Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-03T01:09:27.572Z Has data issue: false hasContentIssue false

11 - Lung infections

from Part IV - Exploitation of host niches by pathogenic bacteria: mechanisms and consequences

Published online by Cambridge University Press:  12 August 2009

Marisa I. Gómez
Affiliation:
Departments of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, USA
Alice S. Prince
Affiliation:
College of Physicians and Surgeons, Columbia University, New York, USA
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

INTRODUCTION

The airway epithelium represents a primary site for the introduction and deposition of potentially pathogenic microorganisms into the body through inspired air. The ciliated epithelium lining the airways possesses several mechanisms to prevent colonization by inhaled bacteria and, despite repeated exposures to a wide variety of organisms, the lower respiratory tract usually remains sterile. The airway is defined anatomically as the upper respiratory tract, which includes the nasal sinuses and the nasopharynx, and the lower respiratory tract, which begins at the larynx and continues to the trachea, before dividing into the smaller airways until they reach the alveoli. The luminal surface of the airways is lined by a layer of epithelial cells. In the conducting airways, these cells are pseudostratified columnar epithelial cells, which become simple cuboidal epithelium as the branches extend to the alveoli (Diamond et al., 2000). The respiratory epithelium is an essential barrier that features tight intercellular apical junctions between the cells, a superficial liquid layer or film that contains mucous-gland and goblet-cell secretions, immunoglobulins, and lysozyme, components that are propelled and cleared by cilia.

INNATE HOST DEFENSES AGAINST BACTERIAL LUNG PATHOGENS

In the upper airways, the nose functions as a filter by trapping large particulate matter (>10 μm) in nasal hair or on the surface of the turbinates and septum. Smaller particles, including bacteria ranging in size from 2 μm to 10 μm, are inhaled and deposited in the lower conducting airways.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 301 - 326
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, R., Sokol, S., Soong, G., Gómez, M. I., and Prince, A. (2004). Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am. J. Respir. Cell. Mol. Biol. 30, 627–634.CrossRefGoogle ScholarPubMed
Akamine, M., Higa, F., Arakaki, N., et al. (2005). Differential roles of Toll-like receptors 2 and 4 in in vitro responses of macrophages to Legionella pneumophila. Infect. Immun. 73, 352–361.CrossRefGoogle ScholarPubMed
Amano, H., Morimoto, K., Senba, M., et al. (2004). Essential contribution of monocyte chemoattractant protein-1/C-C chemokine ligand-2 to resolution and repair processes in acute bacterial pneumonia. J. Immunol. 172, 398–409.CrossRefGoogle ScholarPubMed
Andonegui, G., Bonder, C. S., Green, F., et al. (2003). Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J. Clin. Invest. 111, 1011–1020.CrossRefGoogle ScholarPubMed
Andrews, J., Nadjm, B., Gant, V., and Shetty, N. (2003). Community-acquired pneumonia. Curr. Opin. Pulm. Med. 9, 175–180.CrossRefGoogle ScholarPubMed
Bals, R. and Hiemstra, P. S. (2004). Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur. Respir. J. 23, 327–333.CrossRefGoogle ScholarPubMed
Bals, R., Weiner, D. J., Meegalla, R. L., Accurso, F., and Wilson, J. M. (2001). Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid. Am. J. Respir. Cell. Mol. Biol. 25, 21–25.CrossRefGoogle ScholarPubMed
Bauer, J., Bauer, T. M., Kalb, T., et al. (1989). Regulation of interleukin 6 receptor expression in human monocytes and monocyte-derived macrophages: comparison with the expression in human hepatocytes. J. Exp. Med. 170, 1537–1549.CrossRefGoogle ScholarPubMed
Becker, M. N., Diamond, G., Verghese, M. W., and Randell, S. H. (2000). CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J. Biol. Chem. 275, 29 731–29 736.CrossRefGoogle ScholarPubMed
Birchler, T., Seibl, R., Buchner, K., et al. (2001). Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur. J. Immunol. 31, 3131–3137.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Bogaert, D., Groot, R., and Hermans, P. W. (2004). Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4, 144–154.CrossRefGoogle ScholarPubMed
