Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T00:29:36.664Z Has data issue: false hasContentIssue false

1 - Overview of the epithelial cell

from Part I - Introduction to the host and bacterial pathogens

Published online by Cambridge University Press:  12 August 2009

W. Vallen Graham
Affiliation:
Department of Pathology, University of Chicago, Chicago IL 60637, USA
Jerrold R. Turner
Affiliation:
Department of Pathology, University of Chicago, Chicago IL 60637, USA
Beth A. McCormick
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Bacteria must overcome multiple obstacles in order to achieve successful pathogenesis. In many cases, this requires bypassing the first line of host defense: the barrier provided by epithelial surfaces of the integument and the gastrointestinal, respiratory, and urinary tracts. To overcome these barriers, pathogenic organisms frequently initiate mechanisms that exploit essential cellular processes of the epithelium. These cellular processes are therefore critical to our understanding of bacterial pathogenesis. Their description is the goal of this chapter.

GASTROINTESTINAL TRACT

The gastrointestinal epithelium forms a critical interface between the internal milieu and the lumen. The latter should be considered the external environment, since the gut is essentially a tube running through the body that communicates with the external environment at each end. Thus, like the skin, the barrier formed by the gastrointestinal epithelium is critical in preventing noxious luminal contents from accessing the internal tissues. In contrast to the skin, the gastrointestinal tract must also support passive paracellular and active transcellular transport of nutrients, electrolytes, and water. The barrier formed by the gastrointestinal epithelium must therefore be highly regulated and selectively permeable. Consistent with this, barrier permeability and epithelial transport function vary at individual sites within the gastrointestinal tract according to regional differences in the specific nutrients and ions transported.

The oral cavity and esophagus are lined by stratified squamous epithelium (Figure 1.1), much like the skin.

