Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T01:32:07.281Z Has data issue: false hasContentIssue false

2 - Learning physics from the stars: It's all in the coefficients

Published online by Cambridge University Press:  05 December 2013

Steven D. Kawaler
Affiliation:
Iowa State University
Pere L. Pallé
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
César Esteban
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Asteroseismology , pp. 32 - 59
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, D.R., Ferguson, J.W., Tamanai, A., Bodnarik, J., Allard, F., and Hauschildt, P. H. 2003 (Jan.). Opacities of molecules and dust. Pages 289–302 of: I., Hubeny, D., Mihalas, and K., Werner (ed), Stellar Atmosphere Modeling. Astronomical Society of the Pacific Conference Series, vol. 288.
Althaus, L.G., Córsico, A.H., Isern, J., and García-Berro, E. 2010. Evolutionary and pulsational properties of white dwarf stars. A&A Rev., 18(Oct.), 471–566.Google Scholar
Angulo, C., Arnould, M., Rayet, M., Descouvemont, P., Baye, D., Leclercq-Willain, C., Coc, A., Barhoumi, S., Aguer, P., Rolfs, C., Kunz, R., Hammer, J.W., Mayer, A., Paradellis, T., Kossionides, S., Chronidou, C., Spyrou, K., degl'Innocenti, S., Fiorentini, G., Ricci, B., Zavatarelli, S., Providencia, C., Wolters, H., Soares, J., Grama, C., Rahighi, J., Shotter, A., and Lamehi Rachti, M. 1999. A compilation of charged-particle induced thermonuclear reaction rates. Nuclear Physics A, 656(Aug.), 3–183.Google Scholar
Bahcall, J.N., and Ulrich, R. K. 1988. Solar models, neutrino experiments, and helioseismology. Reviews of Modern Physics, 60(Apr.), 297–372.Google Scholar
Bahcall, J.N., Gonzalez-Garcia, C.M., and Pena-Garay, C. 2002. Before and after: how has the SNO NC measurement changed things?Journal of High Energy Physics, 7(July), 54–86.Google Scholar
Bischoff-Kim, A., Montgomery, M.H., and Winget, D. E. 2008. Strong limits on the DFSZ axion mass with G117-B15A. ApJ, 675(Mar.), 1512–17.Google Scholar
Böhm-Vitense, E. 1958. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. ZAp, 46, 108.Google Scholar
Caughlan, G.R., and Fowler, W. A. 1988. Thermonuclear Reaction Rates V. Atomic Data and Nuclear Data Tables, 40, 283.Google Scholar
Christensen-Dalsgaard, J., Gough, D.O., and Thompson, M. J. 1991. The depth of the solar convection zone. ApJ, 378(Sept.), 413–37.Google Scholar
Cox, A.N., and Tabor, J. E. 1976. Radiative opacity tables for 40 stellar mixtures. ApJS, 31(June), 271–312.Google Scholar
El Eid, M. 2005. Astrophysics: the process of carbon creation. Nature, 433(Jan.), 117–19.Google Scholar
El Eid, M.F., Meyer, B.S., and The, L.-S. 2004. Evolution of massive stars up to the end of central oxygen burning. ApJ, 611(Aug.), 452–65.Google Scholar
Ferguson, J.W., Alexander, D.R., Allard, F., Barman, T., Bodnarik, J.G., Hauschildt, P.H., Heffner-Wong, A., and Tamanai, A. 2005. Low-temperature opacities. ApJ, 623(Apr.), 585–96.Google Scholar
Fontaine, G., and Brassard, P. 2008. The pulsating white dwarf stars. PASP, 120(Oct.), 1043–96.Google Scholar
Handler, G., Metcalfe, T.S., and Wood, M. A. 2002. The asteroseismological potential of the pulsating DB white dwarf stars CBS 114 and PG 1456+103. MNRAS, 335(Sept.), 698–706.Google Scholar
Hansen, C.J., Kawaler, S.D., and Trimble, V. 2004. Stellar interiors: physical principles, structure, and evolution.