Branger, J., Knapp, S., Weijer, S., et al. (2004). Role of Toll-like receptor 4 in Gram-positive and Gram-negative pneumonia in mice. Infect. Immun. 72, 788–794.CrossRefGoogle ScholarPubMed
Chamaillard, M., Hashimoto, M., Horie, Y., et al. (2003). An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707.CrossRefGoogle ScholarPubMed
Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.CrossRefGoogle ScholarPubMed
Craven, D. E. (2000). Epidemiology of ventilator-associated pneumonia. Chest 117, 186S–187S.CrossRefGoogle ScholarPubMed
Dale, S. E., Sebulsky, M. T., and Heinrichs, D. E. (2004). Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J. Bacteriol. 186, 8356–8362.CrossRefGoogle ScholarPubMed
Diamond, G., Legarda, D., and Ryan, L. K. (2000). The innate immune response of the respiratory epithelium. Immunol. Rev. 173, 27–38.CrossRefGoogle ScholarPubMed
DiMango, E., Zar, H. J., Bryan, R., and Prince, A. (1995). Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J. Clin. Invest. 96, 2204–2210.CrossRefGoogle ScholarPubMed
DiMango, E., Ratner, A. J., Bryan, R., Tabibi, S., and Prince, A. (1998). Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J. Clin. Invest. 101, 2598–2605.CrossRefGoogle ScholarPubMed
Dohrman, A., Miyata, S., Gallup, M., et al. (1998). Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. Biophys. Acta 1406, 251–259.CrossRefGoogle ScholarPubMed
Eaves-Pyles, T., Murthy, K., Liaudet, L., et al. (2001). Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: I kappa B alpha degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J. Immunol. 166, 1248–1260.CrossRefGoogle ScholarPubMed
Epelman, S., Stack, D., Bell, C., et al. (2004). Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs. J. Immunol. 173, 2031–2040.CrossRefGoogle ScholarPubMed
Feldman, M., Bryan, R., Rajan, S., et al. (1998). Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66, 43–51.Google ScholarPubMed
Feng, C. G., Scanga, C. A., Collazo-Custodio, C. M., et al. (2003). Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J. Immunol. 171, 4758–4764.CrossRefGoogle Scholar
Foster, T. J. and McDevitt, D. (1994). Surface-associated proteins of Staphylococcus aureus: their possible roles in virulence. FEMS Microbiol. Lett. 118, 199–205.CrossRefGoogle ScholarPubMed
Garrity-Ryan, L., Shafikhani, S., Balachandran, P., et al. (2004). The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect. Immun. 72, 546–558.CrossRefGoogle ScholarPubMed
Gauthier, A., Thomas, N. A., and Finlay, B. B. (2003). Bacterial injection machines. J. Biol. Chem. 278, 25 273–25 276.CrossRefGoogle ScholarPubMed
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J., and Madara, J. L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885.CrossRefGoogle ScholarPubMed
Girard, R., Pedron, T., Uematsu, S., et al. (2003). Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J. Cell Sci. 116, 293–302.CrossRefGoogle ScholarPubMed
Girardin, S. E., Boneca, I. G., Carneiro, L. A., et al. (2003a). Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587.CrossRefGoogle Scholar
Girardin, S. E., Boneca, I. G., Viala, J., et al. (2003b). Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872.CrossRefGoogle Scholar
Gómez, M. I., Lee, A., Reddy, B., et al. (2004). Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat. Med. 10, 842–848.CrossRefGoogle ScholarPubMed
Gómez, M. I., Sokol, S., Muir, A. B., et al. (2005). Bacterial induction of TNF-alpha converting enzyme expression and IL-6 receptor alpha shedding regulates airway inflammatory signaling. J. Immunol. 175, 1930–1936.CrossRefGoogle ScholarPubMed
Goss, C. H. and Rosenfeld, M. (2004). Update on cystic fibrosis epidemiology. Curr. Opin. Pulm. Med. 10, 510–514.CrossRefGoogle ScholarPubMed
Greene, C. M., Carroll, T. P., Smith, S. G., et al. (2005). TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. J. Immunol. 174, 1638–1646.CrossRefGoogle ScholarPubMed
Guillot, L., Medjane, S., Le-Barillec, K., et al. (2004). Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J. Biol. Chem. 279, 2712–2718.CrossRefGoogle ScholarPubMed
