Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-09T18:15:39.089Z Has data issue: false hasContentIssue false

Part I - Introduction

Published online by Cambridge University Press:  20 June 2023

Alik Ismail-Zadeh
Affiliation:
Karlsruhe Institute of Technology, Germany
Fabio Castelli
Affiliation:
Università degli Studi, Florence
Dylan Jones
Affiliation:
University of Toronto
Sabrina Sanchez
Affiliation:
Max Planck Institute for Solar System Research, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Asch, M., Bocquet, M., and Nodet, M. (2016). Data Assimilation: Methods, Algorithms, and Applications. Philadelphia, PA: Society of Industrial and Applied Mathematics.Google Scholar
Aster, R. C., Borchers, B., and Thurber, C. H. (2005). Parameter Estimation and Inverse Problems, vol. 90. San Diego, CA: Elsevier.Google Scholar
Backus, G. E., and Gilbert, F. (1968). The resolving power of gross Earth data. Geophysical Journal of the Royal Astronomical Society, 16, 169205.Google Scholar
Bennett, A. F. (1992). Inverse Methods in Physical Oceanography. Cambridge: Cambridge University Press.Google Scholar
Blayo, E., Bocquet, M., Cosme, E., and Cugliandolo, L. F., eds. (2014). Advanced Data Assimilation for Geosciences. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bunge, H.-P., Hagelberg, C. R., and Travis, B. J. (2003). Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophysical Journal International, 152, 280301.Google Scholar
Fletcher, S. J. (2017). Data Assimilation for the Geosciences: From Theory to Application. Amsterdam: Elsevier.Google Scholar
Fournier, A., Eymin, C., and Alboussiere, T. (2007). A case for variational geomagnetic data assimilation: Insights from a one-dimensional, non-linear, and sparsely observed MHD system. Nonlinear Processes in Geophysics, 14(3), 163–80.Google Scholar
Ghil, M., and Malanotte-Rizzoli, P. (1991). Data assimilation in meteorology and oceanography. Advances in Geophysics, 33, 141266.CrossRefGoogle Scholar
Hadamard, J. (1902). Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, XIII(4), 4952.Google Scholar
Hier-Majumder, C. A., Travis, B. J., Belanger, E. et al. (2006). Efficient sensitivity analysis for flow and transport in the Earth’s crust and mantle. Geophysical Journal International, 166, 907–22.CrossRefGoogle Scholar
Ismail-Zadeh, A., and Tackley, P. (2010). Computational Methods for Geodynamics. Cambridge: Cambridge University Press.Google Scholar
Ismail-Zadeh, A. T., Korotkii, A. I., Naimark, B. M., and Tsepelev, I. A. (2003). Three-dimensional numerical simulation of the inverse problem of thermal convection. Computational Mathematics and Mathematical Physics, 43(4), 587–99.Google Scholar
Ismail-Zadeh, A., Schubert, G., Tsepelev, I., and Korotkii, A. (2004). Inverse problem of thermal convection: Numerical approach and application to mantle plume restoration. Physics of the Earth and Planetary Interiors, 145, 99114.Google Scholar
Ismail-Zadeh, A., Korotkii, A., and Tsepelev, I. (2016). Data-Driven Numerical Modeling in Geodynamics: Methods and Applications. Heidelberg: Springer.Google Scholar
Kabanikhin, S.I. (2011). Inverse and Ill-Posed Problems. Theory and Applications. Berlin: De Gruyter.CrossRefGoogle Scholar
Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge: Cambridge University Press.Google Scholar
Kirsch, A. (1996). An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer.Google Scholar
Lahoz, W., Khattatov, B., and Menard, R., eds. (2010). Data Assimilation: Making Sense of Observations. Berlin: Springer.CrossRefGoogle Scholar
Law, K., Stuart, A., and Zygalakis, K. (2015). Data Assimilation: A Mathematical Introduction. Berlin: Springer.Google Scholar
Le Dimet, F.-X., Navon, I. M., and Daescu, D. N. (2002). Second-order information in data assimilation. Monthly Weather Review, 130, 629–48.Google Scholar
Liu, D., Tangborn, A., and Kuang, W. 2007. Observing system simulation experiments in geomagnetic data assimilation. Journal of Geophysical Research, 112. https://doi.org/10.1029/2006JB004691.CrossRefGoogle Scholar
McLaughlin, D. (2002). An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and forecasting. Advances in Water Research, 25, 1275–86.Google Scholar
Park, S. K., and Xu, L., eds. (2009). Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Berlin: Springer.Google Scholar
Saltus, R. W., and Blakely, R. J. (2011). Unique geologic insights from ‘non-unique’ gravity and magnetic interpretation. GSA Today, 21(12), 411. https://doi.org/10.1130/G136A.1Google Scholar
Samarskii, A. A., and Vabishchevich, P. N. (2007). Numerical Methods for Solving Inverse Problems of Mathematical Physics. Berlin: De Gruyter.Google Scholar
Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Doklady Akademii Nauk SSSR, 151, 501–4 (Engl. transl.: Soviet Math. Dokl. 4, 1035–8).Google Scholar
Weyl, H. (1911). Über die asymptotische Verteilung der Eigenwerte: Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Naturwissenschaftliche Klasse, 110–17.Google Scholar

References

Abadi, M., Barham, P., Chen, J. et al. 2016. Tensorflow: A system for large-scale machine learning. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–83, USENIX Association, Savannah, GA.Google Scholar
Agarwal, S., Tosi, N., Breuer, D. et al. 2020. A machine-learning-based surrogate model of Mars’ thermal evolution. Geophysical Journal International, 222, 1656–70.CrossRefGoogle Scholar
Aleardi, M., and Salusti, A. 2020. Hamiltonian Monte Carlo algorithms for target and interval-oriented amplitude versus angle inversions. Geophysics, 85, R177R194.CrossRefGoogle Scholar
Allmaras, M., Bangerth, W., Linhart, J. et al. 2013. Estimating parameters in physical models through Bayesian inversion: A complete example. SIAM Review, 55, 149–67.Google Scholar
Ambrosio, L. 2003. Lecture notes on optimal transport problems. In Ambriosio, L., Deckelnick, K., Dziuk, G., Mimura, M., Solonnikov, V., and Soner, H, eds., Mathematical Aspects of Evolving Interfaces. Heidelberg: Springer, pp. 152.Google Scholar
Anderssen, R., Worthington, M., and Cleary, J. 1972. Density modelling by Monte Carlo inversion – I. Methodology. Geophysical Journal of the Royal Astronomical Society, 29, 433–44.Google Scholar
Aster, R., Borchers, B., and Thurber, C. 2013. Parameter estimation and inverse problems. Amsterdam: Academic Press.Google Scholar
Backus, G. 1970a. Inference from inadequate and inaccurate data, i. Proceedings of the National Academy of Sciences, 65, 17.Google Scholar
Backus, G. 1970b. Inference from inadequate and inaccurate data, ii. Proceedings of the National Academy of Sciences, 65, 281–7.Google Scholar
Backus, G. 1970c. Inference from inadequate and inaccurate data, iii. Proceedings of the National Academy of Sciences, 67, 282–9.Google Scholar
Backus, G. 1988. Bayesian inference in geomagnetism. Geophysical Journal, 92, 125–42.CrossRefGoogle Scholar
Backus, G., and Gilbert, F. 1968. The resolving power of gross Earth data. Geophysical Journal of the Royal Astronomical Society, 16, 169205.Google Scholar
Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions, 53, 370418.Google Scholar
Bernal-Romero, M., and Iturrarán-Viveros, U. 2021. Accelerating full-waveform inversion through adaptive gradient optimization methods and dynamic simultaneous sources. Geophysical Journal International, 225, 97126.Google Scholar
Betancourt, M. 2017. A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434v1.Google Scholar
Bianco, M., and Gerstoft, P. 2018. Travel time tomography with adaptive dictionaries. IEEE Transactions on Computational Imaging, 4, 499511.CrossRefGoogle Scholar
Bishop, C. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford University Press.Google Scholar
