, pp. 2734.Google Scholar
Alt, K.W., and Vach, W. (1998). Kinship studies in skeletal remains – Concepts and examples. In Alt, K.W., Rösing, F.W., and Teschler-Nicola, N., eds., Dental Anthropology: Fundamentals, Limits, and Prospects. Vienna: Springer, pp. 537554.CrossRefGoogle Scholar
Alt, K.W., Pichler, S., and Vach, W. (1995). Dental morphology: teeth as key structures for the detection of biological relationships. In Radlanski, R.J. and Renz, H., eds., Proceedings of the 10th International Symposium on Dental Morphology. Berlin: “M” Marketing Services, C. & M. Brünne, pp. 324331.Google Scholar
Alt, K.W., Pichler, S., Vach, W., Klíma, B., Vlîek, E., and Sedlmeier, J. (1997). Twenty-five thousand-year-old burial from Dolní-Vêstonice: An ice age family? American Journal of Physical Anthropology 102, 123131.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Alt, K.W., Benz, M., Müller, W., Berner, M.E., et al. (2013). Earliest evidence for social endogamy in the 9,000-year-old population of Basta, Jordan. PloS one 8, 65649.CrossRefGoogle ScholarPubMed
Alvesalo, L. (2013). The expression of human sex chromosome genes in oral and craniofacial growth. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 92107.CrossRefGoogle Scholar
Alvesalo, L., and Varrela, J. (1991). Taurodontism and the presence of an extra Y chromosome: Study of 47,XYY males and analytical review. Human Biology 63, 3138.Google Scholar
Alvesalo, L., Nuutila, M., and Portin, P. (1975). The cusp of Carabelli. Occurrence in first upper molars and evaluation of its heritability. Acta Odontologica Scandinavica 33, 191197.CrossRefGoogle ScholarPubMed
Alvesalo, L., Tammisalo, E., and Hakola, P. (1985). Enamel thickness in 47,XYY males’ permanent teeth. Annals of Human Biology 12, 421427.CrossRefGoogle ScholarPubMed
Anderson, D.L., and Popovich, F. (1977). Dental reductions and dental caries. American Journal of Physical Anthropology 47, 381386.CrossRefGoogle ScholarPubMed
Anderson, D.L., Thompson, G.W., and Popovich, F. (1977). Molar polymorphisms and the timing of dentition mineralization. Growth 41, 191197.Google ScholarPubMed
Ao, H., Liu, C.-R., Roberts, A.P., Zhang, P., and Xu, X. (2017). An updated age for the Xujiayao hominin from the Nihewan Basin, North China: Implications for Middle Pleistocene human evolution in East Asia. Journal of Human Evolution 106, 5465.CrossRefGoogle ScholarPubMed
Aoyagi, F. (1967). Morpho-genetical studies on similarities in the teeth and dental occlusion of twins. Shikwa Gakuho (The Journal of the Tokyo Dental College Society) 67, 606624.Google Scholar
Argue, D., Groves, C.P., Lee, M.S.Y., and Jungers, W.L. (2017). The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters. Journal of Human Evolution 107, 107133.CrossRefGoogle ScholarPubMed
Armelagos, G.J., and van Gerven, D.P. (2003). A century of skeletal biology and paleopathology: contrasts, contradictions, and conflicts. American Anthropologist 105, 5364.CrossRefGoogle Scholar
Arsuaga, J.L., Martínez, I., Arnold, L.J., Aranburu, A., et al. (2014). Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344, 13581363.CrossRefGoogle ScholarPubMed
Ashar, A. (2015). Patterning of the human dentition: implications for forensic odontology. PhD dissertation, School of Dentistry, University of Adelaide, Adelaide, SA.Google Scholar
Aubry, B.S. (2009). Population structure and interregional interaction in prehispanic Mesoamerica: a biodistance study. PhD dissertation, Department of Anthropology, The Ohio State University, Columbus.Google Scholar
Avishai, G., Müller, R., Gabet, Y., Bab, I., Zilberman, U., and Smith, P. (2004). New approach to quantifying developmental variation in the dentition using serial microtomographic imaging. Microscopy Research and Technique 65, 263269.CrossRefGoogle ScholarPubMed
Axelsson, G., and Kirveskari, P. (1982). Correlations between lower molar occlusal traits in Icelanders. In Kurtén, B., ed., Teeth: Form, Function, and Evolution. New York: Columbia University Press, pp. 237244.Google Scholar
Babakov, O.B., Dubova, N.A., Zubov, A.A., Rykushina, G.B., and Khodzhiev, T.K. (1979). Peoples of Central Asia and Kazakhstan. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 164186 (in Russian).Google Scholar
Bader, R.S. (1965). Fluctuating asymmetry in the dentition of the house mouse. Growth 29, 291300.Google ScholarPubMed
Bae, C.J., Wang, W., Zhao, J., Huang, S., Tian, F., and Shen, G. (2014). Modern human teeth from Late Pleistocene Luna Cave (Guangxi, China). Quaternary International 354, 169183.CrossRefGoogle Scholar
Bailey, S.E. (2002). A closer look at Neanderthal postcanine dental morphology: The mandibular dentition. The Anatomical Record 269, 148156.CrossRefGoogle Scholar
Bailey, S.E., and Hublin, J.-J. (2006). Dental remains from the Grotte du Renne at Arcy-sur-Cure (Yonne). Journal of Human Evolution 50, 485508.CrossRefGoogle Scholar
Bailey, S.E., and Hublin, J.-J. (2013). What does it mean to be dentally “modern”? In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 222249.CrossRefGoogle Scholar
Bailey, S.E., and Lynch, J.M. (2005). Diagnostic differences in mandibular P4 shape between Neandertals and anatomically modern humans. American Journal of Physical Anthropology 126, 268277.CrossRefGoogle ScholarPubMed
Bailey, S.E., and Turner, C.G., II (1999). A new look at some old teeth: An analysis of non-metric dental traits in Neandertals and Old World modern humans. Sixty-Seventh Annual Meeting of the American Association of Physical Anthropologists, Columbus, Ohio.Google Scholar
Bailey, S.E., Glantz, M., Weaver, T.D., and Viola, B. (2008). The affinity of the dental remains from Obi-Rakhmat Grotto, Uzbekistan. Journal of Human Evolution 55, 238248.CrossRefGoogle ScholarPubMed
Bailey, S.E., Weaver, T.D., and Hublin, J.-J. (2009). Who made the Aurignacian and other early Upper Paleolithic industries? Journal of Human Evolution 57, 1126.CrossRefGoogle ScholarPubMed
Bailey, S.E., Skinner, M.M., and Hublin, J.-J. (2011). What lies beneath? An evaluation of lower molar trigonid crest patterns based on both dentine and enamel expression. American Journal of Physical Anthropology 145, 505518.CrossRefGoogle ScholarPubMed
Bailey, S.E., Benazzi, S., Souday, C., Astorino, C., Paul, K., and Hublin, J.-J. (2014). Taxonomic differences in deciduous upper second molar crown outlines of Homo sapiens, Homo neanderthalensis and Homo erectus. Journal of Human Evolution 72, 19.CrossRefGoogle ScholarPubMed
Bailey, S.E., Weaver, T.D., and Hublin, J.J. (2017). The dentition of the earliest modern humans: how “modern” are they? In Marom, A. and Hovers, E., eds., Human Paleontology and Prehistory. New York: Springer, pp. 215232.CrossRefGoogle Scholar
Bailey-Schmidt, S.E. (1995). Population distribution of the tuberculum dentale complex and anomalies of the maxillary anterior teeth. MA thesis, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Bailit, H.L. (1975). Dental variation among populations: An anthropologic view. Dental Clinics of North America 19, 125139.Google ScholarPubMed
Bailit, H.L., and Sung, B. (1968). Maternal effects on the developing dentition. Archives of Oral Biology 13, 155161.CrossRefGoogle ScholarPubMed
Bailit, H.L., Workman, P.L., Niswander, J.D., and MacLean, C.J. (1970). Dental asymmetry as an indicator of genetic and environmental conditions in human populations. Human Biology 42, 626638.Google ScholarPubMed
Bailit, H.L., Anderson, S., and Kolakowski, D. (1974). The genetics of tooth morphology. American Journal of Physical Anthropology 41, 468 (abstract).Google Scholar
Bailit, H., Brown, R., and Kolakowski, D. (1975). The heritability of non-metric dental traits. American Journal of Physical Anthropology 42, 289 (abstract).Google Scholar
Ballinger, S.W., Schurr, T.G., Torroni, A., Gan, Y.Y., et al. (1992). Southeast Asian mitochondrial DNA analysis reveals genetic continuity of ancient Mongoloid migrations. Genetics 130, 139152.Google ScholarPubMed
Barden, H.S. (1980). Fluctuating dental asymmetry: A measure of developmental instability in Down syndrome. American Journal of Physical Anthropology 52, 169173.CrossRefGoogle ScholarPubMed
Barksdale, J.T. (1972). Appendix III: A descriptive and comparative investigation of dental morphology. In Littlewood, R.A., ed., Physical Anthropology of the Eastern Highlands of New Guinea. Seattle: University of Washington Press, pp. 113174.Google Scholar
Barnes, D.S. (1969). Tooth morphology and other aspects of the Teso dentition. American Journal of Physical Anthropology 30, 183194.CrossRefGoogle ScholarPubMed
Barth, F. (1952). The southern Mongoloid migration. Man 52, 58.CrossRefGoogle Scholar
Bath-Balog, M., and Selma, K. (1997). Illustrated Dental Embryology. Histology and Anatomy. St. Louis: Elsevier Science Health Science.Google Scholar
Baume, R.M., and Crawford, M.H. (1979). Discrete dental trait asymmetry in Mexico and Belize. Journal of Dental Research 58, 1811.CrossRefGoogle ScholarPubMed
Baume, R.M., and Crawford, M.H. (1980). Discrete dental trait asymmetry in Mexican and Belizean groups. American Journal of Physical Anthropology 52, 315321.CrossRefGoogle ScholarPubMed
Bei, M. (2009). Molecular genetics of tooth development. Current Opinion in Genetics and Development 19, 504510.CrossRefGoogle ScholarPubMed
Bellwood, P.S. (1980). Indonesia, the Philippines and Oceanic prehistory. Journal de la Société des Océanistes 36, 148155.CrossRefGoogle Scholar
Bellwood, P.S. (1985). Prehistory of the Indo-Malaysian Archipelago. Sydney: Academic Press.Google Scholar
Bellwood, P.S. (1989). The colonization of the Pacific: Some current hypotheses. In Hill, A.V.S. and Serjeantson, S.W., eds., The Colonization of the Pacific: A Genetic Trail. Oxford: Clarendon Press, pp. 159.Google Scholar
Bellwood, P.S. (1991). The Austronesian dispersal and the origin of languages. Scientific American 265, 8893.CrossRefGoogle Scholar
Benazzi, S., Viola, B., Kullmer, O., Fiorenza, L., et al. (2011). A reassessment of the Neanderthal teeth from Taddeo cave (southern Italy). Journal of Human Evolution 61, 377387.CrossRefGoogle Scholar
Benazzi, S., Slon, V., Talamo, S., Negrino, F., et al. (2015). The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348, 793796.CrossRefGoogle ScholarPubMed
Benedict, P.K. (1975). Austro-Thai Language and Culture. New Haven: Human Relations Area Files Press.Google Scholar
Bennett, K.W. (1979). Fundamentals of Biological Anthropology. Dubuque: Wm. C. Brown.Google Scholar
Berg, G.E., and Ta’ala, S.C., eds. (2015). Biological Affinity in Forensic Identification of Human Skeletal Remains. Boca Raton: CRC Press.Google Scholar
Bermúdez de Castro, J.M. (1986). Dental remains from Atapuerca (Spain) I. Metrics. Journal of Human Evolution 15, 265287.CrossRefGoogle Scholar
Bermúdez de Castro, J.M. (1989). The Carabelli trait in human prehistoric populations of the Canary Islands. Human Biology 61, 117131.Google ScholarPubMed
Bermúdez de Castro, J.M., and Nicolás, M.E. (1995). Posterior dental size reduction in hominids: The Atapuerca evidence. American Journal of Physical Anthropology 96, 335356.CrossRefGoogle ScholarPubMed
Bermúdez de Castro, J.M., Martinón-Torres, M., Sier, M.J., and Martín-Francés, L. (2014). On the variability of the Dmanisi mandibles. PloS one 9, e88212.CrossRefGoogle ScholarPubMed
Berry, A.C. (1976). The anthropological value of minor variants of the dental crown. American Journal of Physical Anthropology 45, 257268.CrossRefGoogle ScholarPubMed
Berry, A.C. (1978). Anthropological and family studies on minor variants of the dental crown. In Butler, P.M. and Joysey, K.A., eds., Development, Function and Evolution of Teeth. London: Academic Press, pp. 8198.Google Scholar
Berry, R.J. (1968). The biology of non-metrical variation in mice and men. In Brothwell, D.R., ed., The Skeletal Biology of Earlier Human Populations. Oxford: Pergamon Press, pp. 103133.Google Scholar
Berry, R.J., and Berry, A.C. (1967). Epigenetic variation in the human cranium. Journal of Anatomy 101, 361379.Google Scholar
Berryman, H.E., Owsley, D.W., and Henderson, A.M. (1979). Noncarious interproximal grooves in Arikara Indians. American Journal of Physical Anthropology 50, 209212.CrossRefGoogle Scholar
Bhussry, B.R., ed. (1976). Development and growth of teeth. In Orban's Oral Histology and Embryology. St, Louis: C.V. Mosby.Google Scholar
Biggerstaff, R.H. (1969). The basal area of posterior tooth crown components: The assessment of within tooth variation of premolars and molars. American Journal of Physical Anthropology 31, 163170.CrossRefGoogle Scholar
Biggerstaff, R. H. (1970). Morphological variations for the permanent mandibular first molars in human monozygotic and dizygotic twins. Archives of Oral Biology 15, 721730.CrossRefGoogle ScholarPubMed
Biggerstaff, R. H. (1973). Heritability of the Carabelli cusp in twins. Journal of Dental Research 52, 4044.CrossRefGoogle ScholarPubMed
Birdsell, J.B. (1951). The problem of the early peopling of the Americas as viewed from Asia. In Laughlin, W.S., ed., The Physical Anthropology of the American Indian. New York: The Viking Fund, pp. 168.Google Scholar
Birdsell, J.B. (1977). The recalibration of a paradigm for the first peopling of Greater Australia. In Allen, J., Golson, J., and Jones, R., eds., Sunda and Sahul. London: Academic Press, pp. 113167.Google Scholar
Birdsell, J.B. (1981). Human Evolution, 3rd edn. Boston: Houghton Mifflin.Google Scholar
Birdsell, J.B. (1993). Microevolutionary Patterns in Aboriginal Australia. New York: Oxford University Press.Google Scholar
Black, G.V. (1902). Descriptive Anatomy of Human Teeth, 5th edn, Philadelphia: S.S. White Dental Mfg.Google Scholar
Blain, H.-A., Gleed-Owen, C.P., López-García, J.M., Carrión, J.S., et al. (2013). Climatic conditions for the last Neanderthals: Herpetofaunal record of Gorham’s Cave, Gibraltar. Journal of Human Evolution 64, 289299.CrossRefGoogle ScholarPubMed
Blanco, R., and Chakraborty, R. (1977). The genetics of shovel shape in maxillary central incisors in man. American Journal of Physical Anthropology 44, 233236.CrossRefGoogle Scholar
Blankenship-Sefczek, E.C. (2013). Maxillary lateral incisor morphology and uncommon trait expression: A case study from prehistoric Paa-ko, New Mexico. Dental Anthropology 26, 1519.Google Scholar
Blumenbach, J.F. (1775). De Generis Humani Varietate Nativa Liber [On the Natural Variety of Mankind]. Goettingae: Vandenhoek et Ruprecht.Google Scholar
Boas, F. (1912). Changes in the Bodily Form of Descendants of Immigrants. New York: Columbia University Press.Google Scholar
Boklage, C.E. (1992). Method and meaning in the analysis of developmental asymmetries. In Lukacs, J.R., ed., Culture, Ecology and Dental Anthropology (special issue). Journal of Human Ecology 2, 147156.Google Scholar
Bolk, L. (1915). Das Carabellische Höckerchen. Schweizerische Vierteljahrsschrift für Zahnheilkunde 25, 81104.Google Scholar
Bolk, L. (1916). Problems in human dentition. American Journal of Anatomy 19, 91148.CrossRefGoogle Scholar
Bondioli, L., Corruccini, R.S., and Macchiarelli, B. (1986). Familial segregation in the Iron Age community of Alfdena, Abruzzo, Italy, based on osteodental trait analysis. American Journal of Physical Anthropology 71, 393400.CrossRefGoogle ScholarPubMed
Bonfiglioli, B., Mariotti, V., Facchini, F., Belcastro, M.G., and Condemi, S. (2004). Masticatory and non-masticatory dental modifications in the epipalaeolithic necropolis of Taforalt (Morocco). International Journal of Osteoarchaeology 14, 448456.CrossRefGoogle Scholar
Bowdler, S. (1997). Building on each other’s myths: archaeology and linguistics in Australia. In McConvell, P. and Evans, N., eds., Archaeology and Linguistics: Aboriginal Australia in Global Perspective. Oxford: Oxford University Press, pp. 1726.Google Scholar
Boyd, W.C. (1950). Genetics and the Races of Man. Boston: Little, Brown.Google Scholar
Brabant, H. (1964). Observations sur l’évolution de la denture permanente humaine en Europe Occidentale. Bulletin du Groupement International pour la Recherche Scientifique en Stomatologie 7, 1184.Google Scholar
Brabant, H. (1967). Comparison of the characteristics and anomalies of the deciduous and the permanent dentition. Journal of Dental Research 46 (suppl. to no. 5), 897902.CrossRefGoogle ScholarPubMed
Brabant, H. E. (1971). The human dentition during the Megalithic era. In Dahlberg, A.A., ed., Dental Morphology and Evolution. Chicago: University of Chicago Press, pp. 283297.Google Scholar
Brabant, H., and Ketelbant, R. (1975). Observations sur la fréquence de certains caractères Mongoloides dans la denture permanente de la population Belge. Bulletin du Groupement International pour la Recherche Scientifique en Stomatologie et Odontologie 18, 121134.Google Scholar
Brace, C.L. (1964). The fate of the “Classic” Neanderthals: A consideration of hominid catastrophism. Current Anthropology 5, 343.CrossRefGoogle Scholar
Brace, C.L. (1967). Environment, tooth form, and size in the Pleistocene. Journal of Dental Research 46, 809816.CrossRefGoogle ScholarPubMed
Brace, C.L., and Mahler, P.E. (1971). Post-Pleistocene changes in the human dentition. American Journal of Physical Anthropology 34, 191204.CrossRefGoogle ScholarPubMed
Brace, C.L., and Montagu, M.F.A. (1977). Human Evolution: An Introduction to Biological Anthropology, 2nd edn. New York: Macmillan.Google Scholar
Brace, C.L., and Nagai, M. (1982). Japanese tooth size, past and present. American Journal of Physical Anthropology 59, 399411.CrossRefGoogle ScholarPubMed
Brace, C.L., and Tracer, D.P. (1992). Craniofacial continuity and change: A comparison of late Pleistocene and recent Europe and Asia. In Akazawa, T., Aoki, K., and Kimura, T., eds., The Evolution and Dispersal of Modern Humans in Asia. Tokyo: Hokusen-Sha, pp. 439471.Google Scholar
Bray, J.R., and Curtis, J.T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27, 325349.CrossRefGoogle Scholar
Brewer-Carias, C.A., Le Blanc, S., and Neel, J.V. (1976). Genetic structure of a tribal population, the Yanomama Indians. XII. Dental microdifferentiation. American Journal of Physical Anthropology 44, 514.CrossRefGoogle Scholar
Brook, A.H. (1984). A unifying aetiological explanation for anomalies of human tooth number and size. Archives of Oral Biology 29, 373378.CrossRefGoogle ScholarPubMed
Brook, A.H., ed. (2001). Dental Morphology 2001. Sheffield: Sheffield Academic Press.Google Scholar
Brook, A.H., Griffin, R.C., Smith, R.N., Townsend, G.C., Kaur, G., Davis, G.R., and Fearne, J. (2009a). Tooth size patterns in patients with hypodontia and supernumerary teeth. Archives of Oral Biology 54 (Suppl 1), S63S70.CrossRefGoogle ScholarPubMed
Brook, A.H., Elcock, C., Aggarwal, M., Lath, D.L., Russell, J.M., Patel, P.I., and Smith, R.N. (2009b). Tooth dimensions in hypodontia with a known PAX9 mutation. Archives of Oral Biology 54 (Suppl 1), S57S62.CrossRefGoogle ScholarPubMed
Brook, A.H., Brook O’Donnell, M., Hone, A., Hart, E., Hughes, T.E., Smith, R.N., and Townsend, G.C. (2014a). General and craniofacial development are complex adaptive processes influenced by diversity. Australian Dental Journal 59 (1 Suppl), 1322.CrossRefGoogle ScholarPubMed
Brook, A.H., Jernvall, J., Smith, R.N., Hughes, T.E., and Townsend, G.C. (2014b). The dentition: The outcomes of morphogenesis leading to variations of tooth number, size and shape. Australian Dental Journal 59 (1 Suppl), 131142.CrossRefGoogle ScholarPubMed
Brook, A.H., Koh, K.S.B., and Toh, V.K.I. (2016). Influences in a biologically complex adaptive system: Environmental stress affects dental development in a group of Romano-Britons. International Journal of Design and Nature and Ecodynamics 11, 3340.CrossRefGoogle Scholar
Brothwell, D.R., ed. (1963). Dental Anthropology. New York: Pergamon Press.Google Scholar
Brown, P., and Maeda, T. (2009). Liang Bua Homo floresiensis mandibles and mandibular teeth: A contribution to the comparative morphology of a new hominin species. Journal of Human Evolution 57, 571596.CrossRefGoogle ScholarPubMed
Brown, P., Sutikna, T., Morwood, M.J., Soejono, R.P., et al. (2004). A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431, 10551061.CrossRefGoogle ScholarPubMed
Brues, A.M. (1977). People and Races. New York: Macmillan.Google Scholar
Brugge, D. (1983). Navajo prehistory and history to 1850. Handbook of North American Indians 10, 489501.Google Scholar
Bryk, J., Hardouin, E., Pugach, I., Hughes, D., et al. (2008). Positive selection in East Asians for an EDAR allele that enhances NF-κB activation. PloS one 3, E2209.CrossRefGoogle ScholarPubMed
Buck, L., and Stringer, C. (2014). Homo heidelbergensis. Current Biology 24, R214R215.CrossRefGoogle ScholarPubMed
Buikstra, J. E., and Ubelaker, D. H. (1994). Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. Arkansas Archeological Report Research Series (Book 45).Google Scholar
Buikstra, J.E., Frankenberg, S.R., and Konigsberg, L.W. (1990). Skeletal biodistance studies in American physical anthropology: Recent trends. American Journal of Physical Anthropology 82, 17.CrossRefGoogle ScholarPubMed
Burnett, S.E. (1998). Maxillary premolar accessory ridges: An examination of their worldwide occurrence and use in population differentiation. M.A. thesis, Department of Anthropology, Arizona State University.Google Scholar
Burnett, S.E. (2017). Intentional or not? Characterization and reassessment of proposed intentional dental modification in the present-day southwestern United States. In Burnett, S.E. and Irish, J.D., eds., A World View of Bioculturally Modified Teeth. Gainesville: University of Florida Press, pp. 250269.Google Scholar
Burnett, S.E., and Irish, J.D., eds. (2017). A World View of Bioculturally Modified Teeth. Gainesville: University of Florida Press.Google Scholar
Burnett, S.E., Hawkey, D.E., and Turner, C.G., II (2011). Population variation in human maxillary premolar accessory ridges (MxPAR). American Journal of Physical Anthropology 141, 319324.Google Scholar
Burnett, S.E., Irish, J.D., and Fong, M.R. (2013). Wear’s the problem? Examining the effect of dental wear on studies of crown morphology. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 535554.CrossRefGoogle Scholar
Burns, K.R. (1999). Forensic Anthropology Training Manual. Englewood Cliffs: Prentice-Hall.Google Scholar
Butler, P.M. (1937). Studies of the mammalian dentition. I. The teeth of Centimes ecaudatus and its allies. Proceedings of the Zoological Society of London B 107, 103132.Google Scholar
Butler, P.M. (1939). Studies of the mammalian dentition. Differentiation of the post-canine dentition. Proceedings of the Zoological Society of London B 109, 136.Google Scholar
Butler, P.M. (1956). The ontogeny of molar pattern. Biological Review 31, 3070.CrossRefGoogle Scholar
Butler, P.M. (1963). Tooth morphology and primate evolution. In Brothwell, D.R., ed., Dental Anthropology. New York: Pergamon Press, pp. 113.Google Scholar
Butler, P.M. (1982). Some problems of the ontogeny of tooth patterns. In Kurtén, B., ed., Teeth: Form, Function and Evolution. New York: Columbia University Press, pp. 4451.Google Scholar
Butler, P.M., and Joysey, K.A., eds. (1978). Development, Function and Evolution of Teeth. New York: Academic Press.Google Scholar
Byers, S. (2002). Introduction to Forensic Anthropology: A Textbook. Boston: Allyn and Bacon.Google Scholar
Cadien, J.D. (1972). Dental variation in man. In Washburn, S.L. and Dolhinow, P., eds., Perspectives on Human Evolution 2. New York: Holt, Rinehart and Winston, pp. 199222.Google Scholar
Cai, Y., Qiang, X., Wang, X., Jin, C.Z., et al. (2017). The age of human remains and associated fauna from Zhiren Cave in Guangxi, southern China. Quaternary International 434, 8491.CrossRefGoogle Scholar
Campbell, T.D. (1925). The Dentition and Palate of the Australian Aboriginal. Adelaide: Hassell Press.Google Scholar
Candela, P.B. (1936). Blood group reactions in ancient human skeletons. American Journal of Physical Anthropology 21, 429432.CrossRefGoogle Scholar
Cann, R.L. (1988). DNA and human origins. Annual Review of Anthropology 17, 127143.CrossRefGoogle Scholar
Cann, R.L., Stoneking, M., and Wilson, A.C. (1987). Mitochondrial DNA and human evolution. Nature 325, 3136.CrossRefGoogle ScholarPubMed
Carlsen, O. (1987). Dental Morphology. Copenhagen: Munksgaard.Google Scholar
Carlsen, O., and Alexandersen, V. (1990). Radix entomolaris: Identification and morphology. Scandinavian Journal of Dental Research 98, 363373.Google ScholarPubMed
Carter, C.O. (1969). Genetics of common disorders. British Medical Bulletin 25, 5257.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L.L., Piazza, A., Menozzi, P., and Mountain, J. (1988). Reconstruction of human evolution: Bringing together genetic, archaeological, and linguistic data. Proceedings of the National Academy of Sciences 85, 60026006.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L.L., Menozzi, P., and Piazza, A. (1994). The History and Geography of Human Genes. Princeton: Princeton University Press.Google Scholar
Cheboksarov, N.N. (1966). The Ethnic Anthropology of Eastern Asia. Moscow: Nauka.Google Scholar
Chagnon, N. A. (1972). Tribal social organization and genetic microdifferentiation. In Harrison, G.A. and Boyce, A.J., eds., The Structure of Human Populations. Oxford: Clarendon Press, pp. 252282.Google Scholar
Chappel, H.G. (1927). Jaws and teeth of ancient Hawaiians. Memoirs of the B.P. Bishop Museum 9, 249268.Google Scholar
Charles, C., Pantalacci, S., Tafforeau, P., Headon, D., Laudet, V., and Viriot, L. (2009). Distinct impacts of Eda and Edar loss of function on the mouse dentition. PloS one 4, e4995.CrossRefGoogle ScholarPubMed
Chen, T., Yuan, S., and Gao, X. (1984). The study on uranium-series dating of fossil bones and an absolute age sequence for the main Paleolithic sites of North China. Acta Anthropol Sinica 3, 259269.Google Scholar
Chen, H., Sokal, R.R., and Ruhlen, M.R. (1995). Worldwide analysis of genetic and linguistic relationships of human populations. Human Biology 67, 595612.Google ScholarPubMed
Chen, Y.-S., Olckers, A., Schurr, T.G., Kogelnik, A.M., Huoponen, K., and Wallace, D.C. (2000). mtDNA variation in the South African Kung and Khel – and their genetic relationships to other African populations. American Journal of Human Genetics 66, 13621383.CrossRefGoogle Scholar