Gupta, D., Wang, Q., Vinson, C., and Dziarski, R. (1999). Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1. J. Biol. Chem. 274, 14 012–14 020.CrossRefGoogle ScholarPubMed
Hauser, A. R., Fleiszig, S., Kang, P. J., Mostov, K., and Engel, J. N. (1998). Defects in type III secretion correlate with internalization of Pseudomonas aeruginosa by epithelial cells. Infect. Immun. 66, 1413–1420.Google ScholarPubMed
Hayashi, F., Smith, K. D., Ozinsky, A., et al. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.CrossRefGoogle ScholarPubMed
Hehlgans, T. and Pfeffer, K. (2005). The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115, 1–20.CrossRefGoogle ScholarPubMed
Heinrich, P. C., Behrmann, I., Haan, S., et al. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20.CrossRefGoogle ScholarPubMed
Hiemstra, P. S. (2001). Epithelial antimicrobial peptides and proteins: their role in host defence and inflammation. Paediatr. Respir. Rev. 2, 306–310.Google ScholarPubMed
Hiratsuka, T., Nakazato, M., Date, Y., et al. (1998). Identification of human beta-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem. Biophys. Res. Commun. 249, 943–947.CrossRefGoogle ScholarPubMed
Hoiby, N., Krogh Johansen, H., Moser, C., et al. (2001). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect. 3, 23–35.CrossRefGoogle Scholar
Hoshino, K., Takeuchi, O., Kawai, T., et al. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752.Google ScholarPubMed
Hurst, S. M., Wilkinson, T. S., McLoughlin, R. M., et al. (2001). Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14, 705–714.CrossRefGoogle ScholarPubMed
Inohara, N., Ogura, Y., Fontalba, A., et al. (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512.CrossRefGoogle ScholarPubMed
Inohara, N., Chamaillard, M., McDonald, C., and Nunez, G. (2004). NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383.CrossRefGoogle Scholar
Kajikawa, O., Frevert, C. W., Lin, S. M., et al. (2005). Gene expression of Toll-like receptor-2, Toll-like receptor-4, and MD2 is differentially regulated in rabbits with Escherichia coli pneumonia. Gene 344, 193–202.CrossRefGoogle ScholarPubMed
Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122.CrossRefGoogle ScholarPubMed
Knapp, S., Wieland, C. W., van't Veer, C., et al. (2004). Toll-like receptor 2 plays a role in the early inflammatory response to murine pneumococcal pneumonia but does not contribute to antibacterial defense. J. Immunol. 172, 3132–3138.CrossRefGoogle Scholar
Kovacs, K. A., Steinmann, M., Magistretti, P. J., Halfon, O., and Cardinaux, J. R. (2003). CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J. Biol. Chem. 278, 36 959–36 965.CrossRefGoogle ScholarPubMed
Krivan, H. C., Roberts, D. D., and Ginsburg, V. (1988). Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1–4Gal found in some glycolipids. Proc. Natl. Acad. Sci. U. S. A. 85, 6157–6161.CrossRefGoogle ScholarPubMed
Lawson, P. R. and Reid, K. B. (2000). The roles of surfactant proteins A and D in innate immunity. Immunol. Rev. 173, 66–78.CrossRefGoogle Scholar
LeVine, A. M., Bruno, M. D., Huelsman, K. M., et al. (1997). Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J. Immunol. 158, 4336–4340.Google ScholarPubMed
LeVine, A. M., Kurak, K. E., Bruno, M. D., et al. (1998). Surfactant protein-A-deficient mice are susceptible to Pseudomonas aeruginosa infection. Am. J. Respir. Cell. Mol. Biol. 19, 700–708.CrossRefGoogle ScholarPubMed
LeVine, A. M., Reed, J. A., Kurak, K. E., Cianciolo, E., and Whitsett, J. A. (1999). GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. J. Clin. Invest. 103, 563–569.CrossRefGoogle ScholarPubMed
LeVine, A. M., Whitsett, J. A., Gwozdz, J. A., et al. (2000). Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 165, 3934–3940.CrossRefGoogle ScholarPubMed
Lindsay, J. A. and Holden, M. T. (2004). Staphylococcus aureus: superbug, super genome?Trends Microbiol. 12, 378–385.CrossRefGoogle ScholarPubMed
Luo, G. and Yu-Lee, L. (2000). Stat5b inhibits NFkappaB-mediated signaling. Mol. Endocrinol. 14, 114–123.Google ScholarPubMed
Malley, R., Henneke, P., Morse, S. C., et al. (2003). Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. U. S. A. 100, 1966–1971.CrossRefGoogle ScholarPubMed