Iglesias, C.A., and Rogers, F. J. 1991. Opacity tables for Cepheid variables. ApJ, 371(Apr.), L73–L75.Google Scholar
Itoh, N., Hayashi, H., Nishikawa, A., and Kohyama, Y. 1996. Neutrino energy loss in stellar interiors. VII. pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes. ApJS, 102(Feb.), 411.Google Scholar
Kanaan, A., Kepler, S.O., Giovannini, O., and Diaz, M. 1992. The discovery of a new DAV star using IUE temperature determination. ApJ, 390(May), L89–L91.Google Scholar
Kanaan, A., Nitta-Kleinman, A., Winget, D.E., Kepler, S.O., Montgomery, M., and WET team. 2000. BPM 37093: preliminary results from XCOV 16 and XCOV 17. Baltic Astronomy, 9, 87–96.Google Scholar
Kanaan, A., Nitta, A., Winget, D.E., Kepler, S.O., Montgomery, M.H., Metcalfe, T.S., Oliveira, H., Fraga, L., da Costa, A. F. M., Costa, J. E. S., Castanheira, B.G., Giovannini, O., Nather, R.E., Mukadam, A., Kawaler, S.D., O'Brien, M.S., Reed, M.D., Kleinman, S.J., Provencal, J.L., Watson, T.K., Kilkenny, D., Sullivan, D.J., Sullivan, T., Shobbrook, B., Jiang, X.J., Ashoka, B.N., Seetha, S., Leibowitz, E., Ibbetson, P., Mendelson, H., Meistas, E.G., Kalytis, R., Alisauskas, D., O'Donoghue, D., Buckley, D., Martinez, P., van Wyk, F., Stobie, R., Marang, F., van Zyl, L., Ogloza, W., Krzesinski, J., Zola, S., Moskalik, P., Breger, M., Stankov, A., Silvotti, R., Piccioni, A., Vauclair, G., Dolez, N., Chevreton, M., Deetjen, J., Dreizler, S., Schuh, S., Gonzalez Perez, J.M., Østensen, R., Ulla, A., Manteiga, M., Suarez, O., Burleigh, M.R., and Barstow, M. A. 2005. Whole Earth Telescope observations of BPM 37093: a seismological test of crystallization theory in white dwarfs. A & A, 432(Mar.), 219–24.Google Scholar
Kawaler, S. D. 1995. White dwarf stars (with 37 figures). A. O., Benz and T. J.-L., Courvoisier (ed.), Saas-Fee Advanced Course 25: Stellar Remnants.
Kepler, S.O., Costa, J. E. S., Castanheira, B.G., Winget, D.E., Mullally, F., Nather, R.E., Kilic, M., von Hippel, T., Mukadam, A.S., and Sullivan, D. J. 2005. Measuring the evolution of the most stable optical clock G 117-B15A. ApJ, 634(Dec.), 1311–18.Google Scholar
Landolt, A. U. 1968. A new short-period blue variable. ApJ, 153(July), 151.Google Scholar
Mestel, L. 1952. On the theory of white dwarf stars. I. The energy sources of white dwarfs. MNRAS, 112, 583.Google Scholar
Metcalfe, T. S. 2003. White dwarf asteroseismology and the 12C(α,γ)16O rate. ApJ, 587(Apr.), L43–L46.Google Scholar
Metcalfe, T.S., Winget, D.E., and Charbonneau, P. 2001. Preliminary constraints on 12C(α,γ)16O from white dwarf seismology. ApJ, 557(Aug.), 1021–27.Google Scholar
Metcalfe, T.S., Salaris, M., and Winget, D. E. 2002. Measuring 12C(α,γ)16O from white dwarf asteroseismology. ApJ, 573(July), 803–11.Google Scholar
Metcalfe, T.S., Montgomery, M.H., and Kawaler, S. D. 2003. Probing the core and envelope structure of DBV white dwarfs. MNRAS, 344(Oct.), L88–L92.Google Scholar
Montgomery, M. H. 2007. Using non-sinusoidal light curves of multi-periodic pulsators to constrain convection. R., Napiwotzki and M. R., Burleigh (ed.), 15th European Workshop on White Dwarfs. Astronomical Society of the Pacific Conference Series, vol. 372.
Montgomery, M.H., and Winget, D. E. 1999. The effect of crystallization on the pulsations of white dwarf stars. ApJ, 526(Dec.), 976–90.Google Scholar
Montgomery, M.H., Metcalfe, T.S., and Winget, D. E. 2003. The core/envelope symmetry in pulsating stars. MNRAS, 344(Sept.), 657–64.Google Scholar
Montgomery, M.H., Provencal, J.L., Kanaan, A., Mukadam, A.S., Thompson, S.E., Dalessio, J., Shipman, H.L., Winget, D.E., Kepler, S.O., and Koester, D. 2010. Evidence for temperature change and oblique pulsation from light curve fits of the pulsating white dwarf GD 358. ApJ, 716(June), 84–96.Google Scholar
Moskalik, P., Buchler, J.R., and Marom, A. 1992. Toward a resolution of the bump and beat Cepheid mass discrepancies. ApJ, 385(Feb.), 685–93.Google Scholar
O'Brien, M.S., and Kawaler, S. D. 2000. The predicted signature of neutrino emission in observations of pulsating pre-white dwarf stars. ApJ, 539(Aug.), 372–8.Google Scholar