Chiasson, L. P. (1963). Gene frequencies of the Micmac Indians: Blood groups and other inherited characters. Journal of Heredity 54, 229236.CrossRefGoogle ScholarPubMed
Christian, J.C. (1979). Testing twin means and estimating genetic variance: Basic methodology for the analysis of quantitative twin data. Acta Geneticae, Medicae, et Gemellologiae 28, 3540.CrossRefGoogle ScholarPubMed
Christian, J.C., and Norton, J.A. (1977). A proposed test of the difference between the means of monozygotic and dizygotic twins. Acta Geneticae Medicae et Gemellologiae 26, 4953.CrossRefGoogle ScholarPubMed
Christian, J.C., Kang, K.W., and Norton, J.A. (1974). Choice of an estimate of genetic variance from twin data. American Journal of Human Genetics 26, 154161.Google ScholarPubMed
Chu, E.Y., Tamasas, B., Fong, H., Foster, B.L., LaCourse, M.R., Tran, A.B., Martin, J.F., Schutte, B.C., Somerman, M.J., and Cox, T.C. (2016). Full spectrum of postnatal tooth phenotypes in a novel Irf6 cleft lip model. Journal of Dental Research 95, 12651273.CrossRefGoogle Scholar
Cobourne, M.T., and Mitsiadis, T. (2006). Neural crest cells and patterning of the mammalian dentition. Journal of Experimental Zoology 306B, 251260.CrossRefGoogle Scholar
Cobourne, M.T., Hardcastle, Z., and Sharpe, P.T. (2001). Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. Journal of Dental Research 80, 19751981.CrossRefGoogle ScholarPubMed
Cohen, M.N., and Armelagos, G.J., eds. (1984). Paleopathology at the Origins of Agriculture. New York: Academic Press.Google Scholar
Comas, D., Plaza, S., Wells, S.R., Yuldaseva, N., Lao, O., Calafell, F., and Bertranpetit, J. (2004). Admixture, migrations, and dispersals in central Asia: Evidence from maternal DNA lineages. European Journal of Human Genetics 12, 495504.CrossRefGoogle ScholarPubMed
Constandse-Westermann, T.S., and Huizinga, J. (1972). Coefficients of Biological Distance: An Introduction to the Various Methods of Assessment of Biological Distances Between Populations, with Special Reference to Human Biological Problems. Oosterhout, The Netherlands: Anthropological Publications.Google Scholar
Coon, C.S. (1962). The Origins of Races. New York: Alfred A. Knopf.Google Scholar
Coon, C.S. (1965). The Living Races of Man. New York: Alfred A. Knopf.Google Scholar
Coon, C.S., Garn, S.M., and Birdsell, J.B. (1950). Races: A Study of the Problems of Race Formation in Man. Springfield: C.C. Thomas.Google Scholar
Cope, E.D. (1874). On the homologies and origin of the types of molar teeth in Mammalia educabilia. Journal of the Academy of Natural Sciences, Philadelphia 8, 7189.Google Scholar
Cope, E.D. (1888). On the tritubercular molar in human dentition. Journal of Morphology 2, 726.CrossRefGoogle Scholar
Coppa, A., Cucina, A., Mancinelli, D., and Vargiu, R. (1997). Biological relationships of Etruscan-culture communities. Etruscan Studies: Journal of the Etruscan Foundation 4, 87102.CrossRefGoogle Scholar
Coppa, A., Cucina, A., Mancinelli, D., Vargiu, R., and Calcagno, J.M. (1998). Dental anthropology of central-southern Iron Age Italy: The evidence of metric versus nonmetric traits. American Journal of Physical Anthropology 107, 371386.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Coppa, A., Cucina, A., Lucci, M., Mancinelli, D., and Vargiu, R. (2007). Origins and spread of agriculture in Italy: A nonmetric dental analysis. American Journal of Physical Anthropology 133, 918930.CrossRefGoogle ScholarPubMed
Corruccini, R.S., and Potter, R.H.Y. (1981). Developmental correlates of crown component asymmetry and occlusal discrepancy. American Journal of Physical Anthropology 55, 2131.CrossRefGoogle ScholarPubMed
Corruccini, R.S., and Shimada, I. (2002). Dental relatedness corresponding to mortuary patterning at Huaca Loro, Peru. American Journal of Physical Anthropology 117, 113121.CrossRefGoogle ScholarPubMed
Corruccini, R.S., Sharma, K., and Potter, R.H.Y. (1988). Comparative genetic variance of dental size and asymmetry in U.S. and Punjabi twins. In Russell, D.E., Santoro, J.-P., and Sigogneau-Russell, D., eds., Teeth Revisited. Mémoires du Muséum Nationale d’Histoire Naturelle, Série C, Sciences de la Terre 53. Paris, France: Editions du Museum, pp. 4753.Google Scholar
Count, E.W. (1950). This is Race. New York: Henry Schuman.Google Scholar
Cox, G.J., Finn, S.B., and Ast, D.B. (1961). Effect of fluoride ingestion on the size of the cusp of Carabelli during tooth formation. Journal of Dental Research 40, 393395.CrossRefGoogle Scholar
Crawford, M.H. (2001). The Origins of Native Americans: Evidence from Anthropological Genetics. Cambridge: Cambridge University Press.Google Scholar
Creton, M., van den Boogaard, M.-J., Mall, T., Verhamme, L., et al. (2013). Three-dimensional analysis of tooth dimensions in the MSX1-missense mutation. Clinical Oral Investigations 17, 14371445.CrossRefGoogle ScholarPubMed
Crisci, J.V. (1984). Taxonomic congruence. Taxon 33, 233239.CrossRefGoogle Scholar
Crummet, T. (1995). The three dimensions of shovel-shaping. In Moggi-Cecchi, B., ed., Aspects of Dental Biology: Palaeontology, Anthropology and Evolution. Florence: International Institute for the Study of Man, pp. 305313.Google Scholar
Cucina, A. (2016). Inter-population dental morphological variability among the Prehispanic Maya. HOMO – Journal of Comparative Human Biology 67, 384396.CrossRefGoogle Scholar
Cucina, A., Lucci, M., Vargiu, R., and Coppa, A. (1999). Dental evidence of biological affinity and environmental conditions in prehistoric Trentino (Italy) samples from the Neolithic to the Early Bronze age. International Journal of Osteoarchaeology 9, 404416.3.0.CO;2-7>CrossRefGoogle Scholar
Cucina, A., Edgar, H., and Ragsdale, C. (2016). Oaxaca and its neighbors in Prehispanic times: Population movements from the perspective of dental morphological traits. Journal of Archaeological Science 13, 751758.CrossRefGoogle Scholar
Curnoe, D., Xueping, J., Herries, A.I.R., Kanning, B., et al. (2012). Human remains from the Pleistocene-Holocene transition of Southwest China suggest a complex evolutionary history for East Asians. PloS one 7, e31918.CrossRefGoogle ScholarPubMed
Curnoe, D., Ji, X., Liu, W., Bao, Z., Taçon, P.S.C., and Ren, L. (2015). A hominin femur with archaic affinities from the Late Pleistocene of Southwest China. PloS one 10, e0143332.CrossRefGoogle ScholarPubMed
Cybulski, J. (1974). Tooth wear and material culture: Precontact patterns in the Tsimshian area, British Columbia. Syesis 7, 3135.Google Scholar
Cybulski, J. (2010). Labrets and teeth on the Northwest Coast. In Matson, R.G., ed., The Crescent Beach Site and the Place of the Locarno Beach Phase. Vancouver, BC: Laboratory of Archaeology, University of British Columbia, pp. 120.Google Scholar
Dahlberg, A.A. (1945a). The changing dentition of man. Journal of the American Dental Association 32, 676690.CrossRefGoogle Scholar
Dahlberg, A.A. (1945b). The paramolar tubercle (Bolk). American Journal of Physical Anthropology 3, 97103.CrossRefGoogle Scholar
Dahlberg, A.A. (1950). The evolutionary significance of the protostylid. American Journal of Physical Anthropology 8, 1525.CrossRefGoogle ScholarPubMed
Dahlberg, A.A. (1951). The dentition of the American Indian. In Laughlin, W.S., ed., The Physical Anthropology of the American Indian. New York: The Viking Fund, pp. 138176.Google Scholar
Dahlberg, A.A. (1956). Materials for the establishment of standards for classification of tooth characters, attributes, and techniques in morphological studies of the dentition. Zollar Laboratory of Dental Anthropology, University of Chicago (mimeo).Google Scholar
Dahlberg, A.A. (1959). A wing-like appearance of upper central incisors among American Indians. Journal of Dental Research 38, 203204.Google Scholar
Dahlberg, A.A. (1961). Relationship of tooth size to cusp number and groove conformation of occlusal surface patterns of lower molar teeth. Journal of Dental Research 40, 3438.CrossRefGoogle ScholarPubMed
Dahlberg, A.A. (1963a). Analysis of the American Indian dentition. In Brothwell, D.R., ed., Dental Anthropology. New York: Pergamon Press, pp. 149178.CrossRefGoogle Scholar
Dahlberg, A.A. (1963b). Dental evolution and culture. Human Biology 35, 237249.Google ScholarPubMed
Dahlberg, A.A. (1968). On the teeth of early sapiens. In Kurth, G., ed., Evolution and Hominisation. Stuttgart: Gustav Fischer, pp. 273280.Google Scholar
Dahlberg, A.A., ed. (1971a). Dental Morphology and Evolution. Chicago: University of Chicago Press.Google Scholar
Dahlberg, A.A. (1971b). Penetrance and expressivity of dental traits. In Dahlberg, A.A., ed., Dental Morphology and Evolution. Chicago: University of Chicago Press, pp. 257262.Google Scholar
Dahlberg, A.A., and Mikkelsen, O. (1947). The shovel-shaped character in the teeth of the Pima Indians. American Journal of Physical Anthropology 5, 234235 (abstract).Google ScholarPubMed
Dahlberg, A.A., Kirveskari, P., and Dahlberg, T. (1982). The Pima Indian studies of the inheritance of dental morphological traits. In Kurtén, B., ed., Teeth: Form, Function, and Evolution. New York: Columbia University Press, pp. 292297.Google Scholar
Dassule, H.R., Lewis, P., Bei, M., Maas, R., and McMahon, A.P. (2000). Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 47754785.Google ScholarPubMed
Davies, P.L. (1968). Relationship of cusp reduction in the permanent mandibular first molar to agenesis of teeth. Journal of Dental Research 47, 499.CrossRefGoogle ScholarPubMed
Day, M.H., and Stringer, C.B. (1991). Les restes crâniens d’Omo-Kibish et leur classification à l’intérieur du genre homo. L’Anthropologie 95, 573594.Google Scholar
Delgado-Burbano, M.B., Scott, G.R., and Turner, C.G., II (2010). The Uto-Aztecan premolar among North and South Amerindians: geographic variation and genetics. American Journal of Physical Anthropology 143, 570578.CrossRefGoogle ScholarPubMed
Dembo, M., Matzke, N.J., Mooers, A., and Collard, M. (2015). Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proceedings of the Royal Society B 282, 20150943.CrossRefGoogle ScholarPubMed
Dempsey, P.J., and Townsend, G.C. (2001). Genetic and environmental contributions to variation in human tooth size. Heredity 86, 685693.CrossRefGoogle ScholarPubMed
Dempsey, P.J., Townsend, G.C., Martin, N.G., and Neale, M.C. (1995). Genetic covariance structure of incisor crown size in twins. Journal of Dental Research 74, 13891398.CrossRefGoogle ScholarPubMed
Dempsey, P.J., Townsend, G.C., and Martin, N.G. (1999). Insights into the genetic basis of human dental variation from statistical modelling analyses. In Townsend, G. and Kieser, J., eds., Perspectives of Human Biology, volume 4. Perth: The University of Western Australia, pp. 917.Google Scholar
Dempster, E.R., and Lerner, I.M. (1950). Heritability of threshold characters. Genetics 35, 212236.Google ScholarPubMed
Dennell, R. (2010). Early Homo sapiens in China. Nature 468, 512513.CrossRefGoogle Scholar
Dennell, R. (2014). Smoke and mirrors. The fossil record for Homo sapiens between Arabia and Australia, In Dennell, R. and Porr, M, eds., Southern Asia, Australia and the Search for Human Origins. Cambridge: Cambridge University Press, pp. 3350.CrossRefGoogle Scholar
Depew, M.J., Lufkin, T., and Rubenstein, J.L. (2002). Specification of jaw subdivisions by Dlx genes. Science 298, 381385.CrossRefGoogle ScholarPubMed
DeVoto, F.C.H., and Perrotto, B.M. (1971). Phenotypes and genotypes of Carabelli’s complex in isolated populations of Argentina highlands. Journal of Dental Research 50, 11521153.Google Scholar
DeVoto, F.C.H., Arias, N.H., Ringuelet, S., and Palma, N.H. (1968). Shovel-shaped incisors in a northwestern Argentine population. Journal of Dental Research 47, 820823.CrossRefGoogle Scholar
DeWitte, S.N., and Bekvalac, J. (2011). Oral health and frailty in the medieval English cemetery of St. Mary Graces. American Journal of Physical Anthropology 142, 341354.CrossRefGoogle Scholar
Diamond, J., and Bellwood, P. (2009). Farmers and their languages: The first expansions. Science 300, 597603.CrossRefGoogle Scholar
Dietz, V.H. (1944). A common dental morphotropic factor: The Carabelli cusp. Journal of the American Dental Association 31, 784789.CrossRefGoogle Scholar
Dixon, R.B. (1923). The Racial History of Man. New York: Charles Scribner’s Sons.Google Scholar
Dixon, R.M.W. (2004). Australian Languages: Their Nature and Development. Cambridge: Cambridge University Press.Google Scholar
Dobzhansky, T. (1937). Genetics and the Origin of Species. New York: Columbia University Press.Google Scholar
Dobzhansky, T. (1956). What is an adaptive trait? The American Naturalist 90, 337347.CrossRefGoogle Scholar
Dodo, Y., Ishida, H., and Saitou, N. (1992). Population history of Japan: A cranial nonmetric approach. In Akazawa, T., Aoki, K., and Kimura, T., eds., The Evolution and Dispersal of Modern Humans in Asia. Tokyo: Hokusen-Sha, pp. 479492.Google Scholar
Doran, G.A. (1977). Characteristics of the Papua New Guinean dentition. I. Shovel-shaped incisors and canines associated with lingual tubercles. Australian Dental Journal 22, 389392.CrossRefGoogle ScholarPubMed
Drennan, M.R. (1929). The dentition of a Bushman tribe. Annals of the South African Museum 24, 6188.Google Scholar
Du Bois, C. (1944). The People of Alor. Minneapolis: The University of Minnesota Press.Google Scholar
Duncan, W.N. (2011). Bioarchaeological analysis of sacrificial victims from a Postclassic Maya temple from Ixlú, El Petén, Guatemala. Latin American Antiquity 22, 549572.CrossRefGoogle Scholar
Durner, R.M. (2011). Understanding Carabelli expression by sex and population through the patterning cascade model of tooth morphogenesis. Honors Research Thesis, Department of Anthropology, Ohio State University, Columbus.Google Scholar
Durrett, R.T. (1908). Traditions of the Earliest Visits of Foreigners to North America: The First Formed and First Inhabited of the Continents, Vol. 23. Louisville: J.P. Morton.Google Scholar
Ebeling, C.F., Ingervall, B., Hedegard, B., and Lewin, R. (1973). Secular changes in tooth size in Swedish men. Acta Odontologica Scandinavica 31, 141147.CrossRefGoogle ScholarPubMed
Echo-Hawk, R.C. (1994). Kara Katit Pakutu: exploring the origins of Native America in anthropology and oral traditions. M.A. thesis, Department of Anthropology, University of Colorado, Boulder.Google Scholar
Eckhardt, R.B. (1979). The Study of Human Evolution. New York: McGraw-Hill.Google Scholar
Edgar, H.E.J. (2002). Biological distance and the African American dentition. PhD dissertation, Department of Anthropology, The Ohio State University, Columbus.Google Scholar
Edgar, H.E.J. (2007). Microevolution of African American dental morphology. American Journal of Physical Anthropology 132, 535544.CrossRefGoogle ScholarPubMed
Edgar, H.J.H. (2015). Dental morphological estimation of ancestry in forensic contexts. In Berg, G.E. and Ta’ala, S.C., eds., Biological Affinity in Forensic Identification of Human Skeletal Remains. Boca Raton: CRC Press, pp. 191208.Google Scholar
Edgar, H.J.H. (2017). Dental Morphology: An Illustrated Manual. New York: Routledge.Google Scholar
Edgar, H.E.J., and Lease, L.R. (2007). Correlations between deciduous and permanent tooth morphology in a European American sample. American Journal of Physical Anthropology 133, 726734.CrossRefGoogle Scholar
Edgar, H.E.J., and Ousley, S.D. (2013). New approaches to the use of dental morphology in forensic contexts. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 510534.CrossRefGoogle Scholar
Edgar, H.J.H., Willermet, C., Ragsdale, C.S., O’Donnell, A., and Daneshvari, S. (2015). Frequencies of rare incisor variations reflect factors influencing prehistoric population relationships in Mexico and the American Southwest. International Journal of Osteoarchaeology 26, 9871000CrossRefGoogle Scholar
Edwards, J.H. (1960). The simulation of Mendelism. Acta Genetica 10, 6370.Google ScholarPubMed
Edwards, J.H. (1969). Familial predisposition in man. British Medical Bulletin 25, 5864.CrossRefGoogle ScholarPubMed
Endicott, P., Ho, S.Y.W., and Stringer, C. (2010). Using genetic evidence to evaluate four palaeoanthropological hypotheses for the timing of Neanderthal and modern human origins. Journal of Human Evolution 59, 8795.CrossRefGoogle ScholarPubMed
Enoki, K., and Dahlberg, A.A. (1958). Rotated maxillary central incisors. Orthodontic Journal of Japan 17, 157169.Google Scholar
Enoki, D., and Nakamura, E. (1959). Bilateral rotation (mesiopalatal torsion) of maxillary central incisors. Journal of Dental Research 38, 204.Google Scholar
Escobar, V., Melnick, M., and Conneally, P.M. (1976). The inheritance of bilateral rotation of maxillary central incisors. American Journal of Physical Anthropology 45, 109116.CrossRefGoogle Scholar
Etler, D.A. (2004). Homo erectus in East Asia: Human ancestor or evolutionary dead end. Athena Review 4, 3750.Google Scholar
Evans, A.R., Wilson, G.P., Fortelius, M., and Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature 445, 7881.CrossRefGoogle ScholarPubMed
Evans, A.R., Daly, S.E., Catlett, K.K., Paul, K.S., et al. (2016). A simple rule governs the evolution and development of hominin tooth size. Nature 530, 477480.CrossRefGoogle ScholarPubMed
Falconer, D. S. (1960). Introduction to Quantitative Genetics. New York: The Ronald Press Company.Google Scholar
Fatemifar, G., Hoggart, C.J., Paternoster, L., Kemp, J.P., et al. (2013). Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances. Human Molecular Genetics 22, 38073817.CrossRefGoogle ScholarPubMed
Ferguson, C.A., Tucker, A.S., Heikinheimo, K., Nomura, M., Oh, P., Li, E., and Sharpe, P.T. (2001). The role of effectors of the activin signalling pathway, activin receptors IIA and IIB, and Smad2, in patterning of tooth development. Development 128, 46054613.Google ScholarPubMed
Finlayson, C., Giles, P.F., Rodriguez-Vidal, J., Fa, D.A., et al. (2006). Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850853.CrossRefGoogle ScholarPubMed
Fleishmannova, J., Matalova, E., Tucker, A.S., and Sharpe, P.T. (2008). Mouse models of tooth abnormalities. European Journal of Oral Sciences 116, 110.CrossRefGoogle Scholar
Foley, W.A. (1986). The Papuan Languages of New Guinea. Cambridge: Cambridge University Press.Google Scholar
Forster, P., Harding, R., Torroni, A., and Bandelt, H.J. (1996). Origin and evolution of Native American mtDNA variation: a reappraisal. American Journal of Human Genetics 59, 935945.Google ScholarPubMed
Frank, H.A. (1926). East of Siam: Ramblings in the Five Divisions of French Indo-China. New York: Century.Google Scholar
Frayer, D.W. (1977). Metric dental change in the European Upper Paleolithic and Mesolithic. American Journal of Physical Anthropology 46, 109120.CrossRefGoogle ScholarPubMed
Fu, O., Li, H., Moorjani, P., Jay, F., et al. (2014). The genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445449.CrossRefGoogle ScholarPubMed
Fujimoto, A., Kimura, R., Ohashi, J., Omi, K., et al. (2008). A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness. Human Molecular Genetics 17, 835843.CrossRefGoogle ScholarPubMed
Gabriel, A.C. (1948). Genetic Types in Teeth. Sydney: Australasian Medical Publishing.Google Scholar
Gadzhiev, Y.M. (1979). Peoples of the Caucasus, Daghestan. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 141163 (in Russian).Google Scholar
Garn, S.M. (1971). Human Races, 3rd edn. Springfield: C.C. Thomas.Google Scholar
Garn, S. M. (1977). Genetics of dental development. In McNamara, J. A., Jr., ed., The Biology of Occlusal Development. Ann Arbor: Center for Human Growth and Development, pp. 6188.Google Scholar
Garn, S.M., and Bailey, S.M. (1977). The symmetrical nature of bilateral asymmetry (δ) of deciduous and permanent teeth. Journal of Dental Research 56, 1422.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Bonné, B. (1961). Third molar polymorphism and the timing of tooth formation. Nature 192, 989.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Vicinus, J.H. (1963a). Third molar polymorphism and its significance to dental genetics. Journal of Dental Research 42 (suppl. to no. 6), 13441363.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Kerewsky, R.S. (1963b). Third molar agenesis and size reductions of the remaining teeth. Nature 200, 488489.CrossRefGoogle Scholar
Garn, S.M., Lewis, A.B., and Kerewsky, R.S. (1965). Size interrelationships of the mesial and distal teeth. Journal of Dental Research 44, 350353.CrossRefGoogle ScholarPubMed
Garn, S.M., Dahlberg, A.A., Lewis, A.B., and Kerewsky, R.S. (1966a). Groove pattern, cusp number, and tooth size. Journal of Dental Research 45, 970.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Kerewsky, R.S. (1966b). Bilateral asymmetry and concordance in cusp number and crown morphology of the mandibular first molar. Journal of Dental Research 45, 1820.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Kerewsky, R.S. (1966c). Sexual dimorphism in the buccolingual tooth diameter. Journal of Dental Research 45, 1819.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Kerewsky, R.S. (1966d). Extent of sex influence on Carabelli’s polymorphism. Journal of Dental Research 45, 1823.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., Kerewsky, R.S., and Dahlberg, A.A. (1966e). Genetic independence of Carabelli’s trait from tooth size or crown morphology. Archives of Oral Biology 11, 745747.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Kerewsky, R.S. (1967). Shape similarities throughout the dentition. Journal of Dental Research 46, 1481.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Kerewsky, R.S. (1968a). Relationship between buccolingual and mesiodistal tooth diameters. Journal of Dental Research 47, 495.CrossRefGoogle ScholarPubMed
Garn, S.M., Lewis, A.B., and Walenga, A. (1968b). Evidence for a secular trend in tooth size over two generations. Journal of Dental Research 47, 503.CrossRefGoogle ScholarPubMed
Garn, S.M., Cole, P.E., Wainwright, R.L., and Guire, K.E. (1977). Sex discriminatory effectiveness using combinations of permanent teeth. Journal of Dental Research 56, 697.CrossRefGoogle ScholarPubMed
Garn, S.M., Cole, P.E., and Smith, B.H. (1979). The effect of sample size on crown size asymmetry. Journal of Dental Research 58, 2012.CrossRefGoogle ScholarPubMed
Garrod, A.E. (1909). Inborn Errors of Metabolism. London: Henry Frowde, Hodder and Stoughton.Google Scholar
Gaunt, W.A., and Miles, A.E.W. (1967). Fundamental aspects of tooth morphogenesis. In Miles, A.E.W., ed., Structural and Chemical Organization of Teeth, Vol. 1. New York: Academic Press, pp. 151197.Google Scholar
Geller, F., Feenstra, B., Zhang, H., Shaffer, J.R., et al. (2011). Genome-wide association study identifies four loci associated with eruption of permanent teeth. PLoS Genetics 7, e10002275.CrossRefGoogle ScholarPubMed
Gillespie, J.H. (2000). Genetic drift in an infinite population: The pseudohitchhiking model. Genetics 155, 909919.Google Scholar
Gilmore, R.W. (1968). Epidemiology and heredity of accessory occlusal ridges on the buccal cusps of human premolar teeth. Archives of Oral Biology 13, 10351046.CrossRefGoogle ScholarPubMed
Gladwin, H.S. (1947). Men Out of Asia. New York: McGraw-Hill.Google Scholar
Goebel, T. (1999). Pleistocene human colonization of Siberia and peopling of the Americas: An ecological approach. Evolutionary Anthropology 8, 208227.3.0.CO;2-M>CrossRefGoogle Scholar
Goebel, T., Waters, M.R., and O’Rourke, D.H. (2008). The late Pleistocene dispersal of modern humans in the Americas. Science 319, 14971502.CrossRefGoogle ScholarPubMed
Goebel, T., Slobodin, S.B., and Waters, M.R. (2010). New dates from Ushki-1, Kamchatka, confirm 13,000 cal BP age for earliest Paleolithic occupation. Journal of Archaeological Science 37, 26402649.CrossRefGoogle Scholar
Goldstein, M.S. (1948). Dentition of Indian crania from Texas. American Journal of Physical Anthropology 6, 6384.CrossRefGoogle ScholarPubMed
Goldstein, D.B., Ruiz Linares, A., Cavalli-Sforza, L.L., and Feldman, M.W. (1995). Genetic absolute dating based on microsatellites and the origin of modern humans. Proceedings of the National Academy of Sciences 97, 67236727.CrossRefGoogle Scholar
Gomes, E.H. (1911). Seventeen Years among the Sea Dyaks of Borneo; a Record of Intimate Association with the Natives of the Bornean Jungles. London: Seeley.Google Scholar
Gómez-Robles, A., Martinón-Torres, M., Bermúdez de Castro, J.M., Margvelashvili, A. et al. (2007). A geometric morphometric analysis of hominin upper first molar shape. Journal of Human Evolution 53, 272285.CrossRefGoogle ScholarPubMed
Gómez-Robles, A., Martinón-Torres, M., Bermúdez de Castro, J.M., Prado, L., Sarmiento, S., and Arsuaga, J.L. (2008). Geometric morphometric analysis of the crown morphology of the lower first premolar of hominins, with special attention to Pleistocene Homo. Journal of Human Evolution 55, 627638.CrossRefGoogle ScholarPubMed
Gómez-Robles, A., Martinón-Torres, M., Bermúdez de Castro, J.M., Prado-Simón, L., and Arsuaga, J.L. (2011a). A geometric morphometric analysis of hominin upper premolars. Shape variation and morphological integration. Journal of Human Evolution 61, 688702.CrossRefGoogle ScholarPubMed
Gómez-Robles, A., Olejniczak, A.J., Martinón-Torres, M., Prado-Simón, L., and Bermúdez de Castro, J.M. (2011b). Evolutionary novelties and losses in geometric morphometrics: A practical approach through hominin molar morphology. Evolution 65, 17721790.CrossRefGoogle ScholarPubMed
Gómez-Robles, A., Bermúdez de Castro, J.M., Martinón-Torres, M., Prado-Simón, L., and Arsuaga, J.L. (2012). A geometric morphometric analysis of hominin upper second and third molars with particular emphasis on European Pleistocene populations. Journal of Human Evolution 63, 512526.CrossRefGoogle ScholarPubMed
Gómez-Robles, A., Bermúdez de Castro, J.M., Martinón-Torres, M., Prado-Simón, L., and Arsuaga, J.L. (2015). A geometric morphometric analysis of hominin lower molars: Evolutionary implications and overview of postcanine dental variation. Journal of Human Evolution 82, 3450.CrossRefGoogle ScholarPubMed
Goodman, H. O. (1965). Genetic parameters of dentofacial development. Journal of Dental Research 44 (suppl. to no. 1), 174184.CrossRefGoogle ScholarPubMed
Goodman, J. (1981). American Genesis: The American Indian and the Origins of Modern Man. New York: Summit Books.Google Scholar
Goose, D.H., and Lee, G. T. R. (1971). The mode of inheritance of Carabelli’s trait. Human Biology 43, 6469.Google ScholarPubMed