Blei, D., Kucukelbir, A., and McAuliffe, J. 2017. Variational inference: A review for statisticians. Journal of the American Statistical Association, 112, 859–77.CrossRefGoogle Scholar
Bodin, T., and Sambridge, M. 2009. Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178, 1411–36.Google Scholar
Bond-Taylor, S., Leach, A., Long, Y., and Willcocks, C. 2022. Deep generative modelling: A comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7327–47. https://doi.org/10.1109/TPAMI.2021.3116668.Google Scholar
Box, G., and Muller, M. 1958. A note on the generation of random normal deviates. Annals of Mathematical Statistics, 29, 610611.Google Scholar
Bozdağ, E., Peter, D., Lefebvre, M. et al. 2016. Global adjoint tomography: First-generation model. Geophysical Journal International, 207, 1739–66.Google Scholar
Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. 2011. Handbook of Markov Chain Monte Carlo. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Burdick, S., and Lekić, V. 2017. Velocity variations and uncertainty from trans dimensional P-wave tomography of North America. Geophysical Journal International, 209, 1337–51.Google Scholar
Candès, E., and Wakin, B. 2008. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25, 2130.Google Scholar
Castruccio, S., McInerney, D., Stein, M. et al. 2014. Statistical emulation of climate model projections based on precomputed GCM runs. Journal of Climate, 27, 1829–44.Google Scholar
Chandra, R., Azam, D., Kapoor, A., and Mu¨ller, R. 2020. Surrogate-assisted Bayesian inversion for landscape and basin evolution models. Geoscientific Model Development, 13, 2959–79.CrossRefGoogle Scholar
Chou, C., and Booker, J. 1979. A Backus–Gilbert approach to inversion of travel-time data for three-dimensional velocity structure. Geophysical Journal of the Royal Astronomical Society, 59, 325–44.Google Scholar
Constable, S., Parker, R., and Constable, C. 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289300.Google Scholar
Cook, A. 1990. Sir Harold Jeffreys. Biographical Memoirs of Fellows of the Royal Society, 36, 303–33.Google Scholar
Creswell, A., White, T., Dumoulin, V. et al. 2018. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35, 5365.Google Scholar
Curtis, A., and Lomax, A. 2001. Prior information, sampling distributions, and the curse of dimensionality. Geophysics, 66, 372–78.Google Scholar
Daley, T., Freifeld, B., Ajo-Franklin, J. et al. 2013. Field testing of fiberoptic distributed acoustic sensing (DAS) for subsurface seismic monitoring. The Leading Edge, 32, 699706.Google Scholar
Das, S., Chen, X., Hobson, M. et al. 2018. Surrogate regression modelling for fast seismogram generation and detection of microseismic events in heterogeneous velocity models. Geophysical Journal International, 215, 1257–90.Google Scholar
de Wit, R., Käufl, P., Valentine, A., and Trampert, J. 2014. Bayesian inversion of free oscillations for Earth’s radial (an)elastic structure. Physics of the Earth and Planetary Interiors, 237, 117.Google Scholar
Dean, T., Tulett, J., and Barwell, R. 2018. Nodal land seismic acquisition: The next generation. First Break, 36, 4752.Google Scholar
Dettmer, J., Benavente, R., Cummins, P., and Sambridge, M. 2014. Trans-dimensional finite-fault inversion. Geophysical Journal International, 199, 735–51.Google Scholar
Dinh, H., and Van der Baan, M. 2019. A grid-search approach for 4d pressure-saturation discrimination. Geophysics, 84, IM47–IM62.Google Scholar
Donoho, D. 2006. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289–306.CrossRefGoogle Scholar
Dziewonski, A., Chou, T.-A., and Woodhouse, J. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research, 86, 2825–52.Google Scholar
Earp, S., Curtis, A., Zhang, X., and Hansteen, F. 2020. Probabilistic neural network tomography across Grane field (North Sea) from surface wave dispersion data. Geophysical Journal International, 223, 1741–57.Google Scholar
Enemark, T., Peeters, L., Mallants, D. et al. 2019. Hydrogeological Bayesian hypothesis testing through trans-dimensional sampling of a stochastic water balance model. Water, 11(7), 1463. https://doi.org/10.3390/w11071463.CrossRefGoogle Scholar
Engquist, B., and Froese, B. 2014. Application of the Wasserstein metric to seismic signals. Communications in Mathematical Sciences, 12, 979–88.Google Scholar
Fernández-Martínez, J. L., and Fernández-Muñiz, Z. 2020. The curse of dimensionality in inverse problems. Journal of Computational and Applied Mathematics, 369, 112571. https://doi.org/10.1016/j.cam.2019.112571.Google Scholar
Fichtner, A., Zunino, A., and Gebraad, L. 2019. Hamiltonian Monte Carlo solution of tomographic inverse problems. Geophysical Journal International, 216, 1344–63.CrossRefGoogle Scholar
Field, R., Constantine, P., and Boslough, M. 2011. Statistical surrogate models for prediction of high-consequence climate change, Tech. Rep. SAND2011-6496, Sandia National Laboratories.Google Scholar
Forrester, A., and Keane, A. 2009. Recent advances in surrogate-based optimization. Progress in Aerospace Sciences, 45, 5079.Google Scholar
Galetti, E., Curtis, A., Baptie, B., Jenkins, D., and Nicolson, H. 2017. Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry. Geophysical Journal International, 208, 3558.Google Scholar
Gallagher, K., Bodin, T., Sambridge, M. et al. 2011. Inference of abrupt changes in noisy geochemical records using transdimensional changepoint models. Earth and Planetary Science Letters, 311, 182–94.CrossRefGoogle Scholar
Goodfellow, I., Pouget-Abadie, J., Mirza, M. et al. 2014. Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., eds., Advances in Neural Information Processing Systems, vol. 27. Red Hook, NY: Curran Associates. https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.Google Scholar
Green, P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–32.Google Scholar
Green, W. 1975. Inversion of gravity profiles by a Backus–Gilbert approach. Geophysics, 40, 763–72.Google Scholar
Guo, P., Visser, G., and Saygin, E. 2020. Bayesian trans-dimensional full waveform inversion: Synthetic and field data application. Geophysical Journal International, 222, 610–27.Google Scholar
Hassan, R., Hejrani, B., Medlin, A., Gorbatov, A., and Zhang, F. 2020. High-performance seismological tools (HiPerSeis). In Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A., and Slatter, E, eds., Exploring for the Future: Extended Abstracts. Canberra: Geoscience Australia, pp. 14.Google Scholar
Hawkins, R., and Sambridge, M. 2015. Geophysical imaging using trans-dimensional trees. Geophysical Journal International, 203, 9721000.CrossRefGoogle Scholar
He, Q., and Tartakovsky, A. 2021. Physics-informed neural network method for forward and backward advection-dispersion equations. Water Resources Research, 57, e2020WR029479.Google Scholar
He, W., Brossier, R., Métivier, L., and Plessix, R.-E. 2019. Land seismic multiparameter full waveform inversion in elastic VTI media by simultaneously interpreting body waves and surface waves with an optimal transport based objective function. Geophysical Journal International, 219, 1970–88.Google Scholar
Hedjazian, N., Bodin, T., and Métivier, L. 2019. An optimal transport approach to linearized inversion of receiver functions. Geophysical Journal International, 216, 130–47.Google Scholar
Hejrani, B., and Tkalčić, H. 2020. Resolvability of the centroid-moment-tensors for shallow seismic sources and improvements from modeling high-frequency waveforms. Journal of Geophysical Research, 125, e2020JB019643.Google Scholar
Herrmann, F., Erlangga, Y., and Lin, T. 2009. Compressive simultaneous full-waveform simulation. Geophysics, 74, A35A40.Google Scholar