O'Brien, M.S., Vauclair, G., Kawaler, S.D., Watson, T.K., Winget, D.E., Nather, R.E., Montgomery, M., Nitta, A., Kleinman, S.J., Sullivan, D.J., Jiang, X.J., Marar, T. M. K., Seetha, S., Ashoka, B.N., Bhattacharya, J., Leibowitz, E.M., Hemar, S., Ibbetson, P., Warner, B., van Zyl, L., Moskalik, P., Zola, S., Pajdosz, G., Krzesinski, J., Dolez, N., Chevreton, M., Solheim, J.-E., Thomassen, T., Kepler, S.O., Giovannini, O., Provencal, J.L., Wood, M.A., and Clemens, J. C. 1998. Asteroseismology of a star cooled by neutrino emission: the pulsating pre-white dwarf PG 0122+200. ApJ, 495(Mar.), 458.Google Scholar
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F. 2011. Modules for experiments in stellar astrophysics (MESA). ApJS, 192(Jan.), 3.Google Scholar
Potekhin, A.Y., and Chabrier, G. 2010. Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contributions to Plasma Physics, 50(Jan.), 82–7.Google Scholar
Rogers, F.J., and Iglesias, C. A. 1992. Radiative atomic Rosseland mean opacity tables. ApJS, 79(Apr.), 507–68.Google Scholar
Rogers, F.J., Swenson, F.J., and Iglesias, C. A. 1996. OPAL equation-of-state tables for astro-physical applications. ApJ, 456(Jan.), 902.Google Scholar
Salpeter, E. E. 1961. Energy and pressure of a zero-temperature plasma. ApJ, 134(Nov.), 669.Google Scholar
Saumon, D., Chabrier, G., and van Horn, H. M. 1995. An equation of state for low-mass stars and giant planets. ApJS, 99(Aug.), 713.Google Scholar
Seaton, M.J., Yan, Y., Mihalas, D., and Pradhan, A. K. 1994. Opacities for stellar envelopes. MNRAS, 266(Feb.), 805.Google Scholar
Simon, N. R. 1981 (Mar.). Experimental envelope models for cepheids. Bulletin of the American Astronomical Society. Bulletin of the American Astronomical Society, vol. 13.
Simon, N. R. 1982. A plea for reexamining heavy element opacities in stars. ApJ, 260(Sept.), L87–L90.Google Scholar
Simon, N. R. 1987. Cepheids: problems and possibilities. Pages 148–158 of: A. N., Cox, W. M., Sparks, and S. G., Starrfield (ed.), Stellar Pulsation. Lecture Notes in Physics, Berlin Springer Verlag, vol. 274.
Stellingwerf, R. F. 1975a. Modal stability of RR Lyrae stars. ApJ, 195(Jan.), 441–66.Google Scholar
Stellingwerf, R. F. 1975b. Nonlinear effects in double-mode Cepheids. ApJ, 199(Aug.), 705–709.Google Scholar
Sullivan, D.J., Metcalfe, T.S., O'Donoghue, D., Winget, D.E., Kilkenny, D., van Wyk, F., Kanaan, A., Kepler, S.O., Nitta, A., Kawaler, S.D., Montgomery, M.H., Nather, R.E., O'Brien, M.S., Bischoff-Kim, A., Wood, M., Jiang, X.J., Leibowitz, E.M., Ibbetson, P., Zola, S., Krzesinski, J., Pajdosz, G., Vauclair, G., Dolez, N., and Chevreton, M. 2008. Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC20058-5234. MNRAS, 387(June), 137–52.Google Scholar
van Horn, H. M. 1971. Cooling of white dwarfs. W. J., Luyten (ed.), White Dwarfs. IAU Symposium, vol. 42.
Vauclair, G., Fu, J.-N., Solheim, J.-E., Kim, S.-L., Dolez, N., Chevreton, M., Chen, L., Wood, M.A., Silver, I.M., Bognar, Z., Paparó, M., and Córsico, A. H. 2011. The period and amplitude changes in the coolest GW Virginis variable star (PG 1159-type) PG 0122+200. A & A, 528(Apr.), A5.Google Scholar
Winget, D.E., and Kepler, S. O. 2008. Pulsating white dwarf stars and precision asteroseismology. ARA&A, 46(Sept.), 157–99.Google Scholar
Winget, D.E., Nather, R.E., Clemens, J.C., Provencal, J.L., Kleinman, S.J., Bradley, P.A., Claver, C.F., Dixson, J.S., Montgomery, M.H., Hansen, C.J., Hine, B.P., Birch, P., Candy, M., Marar, T. M. K., Seetha, S., Ashoka, B.N., Leibowitz, E.M., O'Donoghue, D., Warner, B., Buckley, D. A. H., Tripe, P., Vauclair, G., Dolez, N., Chevreton, M., Serre, T., Garrido, R., Kepler, S.O., Kanaan, A., Augusteijn, T., Wood, M.A., Bergeron, P., and Grauer, A. D. 1994. Whole Earth Telescope observations of the DBV white dwarf GD 358. ApJ, 430(Aug.), 839–49.Google Scholar
Winget, D.E., Sullivan, D.J., Metcalfe, T.S., Kawaler, S.D., and Montgomery, M. H. 2004. A strong test of electroweak theory using pulsating DB white dwarf stars as plasmon neutrino detectors. ApJ, 602(Feb.), L109–L112.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×