Gould, S.J. (1977). Ontogeny and Phylogeny. Cambridge, Mass.: Belknap Press.Google Scholar
Grainger, R.M, Paynter, K.J., Honey, L., and Lewis, D. (1966). Epidemiologic studies of tooth morphology. Journal of Dental Research 45 (suppl. to no. 3), 693702.CrossRefGoogle Scholar
Gravere, R.U., Zubov, A.A., and Sarap, G.G. (1979). Baltic peoples. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 6892 (in Russian).Google Scholar
Gray, R.D., Drummond, A.J., and Greenhill, S.J. (2009). Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323, 479482.CrossRefGoogle ScholarPubMed
Green, R.C. (1994). Changes over time: Recent advances in dating human colonisation of the Pacific Basin area. In Sutton, D.G., ed., The Origin of the First New Zealanders. Auckland: Auckland University Press, pp. 133.Google Scholar
Green, R.E., Krause, J., Briggs, A.W., Maricic, T., et al. (2010). A draft sequence of the Neanderthal genome. Science 328, 710722.CrossRefGoogle Scholar
Green, R.F., Suchey, J.M., and Gokhale, D.V. (1979). The statistical treatment of correlated bilateral traits in the analysis of cranial material. American Journal of Physical Anthropology 50, 629634.CrossRefGoogle ScholarPubMed
Greenberg, J.H. (1963). The languages of Africa. International Journal of American Linguistics 29, 1177.Google Scholar
Greenberg, J.H. (1971). The Indo-Pacific hypothesis. Current Trends in Linguistics, 8, 807871.Google Scholar
Greenberg, J.H. (1987). Language in the Americas. Stanford: Stanford University Press.Google Scholar
Greenberg, J.H., Turner, C.G., II, and Zegura, S. (1985). Convergence of evidence for the peopling of the Americas. Collegium Antropologicum 9, 3342.Google Scholar
Greenberg, J.H., Turner, C.G., II, and Zegura, S. (1986). The settlement of the Americas: A comparison of the linguistic, dental, and genetic evidence. Current Anthropology 24, 477497.CrossRefGoogle Scholar
Greene, D.L. (1967). Dentition of Meroitic, X-group, and Christian populations from Wadi Halfa, Sudan. Anthropological Papers, Department of Anthropology, University of Utah, No. 85. Salt Lake City: University of Utah Press.Google Scholar
Greene, D.L. (1972). Dental anthropology of early Egypt and Nubia. Journal of Human Evolution 1, 315324.CrossRefGoogle Scholar
Greene, D.L. (1982). Discrete dental variations and biological distances of Nubian populations. American Journal of Physical Anthropology 58, 7579.CrossRefGoogle ScholarPubMed
Greene, D.L., Ewing, G.H., and Armelagos, G.J. (1967). Dentition of a Mesolithic population from Wadi Halfa, Sudan. American Journal of Physical Anthropology 27, 4156.CrossRefGoogle ScholarPubMed
Gregory, W.K. (1916). Studies on the evolution of the Primates. I. The Cope–Osborn “theory of trituberculy” and the ancestral molar patterns of the Primates. Bulletin of the American Museum of Natural History 35, 239257.Google Scholar
Gregory, W.K. (1922). The Origin and Evolution of the Human Dentition. Baltimore: Williams and Wilkins.Google Scholar
Gregory, W.K. (1934). A half century of trituberculy: The Cope–Osborn theory of dental evolution with a revised summary of molar evolution from fish to man. Proceedings of the American Philosophical Society 73, 169317.Google Scholar
Gregory, W.K., and Hellman, M. (1926). The dentition of Dryopithecus and the origin of man. American Museum of Natural History Anthropological Papers 28, 1117.Google Scholar
Grine, F.E. (1981). Occlusal morphology of the mandibular permanent molars of the South African Negro and the Kalahari San (Bushman). Annals of the South African Museum 86, 157215.Google Scholar
Grine, F.E. (1986). Anthropological aspects of the deciduous teeth of South African blacks. In Singer, R. and Lundy, J.K., eds., Variation, Culture and Evolution in African Populations. Johannesburg: Witwatersrand University Press, pp. 4783.Google Scholar
Grine, F.E. (1990). Deciduous dental features of Kalahari San: Comparison of non-metrical traits. In Sperber, G.H., ed., From Apes to Angels: Essays in Anthropology in Honor of Philip V. Tobias. New York: Wiley-Liss, pp. 153169.Google Scholar
Grine, F.E. (2000). Middle Stone Age human fossils from Die Kelders Cave 1, Western Cape Province, South Africa. Journal of Human Evolution 38, 129145.CrossRefGoogle ScholarPubMed
Grine, F.E. (2005). Enamel thickness of deciduous and permanent molars in modern Homo sapiens. American Journal of Physical Anthropology 126, 1431.CrossRefGoogle ScholarPubMed
Grine, F.E., and Franzen, J.L. (1994). Fossil hominid teeth from the Sangiran Dome (Java, Indonesia). Courier Forschungsinstitut Senckenberg 171, 75103.Google Scholar
Grine, F.E., and Henshilwood, C.S. (2002). Additional human remains from Blombos Cave, South Africa: (1999–2000 excavations). Journal of Human Evolution 42, 293302.CrossRefGoogle Scholar
Grine, F.E., Henshilwood, C.S., and Sealy, J.C. (2000). Human remains from Blombos Cave, South Africa: (1997–1998 excavations). Journal of Human Evolution 38, 755765.CrossRefGoogle Scholar
Grine, F.E., Bailey, R.M., Harvati, K., Nathan, R.P., et al. (2007). Late Pleistocene human skull from Hofmeyr, South Africa, and modern human origins. Science 315, 226229.CrossRefGoogle ScholarPubMed
Grüneberg, H. (1952). Genetical studies on the skeleton of the mouse. IV. Quasi-continuous variations. Journal of Genetics 51, 95114.CrossRefGoogle Scholar
Grüneberg, H. (1963). The Pathology of Development. New York: John Wiley.Google Scholar
Guatelli-Steinberg, D. (2016). What Teeth Reveal about Human Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Guatelli-Steinberg, D., and Reid, D.J. (2010). The distribution of perikymata on Qafzeh anterior teeth. American Journal of Physical Anthropology 141, 152157.Google ScholarPubMed
Guatelli-Steinberg, D., Irish, J.D., and Lukacs, J.R. (2001). Canary Islands-North African population affinities: Measures of divergence based on dental morphology. Homo 52, 173188.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D., Sciulli, P.W., and Edgar, H.H. (2006). Dental fluctuating asymmetry in the Gullah: Tests of hypotheses regarding developmental stability in deciduous vs. permanent and male vs. female teeth. American Journal of Physical Anthropology 129, 427434.CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D., Hunter, J.P., Durner, R.M., Moormann, S., Weston, T., and Betsinger, T.K. (2013). Teeth, morphogenesis, and levels of variation in the human Carabelli’s trait. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 6991.CrossRefGoogle Scholar
Guthrie, R.D. (1996). The mammoth steppe and the origin of Mongoloids and their dispersal. In Akazawa, T. and Szathmary, E.J.E., eds., Prehistoric Dispersal of Mongoloids. Oxford: Oxford University Press, pp. 172186.Google Scholar
Häära, O., Harjunmaa, E., Lindfors, P.H., Huh, S.-H., et al. (2012). Ectodysplasin regulates activity-inhibitor balance in murine tooth development through Fgf20 signaling. Development 139, 31893199.CrossRefGoogle ScholarPubMed
Habgood, P.J. (1985). The origin of the Australian Aborigines: An alternative approach and view. In Tobias, P., ed., Hominid Evolution: Past, Present and Future. New York: Alan R. Liss, pp. 367380.Google Scholar
Habu, J. (2004). Ancient Jomon of Japan. Cambridge: Cambridge University Press.Google Scholar
Haeussler, A.M. (1996). Biological relationships of late Pleistocene and Holocene Eurasian and American peoples: The dental anthropological evidence. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Haeussler, A.M., Irish, J.D., Morris, D.H., and Turner, C.G., II (1989). Morphological and metrical comparison of San and Central Sotho dentitions from southern Africa. American Journal of Physical Anthropology 78, 115122.CrossRefGoogle ScholarPubMed
Halffman, C.M, Scott, G.R., and Pedersen, P.O. (1992). Palatine torus in the Greenlandic Norse. American Journal of Physical Anthropology 88, 145161.CrossRefGoogle ScholarPubMed
Hammer, M.F., and Horai, S. (1995). Y chromosomal DNA variation and the peopling of Japan. American Journal of Human Genetics 56, 951962.Google Scholar
Hammer, M.F., and Zegura, S.L. (1996). The role of the Y chromosome in human evolutionary studies. Evolutionary Anthropology 5, 116134.3.0.CO;2-E>CrossRefGoogle Scholar
Hammer, M.F., Karafet, T.M., Park, H., Omoto, K., et al. (2006). Dual origins of the Japanese: Common ground for hunter-gatherer and farmer Y chromosomes. Journal of Human Genetics 51, 4758.CrossRefGoogle ScholarPubMed
Hanihara, K. (1954). Studies on the deciduous dentition of the Japanese and the Japanese-American hybrids. I. Deciduous incisors. Journal of the Anthropological Society of Nippon 63, 168185.CrossRefGoogle Scholar
Hanihara, K. (1955). Studies on the deciduous dentition of the Japanese and the Japanese-American hybrids. II. Deciduous canines. Journal of the Anthropological Society of Nippon 64, 6382.CrossRefGoogle Scholar
Hanihara, K. (1956a). Studies on the deciduous dentition of the Japanese and the Japanese-American hybrids. III. Deciduous lower molars. Journal of the Anthropological Society of Nippon 65, 95116.CrossRefGoogle Scholar
Hanihara, K. (1956b). Studies on the deciduous dentition of the Japanese and the Japanese-American hybrids. IV. Deciduous upper molars. Journal of the Anthropological Society of Nippon 65, 6787.CrossRefGoogle Scholar
Hanihara, K. (1957). Studies on the deciduous dentition of the Japanese and the Japanese-American hybrids. V. General conclusion. Journal of the Anthropological Society of Nippon 65, 151164.CrossRefGoogle Scholar
Hanihara, K. (1961). Criteria for classification of crown characters of the human deciduous dentition. Journal of the Anthropological Society of Nippon 69, 2745.CrossRefGoogle Scholar
Hanihara, K. (1963). Crown characters of the deciduous dentition of the Japanese-American hybrids. In Brothwell, D.R., ed., Dental Anthropology. New York: Pergamon Press, pp. 105124.CrossRefGoogle Scholar
Hanihara, K. (1965). Some crown characters of the deciduous incisors and canines in Japanese-American hybrids. Journal of the Anthropological Society of Nippon 72, 135145.CrossRefGoogle Scholar
Hanihara, K. (1968a). Mongoloid dental complex in the permanent dentition. Proceedings of the VIIIth International Congress of Anthropological and Ethnological Sciences, Tokyo: Science Council of Japan, vol. 1, pp. 298300.Google Scholar
Hanihara, K. (1968b). Morphological pattern of the deciduous dentition in the Japanese-American hybrids. Journal of the Anthropological Society of Nippon 76, 114121.CrossRefGoogle Scholar
Hanihara, K. (1970). Mongoloid dental complex in the deciduous dentition, with special reference to the dentition of Ainu. Journal of the Anthropological Society of Nippon 78, 317.CrossRefGoogle Scholar
Hanihara, K. (1984). Origins and affinities of Japanese viewed from cranial measurements. Acta Anthropogenetica 8, 149158.Google ScholarPubMed
Hanihara, K. (1991). Dual structure model for the population history of the Japanese. Japan Review 2, 133.Google Scholar
Hanihara, K. (1992). Dual structure model for the formation of the Japanese population. In Hanihara, K., ed., International Symposium on Japanese as a Member of the Asian and Pacific Populations. Kyoto: International Research Center for Japanese Studies, pp. 244251.Google Scholar
Hanihara, K., Tamada, M., and Tanaka, T. (1970). Quantitative analysis of the hypocone in the human upper molar. Journal of the Anthropological Society of Nippon 78, 200207.CrossRefGoogle Scholar
Hanihara, K., Masuda, T., and Tanaka, T. (1974). Affinities of dental characteristics in the Okinawa Islanders. Journal of the Anthropological Society of Nippon 82, 7582.CrossRefGoogle Scholar
Hanihara, K., Masuda, T., Tanaka, T., and Tamada, M. (1975). Comparative studies of dentition. Anthropological and genetic studies on the Japanese, Part III. Anthropological and genetic studies of the Ainu. In JIBP Synthesis, volume 2. Tokyo: University of Tokyo Press, pp. 256264.Google Scholar
Hanihara, T. (1989a). Affinities of the Philippine Negritos as viewed from dental characters: A preliminary report. Journal of the Anthropological Society of Nippon 97, 327339.CrossRefGoogle Scholar
Hanihara, T. (1989b). Comparative studies of dental characteristics in the Aogashima Islanders. Journal of the Anthropological Society of Nippon 97, 922.CrossRefGoogle Scholar
Hanihara, T. (1990a). Dental anthropological evidence of affinities among the Oceania and the Pan-Pacific populations: The basic populations of East Asia, II. Journal of the Anthropological Society of Nippon 98, 233246.CrossRefGoogle Scholar
Hanihara, T. (1990b). Studies on the affinities of Sakhalin Ainu based on dental characters: The basic population of East Asia, III. Journal of the Anthropological Society of Nippon 98, 425437.CrossRefGoogle Scholar
Hanihara, T. (1991a). The origin and microevolution of Ainu as viewed from dentition: The basic populations in East Asia, VIII. Journal of the Anthropological Society of Nippon 99, 345361.CrossRefGoogle Scholar
Hanihara, T. (1991b). Dentition of Nansei Islanders and peopling of the Japanese archipelago: The basic populations in East Asia, IX. Journal of the Anthropological Society of Nippon 99, 399409.CrossRefGoogle Scholar
Hanihara, T. (1991c). Dental and cranial evidence on the affinities of the East Asian and Pacific populations. In Hanihara, K., ed., Japanese as a Member of the Asian and Pacific Populations: International Symposium 4. Kyoto: International Research Center for Japanese Studies, pp. 119137.Google Scholar
Hanihara, T. (1992a). Biological relationships among Southeast Asians, Jomonese, and the Pacific populations as viewed from dental characters: The basic populations in East Asia, X. Journal of the Anthropological Society of Nippon 100, 5367.CrossRefGoogle Scholar
Hanihara, T. (1992b). Negritos, Australian aborigines, and the “Proto-Sundadont” dental pattern: The basic populations in East Asia, V. American Journal of Physical Anthropology 88, 183196.CrossRefGoogle ScholarPubMed
Hanihara, T. (1992c). Dental variation of the Polynesian populations. Journal of the Anthropological Society of Nippon 100, 291301.CrossRefGoogle Scholar
Hanihara, T. (1993). Dental affinities among Polynesian and circum-Polynesian populations. Japan Review 4, 5982.Google Scholar
Hanihara, T. (1994). Craniofacial continuity and discontinuity of Far Easterners in the late Pleistocene and Holocene. Journal of Human Evolution 27, 417441.CrossRefGoogle Scholar
Hanihara, T. (1996). Comparison of craniofacial features of major human groups. American Journal of Physical Anthropology 99, 389412.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Hanihara, T. (2008). Morphological variation of major human populations based on nonmetric dental traits. American Journal of Physical Anthropology 136, 169182.CrossRefGoogle ScholarPubMed
Hao, W., Song, M., and Storey, J.D. (2015). Probabilistic models of genetic variation in structured populations applied to human global studies. Bioinformatics 32, 713721.CrossRefGoogle Scholar
Harris, E.F. (1977). Anthropologic and genetic aspects of the dental morphology of Solomon Islanders, Melanesia. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Harris, E.F. (1980). Sex differences in lingual marginal ridging on the human maxillary central incisor. American Journal of Physical Anthropology 52, 541548.CrossRefGoogle ScholarPubMed
Harris, E.F. (1992). Laterality in human odontometrics: Analysis of a contemporary American White series. In Lukacs, J.R., ed., Culture, Ecology and Dental Anthropology (special issue). Journal of Human Ecology 2, 157170.Google Scholar
Harris, E.F. (2007). Carabelli’s trait and tooth size of human maxillary first molars. American Journal of Physical Anthropology 132, 238246.CrossRefGoogle ScholarPubMed
Harris, E.F., and Bailit, H.L. (1980). The metaconule: A morphologic and familial analysis of a molar cusp in humans. American Journal of Physical Anthropology 53, 349358.CrossRefGoogle ScholarPubMed
Harris, E.F., and Bailit, H.L. (1988). A principal components analysis of human odontometrics. American Journal of Physical Anthropology 75, 8799.CrossRefGoogle ScholarPubMed
Harris, E.F., and Nweeia, M.T. (1980). Dental asymmetry as a measure of environmental stress in the Ticuna Indians of Columbia. American Journal of Physical Anthropology 53, 133142.CrossRefGoogle Scholar
Harris, E.F., and Sjøvold, T. (2004). Calculation of Smith’s mean measure of divergence for intergroup comparisons using nonmetric data. Dental Anthropology 17, 8393.Google Scholar
Harrison, G.A., Tanner, J.M., Pilbeam, D.R., and Baker, P.T. (1988). Human Biology, 3rd edn. Oxford: Oxford University Press.Google Scholar
Harvati, K., Gunz, P., and Grigorescu, D. (2007). Cioclovina (Romania): Affinities of an early modern European. Journal of Human Evolution 53, 732746.CrossRefGoogle ScholarPubMed
Harvati, K., Bauer, C.C., Grine, F.E., Benazzi, S., Ackermann, R.R., van Niekerk, K.L., and Henshilwood, C.S. (2015). A human deciduous molar from the Middle Stone Age (Howiesons Poort) of Klipdrift Shelter, South Africa. Journal of Human Evolution 82, 190196.CrossRefGoogle ScholarPubMed
Hasegawa, Y., Rogers, J., Scriven, G., and Townsend, G.C. (2010). Carabelli trait in Australian twins: Reliability and validity of different scoring systems. Dental Anthropology 23, 714.Google Scholar
Hawkey, D.E. (1999). Out of Asia: dental evidence for affinities and microevolution of early populations from India/Sri Lanka. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Hawkey, D. E. (2002). The peopling of South Asia: Evidence for affinities and microevolution of prehistoric populations of India and Sri Lanka. Spolia Zeylanica, 39, 1300.Google Scholar
Haydenblit, R. (1996). Dental variation among four prehispanic Mexican populations. American Journal of Physical Anthropology 100, 225246.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
He, Y., Wang, W.R., Xu, S., Lin, L., and Pan-Asia SNP Consortium (2012). Paleolithic contingent in modern Japanese: Estimation and inference using genome-wide data. Scientific Reports 2:355, 17.CrossRefGoogle ScholarPubMed
Hefner, J.T., Pilloud, M.A., Buikstra, J.E., and Vogelsberg, C.C.M. (2016). A brief history of biological distance analysis. In Pilloud, M.A. and Hefner, J.T., eds., Forensic and Bioarchaeological Perspectives on Biological Distance. San Diego: Academic Press, pp. 322.Google Scholar
Heim, K., Maier, C., Pilloud, M.A., and Scott, G.R. (2016). Crossroads of the Old World: Dental morphological data and the evidence for a Eurasian cline. In Pilloud, M.A. and Hefner, J.T., eds., Forensic and Bioarchaeological Perspectives on Biological Distance. San Diego: Academic Press, pp. 391410.Google Scholar
Hellman, M. (1928). Racial characters in human dentition. Proceedings of the American Philosophical Society 67, 157174.Google Scholar
Hershkovitz, I., Marder, O., Ayalon, A., Bar-Matthews, M., et al. (2015). Levantine cranium from Manot Cave (Israel) foreshadows the first European modern humans. Nature 520, 216219.CrossRefGoogle ScholarPubMed
Hershkovitz, P. (1971). Basic crown patterns and cusp homologies of mammalian teeth. In Dahlberg, A.A., ed., Dental Morphology and Evolution. Chicago: University of Chicago Press, pp. 95150.Google Scholar
Heyerdahl, T. (1952). American Indians in the Pacific. Chicago: Rand McNally.Google Scholar
Higa, T., Hanihara, T., Sunakawa, H., and Ishida, H. (2003). Dental variation of Ryukyu Islanders: A comparative study among Ryukyu, Ainu, and other Asian populations. American Journal of Human Biology 15, 127143.CrossRefGoogle ScholarPubMed
Higgins, D., Hughes, T., James, H., and Townsend, G.C. (2009). Strong genetic influence on hypocone expression of permanent maxillary molars in South Australian twins. Dental Anthropology 22, 17.Google Scholar
Higham, T., Douka, K., Wood, R., Ramsey, C.B., et al. (2014). The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306309.CrossRefGoogle ScholarPubMed
Hill, A.V.S., and Serjeantson, S.W., eds. (1989). The Colonization of the Pacific: A Genetic Trail. Oxford: Clarendon Press.Google Scholar
Hill, O. (1963). The soft anatomy of a North American Indian. American Journal of Physical Anthropology 21, 245270.CrossRefGoogle ScholarPubMed
Hillson, S. (1986). Teeth. Cambridge: Cambridge University Press.Google ScholarPubMed
Hillson, S. (1996). Dental Anthropology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hillson, S. (2005). Teeth, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hillson, S. (2014). Tooth Development in Human Evolution and Bioarchaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hinton, R.J. (1981). Form and patterning of anterior tooth wear among aboriginal human groups. American Journal of Physical Anthropology 54, 555564.CrossRefGoogle ScholarPubMed
Hjellman, G. (1929). Morphologische Beobachtungen an den Zähnen der Finnen. Acta Societas Medicorum Fennicae “Duodecim” 11, 1132.Google Scholar
Hlusko, L.J. (2002). Identifying metameric variation in extant hominoid and fossil hominid mandibular molars. American Journal of Physical Anthropology 118, 8697.CrossRefGoogle ScholarPubMed
Hlusko, L.J. (2004). Protostylid variation in Australopithecus. Journal of Human Evolution 46, 579594.CrossRefGoogle ScholarPubMed
Hlusko, L.J. (2016). Elucidating the evolution of hominid dentition in the age of phenomics, modularity, and quantitative genetics. Annals of Anatomy 203, 311.CrossRefGoogle ScholarPubMed
Hlusko, L.J., Schmitt, C.A., Monson, T.A., Brasil, M.F., and Mahaney, M.C. (2016). The integration of quantitative genetics, paleontology, and neontology reveals genetic underpinnings of primate dental evolution. Proceedings of the National Academy of Sciences 113, 92629267.CrossRefGoogle ScholarPubMed
Hoffecker, J.F. (2010). Landscape of the Mind: Human Evolution and the Archaeology of Thought. New York: Columbia University Press.Google Scholar
Hoffecker, J. F., Elias, S. A., O’Rourke, D. H., Scott, G. R., and Bigelow, N. H. (2016). Beringia and the global dispersal of modern humans. Evolutionary Anthropology 25, 6478.CrossRefGoogle ScholarPubMed
Hogan, B.L.M. (1999). Morphogenesis. Cell 96, 225233.CrossRefGoogle ScholarPubMed
Holzinger, K.J. (1929). The relative effect of nature and nurture influences on twin differences. Journal of Educational Psychology 20, 241248.CrossRefGoogle Scholar
Hong, W. (2005). Yayoi wave, Kofun wave, and timing: The formation of the Japanese people and Japanese language. Korean Studies 29, 129.CrossRefGoogle Scholar
Hooton, E.A. (1918). On certain Eskimoid characters in Icelandic skulls. American Journal of Physical Anthropology 1, 5376.CrossRefGoogle Scholar
Horovakova, M., Lesot, H., Peterka, M., and Peterkova, R. (2005). The developmental relationship between the deciduous dentition and the oral vestibule in human embryos. Anatomy and Embryology (Berlin) 209, 303313.CrossRefGoogle Scholar
Horovakova, M., Lesot, H., Vonesch, J-L., Peterka, M., and Peterkova, R. (2007a). Early development of the lower deciduous dentition and oral vestibule in human embryos. European Journal of Oral Sciences 115, 280–87.Google Scholar
Horovakova, M., Lesot, H., Peterkova, R., and Peterka, M. (2007b). Origin of the deciduous upper lateral incisor and its clinical aspects. Journal of Dental Research 85, 167171.CrossRefGoogle Scholar
Houle, D., Govindaraju, D.R., and Omholt, S. (2010). Phenomics: The next challenge. Nature Review Genetics 11, 855866.CrossRefGoogle ScholarPubMed
Howell, T.L., and Kintigh, K.W. (1998). Determining gender and kinship at Hawikku: a reply to Corruccini. American Antiquity 63, 164167.CrossRefGoogle Scholar
Howells, W.W. (1973a). The Pacific Islanders. New York: Charles Scribner’s Sons.Google Scholar
Howells, W.W. (1973b). Cranial Variation in Man: A Study by Multivariate Analysis of Patterns of Difference among Recent Human Populations. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, vol. 67. Cambridge, Mass.: Harvard University.Google Scholar
Howells, W.W. (1976a). Physical variation and history in Melanesia and Australia. American Journal of Physical Anthropology 45, 641649.CrossRefGoogle ScholarPubMed
Howells, W.W. (1976b). Explaining modern man: Evolutionists versus migrationists. Journal of Human Evolution 5, 477495.CrossRefGoogle Scholar
Howells, W.W. (1989). Skull Shapes and the Map: Craniometric Analyses in the Dispersion of Modern Homo. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, vol. 79. Cambridge, Mass.: Harvard University.Google Scholar
Hrdlička, A. (1911). Human dentition and teeth from the evolutionary and racial standpoint. Dominion Dental Journal 23, 403417.Google Scholar
Hrdlička, A. (1920a). Shovel-shaped teeth. American Journal of Physical Anthropology 3, 429465.CrossRefGoogle Scholar
Hrdlička, A. (1920b). Anthropometry. Philadelphia: The Wistar Institute.CrossRefGoogle Scholar
Hrdlička, A. (1921). Further studies of tooth morphology. American Journal of Physical Anthropology 4, 141176.CrossRefGoogle Scholar
Hrdlička, A. (1924). New data on the teeth of early man and certain fossil European apes. American Journal of Physical Anthropology 7, 109132.CrossRefGoogle Scholar
Hrdlička, A. (1944). The Anthropology of Kodiak Island. Philadelphia: Wistar Institute of Anatomy and Biology.Google Scholar
Hubbard, A.R. (2012). An examination of population history, population structure, and biological distance among regional populations of the Kenyan coast using genetic and dental data. PhD dissertation, Department of Anthropology, The Ohio State University, Columbus.Google Scholar
Hubbard, A.R., Guatelli-Steinberg, D., and Irish, J.D. (2015). Do nuclear DNA and dental nonmetric data produce similar reconstructions of regional population history? An example from modern coastal Kenya. American Journal of Physical Anthropology 157, 295304.CrossRefGoogle ScholarPubMed
Hublin, J.J., Verna, C., Bailey, S.E., Smith, A., et al. (2012). Dental evidence from the Aterian human populations of Morocco. In Hublin, J.-J. and McPherron, S.P., eds., Modern Origins: A North African Perspective. Vertebrate Paleobiology and Paleoanthropology. New York: Springer Science, pp. 189204.CrossRefGoogle Scholar
Hublin, J.-J., Ben-Ncer, A., Bailey, S.E., Freidline, S.E., et al. (2017). New fossils from Jebel Irhoud and the pan-African origin of Homo sapiens. Nature 546, 289292.CrossRefGoogle ScholarPubMed