Hogg, D., and Foreman-Mackey, D. 2018. Data analysis recipes: Using Markov chain Monte Carlo. The Astrophysical Journal Supplement Series, 236:11 (18 pp.). https://doi.org/10.3847/1538-4365/aab76e.Google Scholar
Huang, G., Zhang, X., and Qian, J. 2019. Kantorovich–Rubinstein misfit for inverting gravity-gradient data by the level-set method. Geophysics, 84, 1115.Google Scholar
Hussain, M., Javadi, A., Ahangar-Asr, A., and Farmani, R. 2015. A surrogate model for simulation-optimization of aquifer systems subjected to seawater intrusion. Journal of Hydrology, 523, 542554.Google Scholar
Jeffreys, H. 1931. Scientific Inference. Cambridge: Cambridge University Press.Google Scholar
Jeffreys, H. 1939. The Theory of Probability. Oxford: Oxford University Press.Google Scholar
Jeffreys, H., and Bullen, K. 1940. Seismological Tables. London: British Association for the Advancement of Science.Google Scholar
Karniadakis, G., Kevrekidis, I., Lu, L. et al. 2021. Physics-informed machine learning. Nature Reviews Physics, 3, 422–40.Google Scholar
Kashinath, K., Mustafa, M., Albert, A. et al. 2021. Physics-informed machine learning: Case studies for weather and climate modelling. Philosophical Transactions, 379, 20200093.Google Scholar
Käufl, P. 2015. Rapid probabilistic source inversion using pattern recognition. Ph.D. thesis, University of Utrecht.Google Scholar
Käufl, P., Valentine, A., O’Toole, T., and Trampert, J. 2014. A framework for fast probabilistic centroid – moment-tensor determination – inversion of regional static displacement measurements. Geophysical Journal International, 196, 1676–93.Google Scholar
Käufl, P., Valentine, A., de Wit, R., and Trampert, J. 2016a. Solving probabilistic inverse problems rapidly with prior samples. Geophysical Journal International, 205, 1710–28.Google Scholar
Käufl, P., Valentine, A., and Trampert, J. 2016b. Probabilistic point source inversion of strong-motion data in 3-D media using pattern recognition: A case study for the 2008 Mw 5.4 Chino Hills earthquake. Geophysical Research Letters, 43, 8492–8.Google Scholar
Kennett, B., and Engdahl, E. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105, 429–65.Google Scholar
Khan, A., Ceylan, S., van Driel, M. et al. 2021. Upper mantle structure of Mars from InSight seismic data. Science, 373, 434–8.Google Scholar
Kingma, D., and Welling, M. 2014. Auto-encoding variational Bayes, in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings. https://arxiv.org/abs/1312.6114.Google Scholar
Kircher, A. 1665. Mundus subterraneus. Amsterdam: Joannem Janssonium & EliziumWegerstraten.Google Scholar
Knapmeyer-Endrun, B., Panning, M. P., Bissig, F. et al. 2021. Thickness and structure of the martian crust from In Sight seismic data. Science, 373, 438–43.Google Scholar
Kobyzev, I., Prince, S., and Brubaker, M. 2021. Normalizing flows: An introduction and review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 3964–79.Google Scholar
Komatitsch, D., Ritsema, J., and Tromp, J. 2002. The spectral-element method, Beowulf computing, and global seismology. Science, 298, 1737–42.Google Scholar
Kornfeld, R., Arnold, B., Gross, M. et al. 2019. GRACE-FO: The gravity recovery and climate experiment follow-on mission. Journal of Spacecraft and Rockets, 56, 931–51.Google Scholar
Koshkholgh, S., Zunino, A., and Mosegaard, K. 2021. Informed proposal Monte Carlo. Geophysical Journal International, 226, 1239–48.Google Scholar
Krischer, L., Smith, J., Lei, W. et al. 2016. An adaptable seismic data format. Geophysical Journal International, 207, 1003–11.Google Scholar
Kullback, S., and Leibler, R. 1951. On information and sufficiency. The Annals of Mathematical Statistics, 22, 7986.Google Scholar
Lau, H., and Romanowicz, B. 2021. Constraining jumps in density and elastic properties at the 660 km discontinuity using normal mode data via the Backus-Gilbert method. Geophysical Research Letters, 48, e2020GL092217.CrossRefGoogle Scholar
Lei, W., Ruan, Y., Bozdağ, E. et al. 2020. Global adjoint tomography: Model GLAD-M25. Geophysical Journal International, 223, 121.Google Scholar
Ley-Cooper, A., Brodie, R., and Richardson, M. 2020. AusAEM: Australia’s airborne electromagnetic continental-scale acquisition program. Exploration Geophysics, 51, 193202.Google Scholar
Liu, D., and Nocedal, J. 1989. On the limited memory BFGS method for large-scale optimization. Mathematical Programming, 45, 503–28.Google Scholar
Livermore, P., Fournier, A., Gallet, Y., and Bodin, T. 2018. Transdimensional inference of archeomagnetic intensity change. Geophysical Journal International, 215, 2008–34.Google Scholar
Logg, A., Mardal, K.-A., and Wells, G. N. 2012. Automated Solution of Differential Equations by the Finite Element Method. Heidelberg: Springer.Google Scholar
Lopez-Alvis, J., Laloy, E., Nguyen, F., and Hermans, T. 2021. Deep generative models in inversion: The impact of the generator’s nonlinearity and development of a new approach based on a variational autoencoder. Computers & Geosciences, 152, 104762.Google Scholar
Luengo, D., Martino, L., Bugallo, M., Elvira, V., and Särkkä, S. 2020. A survey of Monte Carlo methods for parameter estimation. EURASIP Journal on Advances in Signal Processing, 2020, 25. https://doi.org/10.1186/s13634-020-00675-6.Google Scholar
Lythgoe, K., Loasby, A., Hidayat, D., and Wei, S. 2021. Seismic event detection in urban Singapore using a nodal array and frequency domain array detector: Earthquakes, blasts and thunderquakes. Geophysical Journal International, 226, 1542–57.Google Scholar
Meier, U., Curtis, A., and Trampert, J. 2007. Global crustal thickness from neural network inversion of surface wave data. Geophysical Journal International, 169, 706722.Google Scholar
Meltzer, A., Rudnick, R., Zeitler, P. et al. 1999. USArray initiative. GSA Today, 11, 810.Google Scholar
Menke, W. 1989. Geophysical Data Analysis: Discrete Inverse Theory. New York: Academic Press.Google Scholar
Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. 2016a. Increasing the robustness and applicability of full-waveform inversion: An optimal transport distance strategy. The Leading Edge, 35, 1060–7.Google Scholar
Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. 2016b. Measuring the misfit between seismograms using an optimal transport distance: Application to full waveform inversion. Geophysical Journal International, 205, 345–77.Google Scholar
Métivier, L., Brossier, R., Mérigot, Q., Oudet, e., and Virieux, J. 2016c. An optimal transport approach for seismic tomography: Application to 3D full waveform inversion. Inverse Problems, 32, 115008.Google Scholar
Métivier, L., Brossier, R., Oudet, E., Mérigot, Q., and Virieux, J. 2016d. An optimal transport distance for full-waveform inversion: Application to the 2014 chevron benchmark data set. In Sicking, C. and Ferguson, J. SEG Technical Program Expanded Abstracts. Tulsa, OK: Society of Exploration Geophysicists, pp. 1278–83.Google Scholar
Montagner, J.-P., and Tanimoto, T. 1990. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research, 95, 4797–819.Google Scholar
Montagner, J.-P., and Tanimoto, T. 1991. Global upper mantle tomography of seismic velocities and anisotropies. Journal of Geophysical Research, 96, 20337–51.Google Scholar
Moseley, B., Nissen-Meyer, T., and Markham, A. 2020. Deep learning for fast simulation of seismic waves in complex media. Solid Earth, 11, 1527–49.Google Scholar
Mosher, S., Eilon, Z., Janiszewski, H., and Audet, P. 2021. Probabilistic inversion of seafloor compliance for oceanic crustal shear velocity structure using mixture density networks. Geophysical Journal International, 227, 1879–92.Google Scholar
Mosser, L., Dubrule, O., and Blunt, M. 2020. Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. Mathematical Geosciences, 52, 5379.Google Scholar