Marin, V., Montero-Julian, F. A., Gres, S., et al. (2001). The IL-6-soluble IL-6Ralpha autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. J. Immunol. 167, 3435–3442.CrossRefGoogle ScholarPubMed
McMorran, B., Town, L., Costelloe, E., et al. (2003). Effector ExoU from the type III secretion system is an important modulator of gene expression in lung epithelial cells in response to Pseudomonas aeruginosa infection. Infect. Immun. 71, 6035–6044.CrossRefGoogle ScholarPubMed
McNamara, N., Khong, A., McKemy, D., et al. (2001). ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor. Proc. Natl. Acad. Sci. U. S. A. 98, 9086–9091.CrossRefGoogle ScholarPubMed
Mehrad, B. and Standiford, T. J. (1999). Role of cytokines in pulmonary antimicrobial host defense. Immunol. Res. 20, 15–27.CrossRefGoogle ScholarPubMed
Mezyk, R., Bzowska, M., and Bereta, J. (2003). Structure and functions of tumor necrosis factor-alpha converting enzyme. Acta Biochim. Pol. 50, 625–645.Google ScholarPubMed
Muir, A., Soong, G., Sokol, S., et al. (2004). Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 30, 777–783.CrossRefGoogle ScholarPubMed
Nakamura, H., Yoshimura, K., McElvaney, N. G., and Crystal, R. G. (1992). Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J. Clin. Invest. 89, 1478–1484.CrossRefGoogle Scholar
Opitz, B., Puschel, A., Schmeck, B., et al. (2004). Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J. Biol. Chem. 279, 36 426–36 432.CrossRefGoogle ScholarPubMed
Parsek, M. R. and Singh, P. K. (2003). Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677–701.CrossRefGoogle ScholarPubMed
Poltorak, A., He, X., Smirnova, I., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.CrossRefGoogle ScholarPubMed
Power, M. R., Peng, Y., Maydanski, E., Marshall, J. S., and Lin, T. J. (2004). The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J. Biol. Chem. 279, 49 315–49 322.CrossRefGoogle ScholarPubMed
Rajan, S., Cacalano, G., Bryan, R., et al. (2000). Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am. J. Respir. Cell. Mol. Biol. 23, 304–312.CrossRefGoogle ScholarPubMed
Ratner, A. J., Bryan, R., Weber, A., et al. (2001). Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J. Biol. Chem. 276, 19 267–19 275.CrossRefGoogle ScholarPubMed
Rochelle, L. G., Fischer, B. M., and Adler, K. B. (1998). Concurrent production of reactive oxygen and nitrogen species by airway epithelial cells in vitro. Free Radic. Biol. Med. 24, 863–868.CrossRefGoogle ScholarPubMed
Saba, S., Soong, G., Greenberg, S., and Prince, A. (2002). Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. Am. J. Respir. Cell. Mol. Biol. 27, 561–567.CrossRefGoogle ScholarPubMed
Sadikot, R. T., Blackwell, T. S., Christman, J. W., and Prince, A. S. (2005). Pathogen–host interactions in Pseudomonas aeruginosa pneumonia: the state of the art. Am. J. Respir. Crit. Care Med. 171, 1209–1223.CrossRefGoogle Scholar
Sano, H. and Kuroki, Y. (2005). The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol. Immunol. 42, 279–287.CrossRefGoogle ScholarPubMed
Sato, H. and Frank, D. W. (2004). ExoU is a potent intracellular phospholipase. Mol. Microbiol. 53, 1279–1290.CrossRefGoogle ScholarPubMed
Schmeck, B., Zahlten, J., Moog, , et al. (2004). Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor. J. Biol. Chem. 279, 53 241–53 247.CrossRefGoogle ScholarPubMed
Schultz, M. J., Rijneveld, A. W., Florquin, S., et al. (2002). Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L285–290.CrossRefGoogle ScholarPubMed
Schurr, J. R., Young, E., Byrne, P., et al. (2005). Central role of toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect. Immun. 73, 532–545.CrossRefGoogle ScholarPubMed
Shaw, M. J. (2005). Ventilator-associated pneumonia. Curr. Opin. Pulm. Med. 11, 236–241.CrossRefGoogle ScholarPubMed
Shime, N., Sawa, T., Fujimoto, J., et al. (2001). Therapeutic administration of anti-PcrV F(ab′)(2) in sepsis associated with Pseudomonas aeruginosa. J. Immunol. 167, 5880–5886.CrossRefGoogle ScholarPubMed
Singh, P. K., Jia, H. P., Wiles, K., et al. (1998). Production of beta-defensins by human airway epithelia. Proc. Natl. Acad. Sci. U. S. A. 95, 14 961–14 966.CrossRefGoogle ScholarPubMed
Singh, P. K., Schaefer, A. L., Parsek, M. R., et al. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764.CrossRefGoogle ScholarPubMed