Hudson, M. J., and Matsumura, H. (2006). “Sundadonty” and the population history of Southeast Asia: A reply to Turner. American Journal of Physical Anthropology 130, 458461.CrossRefGoogle Scholar
Hughes, T.E., and Townsend, G.C. (2013). Twin and family studies of human dental crown morphology: genetic, epigenetic, and environmental determinants of the modern human dentition. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 3168.CrossRefGoogle Scholar
Hughes, T.E., Vo, J., Mihailidis, S., and Townsend, G.C. (2010). Twin studies of dental crown morphology: genetic, epigenetic and environmental determinants. 79th Annual Meeting of the American Association of Physical Anthropology, Albuquerque, New Mexico.Google Scholar
Hughes, T.E., Townsend, G.C., Pinkerton, S.K., Bockmann, M.R., et al. (2014). The teeth and faces of twins: providing insights into dentofacial development and oral health for practicing oral health professionals. Australian Dental Journal 59 (1 Suppl), 101116.CrossRefGoogle Scholar
Hughes, T., Townsend, G., and Bockmann, M. (2016). An overview of dental genetics. In Irish, J.D. and Scott, G.R., eds., A Companion to Dental Anthropology. Chichester, West Sussex: Wiley Blackwell, pp. 123141.Google Scholar
Hunley, K., and Healy, M. (2011). The impact of founder effects, gene flow, and European admixture on Native American diversity. American Journal of Physical Anthropology 146, 530538.CrossRefGoogle Scholar
Hunter, J.P., and Guatelli-Steinberg, D. (2016). New directions in dental development research. In Irish, J.D. and Scott, G.R., eds., A Companion to Dental Anthropology. Oxford: John Wiley, pp. 487498.Google Scholar
Hunter, J.P., and Jernvall, J. (1995). The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences 92, 1071810722.CrossRefGoogle ScholarPubMed
Hunter, J.P., Guatelli-Steinberg, D., Weston, T.C., Durner, R., and Betsinger, T.K. (2010). Model of tooth morphogenesis predicts Carabelli cusp expression, size, and symmetry in humans. PloS one 5, e0011844.CrossRefGoogle ScholarPubMed
Huxley, J. (1942). Evolution: The Modern Synthesis. London: George Allen and Unwin.Google Scholar
Hylander, W.L. (1977). The adaptive significance of Eskimo craniofacial morphology. In Dahlberg, A.A. and Graber, T.M., eds., Orofacial Growth and Development. The Hague: Mouton Publishers, pp. 129169.Google Scholar
Ida-Yonemochi, H., Nakatomi, M., Harada, H., Takata, H., Baba, O., and Ohshima, H. (2012). Glucose uptake mediated by glucose transporter 1 is essential for early tooth morphogenesis and size determination of murine molars. Developmental Biology 363, 5261.CrossRefGoogle ScholarPubMed
Irish, J.D. (1991). Lingual cuspule in a central Sotho dentition from South Africa. Dental Anthropology Newsletter 5, 23.Google Scholar
Irish, J.D. (1993). Biological affinities of late Pleistocene through modern African aboriginal populations: the dental evidence. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Irish, J.D. (1997). Characteristic low and high frequency dental traits in Sub-Saharan Africans. American Journal of Physical Anthropology 102, 455467.3.0.CO;2-R>CrossRefGoogle Scholar
Irish, J.D. (1998a). Ancestral dental traits in recent sub-Saharan Africans and the origins of modern humans. Journal of Human Evolution 34, 8198.CrossRefGoogle ScholarPubMed
Irish, J.D. (1998b). Dental morphological affinities of late Pleistocene through recent sub-Saharan and North African peoples. Bulletins et Memoires de la Societé d’Anthropologie de Paris. Nouvelle serie, 10, 237272.CrossRefGoogle Scholar
Irish, J.D. (1998c). Diachronic and synchronic dental trait affinities of Late and Post-Pleistocene peoples from North Africa. Homo 49, 138155.Google Scholar
Irish, J.D. (2000). The Iberomaurusian enigma: North African progenitor or dead end? Journal of Human Evolution 39, 393410.CrossRefGoogle ScholarPubMed
Irish, J.D. (2005). Population continuity vs. discontinuity revisited: Dental affinities among late Paleolithic through Christian-era Nubians. American Journal of Physical Anthropology 128, 520535.CrossRefGoogle ScholarPubMed
Irish, J.D. (2006) Who were the ancient Egyptians? Dental affinities among Neolithic through Postdynastic peoples. American Journal of Physical Anthropology 129, 529543.CrossRefGoogle ScholarPubMed
Irish, J.D. (2010). The mean measure of divergence: Its utility in model-free and model-bound analyses relative to the Mahalanobis D2 distance for nonmetric traits. American Journal of Human Biology 22, 378395.CrossRefGoogle Scholar
Irish, J.D. (2013). Afridonty: the “Sub-Saharan African dental complex” revisited. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 278295.CrossRefGoogle Scholar
Irish, J.D. (2015). Dental nonmetric variation around the world: Using key traits in populations to estimate ancestry in individuals. In Berg, G.E. and Ta’ala, S.C., eds., Biological Affinity in Forensic Identification of Human Skeletal Remains. Boca Raton: CRC Press, pp. 165190.Google Scholar
Irish, J.D. (2016). Who were they really? Model-free and model-bound dental nonmetric analyses to affirm documented population affiliations of seven South African “Bantu” samples. American Journal of Physical Anthropology 159, 655670.CrossRefGoogle ScholarPubMed
Irish, J.D., and Friedman, R. (2010). Dental affinities of the C-group inhabitants of Hierakonpolis, Egypt: Nubian, Egyptian, or both? HOMO – Journal of Comparative Human Biology 61, 81101.CrossRefGoogle ScholarPubMed
Irish, J.D., and Guatelli-Steinberg, D. (2003). Ancient teeth and modern human origins: An expanded comparison of African Plio-Pleistocene and recent world dental samples. Journal of Human Evolution 45, 113144.CrossRefGoogle ScholarPubMed
Irish, J.D., and Konigsberg, L. (2007). The ancient inhabitants of Jebel Moya redux: Measures of population affinity based on dental morphology. International Journal of Osteoarchaeology 17, 138156.CrossRefGoogle Scholar
Irish, J.D., and Morris, D.H. (1996). Technical note: Canine mesial ridge (Bushman canine) dental trait definition. American Journal of Physical Anthropology 99, 357359.CrossRefGoogle ScholarPubMed
Irish, J.D., and Scott, G.R., eds. (2016). A Companion to Dental Anthropology. Chichester, West Sussex: Wiley Blackwell.Google Scholar
Irish, J.D., and Turner, C.G., II (1990). West African dental affinity of late Pleistocene Nubians: Peopling of the Eurafrican-South Asian triangle II. Homo 41, 4253.Google Scholar
Irish, J.D., Black, W., Sealy, W., and Ackermann, R.R. (2014). Questions of Khoesan continuity: Dental affinities among the indigenous Holocene populations of South Africa. American Journal of Physical Anthropology 155, 3344.CrossRefGoogle Scholar
Ismagulov, O., and Sikhimbaeva, K.B. (1989). Ethnic Odontology of Kazakhstan. Alma-Ata: Nauka (in Russian).Google Scholar
Jernvall, J. (1995). Mammalian molar cusp patterns: Developmental mechanisms of diversity. Acta Zoologica Fennica 198, 161.Google Scholar
Jernvall, J., and Jung, H.S. (2000). Genotype, phenotype and developmental biology of molar tooth characters. Yearbook of Physical Anthropology 43, 171190.3.0.CO;2-3>CrossRefGoogle Scholar
Jernvall, J., and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development 92, 1929.CrossRefGoogle ScholarPubMed
Ji, X., Curnoe, D., Bao, Z., Herries, A.L., et al. (2013). Futher geological and palaeoanthropological investigations at the Maludong hominin site, Yunnan Province, Southwest China. Chinese Science Bulletin 58, 44724485.CrossRefGoogle Scholar
Jinam, T.A., Hong, L.C., Phipps, M.E., Stoneking, M., et al. (2012). Evolutionary history of continental Southeast Asians: “early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution 29, 35133527.CrossRefGoogle ScholarPubMed
Johanson, D., and White, T. (1979). A systematic assessment of early African hominids. Science 203, 321330.CrossRefGoogle ScholarPubMed
Johnson, K.M., Stojanowski, C.M., Miyar, K.O’d, Doran, G.H., and Ricklis, R.A. (2011). New evidence on the spatiotemporal distribution and evolution of the Uto-Aztecan premolar. American Journal of Physical Anthropology 146, 474480.CrossRefGoogle ScholarPubMed
Jones, D. (1995). Sexual selection, physical attractiveness, and facial neoteny. Current Anthropology 36, 723748.CrossRefGoogle Scholar
Jørgensen, K.D. (1955). The Dryopithecus pattern in recent Danes and Dutchmen. Journal of Dental Research 34, 195208.CrossRefGoogle ScholarPubMed
Jørgensen, K.D. (1956). The deciduous dentition: A descriptive and comparative anatomical study. Acta Odontologica Scandinavica 14, 1202.Google Scholar
Kaczmarek, M. (1992). Dental morphological variation of the Polish people and their eastern neighbors. In Smith, P. and Tchernov, E., eds., Structure, Function and Evolution of Teeth. London: Freund, pp. 413423.Google Scholar
Kaczmarek, M., and Piontek, J. (1982). Human cremated remains and the diversity of man. Homo 33, 230236.Google Scholar
Kaestle, F., and Smith, D.G. (2001). Ancient Native American DNA from western Nevada: Implications for the Numic expansion hypothesis. American Journal of Physical Anthropology 115, 112.CrossRefGoogle Scholar
Kaifu, Y. (2006). Advanced dental reduction in Javanese Homo erectus. Anthropological Science 114, 3543.CrossRefGoogle Scholar
Kaifu, Y., Aziz, F., and Baba, H. (2005a). Hominid mandibular remains from Sangiran: 1952–1986 collection. American Journal of Physical Anthropology 128, 497519.CrossRefGoogle ScholarPubMed
Kaifu, Y., Baba, H., Aziz, F., Indriati, E., Schrenk, F., and Jacob, T. (2005b). Taxonomic affinities and evolutionary history of the Early Pleistocene hominids of Java: Dentognathic evidence. American Journal of Physical Anthropology 128, 709726.CrossRefGoogle ScholarPubMed
Kaifu, Y., Kono, R.T., Sutikna, T., Saptomo, E.W., Jatmiko, , and Due Awe, R. (2015). Unique dental morphology of Homo floresiensis and its evolutionary implications. PloS one 10, e0141614.CrossRefGoogle ScholarPubMed
Kajajoja, P., and Zubov, A.A. (1986). Somatology and population genetics of the Bashkirs. Annales Academiae Scientarum Fennicae, Series A, V. Medica 175, 6772.Google Scholar
Kallenbach, E. (1978). Fine structure of the stratum intermedium, stellate reticulum, and outer enamel epithelium in the enamel organ of the kitten. Journal of Anatomy 126, 247260.Google ScholarPubMed
Kanazawa, E., and Matsuno, M. (2012). Non-metric dental characteristics in Papua New Guina Highlanders and their association with molar reduction. In Townsend, G., Kanazawa, E., and Takayama, H, eds., New Directions in Dental Anthropology: Paradigms, Methodologies and Outcomes. Adelaide: University of Adelaide Press, pp. 92105.Google Scholar
Kanazawa, E., Sekikawa, M., Kamiakito, Y., and Ozaki, T. (1989). A quantitative investigation of irregular cusps in lower permanent molars. Nihon University Journal of Oral Science 15, 450456.Google ScholarPubMed
Kanazawa, E., Sekikawa, M., and Ozaki, T. (1990). A quantitative investigation of irregular cuspules in human maxillary permanent molars. American Journal of Physical Anthropology 83, 173180.CrossRefGoogle ScholarPubMed
Kanazawa, E., Natori, M., and Ozaki, T. (1992). Anomalous tubercles on the occlusal table of upper first molars in nine populations including Pacific populations. In Brown, T. and Molnar, S., eds., Craniofacial Variation in Pacific Populations. Adelaide: Anthropology and Genetics Lab, Department of Dentistry, University of Adelaide, pp. 5359.Google Scholar
Kang, K.W., Christian, J.C., and Norton, J.A. (1978). Heritability estimates from twin studies. I. Formulae of heritability estimates. Acta Geneticae Medicae et Gemellologiae 27, 3944.CrossRefGoogle ScholarPubMed
Kangas, A.T., Evans, A.R., Thesleff, I., and Jernvall, J. (2004). Nonindependence of mammalian dental characters. Nature 432, 211214.CrossRefGoogle ScholarPubMed
Kanner, L. (1928). Folklore of the Teeth. New York: Macmillan.Google Scholar
Kari, J., and Potter, B.A., eds. (2010). The Dene–Yeniseian connection. Anthropological Papers of the University of Alaska, new series, vol. 5. Fairbanks: University of Alaska Fairbanks.Google Scholar
Katayama, K. (1996). Polynesians the hypermorphic Asiatics – A scenario on prehistoric Mongoloid dispersals into Oceania. Anthropological Science 104, 1530.CrossRefGoogle Scholar
Kaul, V., and Prakash, S. (1981). Morphological features of the Jat dentition. American Journal of Physical Anthropology 54, 123127.CrossRefGoogle ScholarPubMed
Kaul, S.S., Sharma, K., Sharma, J.C., and Corruccini, R.S. (1985). Non-metric variants of the permanent dental crown in human monozygous and dizygous twins. In Rami Reddy, V., ed., Dental Anthropology: Application and Methods. New Delhi: Inter-India Publications, pp. 187193.Google Scholar
Kavanaugh, K.D., Evans, A.R., and Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature 449, 427432.CrossRefGoogle Scholar
Kayser, M. (2010). The human genetic history of Oceania: Near and remote views of dispersal. Current Biology 20, R194R201.CrossRefGoogle ScholarPubMed
Keene, H.J. (1965). The relationship between third molar agenesis and the morphologic variability of the molar teeth. Angle Orthodontist 35, 289298.Google ScholarPubMed
Keene, H.J. (1968). The relationship between Carabelli’s trait and the size, number and morphology of the maxillary molars. Archives of Oral Biology 13, 10231025.CrossRefGoogle ScholarPubMed
Keene, H.J. (1982). The morphogenetic triangle: A new conceptual tool for application to problems in dental morphogenesis. American Journal of Physical Anthropology 59, 281287.CrossRefGoogle ScholarPubMed
Keene, H.J. (1991). On heterochrony in heterodonty: A review of some problems in tooth morphogenesis and evolution. Yearbook of Physical Anthropology 34, 251282.CrossRefGoogle Scholar
Keith, A. (1931). Foreword. The Teeth, the Bony Palate, and the Mandible in the Bantu Races of South Africa, by Shaw, J.C.M.. London: Bale and Danielsson.Google Scholar
Kelso, A.J. (1974). Physical Anthropology, 2nd edn. Philadelphia: J.B. Lippincott.Google Scholar
Kempthorne, O. (1957). An Introduction to Genetic Statistics. New York: John Wiley.Google Scholar
Khamis, M.F.B. (2006). Dental variation in Malaysian populations with application to human identification. PhD dissertation, School of Dentistry, University of Adelaide, Adelaide SA.Google Scholar
Khamis, M.F., Taylor, J.A., Samsudin, A.R., and Townsend, G.C. (2006). Variation in dental crown morphology in Malaysian populations. Dental Anthropology 19, 4960.Google Scholar
Khaldeeva, N.I. (1979). Peoples of Siberia and the Far East. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 187211 (in Russian).Google Scholar
Khudaverdyan, A.Y. (2013a). Nonmetric dental trait in human skeletal remains from Armenian highlands: Phylogenetic and evolutionary implications. Acta Biologica Szegediensis 57, 5982.Google Scholar
Khudaverdyan, A.Y. (2013b). Non-metric analysis of a Bronze Age population from the Armenian plateau. Anthropological Review 76, 6382.CrossRefGoogle Scholar
Khudaverdyan, A.Y. (2014). Non-metric dental traits in human skeletal remains from Transcaucasian populations: Phylogenetic and diachronic evidence. Anthropological Review 77, 151174.CrossRefGoogle Scholar
Kieser, J.A. (1978). The incidence and expression of Carabelli’s trait in two South African ethnic population. Journal of the Dental Association of South Africa 33, 59.Google Scholar
Kieser, J.A. (1990). Human Adult Odontometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kieser, J.A., and Becker, P.J. (1989). Correlations of dimensional and discrete dental traits in the post-canine and anterior dental segments. Journal of the Dental Association of South Africa 44, 101103.Google ScholarPubMed
Kieser, J.A., and Groeneveld, H.T. (1986). Fluctuating odontometric asymmetry in a South African Caucasoid population. Journal of the Dental Association of South Africa 41, 185189.Google Scholar
Kieser, J.A., and Preston, C.B. (1981). The dentition of the Lengua Indians of Paraguay. American Journal of Physical Anthropology 55, 485490.CrossRefGoogle ScholarPubMed
Kieser, J.A., Groeneveld, H.T., and Da Silva, P.C. (1997). Dental asymmetry, maternal obesity, and smoking. American Journal of Physical Anthropology 102, 133139.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Kim, T. H., Bae, C.H., Lee, J.C., Ko, S.O., et al. (2013). β-catenin is required in odontoblasts for tooth root formation. Journal of Dental Research 92, 215221.CrossRefGoogle ScholarPubMed
Kim, T.H., Bae, C.H., Lee, J.C., Kim, J.E., et al. (2015). Osterix regulates tooth root formation in a site-specific manner. Journal of Dental Research 94,430–38.CrossRefGoogle Scholar
Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217, 624626.CrossRefGoogle ScholarPubMed
Kimura, M., and Ohta, T. (1971). Protein polymorphism as a phase of molecular evolution. Nature 229, 467469.CrossRefGoogle ScholarPubMed
Kimura, R., Yamaguchi, T., Takeda, M., Kondo, O., et al. (2009). A common variation in EDAR is a genetic determinant of shovel-shaped incisors. American Journal of Human Genetics 85, 528535.CrossRefGoogle ScholarPubMed
King, K.L., and Jukes, T.H. (1969). Non-Darwinian evolution. Science 164, 788797.CrossRefGoogle ScholarPubMed
Kirch, P.V. (2010). Peopling of the Pacific: A holistic anthropological perspective. Annual Review of Anthropology 39, 131148.Google Scholar
Kirkham, J., Kaur, R., Stillman, E.C., Blackwell, P.G., Elcock, C., and Brook, A.H. (2005). The patterning of hypodontia in a group of young adults in Sheffield, UK. Archives of Oral Biology 50, 287291CrossRefGoogle Scholar
Kirveskari, P., and Alvesalo, L. (1979). Quantification of the shovel shape of incisor teeth. OSSA 6, 151156.Google Scholar
Kirveskari, P., and Alvesalo, L. (1981). Shovel shape of maxillary incisors in 47, XYY males. Proceedings of the Finnish Dental Society 77, 7981.Google Scholar
Kirveskari, P., and Alvesalo, L. (1982). Dental morphology in Turner’s syndrome (45,X females). In Kurtén, B., ed., Teeth: Form, Function and Evolution. New York: Columbia University Press, pp. 298303.Google Scholar
Kitagawa, Y. (2000). Nonmetric morphological characters of deciduous teeth in Japan: Diachronic evidence of the past 4000 years. International Journal of Osteoarchaeology 10, 242253.3.0.CO;2-A>CrossRefGoogle Scholar
Kitagawa, Y., Manabe, Y., Oyamada, J., and Rokutanda, A. (1995). Deciduous dental morphology of the prehistoric Jomon people of Japan: Comparison of nonmetric characters. American Journal of Physical Anthropology 97, 101111.CrossRefGoogle ScholarPubMed
Kjaer, I. (1998). Neuro-osteology. Critical Reviews in Oral Biology and Medicine 9, 224244.CrossRefGoogle ScholarPubMed
Klingenberg, C.P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution and Systematics 39, 115132.CrossRefGoogle Scholar
Knight, A., Underhill, P.A., Mortensen, H.M., Zhivotovsky, L.A., et al. (2003). African Y chromosome and mtDNA divergence provides insight into the history of click languages. Current Biology 13, 464473.CrossRefGoogle ScholarPubMed
Kochiev, R.S. (1979). Peoples of the Caucasus, Trans-Caucasus and north Caucasus. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 114141 (in Russian).Google Scholar
Kolakowski, D., Harris, E.F., and Bailit, H.L. (1980). Complex segregation analysis of Carabelli’s trait in a Melanesian population. American Journal of Physical Anthropology 53, 301308.CrossRefGoogle Scholar
Kollar, E.J., and Baird, G.R. (1970a). Tissue interactions in embryonic mouse tooth germs. 1. Reorganization of dental epithelium during tooth-germ reconstruction. Journal of Embryology and Experimental Morphology 24, 159–71.Google ScholarPubMed
Kollar, E.J., and Baird, G.R. (1970b). Tissue interactions in embryonic mouse tooth germs. 2. Inductive role of dental papilla. Journal of Embryology and Experimental Morphology 24, 173–86.Google Scholar
Kollar, E.J., and Baird, G.R. (1971). Tissue interactions in developing mouse tooth germs. In Dahlberg, A.A., ed., Dental Morphology and Evolution. Chicago: University of Chicago Press, pp. 1529.Google Scholar
Komar, D., and Buikstra, J.E. (2008). Forensic Anthropology: Contemporary Theory and Practice. Oxford: Oxford University Press.Google Scholar
Kondo, S., and Townsend, G.C. (2006). Associations between Carabelli trait and cusp areas in human maxillary first molars. American Journal of Physical Anthropology 129, 196203.CrossRefGoogle Scholar
Koppe, T., Meyer, G., and Alt, K.W., eds. (2009). Comparative Dental Morphology. Basel: Karger.CrossRefGoogle ScholarPubMed
Korenhof, C.A.W. (1960). Morphogenetical Aspects of the Human Upper Molar. Utrecht: Uitgeversmaatschappij Neerlandia.Google Scholar
Korenhof, C.A.W. (1961). The enamel-dentin border: A new morphological factor in the study of the (human) molar pattern. Koninklijke Nederlandse Akademie van Wetenschappen – Amsterdam. series B, 64, 639664.Google Scholar
Korenhof, C.A.W. (1978). Remnants of the trigonid crests in medieval molars of man of Java. In Butler, P.M. and Joysey, K., eds., Development, Function and Evolution of Teeth. New York: Academic Press, pp. 157169.Google Scholar
Korenhof, C.A.W. (1982). Evolutionary trends of the inner enamel anatomy of deciduous molars from Sangiran (Java, Indonesia). In Kurtén, B., ed., Teeth: Form, Function and Evolution. New York: Columbia University Press, pp. 350365.Google Scholar
Korkhaus, G. (1930). Anthropologic and odontologic studies of twins. International Journal of Orthodontia 16, 640647.Google Scholar
Koyama, S. (1992). Prehistoric Japanese populations: A subsistence-demographic approach. In Hanihara, K., ed., Japanese as a Member of the Asian and Pacific Populations. Kyoto: International Research Center for Japanese Studies, pp. 187197.Google Scholar
Kraus, B. S. (1951). Carabelli’s anomaly of the maxillary molar teeth. American Journal of Human Genetics 3, 348355.Google ScholarPubMed
Kraus, B.S. (1959). Occurrence of the Carabelli trait in Southwest ethnic groups. American Journal of Physical Anthropology 17, 117123.CrossRefGoogle ScholarPubMed
Kraus, B.S. (1963). Morphogenesis of deciduous molar pattern in man. In Brothwell, D.R., ed., Dental Anthropology. New York: Pergamon Press, pp. 87104.CrossRefGoogle Scholar
Kraus, B.S., and Furr, M.L. (1953). Lower first premolars. Part I. A definition and classification of discrete morphologic traits. Journal of Dental Research 32, 554564.CrossRefGoogle Scholar
Kraus, B.S., and Jordan, R.E. (1965). The Human Dentition before Birth. Philadelphia: Lea and Febiger.Google Scholar
Kraus, B.S., Wise, W.J., and Frei, R.H. (1959). Heredity and the craniofacial complex. American Journal of Orthodontics 45, 172217.CrossRefGoogle Scholar
Krause, J., Fu, Q., Good, J.M., Viola, B., et al. (2010). The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894897.CrossRefGoogle ScholarPubMed
Kroeber, A.L. (1939). Cultural and Natural Areas of Native North America. Berkeley: University of California Press.Google Scholar
Krogman, W.M. (1927). Anthropological aspects of the human teeth and dentition. Journal of Dental Research 7, 1108.CrossRefGoogle Scholar
Kruger, B.J. (1962). Influence of boron, fluorine, and molybdenum on the morphology of the rat molar. Journal of Dental Research 41, 215.CrossRefGoogle Scholar
Kruger, B.J. (1966). Interaction of fluoride and molybdenum on dental morphology in the rat. Journal of Dental Research 45, 714725.CrossRefGoogle Scholar
Kuhlwilm, M., Gronau, I., Hubisz, M.J., de Filippo, C., et al. (2016). Ancient gene flow from early modern humans into Eastern Neanderthals. Nature 530, 429433.CrossRefGoogle ScholarPubMed
Kupczik, K., and Hublin, J.-J. (2010). Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens. Journal of Human Evolution 59, 525541.CrossRefGoogle ScholarPubMed
Kurtén, B., ed. (1982). Teeth: Form, Function, and Evolution. New York: Columbia University Press.Google Scholar
Kustaloglu, O.A. (1962). Paramolar structure of the upper dentition. Journal of Dental Research 41, 7583.CrossRefGoogle Scholar
Kvall, S.I., and Derry, T.K. (1996). Tell-tale teeth: Abrasion from the traditional clay pipe. Endeavour 20, 2830.CrossRefGoogle Scholar
Laatikainen, T., and Ranta, R. (1996). Occurrence of the Carabelli trait in twins discordant or concordant for cleft lip and/or palate. Acta Odontologica Scandinavica 54, 365368.CrossRefGoogle ScholarPubMed
Lähdesmäki, R. (2006) Sex chromosomes in human tooth root growth. Radiographic studies on 47,XYY males, 46,XY females, 47,XXY males and 45,X/46,XX females. Acta Universitatis Ouluensis D Medica 885. Oulu: Oulu University Press.Google Scholar
Lam, F., Yong, R., Ranjitkar, S., Townsend, G.C., and Brook, A.H. (2016). Agents within a developmental complex adaptive system: Intrauterine male hormones influence human tooth size and shape. International Journal of Design and Nature and Ecodynamics 11, 696702.CrossRefGoogle Scholar
Lampl, M., and Blumberg, B.S. (1979). Blood polymorphisms and the origins of New World populations. In Laughlin, W.S. and Harper, A.B., eds., The First Americans: Origins, Affinities and Adaptations. New York: Gustav Fischer, pp. 107123.Google Scholar
Langerbraber, K.E., Prufer, K., Rowney, C., Boesch, C., et al. (2012). Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proceedings of the National Academy of Sciences 109, 1571615721.CrossRefGoogle Scholar
Larsen, C.S. (1985). Dental modifications and tool use in the western Great Basin. American Journal of Physical Anthropology 67, 393402.CrossRefGoogle ScholarPubMed
Larsen, C.S. (1995). Biological changes in human populations with agriculture. Annual Review of Anthropology 24, 185213.CrossRefGoogle Scholar
Larsen, C.S. (2008). Our Origins: Discovering Physical Anthropology. New York: Norton.Google Scholar
Lasker, G.W. (1945). Observations on the teeth of Chinese born and reared in China and America. American Journal of Physical Anthropology 3, 129150.CrossRefGoogle Scholar
Lasker, G.W. (1950). Genetic analysis of racial traits of the teeth. Cold Spring Harbor Symposia on Quantitative Biology 15, 191203.CrossRefGoogle ScholarPubMed
Lasker, G.W. (1957). Racial traits in the human teeth. Journal of Forensic Sciences 2, 401419.Google Scholar
Lasker, G.W. (1976). Physical Anthropology, 2nd edn. New York: Holt, Rinehart, and Winston.Google Scholar
Lau, E.C., Mohandas, T.K., Shapiro, L.F., Slavkin, H.C., and Snead, M.L. (1989). Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4, 162168.CrossRefGoogle ScholarPubMed