Muir, J., and Zhang, Z. 2021. Seismic wavefield reconstruction using a pre-conditioned wavelet-curvelet compressive sensing approach. Geophysical Journal International, 227, 303–15.Google Scholar
Neal, R. 2011. MCMC using Hamiltonian dynamics. In Brooks, S., Gelman, A., Jones, G., and Meng, X.-L, eds., Handbook of Markov Chain Monte Carlo. Boca Raton, FL: CRC Press.Google Scholar
Nicholson, T., Sambridge, M., and Gudmundsson, O. 2004. Three-dimensional empirical traveltimes: Construction and applications. Geophysical Journal International, 156, 307–28.Google Scholar
Nocedal, J., and Wright, S. 1999. Numerical Optimization. New York: Springer.Google Scholar
Nyquist, H. 1928. Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 47, 617–44.Google Scholar
Parker, R. 1994. Geophysical Inverse Theory. Princeton, NJ: Princeton University Press.Google Scholar
Parker, T., Shatalin, S., and Farhadiroushan, M. 2014. Distributed acoustic sensing – a new tool for seismic applications. First Break, 32, 6169.Google Scholar
Paszke, A., Gross, S., Massa, F. et al. 2019. Pytorch: An imperative style, high-performance deep learning library. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. A., and Garnett, R., eds. Advances in Neural Information Processing Systems, vol. 32. Red Hook, NY: Curran Associates. https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.Google Scholar
Petersen, K., and Pedersen, M. 2012. The matrix cookbook, Tech. rep. Technical University of Denmark, Kongens Lyngby. 72 p.Google Scholar
Pijpers, F., and Thompson, M. 1992. Faster formulations of the optimally localized averages method for helioseismic inversions. Astronomy and Astrophysics, 262, L33L36.Google Scholar
Press, F. 1970. Earth models consistent with geophysical data. Physics of the Earth and Planetary Interiors, 3, 322.Google Scholar
Quiepo, N., Haftka, R., Shyy, W. et al. 2005. Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41, 128.Google Scholar
Raissi, M., Perdikaris, P., and Karniadakis, G. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686707.Google Scholar
Ramgraber, M., Weatherl, R., Blumensaat, F., and Schirmer, M. 2021. Non-Gaussian parameter inference for hydrogeological models using Stein variational gradient descent. Water Resources Research, 57, e2020WR029339.Google Scholar
Rasmussen, C., and Williams, C. 2006. Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press.Google Scholar
Ray, A. 2021. Bayesian inversion using nested trans-dimensional Gaussian processes. Geophysical Journal International, 226, 302–26.Google Scholar
Ray, A., and Myer, D. 2019. Bayesian geophysical inversion with trans-dimensional Gaussian process machine learning. Geophysical Journal International, 217, 1706–26.Google Scholar
Reuber, G., and Simons, F. 2020. Multi-physics adjoint modeling of Earth structure: combining gravimetric, seismic and geodynamic inversions. International Journal on Geomathematics, 11(30), 138.Google Scholar
Rezende, D., and Mohamed, S. 2015. Variational inference with normalizing flows. In Bach, F. and Blei, D., eds., Proceedings of the 32nd International Conference on Machine Learning, vol. 37; International Conference on Machine Learning, 7–9 July 2015, Lille, France, pp.1530–8. http://proceedings.mlr.press/v37/rezende15.pdf.Google Scholar
Rijal, A., Cobden, L., Trampert, J., Jackson, J., and Valentine, A. 2021. Inferring equations of state of the lower mantle minerals using mixture density networks. Physics of the Earth and Planetary Interiors, 319, 106784.Google Scholar
Ritsema, J., van Heijst, H., and Woodhouse, J. 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland., Science, 286, 1925–31.Google Scholar
Ruthotto, L., and Haber, E. 2021. An introduction to deep generative modelling. GAMM-Mitteilungen, 44, e202100008.Google Scholar
Sambridge, M. 1998. Exploring multidimensional landscapes without a map. InverseProblems, 14, 427–40.Google Scholar
Sambridge, M. 1999a. Geophysical inversion with a neighbourhood algorithm – I. Searching a parameter space. Geophysical Journal International, 138, 479–94.Google Scholar
Sambridge, M. 1999b. Geophysical inversion with a neighbourhood algorithm – II. Appraising the ensemble Geophysical Journal International, 138, 727–46.Google Scholar
Sambridge, M., and Kennett, B. 1986. A novel method of hypocentre location. Geophysical Journal International, 87, 679–97.Google Scholar
Sambridge, M., and Mosegaard, K. 2002. Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40, 3-1–3-29. https://doi.org/10.1029/2000RG000089.Google Scholar
Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, P. 2006. Trans-dimensional inverse problems, model comparison and the evidence. Geophysical Journal International, 167, 528–42.Google Scholar
Sambridge, M., Rickwood, P., Rawlinson, N., and Sommacal, S. 2007. Automatic differentiation in geophysical inverse problems. Geophysical Journal International, 170, 18.Google Scholar
Sambridge, M., Bodin, T., Gallagher, K., and Tkalcic, H. 2012. Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society, 371.Google Scholar
Santambrogio, F. 2015. Optimal Transport for Applied Mathematicians. Basel: Birkhäuser.Google Scholar
Scales, J., and Snieder, R. 1997. To Bayes or not to Bayes. Geophysics, 62, 1045–46.Google Scholar
Scheiter, M., Valentine, A., and Sambridge, M. 2022. Upscaling and downscaling Monte Carlo ensembles with generative models. Geophysical Journal International, 230(2), 916–31. https://doi.org/10.1093/gji/ggac100.Google Scholar
Sen, M., and Biswas, R. 2017. Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm. Geophysics, 82, R119R134.Google Scholar
Shahriari, B., Swersky, K., Wang, Z., Adams, R., and de Freitas, N. 2016. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104, 148–75.Google Scholar
Siahkoohi, A., and Herrman, F. 2021. Learning by example: Fast reliability-aware seismic imaging with normalizing flows. arXiv:2104.06255v1. https://arxiv.org/abs/2104.06255Google Scholar
Simons, F., Loris, I., Nolet, G. et al. 2011. Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophysical Journal International, 187, 969–88.Google Scholar
Smith, J., Azizzadenesheli, K., and Ross, Z. 2020. EikoNet: Solving the eikonal equation with deep neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(12), 10685–96. https://doi.org/10.1109/TGRS.2020.3039165.Google Scholar
Smith, J., Ross, Z., Azizzadenesheli, K., and Muir, J. 2022. HypoSVI: Hypocenter inversion with Stein variational inference and physics informed neural networks. Geophysical Journal International, 228, 698710.Google Scholar
Snieder, R. 1991. An extension of Backus–Gilbert theory to nonlinear inverse problems. Inverse Problems, 7, 409433.CrossRefGoogle Scholar
Song, C., Alkhalifah, T., and Bin Waheed, U. 2021. Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks. Geophysical Journal International, 225, 846–59.CrossRefGoogle Scholar
Spurio Mancini, A., Piras, D., Ferreira, A., Hobson, M., and Joachimi, B. 2021. Accelerating Bayesian microseismic event location with deep learning. Solid Earth, 12, 1683–705.Google Scholar
Stähler, S., Khan, A., Banerdt, W. et al. 2021. Seismic detection of the Martian core. Science, 373, 443–48.Google Scholar
Steinmetz, T., Raape, U., Teßmann, S. et al. 2010. Tsunami early warning and decision support. Natural Hazards and Earth System Sciences, 10, 1839–50.Google Scholar
Tanimoto, T. 1985. The Backus–Gilbert approach to the three-dimensional structure in the upper mantle – I. Lateral variation of surface wave phase velocity with its error and resolution. Geophysical Journal International, 82, 105–23.Google Scholar