Singh, P. K., Parsek, M. R., Greenberg, E. P., and Welsh, M. J. (2002). A component of innate immunity prevents bacterial biofilm development. Nature 417, 552–555.CrossRefGoogle ScholarPubMed
Skerrett, S. J., Liggitt, H. D., Hajjar, A. M., et al. (2004a). Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L143–152.CrossRefGoogle Scholar
Skerrett, S. J., Liggitt, H. D., Hajjar, A. M., and Wilson, C. B. (2004b). Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J. Immunol. 172, 3377–3381.CrossRefGoogle Scholar
Smith, K. D., Andersen-Nissen, E., Hayashi, F., et al. (2003). Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253.CrossRefGoogle ScholarPubMed
Soong, G., Reddy, B., Sokol, S., Adamo, R., and Prince, A. (2004). TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Invest. 113, 1482–1489.CrossRefGoogle ScholarPubMed
Strieter, R. M., Belperio, J. A., and Keane, M. P. (2002). Cytokines in innate host defense in the lung. J. Clin. Invest. 109, 699–705.CrossRefGoogle ScholarPubMed
Strieter, R. M., Belperio, J. A., and Keane, M. P. (2003). Host innate defenses in the lung: the role of cytokines. Curr. Opin. Infect. Dis. 16, 193–198.CrossRefGoogle ScholarPubMed
Takeda, K. and Akira, S. (2004). TLR signaling pathways. Semin. Immunol. 16, 3–9.CrossRefGoogle ScholarPubMed
Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu. Rev. Immunol. 21, 335–376.CrossRefGoogle ScholarPubMed
Takeuchi, O., Hoshino, K., and Akira, S. (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 5392–5396.CrossRefGoogle ScholarPubMed
Tang, H., Kays, M., and Prince, A. (1995). Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect. Immun. 63, 1278–1285.Google ScholarPubMed
Toshchakov, V., Jones, B. W., Perera, P. Y., et al. (2002). TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398.CrossRefGoogle Scholar
Tsai, W. C., Strieter, R. M., Wilkowski, J. M., et al. (1998). Lung-specific transgenic expression of KC enhances resistance to Klebsiella pneumoniae in mice. J. Immunol. 161, 2435–2440.Google ScholarPubMed
Vasil, M. L. and Ochsner, U. A. (1999). The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol. 34, 399–413.CrossRefGoogle ScholarPubMed
Waetzig, G. H., Rosenstiel, P., Arlt, A., et al. (2005). Soluble tumor necrosis factor (TNF) receptor-1 induces apoptosis via reverse TNF signaling and autocrine transforming growth factor-beta1. FASEB J. 19, 91–93.CrossRefGoogle ScholarPubMed
Wang, X., Moser, C., Louboutin, J. P., et al. (2002). Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung. J. Immunol. 168, 810–815.CrossRefGoogle ScholarPubMed
Wyant, T. L., Tanner, M. K., and Sztein, M. B. (1999). Salmonella typhi flagella are potent inducers of proinflammatory cytokine secretion by human monocytes. Infect. Immun. 67, 3619–3624.Google ScholarPubMed
Xiao, R. and Kisaalita, W. S. (1997). Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143 (Pt 7), 2509–2515.CrossRefGoogle Scholar
Yamamoto, M. and Akira, S. (2004). [TIR domain-containing adaptors regulate TLR-mediated signaling pathways.]Nippon Rinsho 62, 2197–2203.Google Scholar
Yarwood, J. M. and Schlievert, P. M. (2003). Quorum sensing in Staphylococcus infections. J. Clin. Invest. 112, 1620–1625.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Lung infections
    • By Marisa I. Gómez, Departments of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, USA, Alice S. Prince, College of Physicians and Surgeons, Columbia University, New York, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Lung infections
    • By Marisa I. Gómez, Departments of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, USA, Alice S. Prince, College of Physicians and Surgeons, Columbia University, New York, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Lung infections
    • By Marisa I. Gómez, Departments of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, USA, Alice S. Prince, College of Physicians and Surgeons, Columbia University, New York, USA
  • Edited by Beth A. McCormick, Harvard University, Massachusetts
  • Book: Bacterial-Epithelial Cell Cross-Talk
  • Online publication: 12 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541537.011
Available formats
×