Lavelle, C.L.B. (1972). Secular trends in different racial groups. Angle Orthodontist 42, 1925.Google ScholarPubMed
Leamy, L.J., and Klingenberg, C.P. (2005). The genetics and evolution of fluctuating asymmetry. Annual Review of Ecological and Evolutionary Systematics 36, 121.CrossRefGoogle Scholar
Lease, L.R. (2003). Ancestral determination of African American and European American deciduous dentition using metric and non-metric analysis. PhD dissertation, Department of Anthropology, The Ohio State University, Columbus.Google Scholar
Lease, L.R. (2016). Anatomy of individual teeth and tooth classes. In Irish, J.D. and Scott, G.R., eds., A Companion to Dental Anthropology. Chichester, West Sussex: Wiley Blackwell, pp. 94107.Google Scholar
Lease, L.R., and Sciulli, P.W. (2005). Discrimination between European-American and African-American children based on deciduous dental metrics and morphology. American Journal of Physical Anthropology 125, 5660.CrossRefGoogle Scholar
Le Blanc, S.A., and Black, B. (1974). A long term trend in tooth size in the Eastern Mediterranean. American Journal of Physical Anthropology 41, 417422.CrossRefGoogle Scholar
Le Blanc, S.A., Turner, C.G., II, and Morgan, M.E. (2007). Genetic relationships based on discrete dental traits: Basketmaker II and Mimbres. International Journal of Osteoarchaeology 18, 109130.CrossRefGoogle Scholar
Le Cabec, A., Kupczik, K., Gunz, P., Braga, J., and Hublin, J.-J. (2012). Long anterior mandibular tooth roots in Neanderthals are not the result of their large jaws. Journal of Human Evolution 63, 667681.CrossRefGoogle Scholar
Le Cabec, A., Gunz, P., Kupczik, K., Braga, J., and Hublin, J.-J. (2013). Anterior tooth root morphology and size in Neanderthals: Taxonomic and functional implications. Journal of Human Evolution 64, 169193.CrossRefGoogle ScholarPubMed
Lee, C. (2007). The biological affinities of Neolithic through modern period populations from China and Mongolia: The cranial and dental nonmetric trait evidence. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Lee, C. (2009). Who were the Mongols (1100–1400 CE)? An examination of their population history. In Bemmann, J., Parzinger, H., Pohl, E., and Tseveendorzh, D., eds., Current Archaeological Research in Mongolia. Bonn: Rheinische Friedrich-Wilhelms-Universität Bonn, pp. 579592.Google Scholar
Lee, G.T.R., and Goose, D.H. (1972). The inheritance of dental traits in a Chinese population in the United Kingdom. Journal of Medical Genetics 9, 336339.CrossRefGoogle Scholar
Lee, C., and Scott, G.R. (2011). Two-rooted lower canines: A European trait and sensitive indicator of admixture across Eurasia. American Journal of Physical Anthropology, 146, 481485.CrossRefGoogle ScholarPubMed
Lesot, H., Hovorakova, M., Peterka, M., and Peterkova, R. (2014). Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Australian Dental Journal 59 (1 Suppl), 89100.CrossRefGoogle ScholarPubMed
Levin, M.G. (1963). Ethnic Origins of the Peoples of Northeastern Asia. Arctic Institute of North America Anthropology of the North Translations from Russian Sources, Number 3, ed. Michael, H.N. Toronto: University of Toronto Press.Google Scholar
Li, J.Z., Absher, D.M., Tang, H., Southwick, A.M., et al. (2008). Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 11001104.CrossRefGoogle ScholarPubMed
Li, Z.-Y., Wu, X.-J., Zhou, L.-P., Liu, W., et al. (2017). Late Pleistocene archaic human crania from Xuchang, China. Science 355, 969972.CrossRefGoogle ScholarPubMed
Linne, C.A. (1793). Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus et Differentiis. Vol. III. Lipsiae: Impensis Georg Emanuel Beer.Google Scholar
Liu, F., and Millar, S.E. (2010). Wnt/β-catenin signalling in oral tissue development and disease. Journal of Dental Research 89, 318330.CrossRefGoogle Scholar
Liu, F., Wollstein, A., Hysi, P.G., Ankra-Badu, G.A., et al. (2010). Digital quantification of human eye color highlights genetic association of three new loci. PLoS Genetics 6, e1000934.CrossRefGoogle ScholarPubMed
Liu, W., Jin, C.-Z., Zhang, Y.-Q., Cai, Y.-J., et al. (2010a). Human remains from Zhirendong, South China, and modern human emergence in East Asia. Proceedings of the National Academy of Sciences 107, 1920119206.CrossRefGoogle ScholarPubMed
Liu, W., Wu, X., Pei, S., Wu, X., and Norton, C.J. (2010b). Huanglong Cave: A Late Pleistocene human fossil site in Hubei Province, China. Quaternary International 211, 2941.CrossRefGoogle Scholar
Liu, W., Schepartz, L.A., Xing, S., Miller-Antonio, S., et al. (2013). Late Middle Pleistocene hominin teeth from Panxian Dadong, South China. Journal of Human Evolution 64, 337355.CrossRefGoogle ScholarPubMed
Liu, W., Martinón-Torres, M., Cai, Y.-j., Xing, S., et al. (2015). The earliest unequivocally modern humans in southern China. Nature 526, 696699.CrossRefGoogle ScholarPubMed
Liu, W., Martinón-Torres, M., Kaifu, Y., Wu, X., et al. (2017). A mandible from the Middle Pleistocene Hexian site and its significance in relation to the variability of Asian Homo erectus. American Journal of Physical Anthropology 62, 715731.CrossRefGoogle Scholar
Livingstone, F.B. (1991). Phylogenies and the forces of evolution. American Journal of Human Biology 3, 8389.CrossRefGoogle Scholar
Lombardi, A.V. (1975). Tooth size associations of three morphologic dental traits in a Melanesian population. Journal of Dental Research 54, 239243.Google Scholar
Lopez, Y., Le Rouzic, J., Bertaud, V., Pérard, M., Le Clerc, J., and Vulcain, J.-M. (2013). Influence of teeth on the smile and physical attractiveness. A new internet based assessing method. Open Journal of Stomatology 3, 5257.CrossRefGoogle Scholar
Lorenz, J.G., and Smith, D.G. (1996). Distribution of four founding mtDNA haplogroups among Native North Americans. American Journal of Physical Anthropology 101, 307323.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Lorkiewicz, W. (2011). Nonalimentary tooth use in the Neolithic population of the Lengyel culture in central Poland (4600–4000 BC). American Journal of Physical Anthropology 144, 538551.CrossRefGoogle Scholar
Lucas, P.W. (2007). Dental Functional Morphology: How Teeth Work. Cambridge: Cambridge University Press.Google Scholar
Ludwig, F.J. (1957). The mandibular second premolars: Morphologic variation and inheritance. Journal of Dental Research 36, 263273.CrossRefGoogle ScholarPubMed
Lukacs, J.R. (1983). Dental anthropology and the origins of two Iron Age populations from northern Pakistan. Homo 34, 115.Google Scholar
Lukacs, J.R. (1987). Biological relationships derived from morphology of permanent teeth: Recent evidence from prehistoric India. Anthropologischer Anzeiger 45, 97–116.Google ScholarPubMed
Lukacs, J.R. (1988). Dental morphology and odontometrics of early agriculturalists from Neolithic Mehrgarh, Pakistan. In Russell, D.E., Santoro, J.-P. and Sigogneau-Russell, D., eds., Teeth Revisited. Mémoires du Muséum Nationale d’Histoire Naturelle, Série C, Sciences de la Terre 53. Paris, France: Editions du Museum, pp. 245258.Google Scholar
Lukacs, J.R. (2011). Gender differences in oral health in South Asia: Metadata imply multifactorial biological and cultural causes. American Journal of Human Biology 23, 398411.CrossRefGoogle ScholarPubMed
Lukacs, J.R., and Kuswandari, S. (2013) Crown morphology of Malay deciduous teeth: Trait frequencies and biological affinities. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 453478.CrossRefGoogle Scholar
Lukacs, J.R., and Pal, J.N. (2013). Dental morphology of early Holocene foragers of north India: Non-metric trait frequencies and biological affinities. HOMO – Journal of Comparative Human Biology 64, 411436.CrossRefGoogle ScholarPubMed
Lukacs, J.R., and Pastor, R.F. (1988). Activity-induced patterns of dental abrasion in prehistoric Pakistan: Evidence from Mehrgarh and Harappa. American Journal of Physical Anthropology 76, 377398.CrossRefGoogle ScholarPubMed
Lukacs, J.R., and Walimbe, S.R. (1984). Deciduous dental morphology and the biological affinities of a late Chalcolithic skeletal series from western India. American Journal of Physical Anthropology 65, 2330.CrossRefGoogle ScholarPubMed
Lumsden, A.G.S. (1979). Pattern formation in the molar dentition of the mouse. Journal de Biologie Buccale 7, 77103.Google ScholarPubMed
Lumsden, A.G.S. (1988). Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammal tooth germ. Development 103 (suppl.), 155169.Google ScholarPubMed
Lundström, A. (1963). Tooth morphology as a basis for distinguishing monozygotic and dizygotic twins. American Journal of Human Genetics 15, 3443.Google ScholarPubMed
Macchiarelli, R., Bayle, P., Bondioli, L., Mazurier, A., and Zanolli, C. (2013). From outer to inner structural morphology in dental anthropology: integration of the third dimension in the visualization and quantitative analysis of fossil remains. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 250278.CrossRefGoogle Scholar
Macho, G.A., and Moggi-Cecchi, J. (1992). Reduction of maxillary molars in Homo sapiens sapiens: A different perspective. American Journal of Physical Anthropology 87, 151159.CrossRefGoogle ScholarPubMed
Macintosh, N.W.G., and Larnach, S.L. (1976). Aboriginal affinities looked at in world context. In Kirk, R.L. and Thorne, A.G., eds., The Origin of Australians. Canberra: Australian Institute of Aboriginal Studies, pp. 113126.Google Scholar
Mahalanobis, P.C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science, India 2, 4955.Google Scholar
Malhi, R.S., Mortensen, H.M., Eshleman, J.A., Kemp, B.M., et al. (2003). Native American mtDNA prehistory in the American Southwest. American Journal of Physical Anthropology 120, 108124.CrossRefGoogle ScholarPubMed
Manabe, R., Rokutanda, A., Kitagawa, Y., and Oyamada, J. (1991). Genealogical position of native Taiwanese (Bunun tribe) in East Asia populations based on tooth crown morphology. Journal of the Anthropological Society of Nippon 99, 3347.CrossRefGoogle Scholar
Manabe, Y., Rokutanda, A., and Kitagawa, Y. (1992). Nonmetric tooth crown traits in the Ami tribe, Taiwan aborigines: Comparisons with other East Asian populations. Human Biology 64, 717726.Google ScholarPubMed
Manabe, Y., Ito, R., Kitagawa, Y., Oyamada, J., Rodutanda, A., Nagamoto, S.-Y., Kobayashi, S., and Kato, K. (1997). Non-metric tooth crown traits of the Thai, Ada and Yao tribes of northern Thailand. Archives of Oral Biology 42, 283291.CrossRefGoogle Scholar
Manabe, Y., Oyamada, J., Kitagawa, Y., Rokutanda, A., Kato, K., and Matsushita, T. (2003). Dental morphology of the Dawenkou Neolithic population in North China: Implications for the origin and distribution of Sinodonty. Journal of Human Evolution 45, 369380.CrossRefGoogle ScholarPubMed
Marks, J. (1994). Human Biodiversity: Genes, Race, and History. New York: Aldine de Gruyter.Google Scholar
Martin, R. (1928) Lehrbuch der Anthropologie in Systematischer Darstellung mit Besonderer Berücksichtigung der Anthropologischen Methoden für Studierende Ärtze und Forschungsreisende, Vol. 3. Berlin: G. Fischer.Google Scholar
Martínez de Pinillos, M., Martinón-Torres, M., Skinner, M.M., Arsuaga, J.L., et al. (2014). Trigonid crests expression in Atapuerca-Sima de los Huesos lower molars: Internal and external morphological expression and evolutionary inferences. Comptes Rendus Palevol 13, 205221.CrossRefGoogle Scholar
Martínez de Pinillos, M., Martinón-Torres, M., Martín-Francés, L., Arsuaga, J.L., and Bermúdez de Castro, J.M. (2017). Comparative analysis of the trigonid crests patterns in Homo antecessor molars at the enamel and dentine surfaces. Quaternary International 433, 189198.CrossRefGoogle Scholar
Martinón-Torres, M. (2006). Evolución del aparato dental en homínidos: estudio de los dientes humanos del Pleistoceno de la Sierra de Atapuerca (Burgos). PhD dissertation, Universidad de Santiago de Compostela.Google Scholar
Martinón-Torres, M., Bastir, M., Bermúdez de Castro, J.M., Gómez, A., et al. (2006). Hominin lower second premolar morphology: Evolutionary inferences through geometric morphometric analysis. Journal of Human Evolution 50, 523533.CrossRefGoogle ScholarPubMed
Martinón-Torres, M., Bermúdez de Castro, J.M., Gómez-Robles, A., Arsuaga, J.L., et al. (2007). Dental evidence on the hominin dispersals during the Pleistocene. Proceedings of the National Academy of Sciences 104, 1327913282.CrossRefGoogle ScholarPubMed
Martinón-Torres, M., Bermúdez de Castro, J.M., Gómez-Robles, A., Margvelashvili, A., et al. (2008). Dental remains from Dmanisi (Republic of Georgia): Morphological analysis and comparative study. Journal of Human Evolution 55, 249273.CrossRefGoogle ScholarPubMed
Martinón-Torres, M., Dennell, R., and Bermúdez de Castro, J.M. (2011). The Denisova hominin need not be an out of Africa story. Journal of Human Evolution 60, 251255.CrossRefGoogle Scholar
Martinón-Torres, M., Bermúdez de Castro, J.M., Gómez-Robles, A., Predo-Simón, L., and Arsuaga, J.L. (2012). Morphological description and comparison of the dental remains from Atapuerca-Sima de los Huesos site (Spain). Journal of Human Evolution 62, 758.CrossRefGoogle Scholar
Martinón-Torres, M., Bermúdez de Castro, J.M., Martín-Francés, L., Gracia-Téllez, A., Martínez, I., and Arsuaga, J.L. (2013a). Dental morphology of European Middle Pleistocene populations. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology. Genetics, Evolution, Variation. New York: Cambridge University Press, pp. 201221.CrossRefGoogle Scholar
Martinón-Torres, M., Spěváčková, P., Gracia-Téllez, A., Martínez, I., et al. (2013b). Morphometric analysis of molars in a Middle Pleistocene population shows a mosaic of ‘modern’ and Neanderthal features. Journal of Anatomy 223, 353363.CrossRefGoogle Scholar
Martinón-Torres, M., Xing, S., Liu, W., and Bermúdez de Castro, J.M. (2016). A “source and sink” model for East Asia? Preliminary approach through the dental evidence. Comptes Rendus Palevol https://doi.org/10.1016/j.crpv.2015.09.011Google Scholar
Martinón-Torres, M., Wu, X., Bermúdez de Castro, J.M., Xing, S., and Liu, W. (2017). Homo sapiens in the eastern Asian Late Pleistocene. Current Anthropology, 58, S434S448.CrossRefGoogle Scholar
Mather, K. (1949). Biometrical Genetics. London: Methuen.Google Scholar
Matis, J.A., and Zwemer, T.J. (1971). Odontognathic discrimination of United States Indian and Eskimo groups. Journal of Dental Research 50, 12451248.CrossRefGoogle ScholarPubMed
Matsumura, H. (1990). Geographical variation of dental characteristics in the Japanese of the protohistoric Kofun period. Journal of the Anthropological Society of Japan 98, 439449.CrossRefGoogle Scholar
Matsumura, H. (2007). Non-metric dental trait variation among local sites and regional groups of the Neolithic Jomon period, Japan. Anthropological Science 115, 2533.CrossRefGoogle Scholar
Matsumura, H., and Hudson, M.J. (2006). Dental perspectives on the population history of Southeast Asia. American Journal of Physical Anthropology 127, 182209.CrossRefGoogle Scholar
Mayhall, J.T. (1998). Review of The Anthropology of Modern Human Teeth: Dental Morphology and Its Variation in Recent Human Populations. American Anthropologist 100, 807808.CrossRefGoogle Scholar
Mayhall, J.T., and Heikkinen, T., eds. (1999). Dental Morphology 1998. Oulu: Oulu University Press.Google Scholar
Mayhall, J.T., and Kanazawa, E. (1989). Three-dimensional analysis of the maxillary first molar crowns of Canadian Inuit. American Journal of Physical Anthropology 78, 7378.CrossRefGoogle ScholarPubMed
Mayhall, J.T., and Saunders, S.R. (1986). Dimensional and discrete dental trait asymmetry relationships. American Journal of Physical Anthropology 69, 403411.CrossRefGoogle ScholarPubMed
Mayhall, J.T., Saunders, S.R., and Belier, P.L. (1982). The dental morphology of North American whites: A reappraisal. In Kurtén, B., ed., Teeth: Form, Function, and Evolution. New York: Columbia University Press, pp. 245258.Google Scholar
Mayr, E. (1942). Systematics and the Origin of Species. New York: Columbia University Press.Google Scholar
Mayr, E. (1983). How to carry out the adaptationist program. The American Naturalist 121, 324334.CrossRefGoogle Scholar
McCollum, M., and Sharpe, P.T. (2001). Evolution and development of teeth. Journal of Anatomy 199, 153159.CrossRefGoogle ScholarPubMed
McIlvaine, B.K., Schepartz, L.A., Larsen, C.S., and Sciulli, P. (2014). Evidence for long-term migration on the Balkan peninsula using dental and cranial nonmetric data: Early interaction between Corinth (Greece) and its colony at Apollonia (Albania). American Journal of Physical Anthropology 153, 236248.CrossRefGoogle Scholar
McKeown, H.F., Robinson, D.L., Elcock, C., Al-Sharood, M., and Brook, A.H. (2002). Tooth dimensions in hypodontia patients, their unaffected relatives and a control group measured by a new image analysis system. European Journal of Orthodontics 24, 131141.CrossRefGoogle Scholar
McKusick, V. A. (1990). Mendelian Inheritance in Man, 9th edn. Baltimore: The Johns Hopkins University Press.Google Scholar
Mellars, P. (2004). Neanderthals and the modern human colonization of Europe. Nature 432, 461465.CrossRefGoogle ScholarPubMed
Mellars, P. (2006). Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proceedings of the National Academy of Sciences 103, 93819386.CrossRefGoogle Scholar
Mellars, P., Gori, K.C., Carr., M., Soares, P.A., and Richards, M.B. (2013). Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences 110, 1069910704.CrossRefGoogle ScholarPubMed
Merrill, R.G. (1964). Occlusal anomalous tubercles on premolars of Alaskan Eskimos and Indians. Oral Surgery, Oral Medicine, Oral Pathology 17, 484496.CrossRefGoogle ScholarPubMed
Merriwether, D.A., Rothhammer, F., and Ferrell, R.E. (1995). Distribution of the four founding lineage haplotypes in Native Americans suggests a single wave of migration for the New World. American Journal of Physical Anthropology 98, 411430.CrossRefGoogle ScholarPubMed
Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., et al. (2012). A high coverage genome sequence from an archaic Denisovan individual. Science 338, 222226.CrossRefGoogle ScholarPubMed
Michel, V., Valladas, H., Shen, G., Wang, W., et al. (2016). The earliest modern Homo sapiens in China? Journal of Human Evolution 101, 101104.CrossRefGoogle Scholar
Midtbø, M., and Halse, A. (1994a). Tooth crown size and morphology in Turner syndrome. Acta Odontologica Scandinavica 50, 303312.CrossRefGoogle Scholar
Midtbø, M., and Halse, A. (1994b). Root length, crown height, and root morphology in Turner syndrome. Acta Odontologica Scandinavica 52, 303314.CrossRefGoogle ScholarPubMed
Mihailidis, S., Scriven, G., Khamis, M., and Townsend, G.C. (2013). Prevalence and patterning of maxillary premolar accessory ridges (MxPARs) in several human populations. American Journal of Physical Anthropology 152, 1930.CrossRefGoogle Scholar
Mina, M., and Kollar, E.J. (1987). The induction of odontogenesis in nondental mesenchyme combined with early murine mandibular arch epithelium. Archives of Oral Biology 32, 123–27.CrossRefGoogle Scholar
Minozzi, S., Manzi, G., Ricci, F., di Lernia, S., and Borgognini Tarli, S.M. (2003). Nonalimentary tooth use in prehistory: An example from early Holocene in central Sahara (Uan Muhuggiag, Tadrart Acacus, Libya). American Journal of Physical Anthropology 120, 225232.CrossRefGoogle Scholar
Mitsiadis, T.A., and Smith, M.M. (2006). How do genes make teeth to order through development? Journal of Experimental Zoology 306B,177182.CrossRefGoogle Scholar
Mizoguchi, Y. (1977). Genetic variability in tooth crown characters: Analysis by the tetrachoric correlation method. Bulletin of the National Science Museum, Series D (Anthropology) 3, 3762.Google Scholar
Mizoguchi, Y. (1978). Tooth crown characters on the lingual surfaces of the maxillary anterior teeth: Analysis of the correlations by the method of path coefficients. Bulletin of the National Science Museum, Series D (Anthropology) 4, 2557.Google Scholar
Mizoguchi, Y. (1981). Variation units in the human permanent dentition. Bulletin of the National Science Museum, Series D (Anthropology) 7, 2938.Google Scholar
Mizoguchi, Y. (1985). Shovelling: A Statistical Analysis of its Morphology. Tokyo: University of Tokyo Press.Google Scholar
Mizoguchi, Y. (1986). Correlated asymmetries detected in the tooth crown diameters of human permanent teeth. Bulletin of the National Science Museum, Tokyo, Series D (Anthropology) 12, 2545.Google Scholar
Mizoguchi, Y. (1987). Mirror imagery and genetic variability of lateral asymmetries in the mesiodistal crown diameters of permanent teeth. Bulletin of the National Science Museum, Tokyo, Series D (Anthropology) 13, 1119.Google Scholar
Mizoguchi, Y. (1988a). Statistical analysis of geographical variation in dental size. Report of the Ministry of Education, Science and Culture, Japan, Tokyo, Japan: Ministry of Education, Science and Culture, pp. 1124.Google Scholar
Mizoguchi, Y. (1988b). Degree of bilateral asymmetry of nonmetric tooth crown characters quantified by the tetrachoric correlation method. Bulletin of the National Science Museum, Tokyo, Series D (Anthropology) 14, 2949.Google Scholar
Mizoguchi, Y. (1989). Genetic variability of left–right asymmetries and mirror imagery in nonmetric tooth crown characters. Bulletin of the National Science Museum, Series D (Anthropology) 15, 4961.Google Scholar
Mizoguchi, Y. (1990). Covariation of asymmetries in metric and nonmetric tooth crown characters. Bulletin of the National Science Museum, Series D (Anthropology) 16, 3947.Google Scholar
Mizoguchi, Y. (1993). Adaptive significance of the Carabelli trait. Bulletin of the National Science Museum, Series D (Anthropology) 19, 2158.Google Scholar
Mizoguchi, Y. (2013). Significant among-population associations found between dental characters and environmental factors. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 108125.CrossRefGoogle Scholar
Moggi-Cecchi, J. (1995). Aspects of Dental Biology: Paleontology, Anthropology and Evolution. Florence: International Institute for the Study of Man.Google Scholar
Møller, I.J. (1967). Influence of microelements on the morphology of the teeth. Journal of Dental Research 46 (suppl. to no. 5), 933937.CrossRefGoogle ScholarPubMed
Molnar, S. (1972). Tooth wear and culture: A survey of tooth functions among some prehistoric populations. Current Anthropology 13, 511526.CrossRefGoogle Scholar
Molnar, S. (1975). Races, Types, and Ethnic Groups. Englewood Cliffs: Prentice-Hall.Google Scholar
Montagu, M.F.A., ed. (1964). The Concept of Race. London: Collier-Macmillan.Google Scholar
Moodley, Y., Linz, B., Yamaoka, Y., Windsor, H.M., et al. (2009). The peopling of the Pacific from a bacterial perspective. Science 323, 527530.CrossRefGoogle ScholarPubMed
Moormann, S.M. (2011). The Patterning Cascade Model and expression of the Carabelli feature in humans, differences between first and second molars and correlation with other traits. Honors research thesis, Ohio State University, Columbus.Google Scholar
Moorrees, C.F.A. (1951). The dentition as a criterion of race with special reference to the Aleut. Journal of Dental Research 30, 815821.CrossRefGoogle ScholarPubMed
Moorrees, C.F.A. (1957). The Aleut Dentition: A Correlative Study of Dental Characteristics in an Eskimoid People. Cambridge, Mass.: Harvard University Press.CrossRefGoogle Scholar
Moorrees, C.F.A. (1962). Genetic considerations in dental anthropology. In Witkop, C.J., Jr., ed., Genetics and Dental Health. New York: McGraw-Hill, pp. 101112.Google Scholar
Morris, D.H. (1965). The anthropological utility of dental morphology. PhD dissertation, Department of Anthropology, University of Arizona, Tucson.Google Scholar
Morris, D.H. (1970). On deflecting wrinkles and the Dryopithecus pattern in human mandibular molars. American Journal of Physical Anthropology 32, 97104.CrossRefGoogle ScholarPubMed
Morris, D.H. (1975). Bushman maxillary canine polymorphism. South African Journal of Science 71, 333335.Google Scholar
Morris, D.H. (1981). Maxillary first premolar angular differences between North American Indians and non-North American Indians. American Journal of Physical Anthropology 54, 431433.CrossRefGoogle ScholarPubMed
Morris, D.H. (1986). Maxillary molar polygons in five human samples. American Journal of Physical Anthropology 70, 333338.CrossRefGoogle ScholarPubMed
Morris, D.H., Glasstone Hughes, S., and Dahlberg, A.A. (1978). Uto-Aztecan premolar: The anthropology of a dental trait. In Butler, P.M. and Joysey, K.A., eds., Development, Function and Evolution of Teeth. New York: Academic Press, pp. 6979.Google Scholar
Morton, N.E. (1959). Genetic tests under incomplete ascertainment. American Journal of Human Genetics 11, 116.Google ScholarPubMed
Morton, N.E., and MacLean, C.J. (1974). Analysis of family resemblance. III. Complex segregation analysis of quantitative traits. American Journal of Human Genetics 26, 489503.Google Scholar
Morton, N.E., Yee, S., and Lew, R. (1971). Complex segregation analysis. American Journal of Human Genetics 23, 602611.Google ScholarPubMed
Mourant, A.E. (1954). The Distribution of the Human Blood Groups. Springfield: C.C. Thomas.Google Scholar
Mourant, A.E., Kopec, A.C., and Domaniewska-Sobczak, K. (1976). The Distribution of Human Blood Groups and Other Polymorphisms. Oxford: Oxford University Press.Google Scholar
Mower, J.P. (1999). Deliberate ante-mortem dental modification and its implications in archaeology, ethnography and anthropology. Papers from the Institute of Archaeology 10, 3753.CrossRefGoogle Scholar
Mullis, K.B. (1990). The unusual origin of the polymerase chain reaction. Scientific American 262, 5661.CrossRefGoogle ScholarPubMed
Mustonen, T., Pispa, J., Mikkola, M.L., et al. (2003). Stimulation of ectodermal organ development by ectodysplasin-A1. Developmental Biology 259, 123136.CrossRefGoogle ScholarPubMed
Nakatomi, M., Ida-Yonemochi, H., and Ohshima, H. (2013). Lymphoid enhancer-binding factor 1 expression precedes dentin sialophosphoprotein expression during rat odontoblast differentiation and regeneration. Journal of Endodontics 39, 612618.CrossRefGoogle ScholarPubMed
Nakayama, M., Lähdesmäki, R., Kanazawa, E., and Alvesalo, L. (2005). Analysis of Carabelli’s trait in maxillary second deciduous and permanent molars. In Zadzinska, E., ed., Current Trends in Dental Morphology Research. Lodz: University of Lodz Press, pp. 325331.Google Scholar