Tanimoto, T. 1986. The Backus–Gilbert approach to the three-dimensional structure in the upper mantle – II. SH and SV velocity. Geophysical Journal International, 84, 4969.Google Scholar
Tarantola, A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, PA: Society of Industrial and Applied Mathematics.Google Scholar
Tarantola, A., and Nercessian, A. 1984. Three-dimensional inversion without blocks. Geophysical Journal of the Royal Astronomical Society, 76, 299306.Google Scholar
Tarantola, A., and Valette, B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics and Space Physics, 20, 219–32.Google Scholar
Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B, 58, 267–88.Google Scholar
Trampert, J., and Snieder, R. 1996. Model estimations biased by truncated expansions: Possible artifacts in seismic tomography. Science, 271, 1257–60.Google Scholar
Tran, D., Kucukelbir, A., Dieng, A. B. et al. 2016. Edward: A library for probabilistic modeling, inference, and criticism. arXiv:1610.09787.Google Scholar
Valentine, A., and Davies, D. 2020. Global models from sparse data: A robust estimate of earth’s residual topography spectrum. Geochemistry, Geophysics, Geosystems, e2020GC009240.Google Scholar
Valentine, A., and Sambridge, M. 2020a. Gaussian process models – I. A framework for probabilistic continuous inverse theory. Geophysical Journal International, 220, 1632–47.Google Scholar
Valentine, A., and Sambridge, M. 2020b. Gaussian process models – II. Lessons for discrete inversion. Geophysical Journal International, 220, 1648–56.Google Scholar
Valentine, A., and Trampert, J. 2016. The impact of approximations and arbitrary choices on geophysical images. Geophysical Journal International, 204, 5973.Google Scholar
van Herwaarden, D. P., Boehm, C., Afansiev, M. et al. 2020. Accelerated full-waveform inversion using dynamic mini-batches. Geophysical Journal International, 221, 1427–38.Google Scholar
Waddell, M. 2006. The world, as it might be: Iconography and probabalism in the Mundus subterraneus of Athanasius Kircher. Centaurius, 48, 322. https://doi.org/10.1111/j.1600-0498.2006.00038.x.Google Scholar
Wang, Y., Cao, J., and Yang, C. 2011. Recovery of seismic wavefields based on compressive sensing by an -norm constrained trust region method and the piecewise random subsampling. Geophysical Journal International, 187, 199213.Google Scholar
Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and de Freitas, N. 2016. Bayesian optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence Research, 55, 361–87.Google Scholar
Wiggins, R. 1972. The general linear inverse problem: Implication of surface waves and free oscillations for Earth structure. Reviews of Geophysics and Space Physics, 10, 251–85.CrossRefGoogle Scholar
Woodhouse, J. 1980. The coupling and attenuation of nearly resonant multiplets in the Earth’s free oscillation spectrum. Geophysical Journal of the Royal Astronomical Society, 61, 261–83.Google Scholar
Woodhouse, J., and Dziewonski, A. 1984. Mapping the upper mantle: Three-dimensional modelling of Earth structure by inversion of seismic waveforms. Journal of Geophysical Research, 89, 5953–86.Google Scholar
Worthington, M., Cleary, J., and Anderssen, R. 1972. Density modelling by Monte Carlo inversion – II. Comparison of recent Earth models. Geophysical Journal of the Royal Astronomical Society, 29, 445–57.Google Scholar
Zaroli, C. 2016. Global seismic tomography using Backus–Gilbert inversion. Geophysical Journal International. 207, 876–88.Google Scholar
Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. 2019. Advances in variational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2008–26.Google Scholar
Zhang, X., and Curtis, A. 2020. Seismic tomography using variational inference methods. Journal of Geophysical Research, 125, e2019JB018589.CrossRefGoogle Scholar
Zhao, X., Curtis, A., and Zhang, X. 2022. Bayesian seismic tomography using normalizing flows. Geophysical Journal International, 228, 213–39.Google Scholar

References

Abarbanel, H. D. I., Rozdeba, P. J., and Shirman, S. (2018). Machine learning: Deepest learning as statistical data assimilation problems. Neural Computation, 30(8), 2025–55. https://doi.org/10.1162/neco_a_01094.Google Scholar
Ait-El-Fquih, B., and Hoteit, I. (2022). Filtering with one-step-ahead smoothing for efficient data assimilation. In Park, S. K. and Xu, L. eds., Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, vol. IV. Cham: Springer, pp. 6996. https://doi.org/10.1007/978–3–030–77722-7\_1.Google Scholar
Anderson, B. D. O., and Moore, J. B. (1979). Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Asch, M., Bocquet, M., and Nodet, M. (2016). Data Assimilation: Methods, Algorithms, and Applications. Philadelphia, PA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611974546.Google Scholar
Bannister, R. N. (2017). A review of operational methods of variational and ensemble-variational data assimilation. Quarterly Journal of the Royal Meteorological Society, 143, 607–33. https://doi.org/10.1002/qj.2982.Google Scholar
Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2018). Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18, 143. https://doi.org/0.5555/3122009.3242010.Google Scholar
Bishop, C. H., Etherton, B. J., and Majumdar, S. J. (2001). Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly Weather Review, 129, 420–36. https://doi.org/10.1175/1520–04932.0.CO;2>CrossRefGoogle Scholar
Bocquet, M. (2011). Ensemble Kalman filtering without the intrinsic need for inflation. Nonlinear Processes in Geophysics, 18, 735–50. https://doi.org/10.5194/npg-18–735–2011.Google Scholar
Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L. (2019). Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models. Nonlinear Processes in Geophysics, 26, 143–62. https://doi.org/10.5194/npg-26-143-2019.Google Scholar
Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L. (2020). Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization. Foundations of Data Science, 2, 5580. https://doi.org/10.3934/fods.2020004.CrossRefGoogle Scholar
Bocquet, M., Raanes, P. N., and Hannart, A. (2015). Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation. Nonlinear Processes in Geophysics, 22, 645–62. https://doi.org/10.5194/npg22–645-2015.Google Scholar
Bocquet, M., and Sakov, P. (2012). Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Processes in Geophysics, 19, 383–99. https://doi.org/10.5194/npg-19-383-2012.Google Scholar
Bocquet, M., and Sakov, P. (2013). Joint state and parameter estimation with an iterative ensemble Kalman smoother. Nonlinear Processes in Geophysics, 20, 803–18. https://doi.org/10.5194/npg-20-803-2013.Google Scholar
Bocquet, M., and Sakov, P. (2014). An iterative ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society, 140, 1521–35. https://doi.org/10.1002/qj.2236.Google Scholar
Bonavita, M., Isaksen, L., and Hólm, E. (2012). On the use of EDA background error variances in the ECMWF 4D-VAR. Quarterly Journal of the Royal Meteorological Society, 138, 1540–59. https://doi.org/10.1002/qj.1899.Google Scholar
Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L. (2020). Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model. Journal of Computational Science, 44, 101171. https://doi.org/10.1016/j.jocs.2020.101171.Google Scholar
Burgers, G., van Leeuwen, P. J., and Evensen, G. (1998). Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126, 1719–24. https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.Google Scholar
Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G. (2018). Data assimilation in the geosciences: An overview on methods, issues, and perspectives. WIREs Climate Change, 9, e535. https://onlinelibrary.wiley.com/doi/abs/10.1002/wcc.535.Google Scholar
Carrassi, A., Bocquet, M., Demaeyer, J., Gruzien, C., Raanes, P. N. and Vannitsem, S. (2022). Data assimilation for chaotic dynamics. In Park, S. K. and Xu, L. eds., Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, vol. IV. Cham: Springer, pp. 142. https://doi.org/10.1007/978-3–030–77722–7\_1.Google Scholar
Carrassi, A., Bocquet, M., Hannart, A., and Ghil, M. (2017). Estimating model evidence using data assimilation. Quarterly Journal of the Royal Meteorological Society, 143, 866–80. https://doi.org/10.1002/qj.2972.Google Scholar
Chen, Y., and Oliver, D. S. (2012). Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Mathematical Geosciences, 44, 126. https://doi.org/10.1007/s11004-011-9376-z.Google Scholar
Cohn, S. E., Sivakumaran, N. S., and Todling, R. (1994). A fixed-lag Kalman smoother for retrospective data assimilation. Monthly Weather Review, 122, 2838–67. https://doi.org/10.1175/1520–0493(1994)122<2838:AFLKSF>2.0.CO;2.Google Scholar
Corazza, M., Kalnay, E., Patil, D. J. et al. (2003). Use of the breeding technique to estimate the structure of the analysis errors of the day. Nonlinear Processes in Geophysics, 10, 233–43. https://doi.org/10.5194/npg-10-233-2003.Google Scholar
Cosme, E., Verron, J., Brasseur, P., Blum, J., and Auroux, D. (2012). Smoothing problems in a Bayesian framework and their linear Gaussian solutions. Monthly Weather Review, 140, 683–95. https://doi.org/10.1175/MWR-D-10-05025.1.Google Scholar
Courtier, P., Thépaut, J.-N., and Hollingsworth, A. (1994). A strategy for operational implementation of 4D-VAR, using an incremental approach. Quarterly Journal of the Royal Meteorological Society, 120, 1367–87. https://doi.org/10.1002/qj.49712051912.Google Scholar
Daley, R. (1991). Atmospheric Data Analysis. New York: Cambridge University Press.Google Scholar
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 138. https://doi.org/10.1111/j.2517–6161.1977.tb01600.x.CrossRefGoogle Scholar
Desbouvries, F., Petetin, Y., and Ait-El-Fquih, B. (2011). Direct, prediction- and smoothing-based Kalman and particle filter algorithms. Signal Processing, 91, 2064–77. https://doi.org/10.1016/j.sigpro.2011.03.013.Google Scholar
Desroziers, G., Camino, J.-T., and Berre, L. (2014). 4DEnVar: link with 4D state formulation of variational assimilation and different possible implementations. Quarterly Journal of the Royal Meteorological Society, 140, 2097–110. https://doi.org/10.1002/qj.2325.Google Scholar
Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99, 10143–62. https://doi.org/10.1029/94JC00572.Google Scholar
Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–67. https://doi.org/10.1007/s10236-003–0036–9.Google Scholar
Evensen, G., and van Leeuwen, P. J. (2000). An ensemble Kalman smoother for nonlinear dynamics. Monthly Weather Review, 128, 1852–67. https://doi.org/10.1175/1520–0493(2000)128<1852:AEKSFN>2.0.CO;2.Google Scholar
Fablet, R., Chapron, B., Drumetz, L. et al. (2021). Learning variational data assimilation models and solvers. Journal of Advances in Modeling Earth Systems, 13, e2021MS002572. https://doi.org/10.1029/2021MS002572.Google Scholar
Farchi, A., and Bocquet, M. (2019). On the efficiency of covariance localisation of the ensemble Kalman filter using augmented ensembles. Frontiers in Applied Mathematics and Statistics, 5, 3. https://doi.org/10.3389/fams.2019.00003.Google Scholar
Farchi, A., Laloyaux, P., Bonavita, M., and Bocquet, M. (2021). Using machine learning to correct model error in data assimilation and forecast applications. Quarterly Journal of the Royal Meteorological Society, 147(739), 3067–84. https://doi.org/10.1002/qj.4116.Google Scholar
Fillion, A., Bocquet, M., Gratton, S., Gürol, S. and Sakov, P. (2020). An iterative ensemble Kalman smoother in presence of additive model error. SIAM/ASA Journal of Uncertainty Quantification, 8, 198228. https://doi.org/10.1137/19M1244147.Google Scholar
Ghahramani, Z., and Roweis, S. T. (1999). Learning nonlinear dynamical systems using an EM algorithm. In Kearns, M., Solla, S., and Cohn, D., eds., Advances in Neural Information Processing Systems, vol. 11. Cambridge, MA: MIT Press, pp. 431–7. https://doi.org/0.5555/340534.340696.Google Scholar
Grewal, M. S., and Andrews, A. P. (2014). Kalman Filtering: Theory and Practice with MATLAB. Hoboken, NJ; John Wiley & Sons. https://doi.org/10.1002/9781118984987.Google Scholar
Griewank, A. (1989). On automatic differentiation. Mathematical Programming: Recent Developments and Applications, 6, 83107.Google Scholar
Griewank, A., and Walther, A. (2003). Introduction to automatic differentiation. Proceedings in Applied Mathematics and Mechanics, 2(1), 45–9. https://doi.org/10.1002/pamm.200310012.Google Scholar
Grudzien, C., and Bocquet, M. (2022). A fast, single-iteration ensemble Kalman smoother for sequential data assimilation. Geoscientific Model Development, 15, 7641–7681. https://doi.org/10.5194/gmd--15-7641-2022.Google Scholar
Grudzien, C., Carrassi, A., and Bocquet, M. (2018). Chaotic dynamics and the role of covariance inflation for reduced rank Kalman filters with model error. Nonlinear Processes in Geophysics, 25, 633–48. https://doi.org/10.5194/npg-25-633-2018.Google Scholar
Gu, Y., and Oliver, D. S. (2007). An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE Journal, 12, 438–46. https://doi.org/10.2118/108438-PA.Google Scholar
Hamill, T. M., and Snyder, C. (2000). A hybrid ensemble Kalman filter-3D variational analysis scheme. Monthly Weather Review, 128, 2905–19. https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.Google Scholar
Härdle, W. K., Okhrin, O., and Okhrin, Y. (2017). Basic Elements of Computational Statistics. Cham: Springer. https://link.springer.com/book/10.1007/978-3-319-55336-8.Google Scholar
Hascoët, L. (2014). An introduction to inverse modelling and parameter estimation for atmosphere and ocean sciences. In Blayo, É, Bocquet, M., Cosme, E., and Cugliandolo, L. F., eds., Advanced Data Assimilation for Geosciences. Oxford: Oxford University Press, pp. 349–69.Google Scholar
Hsieh, W. W., and Tang, B. (1998). Applying neural network models to prediction and data analysis in meteorology and oceanography. Bulletin of the American Meteorological Society, 79, 1855–70. https://doi.org/10.1175/1520-0477(1998)079<1855: ANNMTP>2.0.CO;2.Google Scholar
Hunt, B. R., Kostelich, E. J., and Szunyogh, I. (2007). Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–26. https://doi.org/10.1016/j.physd.2006.11.008.Google Scholar
Iglesias, M. A., Law, K. J. H., and Stuart, A. M. (2013). Ensemble Kalman methods for inverse problems. Inverse Problems, 29, 045001. https://doi.org/10.1088/0266-5611/29/4/045001.Google Scholar
Janjić, T., Bormann, N., Bocquet, M. et al. (2018). On the representation error in data assimilation. Quarterly Journal of the Royal Meteorological Society, 144, 1257–78. https://doi.org/10.1002/qj.3130.Google Scholar
Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511802270.Google Scholar
Kalnay, E., and Yang, S.-C. (2010). Accelerating the spin-up of ensemble Kalman filtering. Quarterly Journal of the Royal Meteorological Society, 136, 1644–51. https://doi.org/10.1002/qj.652.Google Scholar
Kolmogorov, A. N. (2018). Foundations of the Theory of Probability, 2nd English ed. Mineola, NY: Dover Publications.Google Scholar
Kovachki, N. B., and Stuart, A. M. (2019). Ensemble Kalman inversion: a derivative-free technique for machine learning tasks. Inverse Problems, 35, 095005. https://doi.org/10.1088/1361-6420/ab1c3a.Google Scholar
Laloyaux, P., Bonavita, M., Dahoui, M., et al. (2020). Towards an unbiased stratospheric analysis. Quarterly Journal of the Royal Meteorological Society, 146, 2392–409. https://doi.org/10.1002/qj.3798.Google Scholar