Nakayama, M., Lähdesmäki, R., Miinimaa, A., and Alvesale, L. (2015). Molar morphology and the expression of Carabelli’s trait in 45, X females. American Journal of Human Biology 27, 486493.CrossRefGoogle Scholar
Nanci, A. (2012). Ten Cate’s Oral Histology: Development, Structure, and Function, 8th edn. Elsevier Mosby.Google Scholar
Narayanan, A., Smith, S., and Townsend, G. (1999). Dental crown size in individuals with cleft lip and palate. In Townsend, G. and Kieser, J., eds., Perspectives in Human Biology, Volume 4(3), Dento-Facial Variation in Perspective. Perth: The University of Western Australia, pp. 6170.Google Scholar
Neel, J.V., and Schull, W.J. (1954). Human Heredity. Chicago: University of Chicago Press.Google Scholar
Nei, M. (1992). The origins of human populations: genetic, linguistic, and archeological data. In Akazawa, T., Aoki, K., and Kimura, T., eds., The Evolution and Dispersal of Modern Humans in Asia. Tokyo: Hokusen-Sha, pp. 7191.Google Scholar
Nei, M., and Roychoudhury, A.K. (1982). Genetic relationship and evolution of human races. Evolutionary Biology 14, 159.Google Scholar
Nei, M., and Roychoudhury, A.K. (1993). Evolutionary relationships of human populations on a global scale. Molecular Biology and Evolution 10, 927943.Google ScholarPubMed
Nelson, C.T. (1938). The teeth of the Indians of Pecos Pueblo. American Journal of Physical Anthropology 23, 261293.CrossRefGoogle Scholar
Nelson, S.J. (2015). Wheeler’s Dental Anatomy, Physiology and Occlusion, 10th edn. St. Louis: Elsevier Saunders.Google Scholar
Nery, E.B., Kraus, B.S., and Croup, M. (1970). Timing and topography of early human tooth development. Archives of Oral Biology 15, 1315IN311326IN36.CrossRefGoogle ScholarPubMed
Nichol, C.R. (1989). Complex segregation analysis of dental morphological variants. American Journal of Physical Anthropology 78, 3759.CrossRefGoogle ScholarPubMed
Nichol, C.R. (1990). Dental genetics and biological relationships of the Pima Indians of Arizona. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Nichol, C.R., and Turner, C.G., II (1984). Variation in the convexity of the human maxillary incisor labial surface. American Journal of Physical Anthropology 63, 361370.CrossRefGoogle ScholarPubMed
Nichol, C.R., and Turner, C.G., II (1986). Intra- and interobserver concordance in classifying dental morphology. American Journal of Physical Anthropology 69, 299315.CrossRefGoogle ScholarPubMed
Nie, N., Hull, C., Jenkins, J., Steinbrenner, K., and Bent, D. (1975). SPSS Statistical Package for the Social Sciences. New York: McGraw-Hill.Google Scholar
Noss, J.F., Scott, G.R., Potter, R.H.Y., Dahlberg, A.A., and Dahlberg, T. (1983a). The influence of crown size dimorphism on sex differences in the Carabelli trait and the canine distal accessory ridge in man. Archives of Oral Biology 28, 527530.CrossRefGoogle ScholarPubMed
Noss, J.F., Scott, G.R., Potter, R.H.Y., and Dahlberg, A.A. (1983b). Fluctuating asymmetry in molar dimensions and discrete morphological traits in Pima Indians. American Journal of Physical Anthropology 61, 437445.CrossRefGoogle ScholarPubMed
O’Connell, J.F., and Allen, J. (2004). Dating the colonization of Sahul (Pleistocene Australia and New Guinea): a review of recent research. Journal of Archaeological Science 31, 835853.CrossRefGoogle Scholar
Oehlers, F.A.C. (1956). The tuberculated premolar. The Dental Practitioner 6, 144148.Google Scholar
Ohazama, A., and Sharpe, P.T. (2007). Expression of claudins in murine tooth development. Developmental Dynamics 236, 290294.CrossRefGoogle ScholarPubMed
Omoto, K. (1984). The Negritos: Genetic origins and microevolution. Acta Anthropogenetica 8, 137147.Google ScholarPubMed
Omoto, K. (1992). Some aspects of the genetic composition of the Japanese. In Hanihara, K., ed., International Symposium on Japan as a Member of the Asian and Pacific Populations. Kyoto: International Research Center for Japanese Studies, pp. 138144.Google Scholar
Omoto, K., and Saitou, N. (1997). Genetic origins of the Japanese: A partial support for the dual structure hypothesis. American Journal of Physical Anthropology 102, 437446.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Ono, A., Sato, H., Tsutsumi, T., and Kudo, Y. (2002). Radiocarbon dates and archaeology of the late Pleistocene in the Japanese islands. Radiocarbon 44, 477494.CrossRefGoogle Scholar
Ooé, T. (1957). On the early development of human dental lamina. Okajimas folia anatomica Japonica 30, 197210.Google ScholarPubMed
Oppenheimer, S., and Richards, M. (2001). Fast trains, slow boats, and the origins of Polynesian islanders. Science Progress 84, 157181.CrossRefGoogle ScholarPubMed
O’Rourke, D.H., and Raff, J.A. (2010). The human genetic history of the Americas: The final frontier. Current Biology 20, R202R207.CrossRefGoogle ScholarPubMed
O’Rourke, D.H., Hayes, G., and Carlyle, S.W. (2000). Ancient DNA studies in physical anthropology. Annual Review of Anthropology 29, 217242.CrossRefGoogle Scholar
Ortiz, A., Skinner, M.M., Bailey, S.E., and Hublin, J.-J. (2012). Carabelli’s trait revisited: An examination of mesiolingual features at the enamel–dentine junction and enamel surface of Pan and Homo sapiens upper molars. Journal of Human Evolution 63, 586596.CrossRefGoogle ScholarPubMed
Ortner, D.J. (1966). A recent occurrence of an African type tooth mutilation in Florida. American Journal of Physical Anthropology 25, 177180.CrossRefGoogle ScholarPubMed
Osborn, H.F. (1888a). The evolution of the mammalian molars to and from the tritubercular type. American Naturalist 22, 10671079.CrossRefGoogle Scholar
Osborn, H.F. (1888b). The nomenclature of the mammalian molar cusps. American Naturalist 22, 926928.Google Scholar
Osborn, H.F. (1897). Trituberculy: A review dedicated to the late Professor Cope. American Naturalist 31, 9931016.CrossRefGoogle Scholar
Osborn, H.F. (1907). Evolution of Mammalian Molar Teeth, To and From the Triangular Type. New York: Macmillan.Google Scholar
Osborn, J.W. (1978). Morphogenetic gradients: Fields versus clones. In Butler, P.M. and Joysey, K.A., eds., Development, Function and Evolution of Teeth. New York: Academic Press, pp. 171201.Google Scholar
Osborn, J.W. (2008). A model of growth restraints to explain the development and evolution of tooth shapes in mammals. Journal of Theoretical Biology 255, 338343.CrossRefGoogle ScholarPubMed
Ossenberg, N.S. (1981). An argument for the use of total side frequencies of bilateral nonmetric skeletal traits in population distance analysis: The regression of symmetry on incidence. American Journal of Physical Anthropology 54, 471479.CrossRefGoogle Scholar
Ossenberg, N.S. (1992). Native people of the American Northwest: Population history from the perspective of skull morphology. In Akazawa, T., Aoki, K., and Kimura, T., eds., The Evolution and Dispersal of Modern Humans in Asia. Tokyo: Hokusen-Sha, pp. 493530.Google Scholar
Oster, G., and Alberch, P. (1982). Evolution and bifurcation of developmental programs. Evolution 36, 444459.CrossRefGoogle ScholarPubMed
Pacelli, C.S., and Márquez-Grant, N. (2010). Evaluation of dental non-metric traits in a medieval population from Ibiza (Spain). Bulletin of the International Association of Paleodontology 4, 1628.Google Scholar
Pakendorf, B., Bostoen, K., and de Filippo, C. (2011). Molecular perspectives on the Bantus expansion: a synthesis. Language Dynamics and Change 1, 5088.CrossRefGoogle Scholar
Palmer, R. A. (1994). Fluctuating asymmetry analyses: A primer. In Markow, T., ed., Developmental Instability: Its Origins and Evolutionary Implications. The Netherlands: Kluwer Academic Publications, pp. 335364.CrossRefGoogle Scholar
Palmer, R. A., and Strobeck, C. (1986). Fluctuating asymmetry: Measurement, analysis, patterns. Annual Review of Ecology and Systematics 17, 39142.CrossRefGoogle Scholar
Palomino, H., Chakraborty, R., and Rothhammer, F. (1977). Dental morphology and population diversity. Human Biology 49, 6170.Google ScholarPubMed
Park, J.-H., Yamaguchi, T., Watanabe, C., Kawaguchi, A., et al. (2012). Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. Journal of Human Genetics 57, 508514.CrossRefGoogle ScholarPubMed
Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S., and Reich, D. (2006). Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 11031108.CrossRefGoogle ScholarPubMed
Paul, K.S., and Stojanowski, C.M. (2015). Performance analysis of deciduous morphology for detecting biological siblings. American Journal of Physical Anthropology 157, 615629.CrossRefGoogle ScholarPubMed
Paul, K.S., and Stojanowski, C.M. (2017). Comparative performance of deciduous and permanent dental morphology in detecting biological relatives. American Journal of Physical Anthropology DOI: 10.1002/ajpa.23260.CrossRefGoogle ScholarPubMed
Paul, K.S., Astorino, C.M., and Bailey, S.E. (2017). The patterning cascade model and Carabelli’s trait expression in metameres of the mixed human dentition: Exploring a morphogenetic model. American Journal of Physical Anthropology 162, 318.CrossRefGoogle ScholarPubMed
Paynter, K.J., and Grainger, R.M. (1956). The relation of nutrition to the morphology and size of rat molar teeth. Journal of the Canadian Dental Association 22, 519531.Google Scholar
Paynter, K.J., and Grainger, R.M. (1962). Relationship of morphology and size of teeth to caries. International Dental Journal 12, 147160.Google Scholar
Pearson, K. (1926). On the coefficient of racial likeness. Biometrika 18, 105117.CrossRefGoogle Scholar
Pedersen, P.O. (1949). The East Greenland Eskimo dentition. Meddelelser om Grønland 142, 1244.Google Scholar
Pedersen, P.O., Dahlberg, A.A., and Alexandersen, V., eds. (1967). Proceedings of the International Symposium on Dental Morphology. Journal of Dental Research, 46 (suppl. to no. 5), pp. 769992.Google Scholar
Pei, J. (1985). Thermoluminiscence dating of the Peking Man site and other caves. In Multidisciplinary Study of the Peking Man site at Zhoukoudian. Beijing: Science Press, Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica Beijing, pp. 258260.Google Scholar
Peiris, H.R.D., Arambawatta, A.K.S., Hewapathirana, T.N., Nanayakkara, C.D., Chandrasekara, M., and Wickramanayake, E. (2011). Nonmetric tooth crown traits in a Sri Lankan aboriginal Vedda population. HOMO – Journal of Comparative Human Biology 62, 466477.CrossRefGoogle Scholar
Penrose, L.S. (1954). Distance, size and shape. Annals of Eugenics 18, 337343.Google ScholarPubMed
Peterkova, R., Hovorakova, M., Peterka, M., and Lesot, H. (2014). Three dimensional analysis of the early development of the dentition. Australian Dental Journal 59 (1 Suppl), 5580.CrossRefGoogle ScholarPubMed
Peyer, B. (1968). Comparative Odontology. Chicago: University of Chicago Press.Google Scholar
Pietrusewsky, M. (1990). Craniofacial variation in Australasian and Pacific populations. American Journal of Physical Anthropology 82, 319340.CrossRefGoogle ScholarPubMed
Pietrusewsky, M. (1996). The physical anthropology of Polynesia: A review of some cranial and skeletal studies. In Davidson, J.M., Irwin, G., Leach, B.F., Pawley, A., and Brown, B., eds., Oceanic Culture History: Essays in Honour of Roger Green. New Zealand Journal of Archaeology Special Publication, pp. 343353.Google Scholar
Pietrusewsky, M., and Douglas, M.T. (1992). The skeletal biology of an historic Hawaiian cemetery: Familial relationships. HOMO 43, 245262.Google Scholar
Pietrusewsky, M., Yongyi, L., Xiangqing, S., and Quyen, N.G. (1992). Modern and near modern populations of Asia and the Pacific: A multivariate craniometric interpretation. In Akazawa, T., Aoki, K., and Kimura, T., eds., The Evolution and Dispersal of Modern Humans in Asia. Tokyo: Hokusen-Sha, pp. 531558.Google Scholar
Pillas, D., Hoggart, C.J., Evans, D.M., O’Reilly, P.F., Sipila, K., Ladesmaki, R., et al. (2010). Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS Genetics 6, e1000856.CrossRefGoogle ScholarPubMed
Pilloud, M.A. (2009). Community structure at Neolithic Çatalhöyük: Biological distance analysis of household, neighborhood, and settlement. PhD dissertation, Department of Anthropology, The Ohio State University, Columbus.Google Scholar
Pilloud, M.A., and Hefner, J.T., eds. (2016). Biological Distance Analysis: Forensic and Bioarchaeological Perspectives. London: Elsevier.Google Scholar
Pilloud, M.A., and Larsen, C.S. (2011). “Official” and “practical” kin: Inferring community and social structure from dental phenotype at Neolithic Çatalhöyük, Turkey. American Journal of Physical Anthropology 145, 519530.CrossRefGoogle Scholar
Pilloud, M.A., Edgar, H.J.H., George, R., and Scott, G.R. (2016). Dental morphology in biodistance analysis. In Pilloud, M.A. and Hefner, J.T., eds., Biological Distance Analysis: Forensic and Bioarchaeological Perspectives. Amsterdam: Elsevier, pp. 109133.CrossRefGoogle Scholar
Pinkerton, S., Townsend, G., Richards, L., Schwerdt, W., and Dempsey, P. (1999). Expression of Carabelli trait in both dentitions of Australian twins. In Townsend, G. and Kieser, J., eds., Perspectives of Human Biology, volume 4. Perth: The University of Western Australia, pp. 1928.Google Scholar
Pitulko, V.V. (2010). The Berelekh quest: A review of forty years of research in the mammoth graveyard in northeast Siberia. Geoarchaeology 26, 532.CrossRefGoogle Scholar
Pitulko, V.V., Nikolsky, P.A., Girya, E.Y., Basilyan, A.E., et al. (2004). The Yana RHS site: Humans in the Arctic before the last glacial maximum. Science 303, 5256.CrossRefGoogle ScholarPubMed
Plikus, M.V., Zeichner-David, M., Mayer, J-A., Reyna, J., et al. (2005). Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evolution and Development 7, 440457.CrossRefGoogle ScholarPubMed
Poirier, F.E., Stini, W.A., and Wreden, K.B. (1994). In Search of Ourselves, 5th edn. Englewood Cliffs: Prentice-Hall.Google Scholar
Portin, P., and Alvesalo, L. (1974). The inheritance of shovel shape in maxillary central incisors. American Journal of Physical Anthropology 41, 5962.CrossRefGoogle ScholarPubMed
Potter, R.H., and Nance, W.E. (1976). A twin study of dental dimension. I. Discordance, asymmetry, and mirror imagery. American Journal of Physical Anthropology 44, 391396.CrossRefGoogle ScholarPubMed
Potter, R.H.Y., Yu, P.-L., Dahlberg, A.A., Merritt, A.D., and Conneally, P.M. (1968). Genetic studies of tooth size factors in Pima Indian families. American Journal of Human Genetics 20, 89100.Google ScholarPubMed
Potter, R.H., Nance, W.E., Yu, P.L., and Davis, W.B. (1976). A twin study of dental dimension. II. Independent genetic determinants. American Journal of Physical Anthropology 44, 397412.CrossRefGoogle ScholarPubMed
Powell, J.F. (1993). Dental evidence for the peopling of the New World: Some methodological considerations. Human Biology 65, 799815.Google ScholarPubMed
Powell, J.F. (1995). Dental variation and biological affinity among middle Holocene populations in North America. PhD dissertation, Department of Anthropology, Texas A&M University, College Station TX.Google Scholar
Prado-Simón, L., Martinón-Torres, M., Baca, P., Olejniczak, A.J., et al. (2012). Three-dimensional evaluation of root canal morphology in lower second premolars of early and middle Pleistocene human populations from Atapuerca (Burgos, Spain). American Journal of Physical Anthropology 147, 452461.CrossRefGoogle Scholar
Prüfer, K., Racimo, F., Patterson, N., Jay, F., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 4349.CrossRefGoogle ScholarPubMed
Prowse, T.L., and Lovell, N.C. (1996). Concordance of cranial and dental morphological traits and evidence for endogamy in ancient Egypt. American Journal of Physical Anthropology 101, 237246.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Quam, R., Bailey, S.E., and Wood, B.A. (2009). Evolution of M1 crown size and cusp proportions in the genus Homo. Journal of Anatomy 214, 655670.CrossRefGoogle ScholarPubMed
Radlanski, R.J., and Renz, H., eds. (1995). Proceedings of the 10th International Symposium on Dental Morphology. Berlin: “M” Marketing Services, C. & M. Brünne GbR.Google Scholar
Raff, J.A., Bolnick, D.A., Tackney, J., and O’Rourke, D.H. (2011). Ancient DNA perspectives on American colonization and population history. American Journal of Physical Anthropology 146, 503514.CrossRefGoogle ScholarPubMed
Raghaven, M., Steinrücken, M., Harris, K., Schiffels, S., et al. (2015). Genomic evidence for the Pleistocene and recent population history of the Native Americans. Science 349 (6250), aab3884.CrossRefGoogle Scholar
Ragsdale, C. S. (2015). Cultural interaction and biological distance among Postclassic Mexican populations. PhD dissertation, Department of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Ragsdale, C.S., and Edgar, H.J.H. (2015). Cultural interaction and biological distance in postclassic period Mexico. American Journal of Physical Anthropology 157, 121133.CrossRefGoogle ScholarPubMed
Ragsdale, C.S., and Edgar, H.J.H. (2016). Cultural effects on phonetic distances among postclassic Mexican and Southwest United States populations. International Journal of Osteoarcheology 26, 5367.CrossRefGoogle Scholar
Rasmussen, M., Li, Y., Lindgreen, S., Pedersen, J.S., et al. (2010). Ancient human genome sequence of an extinct Paleo-Eskimo. Nature 463, 757762.CrossRefGoogle Scholar
Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K.E., et al. (2011). An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 9498.CrossRefGoogle ScholarPubMed
Rawson, R. D., Vale, G. L., Sperber, N. D., Herschaft, E. E., and Yfantis, A. (1986). Reliability of the scoring system of the American Board of Forensic Odontology for human bite marks. Journal of Forensic Science 31, 12351260.CrossRefGoogle Scholar
Reich, D., Green, R.E., Kircher, M., Krause, J., et al. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 10531060.CrossRefGoogle ScholarPubMed
Reich, D., Patterson, N., Campbell, D., Tandon, A., et al. (2012). Reconstructing Native American population history. Nature 488, 370384.CrossRefGoogle ScholarPubMed
Reichs, K.J., ed. (1998). Forensic Osteology: Advances in the Identification of Human Remains. Springfield: Charles C. Thomas.Google Scholar
Reid, C., van Reenan, J.F., and Groeneveld, H.T. (1991). Tooth size and the Carabelli trait. American Journal of Physical Anthropology 84, 427432.CrossRefGoogle ScholarPubMed
Reid, C., van Reenan, J.F., and Groeneveld, H.T. (1992). The Carabelli trait and maxillary molar cusp and crown base areas. In Smith, P. and Tchernov, E., eds., Structure, Function and Evolution of Teeth. London: Freund Publishing House, pp. 451466.Google Scholar
Reid, D.J., and Ferrell, R.J. (2006). The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation. Journal of Human Evolution 50, 195202.CrossRefGoogle ScholarPubMed
Relethford, J.H. (1994). Craniometric variation among modern human populations. American Journal of Physical Anthropology 95, 5362.CrossRefGoogle ScholarPubMed
Relethford, J.H. (2001). Ancient DNA and the origin of modern humans. Proceedings of the National Academy of Sciences 98, 390391.CrossRefGoogle ScholarPubMed
Relethford, J.H., and Harpending, H.C. (1994). Craniometric variation, genetic theory, and modern human origins. American Journal of Physical Anthropology 95, 249270.CrossRefGoogle ScholarPubMed
Ribeiro, D.C., Brook, A.H., Hughes, T.E., Sampson, W.J., and Townsend, G.C. (2013). Intrauterine hormone effects on tooth dimensions. Journal of Dental Research 92, 425431.CrossRefGoogle ScholarPubMed
Ricaut, F.-X., Auriol, V., von Cramon-Taubadel, N., Keyser, C., et al. (2010). Comparison between morphological and genetic data to estimate biological relationship: The case of the Egyin Gol necropolis (Mongolia). American Journal of Physical Anthropology 143, 355364.CrossRefGoogle Scholar
Richards, L.C., and Telfer, P.J. (1979). The use of dental characters in the assessment of genetic distance in Australia. Archaeology and Physical Anthropology in Oceania 14, 184194.Google Scholar
Richter, D., Grün, R., Joannes-Boyau, R., Steele, T.E., et al. (2017). The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293296.CrossRefGoogle ScholarPubMed
Riga, A., Belcastro, M.G., and Moggi-Cecchi, J. (2013). Environmental stress increases variability in the expression of dental cusps. American Journal of Physical Anthropology 153, 397407.CrossRefGoogle ScholarPubMed
Rivera García, N.A. (2011). Impacto biológico y cultural del Neolítico en poblaciones del Norte de la Península Ibérica: Estudio bio-antropológico de la Necrópolis de Longar (Viana-Navarra) (Neolítico Final – Calcolítico Antiguo). Doctoral thesis, Facultad de Ciencia y Tecnología, Leioa, Universidad del País Vasco, Bilbao, Spain.Google Scholar
Rizk, O.T., Grieco, T.M., Holmes, M.W., and Hlusko, L.J. (2013). Using geometric morphometrics to study the mechanisms that pattern primate dental variation. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 126169.CrossRefGoogle Scholar
Robertson, A., and Lerner, I.M. (1949). The heritability of all-or-none traits: Viability of poultry. Genetics 34, 395411.Google ScholarPubMed
Robinson, D.L., Blackwell, P.G., Stillman, E.C., and Brook, A.H. (2001). Planar Procrustes analysis of tooth shape. Archives of Oral Biology 46, 191199.CrossRefGoogle ScholarPubMed
Robinson, D.L., Blackwell, P.G., Stillman, E.C., and Brook, A.H. (2002). Impact of landmark reliability on the planar Procrustes analysis of tooth shape. Archives of Oral Biology 47, 545554.CrossRefGoogle ScholarPubMed
Robinson, J.T. (1956). The Dentition of the Australopithecinae. Pretoria: Transvaal Museum Memoir, Number 9.Google Scholar
Rodríguez-Flórez, C.D. (2013). A review of the Uto-Aztecan premolar trait in South America and its presence in Colombia. Revista de la Facultad de Odontología Universidad de Antioquia 25, 147.Google Scholar
Rohlf, F J. (2002). NTSYS-pc: numerical taxonomy system ver. 2.1. Setauket, NY: Exeter Publishing.Google Scholar
Romero, J. (1970). Dental mutilation, trephination, and cranial deformation. In Stewart, T.D., ed., Handbook of Middle American Indians, Vol. 9, Physical Anthropology. Austin: University of Texas Press, pp. 5067.Google Scholar
Rothhammer, F., Lasserre, E., Blanco, R., Covarrubias, E., and Dixon, M. (1968). Microevolution in Chilean populations. IV. Shovel shape, mesial-palatal version and other dental traits in Pewenche Indians. Zeitschrift für Morphologie und Anthropologie 60, 162169.Google ScholarPubMed
Roychoudhury, A.K., and Nei, M. (1988). Human Polymorphic Genes: World Distribution. New York: Oxford University Press.Google Scholar
Roychoudhury, A.K., and Nei, M. (1997). The emergence and dispersal of Mongoloids. Journal of the Indian Anthropological Society 32, 149.Google Scholar
Ruhlen, M. (1987). A Guide to the World’s Languages, Vol. 1. Stanford: Stanford University Press.Google Scholar
Ruhlen, M. (1994). The Origin of Language: Tracing the Evolution of the Mother Tongue. New York: John Wiley.Google Scholar
Russell, D.E., Santoro, J.-P., and Sigogneau-Russell, D., eds. (1988). Teeth Revisited. Mémoires du Muséum Nationale d’Histoire Naturelle, Série C, Sciences de la Terre, volume 53. Paris, France: Editions du Museum.Google Scholar
Saheki, M. (1958). On the heredity of the tooth crown configuration studied in twins. Acta Anatomica Nipponica 33, 456470.Google Scholar
Sakai, T., Sasaki, I., and Hanamura, H. (1967). A morphological study of enamel–dentin border on the Japanese dentition. II. Maxillary canine. Journal of the Anthropological Society of Nippon 75, 155172.CrossRefGoogle Scholar
Salas, A., Richards, M., De la Fe, T., Lareu, M.-V., et al. (2002). The making of the African mtDNA landscape. American Journal of Human Genetics 71, 10821111.CrossRefGoogle ScholarPubMed
Salazar-Ciudad, I., and Jernvall, J. (2002). A gene network model accounting for development and evolution of mammalian teeth. Proceedings of the National Academy of Sciences 99, 81168120.CrossRefGoogle ScholarPubMed
Salazar-Ciudad, I., Jernvall, J., and Newman, S.A. (2003). Mechanisms of pattern formation in development and evolution. Development 130, 20272037.CrossRefGoogle ScholarPubMed
Sankararaman, S., Patterson, N., Li, H., Pääbo, S., and Reich, D. (2012). The date of interbreeding between Neandertals and modern humans. PloS Genetics 8, e1002947.CrossRefGoogle ScholarPubMed
Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K., et al. (2014). The landscape of Neanderthal ancestry in modern humans. Nature 507, 354357.CrossRefGoogle Scholar
Sato, T., Amano, T., Ono, H., Ishida, H., et al. (2009). Mitochondrial DNA haplogrouping of the Okhotsk people based on analysis of ancient DNA: An intermediate of gene flow from the continental Sakhalin people to the Ainu. Anthropological Science 117, 171180.CrossRefGoogle Scholar
Saunders, S.R., and Mayhall, J.T. (1982a). Fluctuating asymmetry of dental morphological traits: new interpretations. Human Biology 54, 789799.Google ScholarPubMed
Saunders, S.R., and Mayhall, J.T. (1982b). Developmental patterns of human dental morphological traits. Archives of Oral Biology 27, 4549.CrossRefGoogle ScholarPubMed
Sawchuk, E.A. (2017). Social change and human population movements – dental morphology in Holocene eastern Africa. PhD dissertation, Department of Anthropology, University of Toronto.Google Scholar
Sawyer, S., Renaud, G., Viola, B., Hublin, J.-J., et al. (2015). Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proceedings of the National Academy of Sciences 112, 1569615700.Google ScholarPubMed
Schell, L.M., and Blumberg, B.S. (1988). Alloalbuminemia and the migrations of Native Americans. Yearbook of Physical Anthropology 31, 113.CrossRefGoogle Scholar
Schillaci, M.A., Irish, J.D., and Wood, C.C.E. (2009). Further analysis of the population history of ancient Egyptians. American Journal of Physical Anthropology 139, 235243.CrossRefGoogle ScholarPubMed
Schulz, P.D. (1977). Task activity and anterior tooth grooving in prehistoric California Indians. American Journal of Physical Anthropology 46, 8792.CrossRefGoogle ScholarPubMed
Schwartz, J.H. (1995). Skeleton Keys: An Introduction to Human Skeletal Morphology, Development, and Analysis. New York: Oxford University Press.Google Scholar
Sciulli, P.W. (1977). A descriptive and comparative study of the deciduous dentition of prehistoric Ohio Valley Amerindians. American Journal of Physical Anthropology 47, 7180.CrossRefGoogle ScholarPubMed