Lawson, W. G., and Hansen, J. A. (2004). Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Monthly Weather Review, 132, 1966–81. https://doi.org/10.1175/1520-0493(2004)132<1966:IOSADF>2.0.CO;2.Google Scholar
Le Dimet, F.-X., and Talagrand, O. (1986). Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A, 38, 97110. https://doi.org/10.3402/tellusa.v38i2.11706.√Google Scholar
Liu, C., Xiao, Q. and Wang, B. (2008). An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Monthly Weather Review, 136, 3363–73. https://doi.org/10.1175/2008MWR2312.1.√Google Scholar
Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quarterly Journal of the Royal Meteorological Society, 112, 1177–94. https://doi.org/10.1002/qj.49711247414.√Google Scholar
Lorenc, A. C. (2003). The potential of the ensemble Kalman filter for NWP: A comparison with 4D-Var. Quarterly Journal of the Royal Meteorological Society, 129, 3183–203. https://doi.org/10.1256/qj.02.132.√Google Scholar
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 2, 4955.Google Scholar
Ménétrier, B., and Auligné, T. (2015). An overlooked issue of variational data assimilation. Monthly Weather Review, 143, 3925–30. https://doi.org/10.1175/MWRD-14–00404.1.Google Scholar
Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
Miller, R. N., Ghil, M., and Gauthiez, F. (1994). Advanced data assimilation in strongly nonlinear dynamical systems. Journal of Atmospheric Sciences, 51, 1037–56. https://doi.org/10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2.√Google Scholar
Nguyen, V. D., Ouala, S., Drumetz, L., and Fablet, R. (2019). EM-like learning chaotic dynamics from noisy and partial observations. arXiv:1903.10335. https://arxiv.org/abs/1903.10335.Google Scholar
Nocedal, J., and Wright, S. (2006). Numerical Optimization. New York: Springer. https://doi.org/10.1007/978-0-387-40065-5.Google Scholar
Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford: Oxford University Press.Google Scholar
Penny, S. G. (2017). Mathematical foundations of hybrid data assimilation from a synchronization perspective. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 126801. https://doi.org/10.1063/1.5001819.√Google Scholar
Peyron, M., Fillion, A., Gürol, S., et al. (2021). Latent space data assimilation by using deep learning. Quarterly Journal of the Royal Meteorological Society, 147, 3759–77. https://doi.org/10.1002/qj.4153.√Google Scholar
Raanes, P. N. (2016). On the ensemble Rauch–Tung–Striebel smoother and its equivalence to the ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society, 142, 1259–64. https://doi.org/10.1002/qj.2728.√Google Scholar
Raanes, P. N., Bocquet, M., and Carrassi, A. (2019a). Adaptive covariance inflation in the ensemble Kalman filter by Gaussian scale mixtures. Quarterly Journal of the Royal Meteorological Society, 145, 5375. https://doi.org/10.1002/qj.3386.Google Scholar
Raanes, P. N., Stordal, A. S., and Evensen, G. (2019b). Revising the stochastic iterative ensemble smoother. Nonlinear Processes in Geophysics, 26, 325–38. https://doi.org/10.5194/npg-26-325-2019.Google Scholar
Reich, S., and Cotter, C. (2015). Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107706804.Google Scholar
Rojas, R. (2013). Neural Networks: A Systematic Introduction. New York: Springer. https://doi.org/10.1007/978-3-642-61068-4.Google Scholar
Ross, S. M. (2014). Introduction to Probability Models, 11th edition. San Diego, CA: Academic Press. https://doi.org/10.1016/C2012-0-03564-8.Google Scholar
Sakov, P., and Bertino, L. (2011). Relation between two common localisation methods for the EnKF. Computational Geosciences, 15, 225–37. https://doi.org/10.1007/s10596-010–9202–6.Google Scholar
Sakov, P., and Bocquet, M. (2018). Asynchronous data assimilation with the EnKF in presence of additive model error. Tellus A, 70, 1414545. https://doi.org/10.1080/16000870.2017.1414545.Google Scholar
Sakov, P., Haussaire, J.-M., and Bocquet, M. (2018). An iterative ensemble Kalman filter in presence of additive model error. Quarterly Journal of the Royal Meteorological Society, 144, 1297–309. https://doi.org/10.1002/qj.3213.Google Scholar
Sakov, P., and Oke, P. R. (2008). Implications of the form of the ensemble transformation in the ensemble square root filters. Monthly Weather Review, 136, 1042–53. https://doi.org/10.1175/2007MWR2021.1.Google Scholar
Sakov, P., Oliver, D. S., and Bertino, L. (2012). An iterative EnKF for strongly nonlinear systems. Monthly Weather Review, 140, 19882004. https://doi.org/10.1175/MWR-D-11–00176.1.Google Scholar
Schillings, C., and Stuart, A. M. (2018). Convergence analysis of ensemble Kalman inversion: The linear, noisy case. Applicable Analysis, 97, 107–23. https://doi.org/10.1080/00036811.2017.1386784.Google Scholar
Tabeart, J. M., Dance, S. L., Haben, S. A., et al. (2018). The conditioning of least-squares problems in variational data assimilation. Numerical Linear Algebra with Applications, 25, e2165. https://doi.org/10.1002/nla.2165.Google Scholar
Talagrand, O., and Courtier, P. (1987). Variational assimilation of meteorological observation with the adjoint vorticity equation. I: Theory. Quarterly Journal of the Royal Meteorological Society, 113, 1311–28. https://doi.org/10.1002/qj.49711347812.Google Scholar
Tandeo, P., Ailliot, P., Bocquet, M., et al. (2020). A review of innovation-based approaches to jointly estimate model and observation error covariance matrices in ensemble data assimilation. Monthly Weather Review, 148, 3973–94. https://doi.org/10.1175/MWRD-19–0240.1.Google Scholar
Taylor, M. E. (1996). Partial Differential Equations. Vol. 1: Basic Theory. New York: Springer. https://doi.org/10.1007/978-1-4419-7055-8.Google Scholar
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker, J. S. (2003). Ensemble square root filters. Monthly Weather Review, 131, 1485–90. https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2.Google Scholar
Tong, Y. L. (2012). The Multivariate Normal Distribution. New York: Springer. https://doi.org/10.1007/978-1-4613-9655-0.Google Scholar
Trémolet, Y. (2006). Accounting for an imperfect model in 4D-Var. Quarterly Journal of the Royal Meteorological Society, 132, 2483–504. https://doi.org/10.1256/qj.05.224.Google Scholar
Trevisan, A., and Uboldi, F. (2004). Assimilation of standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle. Journal of the Atmospheric Sciences, 61, 103–13. https://doi.org/10.1175/1520-0469(2004)061<0103:AOSATO>2.0.CO;2.Google Scholar
Whitaker, J. S., and Loughe, A. F. (1998). The relationship between ensemble spread and ensemble mean skill. Monthly Weather Review, 126, 3292–302. https://doi.org/10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2.Google Scholar
Yang, S.-C., Lin, K.-J., Miyoshi, T., and Kalnay, E. (2013). Improving the spinup of regional EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus A, 65, 20804. https://doi.org/10.3402/tellusa.v65i0.20804.Google Scholar
Zupanski, M. (2005). Maximum likelihood ensemble filter: Theoretical aspects. Monthly Weather Review, 133, 1710–26. https://doi.org/10.1175/MWR2946.1.Google Scholar
Zupanski, M., Navon, I. M., and Zupanski, D. (2008). The maximum likelihood ensemble filter as a non-differentiable minimization algorithm. Quarterly Journal of the Royal Meteorological Society, 134, 1039–50. https://doi.org/10.1002/qj.251.Google Scholar

References

Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ: Rand Corporation and Princeton University Press.Google Scholar
Cacuci, D. G. (1981a). Sensitivity theory for nonlinear systems: I. Nonlinear functional analysis approach, Journal of Mathematical Physics, 22, 2794–802.Google Scholar
Cacuci, D. G. (1981b). Sensitivity theory for nonlinear systems: II. Extensions to additional classes of responses, Journal of Mathematical. Physics, 22, 2803–12.Google Scholar
Cacuci, D. G. (2015). Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems: I. Computational methodology. Journal of Computational Physics., 284, 687–99. https://doi.org/10.1016/j.jcp.2014.12.042.Google Scholar
Cacuci, D. G. (2017). Inverse predictive modeling of radiation transport through optically thick media in the presence of counting uncertainties, Nuclear Science and Engineering, 186, 199223. http://dx.doi.org/10.1080/00295639.2017.1305244.Google Scholar
Cacuci, D. G. (2018). The Second-Order Adjoint Sensitivity Analysis Methodology. Boca Raton, FL: CRC Press, Taylor & Francis Group.Google Scholar
Cacuci, D. G. (2019a). BERRU Predictive Modeling: Best Estimate Results with Reduced Uncertainties. New York: Springer Heidelberg.Google Scholar
Cacuci, D. G. (2019b). Towards overcoming the curse of dimensionality: The third-order adjoint method for sensitivity analysis of response-coupled linear forward/adjoint systems, with applications to uncertainty quantification and predictive modeling. Energies, 12, 4216. https://doi.org/10.3390/en12214216.Google Scholar
Cacuci, D. G. (2021a). First-order comprehensive adjoint sensitivity analysis methodology (1st-CASAM) for computing efficiently the exact response sensitivities for physical systems with imprecisely known boundaries and parameters: General theory and illustrative paradigm applications. Annals of Nuclear Energy, 151, 107913.Google Scholar
Cacuci, D. G. (2021b). On the need to determine accurately the impact of higher-order sensitivities on model sensitivity analysis, uncertainty quantification and best-estimate predictions, Energies, 14, 6318. https://doi.org/10.3390/en14196318.Google Scholar
Cacuci, D. G. (2022a). The fourth-order comprehensive adjoint sensitivity analysis methodology for nonlinear systems (4th-CASAM-N): I. Mathematical framework. Journal of Nuclear Engineering, 3(1), 3771. https://doi.org/10.3390/jne3010004jne-1568378.Google Scholar
Cacuci, D. G. (2022b). The fifth-order comprehensive adjoint sensitivity analysis methodology for nonlinear systems (5th-CASAM-N): I. Mathematical framework. American Journal of Computational Mathematics, 12, 4478. https://doi.org/10.4236/ajcm.2022.121005.Google Scholar
Cacuci, D. G. (2022c). The nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology: Overcoming the Curse of Dimensionality. Vol. I: Linear Systems; Vol. II: Large-Scale Application; Vol. 3: Nonlinear Systems. Cham: Springer Nature Switzerland.Google Scholar
Cacuci, D. G. and Di Rocco, F. (2020). Sensitivity and uncertainty analysis of a reduced-order model of nonlinear BWR dynamics sensitivity and uncertainty analysis of boiling water reactors nonlinear dynamics: II. Adjoint sensitivity analysis. Annals of Nuclear Energy, 148, 107748. https://doi.org/10.1016/j.anucene.2020.107748.Google Scholar
Cacuci, D. G. and Ionescu-Bujor, M. (2010), Sensitivity and uncertainty analysis, data assimilation and predictive best-estimate model calibration. In Cacuci, D. G., ed., Handbook of Nuclear Engineering, vol. 3. New York: Springer, pp. 1913–2051.Google Scholar
Cacuci, D. G., Fang, R., and Badea, M. C. (2018). MULTI-PRED: A software module for predictive modeling of coupled multi-physics systems, Nuclear Science and Engineering, 191, 187202.Google Scholar
Cacuci, D. G., Fang, R., and Favorite, J. A. (2019). Comprehensive second-order adjoint sensitivity analysis methodology (2nd-CASAM) applied to a subcritical experimental reactor physics benchmark: I. Effects of imprecisely known microscopic total and capture cross sections. Energies, 12, 4219. https://doi.org/10.3390/en12214219.Google Scholar
Cacuci, D. G., Fang, R., and Favorite, J. A. (2020). Comprehensive second-order adjoint sensitivity analysis methodology (2nd-CASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: VI: Overall impact of 1st- and 2nd-order sensitivities on response uncertainties. Energies, 13, 1674. https://doi.org/10.3390/en13071674.Google Scholar
Cacuci, D. G., Navon, M. I., and Ionescu-Bujor, M. (2014). Computational Methods for Data Evaluation and Assimilation. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Di Rocco, F. and Cacuci, D. G. (2020). Sensitivity and uncertainty analysis of a reduced-order model of nonlinear BWR dynamics. III. Uncertainty analysis results. Annals of Nuclear Energy, 148, 107749. https://doi.org/10.1016/j.anucene.2020.107749.Google Scholar
Fang, R. and Cacuci, D. G. (2020). Third order adjoint sensitivity and uncertainty Analysis of an OECD/NEA reactor physics benchmark: III. Response moments. American Journal of Computational Mathematics, 10, 559–70. https://doi.org/10.4236/ajcm.2020.104031.Google Scholar
Jaynes, E. T. (1957). Information theory and statistical mechanics. Physics Review, 106, 620–30. See also: Jaynes, E. T. Probability Theory: The Logic of Science, Cambridge: Cambridge University Press, 2003.Google Scholar
Lewis, J. M., Lakshmivarahan, S., and Dhal, S. K., Dynamic Data Assimilation: A Least Squares Approach. Cambridge: Cambridge University Press, 2006.Google Scholar
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20 (2): 130–41.Google Scholar
March-Leuba, J., Cacuci, D. G., and Perez, R. B. (1984). Universality and Aperiodic Behavior of Nuclear Reactors. Nuclear Science and Engineering, 86, 401–4.Google Scholar
Práger, T., and Kelemen, F. D. (2014). Adjoint methods and their application in earth sciences. In Faragó, I., Havasi, Á, and Zlatev, Z. (eds.), Advanced Numerical Methods for Complex Environmental Models: Needs and Availability. Oak Park, IL: Bentham Science Publishers, pp. 203–75.Google Scholar
Saltelli, A., Chan, K., and Scott, E. M., eds. (2000). Sensitivity Analysis. Chichester: John Wiley & Sons.Google Scholar
Tukey, J. W. (1957). The propagation of errors. fluctuations and tolerances. Unpublished Technical Reports No. 10. l1. and 12. Princeton University.Google Scholar
USNRC (1988). United States Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Washington, D.C. 20555, Information Notice No. 88-39: Lasalle Unit 2 Loss of Recirculation Pumps with Power Oscillation Event. www.nrc.gov/reading-rm/doc-collections/gen-comm/info-notices/1988/in88039.html.Google Scholar
Valentine, T. E. (2006). Polyethylene-reflected plutonium metal sphere subcritical noise measurements, SUB-PU-METMIXED-001. International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I-IX, Organization for Economic Co-Operation and Development, Nuclear Energy Agency, Paris, France. www.odeint.com, 2019.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Edited by Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany, Fabio Castelli, Università degli Studi, Florence, Dylan Jones, University of Toronto, Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
  • Book: Applications of Data Assimilation and Inverse Problems in the Earth Sciences
  • Online publication: 20 June 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Edited by Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany, Fabio Castelli, Università degli Studi, Florence, Dylan Jones, University of Toronto, Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
  • Book: Applications of Data Assimilation and Inverse Problems in the Earth Sciences
  • Online publication: 20 June 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Edited by Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany, Fabio Castelli, Università degli Studi, Florence, Dylan Jones, University of Toronto, Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
  • Book: Applications of Data Assimilation and Inverse Problems in the Earth Sciences
  • Online publication: 20 June 2023
Available formats
×