Sciulli, P.W. (1990). Deciduous dentition of a late Archaic population of Ohio. Human Biology 62, 221245.Google ScholarPubMed
Sciulli, P.W. (1998). Evolution of the dentition in prehistoric Ohio Valley native Americans. II. Morphology of the deciduous dentition. American Journal of Physical Anthropology 106, 189205.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Sciulli, P.W., Schneider, K.N., and Mahaney, M.C. (1984). Morphological variation of the permanent dentition in prehistoric Ohio. Anthropologie 22, 211215.Google Scholar
Scott, G.R. (1971). Canine tuberculum dentale. American Journal of Physical Anthropology 35, 294 (abstract).Google Scholar
Scott, G.R. (1972). An analysis of population and family data on Carabelli’s trait and shovel-shaped incisors. American Journal of Physical Anthropology 37, 449 (abstract).Google Scholar
Scott, G.R. (1973). Dental morphology: A genetic study of American white families and variation in living Southwest Indians. PhD dissertation, Department of Anthropology, Arizona State University, Tempe.Google Scholar
Scott, G.R. (1977a). Lingual tubercles and the maxillary incisor-canine field. Journal of Dental Research 56, 1192.CrossRefGoogle ScholarPubMed
Scott, G.R. (1977b). Classification, sex dimorphism, association, and population variation of the canine distal accessory ridge. Human Biology 49, 453469.Google ScholarPubMed
Scott, G.R. (1977c). Interaction between shoveling of the maxillary and mandibular incisors. Journal of Dental Research 56, 1423.CrossRefGoogle ScholarPubMed
Scott, G.R. (1978). The relationship between Carabelli’s trait and the protostylid. Journal of Dental Research 57, 570.CrossRefGoogle ScholarPubMed
Scott, G.R. (1979). Association between the hypocone and Carabelli’s trait of the maxillary molars. Journal of Dental Research 58, 14031404.CrossRefGoogle ScholarPubMed
Scott, G.R. (1980). Population variation of Carabelli’s trait. Human Biology 52, 6378.Google ScholarPubMed
Scott, G.R. (1991). Continuity or replacement at the Uyak site: A physical anthropological analysis of population relationships. In The Uyak Site on Kodiak Island: Its Place in Alaskan Prehistory. University of Oregon Anthropological Papers No. 44. Eugene, OR: University of Oregon Press, pp. 156.Google Scholar
Scott, G.R. (1992). Dental anthropology. Encyclopedia of Human Biology, Vol. 2. San Diego: Academic Press, pp. 789804.Google Scholar
Scott, G.R. (1994). Teeth and prehistory on Kodiak Island. In Bray, T.L. and Killion, T.W., eds., Reckoning with the Dead: The Larsen Bay Repatriation and the Smithsonian Institution. Washington: Smithsonian Institution Press, pp. 6774.Google Scholar
Scott, G.R. (2008). Dental morphology. In Katzenburg, A. and Saunders, S., eds., Biological Anthropology of the Human Skeleton, 2nd edn. New York: Wiley-Liss, pp. 265298.CrossRefGoogle Scholar
Scott, G.R. (2013). Christy G. Turner II. Mother Tongue 18, 14.Google Scholar
Scott, G.R. (2014). Obituary: Christy Gentry Turner II (November 28, 1933–July 27, 2013). American Journal of Physical Anthropology 154, 319321.CrossRefGoogle Scholar
Scott, G.R., and Alexandersen, V. (1992). Dental morphological variation among medieval Greenlanders, Icelanders, and Norwegians. In Smith, P. and Tchernov, E., eds., Structure, Function and Evolution of Teeth. London: Freund Publishing House, pp. 467490.Google Scholar
Scott, G.R., and Burgett, R. (2008). Tooth tool use and yarn production in Norse Greenland. Alaska Journal of Anthropology 6, 255266.Google Scholar
Scott, G.R., and Dahlberg, A.A. (1982). Microdifferentiation in tooth crown morphology among Indians of the American Southwest. In Kurtén, B., ed., Teeth: Form, Function, and Evolution. New York: Columbia University Press, pp. 259291.Google Scholar
Scott, G.R., and Gillispie, T.E. (2002). The dentition of prehistoric St. Lawrence Island Eskimos: Variation, health and behavior. Anthropological Papers of the University of Alaska, 2, 5072.Google Scholar
Scott, G.R., and Irish, J.D., eds. (2013). Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Scott, G.R., and Irish, J.D. (2017). Tooth Crown and Root Morphology: The Arizona State University Dental Anthropology System. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Scott, G.R., and Potter, R.H.Y. (1984). An analysis of tooth crown morphology in American white twins. Anthropologie 22, 223231.Google Scholar
Scott, G.R., and Schomberg, R. (2016). A baffling convergence: Tooth crown and root traits in Europe and New Guinea. In Pilloud, M.A. and Hefner, J.T., eds., Forensic and Bioarchaeological Perspectives on Biological Distance. San Diego: Academic Press, pp. 411424.Google Scholar
Scott, G.R., and Turner, C.G., II (1988). Dental anthropology. Annual Reviews in Anthropology 17, 99126.CrossRefGoogle Scholar
Scott, G.R., and Turner, C.G. II (1997). The Anthropology of Modern Human Teeth. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Scott, G.R., and Turner, C.G. II (2008). The physical anthropological intermediacy problem of Na-Dené/Greater Northwest Coast Indians. Alaska Journal of Anthropology, 6, 5768.Google Scholar
Scott, G.R., and Winn, J. (2011). Dental chipping: Contrasting patterns of microtrauma in Inuit and European populations. International Journal of Osteoarchaeology 21, 723731.CrossRefGoogle Scholar
Scott, G.R., Potter, R.H.Y., Noss, J.F., Dahlberg, A.A., and Dahlberg, T. (1983). The dental morphology of Pima Indians. American Journal of Physical Anthropology 61, 1331.CrossRefGoogle ScholarPubMed
Scott, G.R., Street, S.R., and Dahlberg, A.A. (1988). The dental variation of Yuman speaking groups in an American Southwest context. In Russell, D.E., Santoro, J.-P. and Sigogneau-Russell, D., eds., Teeth Revisited. Mémoires du Muséum Nationale d’Histoire Naturelle, Série C, Sciences de la Terre 53, 305319.Google Scholar
Scott, G.R., Halffman, C.M., and Pedersen, P.O. (1992). Dental conditions of medieval Norsemen in the North Atlantic. Acta Archaeologica 62, 183207.Google Scholar
Scott, G.R., Anta, A., de la Rua, C., and Schomberg, R. (2013). Basque dental morphology and the “Eurodont” dental pattern. In Scott, G.R. and Irish, J.D, eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 296318.CrossRefGoogle Scholar
Scott, G.R., Maier, C., and Heim, K. (2016a). Identifying and recording key morphological (nonmetric) crown and root traits. In Irish, J.D. and Scott, G.R., eds., A Companion to Dental Anthropology. Chichester, West Sussex: Wiley-Blackwell, pp. 247264.Google Scholar
Scott, G.R., Schmitz, K., Heim, K., Paul, K.A., Schomberg, R., and Pilloud, M.A. (2016b). Sinodonty, Sundadonty, and the Beringian Standstill model: Issues of timing and migrations into the New World. Quaternary International doi.org/10.1016/j.quaint.2016.04.027Google Scholar
Scott, G.R., Navega, D., Coelho, J., Pilloud, M.A., Cunha, E., and Irish, J.D. (2018). rASUDAS: A new web-based application for estimating ancestry from tooth morphology. Forensic Anthropology 1, 18–31.Google Scholar
Searle, A.G. (1954). Genetical studies on the skeleton of the mouse. XI. The influence of diet on variation within pure lines. Journal of Genetics 52, 413424.CrossRefGoogle Scholar
Sekikawa, M, Kanazawa, E., and Ozaki, T. (1987a). Study of the cuspal ridges of the upper first molars in a modern Japanese population. Acta Anatomica 129, 159164.CrossRefGoogle Scholar
Sekikawa, M, Kanazawa, E., Ito, T., and Ozaki, T. (1987b). Cuspal ridges of the lower first molar in a modern Japanese population. Japanese Journal of Oral Biology 29, 763769.CrossRefGoogle Scholar
Sekikawa, M., Kanazawa, E., Ozaki, T., and Richards, L.C. (1990). Cuspal ridges of deciduous upper second molars in Japanese subjects. Journal of the Anthropological Society of Nippon 98, 3947.CrossRefGoogle Scholar
Seo, Y-J., Park, J.W., Kim, Y.H., and Baek, S-H. (2013). Associations between the risk of tooth agenesis and single-nucleotide polymorphisms of MSX1 and PAX9 genes in nonsyndromic cleft patients. Angle Orthodontist 83, 10361042.CrossRefGoogle ScholarPubMed
Shapiro, M.M.J. (1949). The anatomy and morphology of the tubercle of Carabelli. The Official Journal of the Dental Association of South Africa 4, 355362.Google Scholar
Sharpe, P.T. (1995). Homeobox genes and orofacial development. Connective Tissue Research 32, 1725.CrossRefGoogle ScholarPubMed
Shaw, J.C.M. (1931). The Teeth, the Bony Palate, and the Mandible in the Bantu Races of South Africa. London: Bale and Danielsson.Google Scholar
Shaw, J.H. (1970). Preeruptive effects of nutrition on teeth. Journal of Dental Research 49, 12381251.CrossRefGoogle Scholar
Sheets, J.W., and Gavan, J.A. (1977). Dental reduction from Homo erectus to Neanderthal. Current Anthropology 18, 587588.CrossRefGoogle Scholar
Shen, G.J., Wang, W., Wang, Q., and Pan, P.J. (2001). U-series dating of hominid site Ganqian Cave at Tubo, Liujiang, Guangxi in South China. Acta Anthropologica Sinica 20, 238244.Google Scholar
Shen, G.J., Wu, X.Z., Wang, Q., Tu, H., Feng, Y.X., and Zhao, J.X. (2013). Mass spectrometric U-series dating of Huanglong Cave in Hubei Province, central China: Evidence for early presence of modern humans in eastern Asia. Journal of Human Evolution 65, 162167.CrossRefGoogle ScholarPubMed
Shields, G.F., Schmiechen, A.M., Frazier, B.L., Redd, A., et al., (1993). mtDNA sequences suggest a recent evolutionary divergence for Beringian and northern North American populations. American Journal of Human Genetics 53, 549562.Google ScholarPubMed
Siegel, M.I., and Doyle, W.J. (1975a). The differential effects of prenatal and postnatal audiogenic stress on fluctuating dental asymmetry. Journal of Experimental Zoology 191, 211214.CrossRefGoogle ScholarPubMed
Siegel, M.I., and Doyle, W.J. (1975b). The effects of cold stress on fluctuating asymmetry in the dentition of the mouse. Journal of Experimental Zoology 193, 385389.CrossRefGoogle ScholarPubMed
Siegel, M.I., and Mooney, M.P. (1987). Perinatal stress and increased fluctuating asymmetry of dental calcium in the laboratory rat. American Journal of Physical Anthropology 73, 267270.CrossRefGoogle ScholarPubMed
Siegel, M.I., Doyle, W.J., and Kelley, C. (1977). Heat stress, fluctuating asymmetry and prenatal selection in the laboratory rat. American Journal of Physical Anthropology 46, 121126.CrossRefGoogle ScholarPubMed
Sikora, M., Laayouni, H., Calafell, F., Comas, D., and Bertranpetit, J. (2011). A genomic analysis identifies a novel component in the genetic structure of sub-Saharan African populations. European Journal of Human Genetics 19, 8488.CrossRefGoogle ScholarPubMed
Simonti, C.N., Vernot, B., Bastarache, L., Bottinger, E., et al. (2016). The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737741.CrossRefGoogle ScholarPubMed
Simpson, G.G. (1944). Tempo and Mode in Evolution. New York: Columbia University Press.Google Scholar
Sjøvold, T. (1973). The occurrence of minor non-metrical variants in the skeleton and their quantitative treatment for population comparisons. Homo 24, 204233.Google Scholar
Skinner, M.M., Wood, B.A., Boesch, C., Olejniczak, A.J., et al. (2008a). Dental trait expression at the enamel-dentine junction of lower molars in extant and fossil hominoids. Journal of Human Evolution 54, 173186.CrossRefGoogle ScholarPubMed
Skinner, M.M., Gunz, P., Wood, B.A., and Hublin, J.-J. (2008b). Enamel–dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus. Journal of Human Evolution 55, 979988.CrossRefGoogle ScholarPubMed
Skinner, M.M., Wood, B.A., and Hublin, J.-J. (2009). Protostylid expression at the enamel-dentine junction and enamel surface of mandibular molars of Paranthropus robustus and Australopithecus africanus. Journal of Human Evolution 56, 7685.CrossRefGoogle ScholarPubMed
Skrinjaric, I., Slaj, M., Lapter, V., and Muretic, Z. (1985). Heritability of Carabelli’s trait in twins. Collegium Antropologicum 2, 177181.Google Scholar
Sládek, V., Trinkaus, E., Hillson, S.W., and Holiday, T.W. (2000). The People of the Pavlovian: Skeletal Catalogue and Osteometrics of the Gravettian Fossil Hominids from Dolní Vestonice and Pavlov. Brno: Akademie ved Ceske Republicky.Google Scholar
Smith, B.H., Garn, S.M., and Cole, P.E. (1982). Problems of sampling and inference in the study of fluctuating dental asymmetry. American Journal of Physical Anthropology 58, 281289.CrossRefGoogle Scholar
Smith, D.G., Lorenz, J., Rolfs, B.K., Bettinger, R.L., et al. (2000). Implications of the distribution of Albumin Naskapi and Albumin Mexico for New World prehistory. American Journal of Physical Anthropology 111, 557572.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Smith, P. (1982). Dental reduction: selection or drift? In Kurten, B., ed., Teeth: Form, Function, and Evolution. New York: Columbia University Press, pp. 366379.Google Scholar
Smith, P., and Shegev, M. (1988). The dentition of Nubians from Wadi Halfa, Sudan: An evolutionary perspective. Journal of the Dental Association of South Africa 43, 539541.Google Scholar
Smith, P., and Tchernov, E., eds. (1992). Structure, Function and Evolution of Teeth. London: Freund Publishing House.Google Scholar
Smith, P., Koyoumonsky-Kaye, E., Kaldaran, W., and Stern, D. (1987). Directionality of dental trait frequency between human second deciduous and first permanent molars. Archives of Oral Biology 32, 59.CrossRefGoogle ScholarPubMed
Snyder, R.G. (1960). Mesial margin ridging of incisor labial surfaces. Journal of Dental Research 39, 361364.CrossRefGoogle ScholarPubMed
Soares, P., Rito, T., Trejaut, J., Mormina, M., et al. (2011). Ancient voyaging and Polynesian origins. American Journal of Human Genetics 88, 239244.CrossRefGoogle ScholarPubMed
Sofaer, J.A. (1970). Dental morphologic variation and the Hardy-Weinberg law. Journal of Dental Research 49, 15051508.CrossRefGoogle ScholarPubMed
Sofaer, J.A., Chung, C.S., Niswander, J.D., and Runck, D.W. (1971). Developmental interaction, size and agenesis among permanent maxillary incisors. Human Biology 43, 3645.Google ScholarPubMed
Sofaer, J.A., Niswander, J.D., MacLean, C.J., and Workman, P.L. (1972a). Population studies on Southwestern Indian tribes. V. Tooth morphology as an indicator of biological distance. American Journal of Physical Anthropology 37, 357366.CrossRefGoogle ScholarPubMed
Sofaer, J.A., MacLean, C.J., and Bailit, H.L. (1972b). Heredity and morphological variation in early and late developing human teeth of the same morphological class. Archives of Oral Biology 17, 811816.CrossRefGoogle ScholarPubMed
Sofaer, J.A., Smith, P., and Kaye, E. (1986). Affinities between contemporary and skeletal Jewish and non-Jewish groups based on tooth morphology. American Journal of Physical Anthropology 70, 265275.CrossRefGoogle ScholarPubMed
Sokal, R.R., and Sneath, P.H.A. (1963). Principles of Numerical Taxonomy. San Francisco: W.H. Freeman.Google Scholar
Sołtysiak, A., and Bialon, M. (2013). Population history of the middle Euphrates valley: Dental non-metric traits at Tell Ashara, Tell Masaikh and Jebel Mashtale, Syria. HOMO – Journal of Comparative Human Biology 64, 341356.CrossRefGoogle ScholarPubMed
Spencer, B., and Gillin, F.J. (1899). The Native Tribes of Central Australia. London: Macmillan.Google Scholar
Sprowls, M.W., Ward, R.E., Jamison, P.L., and Hartsfield, J.K. (2008). Dental arch asymmetry, fluctuating dental asymmetry, and dental crowding: A comparison of tooth position and tooth size between antimeres. Seminars in Orthodontics 14, 157165.CrossRefGoogle Scholar
Spuhler, J.N. (1954). Some problems in the physical anthropology of the American Southwest. American Anthropologist 56, 604619.CrossRefGoogle Scholar
Staley, R.N., and Green, L.J. (1974). Types of tooth cusp occurrence asymmetry in human monozygotic and dizygotic twins. American Journal of Physical Anthropology 40, 187196.CrossRefGoogle ScholarPubMed
Stanford, C., Allen, J.C., and Anton, S.C. (2013). Biological Anthropology: The Natural History of Humankind. Boston: Pearson.Google Scholar
Staski, E., and Marks, J. (1992). Evolutionary Anthropology. Fort Worth: Harcourt Brace Jovanovich.Google Scholar
Stein, M.R. (1934). Polyisomerism of the human dentition. Journal of Dental Research 14, 125137.CrossRefGoogle Scholar
Stein, P.L., and Rowe, B.M. (1993). Physical Anthropology. New York: McGraw-Hill.Google Scholar
Steinberg, A.G., and Cook, C.E. (1981). The Distribution of the Human Immunoglobulin Allotypes. Oxford: Oxford University Press.Google Scholar
Stewart, T.D. (1942). Persistence of the African type of tooth pointing in Panama. American Anthropologist 44, 328330.CrossRefGoogle Scholar
Stewart, T.D., and Groome, J.R. (1968). The African custom of tooth mutilation in America. American Journal of Physical Anthropology 28, 3142.CrossRefGoogle ScholarPubMed
Stodder, A.L.W. (1998). Review of The Anthropology of Modern Human Teeth: Dental Morphology and Its Variation in Recent Human Populations. The Quarterly Review of Biology 73, 544.Google Scholar
Stojanowski, C.M., and Johnson, K.M. (2015). Observer error, dental wear, and the inference of New World Sundadonty. American Journal of Physical Anthropology 156, 349362.CrossRefGoogle ScholarPubMed
Stojanowski, C.M., and Schillaci, M.A. (2005). Phenotypic approaches for understanding patterns of intracemetery biological variation. Yearbook of Physical Anthropology 49, 4988.Google Scholar
Stojanowski, C., Johnson, K.M., Doran, G.H., and Ricklis, R.A. (2011). Talon cusp from two archaic period cemeteries in North America: Implications for comparative evolutionary morphology. American Journal of Physical Anthropology 144, 411420.CrossRefGoogle ScholarPubMed
Stojanowski, C.M., Johnson, K.M., and Duncan, W.N. (2013). Sinodonty and beyond: Hemispheric, regional, and intracemetery approaches to studying dental morphological variation in the New World. In Scott, G.R. and Irish, J.D., eds., Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation. Cambridge: Cambridge University Press, pp. 408452.CrossRefGoogle Scholar
Stone, A.C., and Stoneking, M. (1993). Ancient DNA from a pre-Columbian Amerindian population. American Journal of Physical Anthropology 92, 463471.CrossRefGoogle ScholarPubMed
Stringer, C. (2002a). Chronological and biogeographic perspectives on later human evolution. In Akazawa, T., Aoki, K., and Bar-Yosef, O., eds., Neandertals and Modern Humans in Western Asia. New York: Kluwer Academic Publishers, pp. 2937.CrossRefGoogle Scholar
Stringer, C. (2002b). Modern human origins: Progress and prospects. Philosophical Transactions of the Royal Society B 357, 563679.CrossRefGoogle ScholarPubMed
Stringer, C.B. (2003). Human evolution: Out of Ethiopia. Nature 423, 692695.CrossRefGoogle ScholarPubMed
Stringer, C. (2016). The origin and evolution of Homo sapiens. Philosophical Transactions of the Royal Society B 371, 20150237.CrossRefGoogle ScholarPubMed
Stringer, C.B., and Andrews, P. (1988). Genetic and fossil evidence for the origin of modern humans. Science 239, 1263.CrossRefGoogle ScholarPubMed
Stringer, C.B. and Barnes, I. (2015). Deciphering the Denisovans. Proceedings of the National Academy of Sciences 112, 1554215543.Google ScholarPubMed
Stringer, C., and Galway-Witham, J. (2017). Palaeoanthropology: On the origin of our species. Nature 546, 212214.CrossRefGoogle ScholarPubMed
Stringer, C.B., and McKie, R. (1997). African Exodus: The Origins of Modern Humanity. New York: Henry Holt.Google Scholar
Stringer, C.B., Humphrey, L.T., and Compton, T. (1997). Cladistic analysis of dental traits in recent humans using a fossil outgroup. Journal of Human Evolution 32, 389402.CrossRefGoogle ScholarPubMed
Strouhal, E. (1992). Anthropological and archaeological identification of an ancient Egyptian royal family (5th century). International Journal of Anthropology 7, 4363.CrossRefGoogle Scholar
Su, B., Lin, L., Underhill, P., Martinson, J., et al. (2000). Polynesian origins: Insights from the Y chromosome. Proceedings of the National Academy of Sciences 97, 82258228.CrossRefGoogle ScholarPubMed
Suchentrunk, F. (2000). Epigenetic dental asymmetry of Israeli hares: Developmental stability along an environmental gradient. Israel Journal of Zoology 46, 103118.CrossRefGoogle Scholar
Sutter, R.C. (2000). Prehistoric genetic and culture change: A bioarchaeological search for pre-Inka altiplano colonies in the coastal valleys of Moquegua, Peru, and Azapa, Chile. Latin American Antiquity 11, 4370.CrossRefGoogle Scholar
Sutter, R.C. (2005a). A bioarchaeological assessment of prehistoric ethnicity among Early Late Intermediate Period populations of the Azapa valley, Chile. In Reycraft, R.M., ed., Us and Them: Archaeology and Ethnicity in the Andes. Los Angeles: The Cotsen Institute of Archaeology at UCLA, pp. 183205.Google Scholar
Sutter, R.C. (2005b). The prehistoric peopling of South America as inferred from epigenetic dental traits. Andean Past 7, 183217.Google Scholar
Sutter, R.C. (2006). The test of competing models for the prehistoric peopling of the Azapa valley, northern Chile, using matrix correlation. Chungara 38, 6382.Google Scholar
Sutter, R.C., and Castillo, L.J. (2015). Population structure during the demise of the Moche (550–850 AD): Comparative phenetic analyses of tooth trait data from San Joséde Moro, Perú. Current Anthropology 55, 762771.CrossRefGoogle Scholar
Sutter, R.C., and Sharratt, N. (2010). Continuity and transformation during the terminal middle horizon (A.D. 950–1150): A bioarchaeological assessment of Tumilaca origins within the middle Moquegua valley, Peru. Latin America Antiquity 21, 6786.CrossRefGoogle Scholar
Sutter, R.C., and Verano, J.W. (2007). Biodistance analysis of the Moche sacrificial victims from Huaca de la Luna plaza 3C: Matrix method test of their origins. American Journal of Physical Anthropology 132, 193206.CrossRefGoogle Scholar
Suwa, G., White, T.D., and Howell, F.C. (1996). Mandibular postcanine dentition from the Shungura Formation, Ethiopia: Crown morphology, taxonomic allocations, and Plio-Pleistocene hominid evolution. American Journal of Physical Anthropology 101, 247282.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Suwa, G., Asfaw, B., Haile-Selassie, Y., White, T.D., et al. (2007). Early Pleistocene Homo erectus fossils from Konso, southern Ethiopia. Anthropological Science 115, 133151.CrossRefGoogle Scholar
Suzuki, M., and Sakai, T. (1966). Morphological analysis of the shovel-shaped teeth. Journal of the Anthropological Society of Nippon 74, 202218.CrossRefGoogle Scholar
Swindler, D.R. (1976). Dentition of Living Primates. London: Academic Press.Google Scholar
Swindler, D.R. (2005). Primate Dentition: An Introduction to the Teeth of Non-Human Primates. Cambridge: Cambridge University Press.Google Scholar
Swindler, D.R., Drusini, A.G., and Ferrando, C.C. (1995). Molar morphology of precontact Easter Islanders. In Radlanski, R.J. and Renz, H., eds., Proceedings of the 10th International Symposium on Dental Morphology. Berlin: Marketing Services, Christine and Michael Brünne, pp. 354357.Google Scholar
Szathmary, E.J.E. (1984). Peopling of northern North America: Clues from genetic studies. Acta Anthropogenetica 8, 79109.Google ScholarPubMed
Szathmary, E.J.E. (1985). Peopling of North America: Clues from genetic studies. In. Kirk, R.L. and Szathmary, E.J.E., eds., Out of Asia: Peopling of the Americas and the Pacific. Canberra: The Journal of Pacific History, Inc. Australian National University, pp. 79104.Google Scholar
Szathmary, E.J.E. (1993). Genetics of aboriginal North Americans. Evolutionary Anthropology 1, 202220.CrossRefGoogle Scholar
Takahashi, M., Kondo, S., Townsend, G.C., and Kanazawa, E. (2007). Variability in cusp size of human maxillary molars, with particular reference to the hypocone. Archives of Oral Biology 52, 11461154.CrossRefGoogle ScholarPubMed
Takei, T. (1990). An anthropological study on the tooth crown morphology in the Atayal tribe of Taiwan aborigines: Comparative analysis between Atayal and some Asian-Pacific populations. Journal of the Anthropological Society of Japan 98, 337351 (in Japanese, with English summary).CrossRefGoogle Scholar
Tamm, E., Kivisild, T., Reidla, M., Metspalu, M., et al. (2007). Beringian standstill and the spread of Native American founders. PloS one 2, e829.CrossRefGoogle ScholarPubMed
Tan, J.Z., Peng, Q.Q., Li, J.X., Guan, Y.Q., et al. (2014). Characteristics of dental morphology in the Xinjiang Uyghurs and correlation with the EDARV370A variant. Science China Life Sciences 57, 510518.CrossRefGoogle ScholarPubMed
Tanaka, M., Cabrera, V.M., Gonzalez, A.M., Larruga, J.M., et al. (2004). Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Research 14, 18321850.CrossRefGoogle ScholarPubMed
Tattersall, I. (2009). Human origins: Out of Africa. Proceedings of the National Academy of Sciences 106, 1601816021.CrossRefGoogle ScholarPubMed
Taylor, J.A., and Kieser, J.A. (2016). Forensic Odontology: Principles and Practice. Chichester, Sussex: Wiley Blackwell.CrossRefGoogle Scholar
Tegako, L.I., and Salivon, I.I. (1979). Byelorussians. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 4865 (in Russian).Google Scholar
Templeton, A. (2002). Out of Africa again and again. Nature 416, 4551.CrossRefGoogle Scholar
The 1000 Genomes Project Consortium (2010). A map of human genome variation from population scale sequencing. Nature 467, 10611073.CrossRefGoogle Scholar
The 1000 Genomes Project Consortium (2012). An integrated map of genetic variation from 1,092 human genomes. Nature 491, 5665.CrossRefGoogle Scholar
The 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. Nature 526, 6874.CrossRefGoogle Scholar
Thesleff, I. (2006). The genetic basis of tooth development and dental defects. American Journal of Medical Genetics Part A 140, 25302535.CrossRefGoogle ScholarPubMed
Thesleff, I. (2014). Current understanding of the process of tooth formation: Transfer from the laboratory to the clinic. Australian Dental Journal 59 (1 Suppl), 4854.CrossRefGoogle Scholar
Thieme, F.P., and Otten, C.M. (1957). The unreliability of blood typing aged bone. American Journal of Physical Anthropology 15, 387396.CrossRefGoogle ScholarPubMed
Thomas, B.L., Tucker, A.S., Qui, M., Ferguson, C.A., et al. (1997). Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 124, 48114818.Google ScholarPubMed
Thomsen, S. (1955). Dental Morphology and Occlusion in the People of Tristan da Cunha. Results of the Norwegian Scientific Expedition to Tristan da Cunha, 1937–38, No. 25. Oslo: Det Norske Videnskaps-Akademi.Google Scholar
Thorne, A.G., and Wolpoff, M.H. (1981). Regional continuity in Australasian Pleistocene hominid evolution. American Journal of Physical Anthropology 55, 337349.CrossRefGoogle ScholarPubMed
Tiesler, V., and Oliva, I. (2010). Identity, alienation, and integration: Body modifications in the early colonial population from Campeche. In Tiesler, V., Zabala, P. and Cucina, A., eds., Natives, Europeans, and Africans in Colonial Campeche: History and Archaeology. Gainesville: University Press of Florida, pp. 130151.CrossRefGoogle Scholar
Tiesler, V., Cucina, A., and Ramírez-Salomón, M. (2017). Permanent dental modifications among the ancient Maya: Procedures, health risks, and social identities. In Burnett, S.E. and Irish, J.D., eds., A World View of Bioculturally Modified Teeth. Gainesville: University of Florida Press, pp. 270284.Google Scholar
Tinoco, R.L.R., Lima, L.N.C., Delwing, F., Francesquini, L., and Daruge, E. (2016). Dental anthropology of a Brazilian sample: Frequency of nonmetric traits. Forensic Science International 258, 102e.1102e.5.CrossRefGoogle ScholarPubMed
Tishkoff, S.A., Reed, F.A., Friedlaender, F.R., Ehret, C., et al. (2009). The genetic structure and history of Africans and African Americans. Science 324, 10351044.CrossRefGoogle ScholarPubMed
Tobias, P.V. (1991). Olduvai Gorge. The Skulls, Endocasts and Teeth of Homo habilis. Volumes 4A and 4B. Cambridge: Cambridge University Press.Google Scholar
Tomes, C.S. (1889). A Manual of Dental Anatomy: Human and Comparative. London: J. & A. Churchill.Google Scholar
Torres-Rouff, C. (2003). Oral implications of labret use: A case from pre-Columbian Chile. International Journal of Osteoarchaeology 13, 247251.CrossRefGoogle Scholar
Townsend, G.C. (1983). Fluctuating dental asymmetry in Down’s syndrome. Australian Dental Journal 28, 3944.CrossRefGoogle ScholarPubMed
Townsend, G.C., and Brown, T. (1980). Dental asymmetry in Australian aboriginals. Human Biology 52, 661673.Google ScholarPubMed
Townsend, G.C., and Brown, T. (1981a). Morphogenetic fields within the dentition. Australian Orthodontic Journal 7, 312.Google ScholarPubMed
Townsend, G.C., and Brown, T. (1981b). The Carabelli trait in Australian aboriginal dentition. Archives of Oral Biology 26, 809814.CrossRefGoogle ScholarPubMed
Townsend, G.C., and Martin, N.G. (1992). Fitting genetic models to Carabelli trait data in South Australian twins. Journal of Dental Research 71, 403409.CrossRefGoogle ScholarPubMed
Townsend, G.C., Jensen, B.L., and Alvesalo, L. (1984). Reduced tooth size in 45,X (Turner syndrome) females. American Journal of Physical Anthropology 65, 367372.CrossRefGoogle ScholarPubMed
Townsend, G.C., Yamada, H., and Smith, P. (1986). The metaconule in Australian aboriginals: An accessory tubercle on maxillary molar teeth. Human Biology 58, 851862.Google ScholarPubMed
Townsend, G.C., Richards, L.C., Brown, R., and Burgess, V.B. (1988). Twin zygosity determination on the basis of dental morphology. Journal of Forensic Odonto-Stomatology. 6, 115.Google ScholarPubMed
Townsend, G.C., Yamada, H., and Smith, P. (1990). Expression of the entoconulid (sixth cusp) on mandibular molar teeth of an Australian aboriginal population. American Journal of Physical Anthropology 82, 267274.CrossRefGoogle ScholarPubMed
Townsend, G.C., Richards, L.C., Brown, T., Burgess, V.B., Travan, G.R., and Rogers, J.R. (1992). Genetic studies of dental morphology in South Australian twins. In Smith, P. and Tchernov, E., eds., Structure, Function and Evolution of Teeth. London: Freund Publishing House, pp. 501518.Google Scholar
Townsend, G.C., Dempsey, P., Brown, T., Kaidonis, J., and Richards, L. (1994). Teeth, genes and the environment. Perspectives in Human Biology 4, 3546.Google Scholar
Townsend, G., Dempsey, P., and Richards, L. (1999). Asymmetry in the deciduous dentition: fluctuating and directional components. In Townsend, G.C. and Kieser, J., eds., Perspectives of Human Biology: Dento-Facial Variation in Perspective. Perth: University of Western Australia, pp. 4552.Google Scholar
Townsend, G., Richards, L., and Hughes, T. (2003). Molar intercuspal dimensions: Genetic input to phenotypic variation. Journal of Dental Research 82, 350355.CrossRefGoogle ScholarPubMed
Townsend, G.C., Richards, L.C., Hughes, T.E., Pinkerton, S.P., and Schwerdt, W. (2005). Epigenetic influences may explain dental differences in monozygotic twin pairs. Australian Dental Journal 50, 95–100.CrossRefGoogle Scholar
Townsend, G.C., Harris, E.F., Lesot, H., Clauss, F., and Brook, A.H. (2009). Morphogenetic fields within the human dentition: A new, clinically relevant synthesis of an old concept. Archives of Oral Biology 54s, s34s44.CrossRefGoogle Scholar
Townsend, G., Bockmann, M., Hughes, T., Mihailidis, S., Seow, W.K., and Brook, A. (2012). New approaches to dental anthropology based on the study of twins. In Townsend, G., Kanazawa, E., and Takayama, H., eds., New Directions in Dental Anthropology: Paradigms, Methodologies and Outcomes. Adelaide: University of Adelaide Press, pp. 1021.Google Scholar
Townsend, G.C., Pinkerton, S.K., Rogers, J.R., Bockmann, M.R., and Hughes, T.E. (2015). Twin Studies: Research in Genes, Teeth and Faces. Adelaide, SA: University of Adelaide Press.Google Scholar
Tratman, E.K. (1938). Three-rooted lower molars in man and their racial distribution. British Dental Journal 64, 264274.Google Scholar
Tsatsas, B., Mandi, F., and Kerani, S. (1973). Cervical enamel projections in the molar teeth. Journal of Periodontology 44, 312314.CrossRefGoogle Scholar
Tsuji, T. (1958). Incidence and inheritance of the Carabelli’s cusp in a Japanese population. Japanese Journal of Human Genetics 3, 2131.Google Scholar
Tucker, A.S., Matthews, K.L., and Sharpe, P.T. (1998). Transformation of tooth type induced by inhibition of BMP signaling. Science 282, 11361138.CrossRefGoogle ScholarPubMed
Tucker, A.S., Headon, D.J., Courtney, J.-M., Overbeek, P., and Sharpe, P.T. (2004). The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Developmental Biology 268, 185194.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1967). Dental genetics and microevolution in prehistoric and living Koniag Eskimo. Journal of Dental Research 46 (suppl. to no. 5), 911917.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1968). Review of Rupert I. Murrill, cranial and postcranial skeletal remains from Easter Island. Science 162, 555556.CrossRefGoogle Scholar
Turner, C.G., II (1969). Microevolutionary interpretations from the dentition. American Journal of Physical Anthropology 30, 421426.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1970). New classifications of non-metrical dental variation: Cusps 6 and 7. Paper presented at 39th annual meeting of the American Association of Physical Anthropologists, Washington, D.C.Google Scholar
Turner, C.G., II (1971). Three-rooted mandibular first permanent molars and the question of American Indian origins. American Journal of Physical Anthropology 34, 229241.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1976) Dental evidence on the origins of the Ainu and Japanese. Science 193, 911913.CrossRefGoogle Scholar
Turner, C.G., II (1981). Root number determination in maxillary first premolars for modern human populations. American Journal of Physical Anthropology 54, 5962.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1983a). Dental evidence for the peopling of the Americas. In Shutler, R. Jr., ed., Early Man in the New World. Beverly Hills: Sage Publications, pp. 147157.Google Scholar
Turner, C.G., II (1983b). Sinodonty and Sundadonty: A dental anthropological view of Mongoloid microevolution, origin, and dispersal into the Pacific basin, Siberia, and the Americas. In Vasilievsky, R.S., ed., Late Pleistocene and Early Holocene Cultural Connections of Asia and America. Novosibirsk: USSR Academy of Sciences, Siberian branch, pp. 7276.Google Scholar
Turner, C.G., II (1984). Advances in the dental search for native American origins. Acta Anthropogenetica 8, 2378.Google ScholarPubMed
Turner, C.G., II (1985a). Dental evidence for the peopling of the Americas. National Geographic Society Research Reports 19, 573596.Google Scholar
Turner, C.G., II (1985b). The dental search for native American origins. In Kirk, R.L. and Szathmary, E. J.E., eds., Out of Asia: Peopling of the Americas and the Pacific. Canberra: Journal of Pacific History, Inc., Australian National University, pp. 3178.Google Scholar
Turner, C.G., II (1985c). The modern human dispersal event: The eastern frontier. Review of Out of Asia: Peopling of the Americas and the Pacific, Kirk, R.L. and Szathmary, E.J.E., eds., Quarterly Review of Archaeology 6, 810.Google Scholar
Turner, C.G., II (1986a). The first Americans: The dental evidence. National Geographic Research 2, 3746.Google Scholar
Turner, C.G., II (1986b). Dentochronological separation estimates for Pacific rim populations. Science 232, 11401142.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1987). Late Pleistocene and Holocene population history of East Asia based on dental variation. American Journal of Physical Anthropology 73, 305321.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1989). Teeth and prehistory in Asia. Scientific American 260, 8896.CrossRefGoogle Scholar
Turner, C.G., II (1990a). Major features of Sundadonty and Sinodonty, including suggestions about East Asian microevolution, population history, and late Pleistocene relationships with Australian aboriginals. American Journal of Physical Anthropology 82, 295317.CrossRefGoogle ScholarPubMed
Turner, C.G., II (1990b). Origin and affinity of the prehistoric people of Guam: A dental anthropological assessment. In. Hunter-Anderson, L., ed., Recent Advances in Micronesian Archaeology. Micronesia Supplement No. 2. Mangilao: University of Guam Press, pp. 403416.Google Scholar
Turner, C.G., II (1991). The Dentition of Arctic Peoples. New York: Garland Publishing.Google Scholar
Turner, C.G., II (1992a). Sundadonty and Sinodonty in Japan: The dental basis for a dual origin hypothesis for the peopling of the Japanese Islands. In Hanihara, K., ed., International Symposium on Japanese as a Member of the Asian and Pacific Populations. Kyoto: International Research Center for Japanese Studies, pp. 96112.Google Scholar
Turner, C.G., II (1992b). The dental bridge between Australia and Asia: Following Macintosh into the East Asian hearth of humanity. Perspectives in Human Biology 2/Archaeology in Oceania 27, 143152.Google Scholar
Turner, C.G., II (1992c). Microevolution of East Asian and European populations: A dental perspective. In Akazawa, T., Aoki, K., and Kimura, T., eds., The Evolution and Dispersal of Modern Humans in Asia. Tokyo: Hokusen-Sha, pp. 415438.Google Scholar
Turner, C.G., II (1993). Southwest Indians: Prehistory through dentition. National Geographic Research and Exploration 9, 3253.Google Scholar
Turner, C.G., II (1995). Shifting continuity: Modern human origin. In Brenner, S. and Hanihara, K, eds., The Origin and Past of Modern Humans as Viewed from DNA. Singapore: World Scientific Publishing, pp. 216243.Google Scholar
Turner, C.G. (2006). Dental morphology and the population hisotry of the Pacific Rim and Basin: Commentary on H. Matsumura and M.J. Hudson. American Journal of Physical Anthropology 130, 445461.Google Scholar
Turner, C.G., II, and Cadien, J.D. (1969). Dental chipping in Aleuts, Eskimos and Indians. American Journal of Physical Anthropology 31, 303310.CrossRefGoogle ScholarPubMed
Turner, C.G., II and Markowitz, M.A. (1990). Dental discontinuity between late Pleistocene and recent Nubians: Peopling of the Eurafrican-South Asian triangle mc. Homo 45, 3241.Google Scholar
Turner, C.G., II, and Scott, G.R. (1977). Dentition of Easter Islanders. In Dahlberg, A.A. and Graber, T.M., eds., Orofacial Growth and Development. The Hague: Mouton Publishers, pp. 229249.Google Scholar
Turner, C.G., II and Scott, G.R. (2014). The dentition of American Indians: Evolutionary results and demographic implications following colonization from Siberia. In Henke, W, ed., Handbook of Paleoanthropology, Volume 3, Phylogeny of the Hominins. Berlin: Springer Verlag, pp. 19011941.Google Scholar
Turner, C.G. and Swindler, D.R. (1978). The dentition of New Britain West Nakanai Melanesians. VIII. Peopling of the Pacific. American Journal of Physical Anthropology 49, 361371.CrossRefGoogle ScholarPubMed
Turner, C.G., II, and Turner, J.A. (1999). Man Corn: Cannibalism and Violence in the Prehistoric American Southwest. Salt Lake City: University of Utah Press.Google Scholar
Turner, C.G., II, Nichol, C.R., and Scott, G.R. (1991). Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University dental anthropology system. In Kelley, M.A. and Larson, C.S., eds., Advances in Dental Anthropology. New York: Wiley-Liss, pp. 1331.Google Scholar
Turner, E.P. (1967). Early development of the deciduous molar crown in man. Journal of Dental Research 46 (suppl. to no. 5), 862864.CrossRefGoogle Scholar
Ubelaker, D.H., Phenice, T.W., and Bass, W.M. (1969). Artificial interproximal grooving of the teeth in American Indians. American Journal of Physical Anthropology 30, 145149.CrossRefGoogle ScholarPubMed
Ullinger, J.M., Sheridan, S.G., Hawkey, D.E., Turner, C.G., II, and Cooley, R. (2005). Bioarchaeological analysis of cultural transition in the southern Levant using dental nonmetric traits. American Journal of Physical Anthropology 128, 466476.CrossRefGoogle ScholarPubMed
Vajda, E.J. (2010). A Siberian link with Na Dene languages. In Kari, J. and Potter, B.A., eds., The Dene–Yeniseian Connection. Anthropological Papers of the University of Alaska, new series, vol. 5. Fairbanks: University of Alaska Fairbanks, pp. 3399.Google Scholar
Vandebroek, G. (1961). The comparative anatomy of the teeth of lower and nonspecialized mammals. Koninklijke Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie 1, 215313.Google Scholar
van den Bergh, G.D., Kaifu, Y., Kurniawan, I., Kono, R.T., et al. (2016). Homo floresiensis-like fossils from the early Middle Pleistocene of Flores. Nature 534, 245248.CrossRefGoogle ScholarPubMed
Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution 16, 125142.CrossRefGoogle Scholar
Vargiu, R., Cucina, A., and Coppa, A. (2009). Italian populations during the Copper Age: Assessment of biological affinities through morphological dental traits. Human Biology 81, 479493.CrossRefGoogle ScholarPubMed
Varrela, J. (1992). Multirooted mandibular premolars in 45,X females: Frequency and morphological types. In Smith, P. and Tchernov, E., eds., Structure, Function and Evolution of Teeth. London: Freund Publishing House, pp. 519526.Google Scholar
Varrela, J., and Alvesalo, L. (1989). Taurodontism in females with extra X chromosomes. Journal of Craniofacial Genetics and Developmental Biology 9, 129133.Google ScholarPubMed
Visscher, P.M., Hill, W.G., and Wray, N.R. (2008). Heritability in the genomics era – Concepts and misconceptions. Nature Reviews Genetics 9, 255266.CrossRefGoogle ScholarPubMed
Vlemincq-Mendieta, T. (2016). The muddle in the middle? Characterising population diversity in coastal central Peru in the prehispanic period, using dental non-metric traits. M.Sc. thesis, Department of Archaeology, University College London, London.Google Scholar
von Carabelli, G. (1842). Anatomie des Mundes. Vienna: Braumüller und Seidel.Google Scholar
Voronina, V.G., and Vaschaeva, V.F. (1979). Maritime territories. In Zubov, A.A. and Khaldeeva, N.I., eds., Ethnic Odontology of the USSR. Moscow: Nauka, pp. 212228 (in Russian).Google Scholar
Waddington, C. (1942). Canalization of development and the inheritance of acquired characters. Nature 3811, 563565.CrossRefGoogle Scholar
Waddington, C.H. (1957). The Strategy of the Genes. London: Allen and Unwin.Google Scholar
Wakita, M., and Hinrichsen, K. (1980). Ultrastructure of the ameloblast stratum intermedium border during ameloblast differentiation. Acta Anatomica (Basel) 108, 1029.CrossRefGoogle ScholarPubMed
Wang, S., Lewis, C.M., Jr., Jakobssen, M., Ramachandran, S., et al. (2012). Genetic variation and population structure in Native Americans. PlosGenetics 3 (e185), 20492067.Google Scholar
Wang, X-P., and Thesleff, I. (2006). Tooth development. In Unsicker, K. and Kriegistein, K., eds., Cell Signaling and Growth Factors in Development. Weinhein: Wiley-VCH, pp. 719754.Google Scholar
Wang, J., Sun, K., Shen, Y., Xu, Y., Xie, J., Huang, R., Zhang, Y., Xu, C., Zhang, X., Wang, R., and Lin, Y. (2016). DNA methylation is critical for tooth agenesis: Implications for sporadic non-syndromic anodontia and hypodontia. Scientific Reports 6, article number 19162, doi: 10.1038/srep19162.Google ScholarPubMed
Waters-Rist, A.L., Bazaliiskii, V.I., Goriunova, O.I., Weber, A.W., and Katzenberg, M.A. (2016). Evaluating the biological discontinuity hypothesis of Cis-Baikal Early versus Late Neolithic-Early Bronze Age populations using nonmetric dental traits. Quaternary International 405, 122133.CrossRefGoogle Scholar
Watson, J.T., and García, M.C. (2017). Dental modification and the expansion and manipulation of Mesoamerican identity into northwest Mexico. In Burnett, S.E. and Irish, J.D., eds., A World View of Bioculturally Modified Teeth. Gainesville: University of Florida Press, pp. 298316.Google Scholar
Watson, J.T., Ovalle, I.M., and Arriaza, B. (2010). Formative adaptations, diet, and oral health in the Azapa valley of northwest Chile. Latin American Antiquity 21, 423439.CrossRefGoogle Scholar
Weets, J.D. (2004). A dental anthropological approach to issues of migration and population continuity in ancient Ireland. PhD dissertation, Department of Anthropology, The Pennsylvania State University, College Park.Google Scholar
Weidenreich, F. (1937). The dentition of Sinanthropus pekinensis. Palaeontologica Sinica, whole series 101, new series D-1, pp. 1180.Google Scholar
Weidenreich, F. (1946). Apes, Giants and Man. Chicago: University of Chicago Press.Google Scholar
Weiner, J.S., and Huizinga, J., eds. (1972). The Assessment of Population Affinities in Man. Oxford: Clarendon Press.Google Scholar
Weiss, K.M. (1990). Duplication with variation: Metameric logic in evolution from genes to morphology. Yearbook of Physical Anthropology 33, 123.CrossRefGoogle Scholar
Weiss, M.L., and Mann, A.E. (1978). Human Biology and Behavior, 2nd edn. Boston: Little, Brown.Google Scholar
Westaway, K.E., Louys, J., Awe, R.D., Morwood, M.J., et al. (2017). An early modern human presence in Sumatra 73,000–63,000 years ago. Nature 10.1038/nature23452.CrossRefGoogle ScholarPubMed
Wheeler, R.C. (1965). A Textbook of Dental Anatomy and Physiology, 4th edn. Philadelphia: W.B. Saunders.Google Scholar
White, T.D. (1991). Human Osteology. San Diego: Academic Press.Google Scholar
White, T.D., Asfaw, B., DeGusta, D., Gilbert, H., Richards, G.D., Suwa, G., and Howell, F.C. (2003). Pleistocene Homo sapiens from middle Awash, Ethiopia. Nature 423, 742747.CrossRefGoogle ScholarPubMed
Willermet, C.M., and Edgar, H.J.H. (2009). Dental morphology and ancestry in Albuquerque Hispanics. HOMO – Journal of Comparative Human Biology 60, 207224.CrossRefGoogle ScholarPubMed
Willermet, C.M., Edgar, H.J.H., Ragsdale, C., and Aubrey, B.S. (2013). Biodistances among Mexica, Maya, Toltec, and Totonac groups of central and coastal Mexico. Chungara 45, 447459.Google Scholar
Williams, B.J. (1973). Evolution and Human Origins. New York: Harper & Row.Google Scholar
Williams, J. (1791). An Enquiry Into the Truth of the Tradition, Concerning the Discovery of America, by Prince Madog ab Owen Gwynedd, About the Year 1170. London: J. Brown.Google Scholar
Williams, J.S., and White, C.D. (2006). Dental modification in the postclassic population from Lamanai, Belize. Ancient Mesoamerica 17, 139151.CrossRefGoogle Scholar
Williams, S.D., Hughes, T.E., Adler, C.J., Brook, A.H., and Townsend, G.C. (2014). Epigenetics: A new frontier in dentistry. Australian Dental Journal 59, 2333.CrossRefGoogle ScholarPubMed
Willis, A., and Oxenham, M.F. (2013). The Neolithic demographic transition and oral health: The Southeast Asian experience. American Journal of Physical Anthropology 152, 197208.Google ScholarPubMed
Wissler, C. (1917). The American Indian: An Introduction to the Anthropology of the New World. New York: D.C. McMurtrie.Google Scholar
Wolpoff, M.H. (1971). Metric Trends in Hominid Dental Evolution. Cleveland: Case Western Reserve University Press.Google Scholar
Wolpoff, M.H. (1975). Dental reduction and the probable mutation effect. American Journal of Physical Anthropology 43, 307308.CrossRefGoogle ScholarPubMed
Wolpoff, M.H. (1999). Paleoanthropology. New York: McGraw Hill.Google Scholar
Wood, B.A., and Abbott, S.A. (1983). Analysis of the dental morphology of Plio-Pleistocene hominids. I. Mandibular molars: crown area measurements and morphological traits. Journal of Anatomy 136, 197219.Google ScholarPubMed
Wood, B.A., and Engleman, C.A. (1988). Analysis of the dental morphology of Plio-Pleistocene hominids. V. Maxillary postcanine tooth morphology. Journal of Anatomy 161, 135.Google ScholarPubMed
Wood, B.F., and Green, L.J. (1969). Second premolar morphologic trait similarities in twins. Journal of Dental Research 48, 7487.CrossRefGoogle ScholarPubMed
Wood, B.A., and Uytterschaut, H. (1987). Analysis of the dental morphology of Plio-Pleistocene hominids. III. Mandibular premolar crowns. Journal of Anatomy 154, 121156.Google ScholarPubMed
Wood, B.A., Abbott, S.A., and Graham, S.H. (1983). Analysis of the dental morphology of Plio-Pleistocene hominids. II. Mandibular molars – Study of cusp areas, fissure pattern and cross sectional shape of the crown. Journal of Anatomy 137, 287314.Google ScholarPubMed
Wood, B.A., Abbott, S.A., and Uytterschaut, H. (1988). Analysis of the dental morphology of Plio-Pleistocene hominids. IV. Mandibular postcanine root morphology. Journal of Anatomy 156, 107139.Google ScholarPubMed
Wood, A.R., Esko, T., Yang, J., Vedantam, S., Pers, T.H., Gustafsson, S., et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics 46, 11731186.CrossRefGoogle ScholarPubMed
Wright, S. (1934). The results of crosses between inbred strains of guinea pigs, differing in number of digits. Genetics 19, 537551.Google ScholarPubMed
Wright, S. (1968). Evolution and the Genetics of Populations. Volume 1. Genetic and Biometric Foundations. Chicago: University of Chicago Press.Google Scholar
Wright, S. (1969). Evolution and the Genetics of Populations. Volume 2. The Theory of Gene Frequencies. Chicago: University of Chicago Press.Google Scholar
Wu, P., Hou, L., Plikus, M., Hughes, M., et al. (2004). Evo-devo of amniote integuments and appendages. International Journal of Developmental Biology 48, 249270.CrossRefGoogle ScholarPubMed
Wu, X. (1992). Origins and affinities of the stone age inhabitants of Japan. In Hanihara, K., ed., International Symposium on Japanese as a Member of the Asian and Pacific Populations. Kyoto: International Research Center for Japanese Studies, pp. 17.Google Scholar
Wu, X., and Bruner, E. (2016). The endocranial anatomy of Maba 1. American Journal of Physical Anthropology 160, 633643.CrossRefGoogle ScholarPubMed
Xing, S., Martinón-Torres, M., Bermúdez de Castro, J.M., Zhang, Y., et al. (2014). Middle Pleistocene hominin teeth from Longtan Cave, Hexian, China. PloS one 9, e114265.CrossRefGoogle ScholarPubMed
Xing, S., Martinón-Torres, M., Bermúdez de Castro, J.M., Wu, X., and Liu, W. (2015). Hominin teeth from the early Late Pleistocene site of Xujiayao, Northern China. American Journal of Physical Anthropology 156, 224240.CrossRefGoogle ScholarPubMed
Xing, S., Sun, C., Martinón-Torres, M., Bermúdez de Castro, J.M., et al. (2016). Hominin teeth from the Middle Pleistocene site of Yiyuan, Eastern China. Journal of Human Evolution 95, 3354.CrossRefGoogle ScholarPubMed
Yamada, E. (1932). The anthropological study of the Japanese teeth. Journal of the Nippon Dental Association 25, 1546.Google Scholar
Yamaguchi-Kabata, Y., Nakazono, K., Takahashi, A., Saito, S., et al. (2008). Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects of population-based association studies. American Journal of Human Genetics 83, 445456.CrossRefGoogle ScholarPubMed
Yedynak, G. (1989). Yugoslav Mesolithic dental reduction. American Journal of Physical Anthropology 78, 1736.CrossRefGoogle Scholar
Yong, R., Ranjitkar, S., Townsend, G.C., Smith, R.N., et al. (2014). Dental phenomics: Advancing genotype to phenotype correlations in craniofacial research. Australian Dental Journal 59 (1 Suppl), 3447.CrossRefGoogle ScholarPubMed
Żądzińska, E., ed. (2005). Current Trends in Dental Morphology Research. Łódź: University of Łódź Press.Google Scholar
Zanolli, C. (2013). Additional evidence for morpho-dimensional tooth crown variation in a New Indonesian H. erectus sample from the Sangiran Dome (Central Java). PloS one 8, e67233.CrossRefGoogle Scholar
Zanolli, C. (2015). Molar crown inner structural organization in Javanese Homo erectus. American Journal of Physical Anthropology 156, 148157.CrossRefGoogle ScholarPubMed
Zanolli, C., and Mazurier, A. (2013). Endostructural characterization of the H. heidelbergensis dental remains frm the early Middle Pleistocene site of Tighenif, Algeria. Comptes Rendus Palevol 12, 293304.CrossRefGoogle Scholar
Zanolli, C., Bondioli, L., Coppa, A., Dean, C.M., et al. (2014). The late Early Pleistocene human dental remains from Uadi Aalad and Mulhuli-Amo (Buia), Eritrean Danakil: Macromorphology and microstructure. Journal of Human Evolution 74, 96113.CrossRefGoogle ScholarPubMed
Zegura, S. (1978). Components, factors and confusion. Yearbook of Physical Anthropology 21, 151159.Google Scholar
Zhang, Z., Lan, Y., Chai, Y., and Jiang, R. (2009). Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row. Science 323, 12321234.CrossRefGoogle ScholarPubMed
Zubov, A.A. (1968). Odontology: A Method of Anthropological Research. Moscow: Nauka (in Russian).Google Scholar
Zubov, A.A. (1977). Odontoglyphics: the laws of variation of the human molar crown relief. In Dahlberg, A.A. and Graber, T.M., eds., Orofacial Growth and Development. The Hague: Mouton Publishers, pp. 269282.Google Scholar
Zubov, A.A., and Nikityuk, B.A. (1978). Prospects for the application of dental morphology in twin type analysis. Journal of Human Evolution 7, 519524.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×