Type
Chapter
Information
Bacterial-Epithelial Cell Cross-Talk
Molecular Mechanisms in Pathogenesis
, pp. 3 - 29
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, M. T., Fukata, M., and Arditi, M. (2005). TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460.CrossRefGoogle ScholarPubMed
Aktories, K., Mohr, C., and Koch, G. (1992). Clostridium botulinum C3 ADP-ribosyltransferase. Curr. Top. Microbiol. Immunol. 175, 115–131.Google ScholarPubMed
Albelda, S. M., Smith, C. W., and Ward, P. A. (1994). Adhesion molecules and inflammatory injury. FASEB J. 8, 504–512.CrossRefGoogle ScholarPubMed
Anderson, M. P., Gregory, R. J., Thompson, S., et al. (1991). Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.CrossRefGoogle ScholarPubMed
Anderson, R. G., Vasile, E., Mello, R. J., Brown, M. S., and Goldstein, J. L. (1978). Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell 15, 919–933.CrossRefGoogle ScholarPubMed
Aroeti, B., Kosen, P. A., Kuntz, I. D., Cohen, F. E., and Mostov, K. E. (1993). Mutational and secondary structural analysis of the basolateral sorting signal of the polymeric immunoglobulin receptor. J. Cell Biol. 123, 1149–1160.CrossRefGoogle ScholarPubMed
Berglund, J. J., Riegler, M., Zolotarevsky, Y., Wenzl, E., and Turner, J. R. (2001). Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na+-glucose cotransport. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1487–1493.CrossRefGoogle ScholarPubMed
Boll, W., Partin, J. S., Katz, A. I., Caplan, M. J., and Jamieson, J. D. (1991). Distinct pathways for basolateral targeting of membrane and secretory proteins in polarized epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 88, 8592–8596.CrossRefGoogle ScholarPubMed
Breuer, W., Kartner, N., Riordan, J. R., and Cabantchik, Z. I. (1992). Induction of expression of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 267, 10 465–10 469.Google ScholarPubMed
Brock, S. C., McGraw, P. A., Wright, P. F., and Crowe, J. E. Jr (2002). The human polymeric immunoglobulin receptor facilitates invasion of epithelial cells by Streptococcus pneumoniae in a strain-specific and cell type-specific manner. Infect. Immun. 70, 5091–5095.CrossRefGoogle Scholar
Brown, D. T., Anderton, B. H., and Wylie, C. C. (1983). The organization of intermediate filaments in normal human colonic epithelium and colonic carcinoma cells. Int. J. Cancer 32, 163–169.CrossRefGoogle ScholarPubMed
Brown, G. R., Lindberg, G., Meddings, J., et al. (1999). Tumor necrosis factor inhibitor ameliorates murine intestinal graft-versus-host disease. Gastroenterology 116, 593–601.CrossRefGoogle ScholarPubMed
Camner, P., Mossberg, B., and Afzelius, B. A. (1975). Evidence of congenitally nonfunctioning cilia in the tracheobronchial tract in two subjects. Am. Rev. Respir. Dis. 112, 807–809.Google ScholarPubMed
Casanova, J. E., Breitfeld, P. P., Ross, S. A., and Mostov, K. E. (1990). Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis. Science 248, 742–745.CrossRefGoogle ScholarPubMed
Casanova, J. E., Apodaca, G., and Mostov, K. E. (1991). An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 66, 65–75.CrossRefGoogle ScholarPubMed
Chen, L. W., Egan, L., Li, Z. W., et al. (2003). The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat. Med. 9, 575–581.CrossRefGoogle ScholarPubMed
Citi, S., Sabanay, H., Jakes, R., Geiger, B., and Kendrick-Jones, J. (1988). Cingulin, a new peripheral component of tight junctions. Nature 333, 272–275.CrossRefGoogle ScholarPubMed
Clayburgh, D. R., Rosen, S., Witkowski, E. D., et al. (2004). A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J. Biol. Chem. 279, 55 506–55 513.CrossRefGoogle ScholarPubMed
Clayburgh, D. R., Shen, L., and Turner, J. R. (2004). A porous defense: the leaky epithelial barrier in intestinal disease. Lab. Invest. 84, 282–291.CrossRefGoogle ScholarPubMed
Clayburgh, D. R., Barrett, T. A., Tang, Y., et al. (2005). Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest. 115, 2702–2715.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1977). Twenty-first Bowditch lecture: The epithelial junction: bridge, gate, and fence. Physiologist 20, 10–18.Google ScholarPubMed
Dominguez, J. H., Camp, K., Maianu, L., and Garvey, W. T. (1992). Glucose transporters of rat proximal tubule: differential expression and subcellular distribution. Am. J. Physiol. 262, F807–812.Google ScholarPubMed
Duncan, M. J., Shin, J. S., and Abraham, S. N. (2002). Microbial entry through caveolae: variations on a theme. Cell. Microbiol. 4, 783–791.CrossRefGoogle ScholarPubMed
Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V., and Simons, K. (1993). Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12, 1597–1605.Google ScholarPubMed
Eliasson, R., Mossberg, B., Camner, P., and Afzelius, B. A. (1977). The immotile-cilia syndrome: a congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N. Engl. J. Med. 297, 1–6.CrossRefGoogle ScholarPubMed
Ferrier, L., Mazelin, L., Cenac, N., et al. (2003). Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology 125, 795–804.CrossRefGoogle ScholarPubMed
Field, M. (2003). Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Invest. 111, 931–943.CrossRefGoogle ScholarPubMed
Fuchs, E., Dowling, J., Segre, J., Lo, S. H., and Yu, Q. C. (1997). Integrators of epidermal growth and differentiation: distinct functions for beta 1 and beta 4 integrins. Curr. Opin. Genet. Dev. 7, 672–682.CrossRefGoogle Scholar
Fukata, M., Michelsen, K. S., Eri, R., et al. (2005). Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1055–1065.CrossRefGoogle Scholar
Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S. (1998). Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141, 1539–1550.CrossRefGoogle ScholarPubMed
Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028–1032.CrossRefGoogle ScholarPubMed
Graham, W. V., Wang, F., Wang, Y., and Turner, J. R. (2004). Transcriptional activation of myosin light chain kinase mediates TNFalpha-induced barrier dysfunction. Gastroenterology 126, abstract.Google Scholar
Graham, W. V., Wang, F., Wang, Y., et al. (2005). AP1-dependent transcriptional activation of myosin light chain kinase (MLCK) mediates IFNgamma-TNFalpha-induced barrier dysfunction. FASEB J. 19, abstract.Google Scholar
Gregory, R. J., Cheng, S. H., Rich, D. P., et al. (1990). Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature 347, 382–386.CrossRefGoogle ScholarPubMed
Gumbiner, B. (1987). Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. 253, C749–758.CrossRefGoogle ScholarPubMed
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826.CrossRefGoogle ScholarPubMed
Harris, D. S., Slot, J. W., Geuze, H. J., and James, D. E. (1992). Polarized distribution of glucose transporter isoforms in Caco-2 cells. Proc. Natl. Acad. Sci. U. S. A. 89, 7556–7560.CrossRefGoogle ScholarPubMed
Haskins, J., Gu, L., Wittchen, E. S., Hibbard, J., and Stevenson, B. R. (1998). ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol. 141, 199–208.CrossRefGoogle ScholarPubMed
Hatta, K. and Takeichi, M. (1986). Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320, 447–449.CrossRefGoogle ScholarPubMed
Hecht, G., Pothoulakis, C., LaMont, J. T., and Madara, J. L. (1988). Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516–1524.CrossRefGoogle ScholarPubMed
Hediger, M. A., Coady, M. J., Ikeda, T. S., and Wright, E. M. (1987). Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature 330, 379–381.CrossRefGoogle Scholar
Hewlett, L. J., Prescott, A. R., and Watts, C. (1994). The coated pit and macropinocytic pathways serve distinct endosome populations. J. Cell Biol. 124, 689–703.CrossRefGoogle ScholarPubMed
Hippenstiel, S., Tannert-Otto, S., Vollrath, N., et al. (1997). Glucosylation of small GTP-binding Rho proteins disrupts endothelial barrier function. Am. J. Physiol. 272, L38–43.Google ScholarPubMed
Humphries, M. J. (1990). The molecular basis and specificity of integrin-ligand interactions. J. Cell. Sci. 97 (Pt 4), 585–592.Google Scholar
Isberg, R. R. and Leong, J. M. (1990). Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871.CrossRefGoogle Scholar
Itoh, M., Nagafuchi, A., Moroi, S., and Tsukita, S. (1997). Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J. Cell Biol. 138, 181–192.CrossRefGoogle ScholarPubMed
Jesaitis, L. A. and Goodenough, D. A. (1994). Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J. Cell Biol. 124, 949–961.CrossRefGoogle ScholarPubMed
Just, I., Fritz, G., Aktories, K., et al. (1994). Clostridium difficile toxin B acts on the GTP-binding protein Rho. J. Biol. Chem. 269, 10 706–10 712.Google ScholarPubMed
Just, I., Selzer, J., Wilm, M., et al. (1995). Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503.CrossRefGoogle ScholarPubMed
Kartner, N., Hanrahan, J. W., Jensen, T. J., et al. (1991). Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance. Cell 64, 681–691.CrossRefGoogle ScholarPubMed
Katz, J., Sambandam, V., Wu, J. H., Michalek, S. M., and Balkovetz, D. F. (2000). Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes. Infect. Immun. 68, 1441–1449.CrossRefGoogle ScholarPubMed
Keates, S., Hitti, Y. S., Upton, M., and Kelly, C. P. (1997). Helicobacter pylori infection activates NF-kappa B in gastric epithelial cells. Gastroenterology 113, 1099–1109CrossRefGoogle ScholarPubMed
Kopecko, D. J., Hu, L., and Zaal, K. J. M. (2001) Campylobacter jejuni: microtubule-dependent invasion. Trends Microbiol. 9, 389–396.CrossRefGoogle ScholarPubMed
Koshy, S. S., Montrose, M. H., and Sears, C. L. (1996). Human intestinal epithelial cells swell and demonstrate actin rearrangement in response to the metalloprotease toxin of Bacteroides fragilis. Infect. Immun. 64, 5022–5028.Google ScholarPubMed
Lecuit, M., Dramsi, S., Gottardi, C., et al. (1999). A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18, 3956–3963.CrossRefGoogle ScholarPubMed
Lencer, W. I., Moe, S., Rufo, P. A., and Madara, J. L. (1995). Transcytosis of cholera toxin subunits across model human intestinal epithelia. Proc. Natl. Acad. Sci. U. S. A. 92, 10 094–10 098.CrossRefGoogle ScholarPubMed
Lencer, W. I., Hirst, T. R., and Holmes, R. K. (1999). Membrane traffic and the cellular uptake of cholera toxin. Biochim. Biophys. Acta 1450, 177–190.CrossRefGoogle ScholarPubMed
Lisanti, M. P., Tang, Z. L., and Sargiacomo, M. (1993). Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. J. Cell Biol. 123, 595–604.CrossRefGoogle ScholarPubMed
Liu, Y., Nusrat, A., Schnell, F. J., et al. (2000). Human junction adhesion molecule regulates tight junction resealing in epithelia. J. Cell Sci. 113 (Pt 13), 2363–2374.Google Scholar
Llor, X., Serfas, M. S., Bie, W., et al. (1999). BRK/Sik expression in the gastrointestinal tract and in colon tumors. Clin. Cancer Res. 5, 1767–1777.Google ScholarPubMed
Lu, L. and Walker, W. A. (2001). Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am. J. Clin. Nutr. 73, 1124S–1130S.CrossRefGoogle ScholarPubMed
Luscinskas, F. W., and Lawler, J. (1994) Integrins as dynamic regulators of vascular function. FASEB J. 8, 929–938.CrossRefGoogle ScholarPubMed
Ma, T. Y., Iwamoto, G. K., Hoa, N. T., et al. (2004). TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G367–376.CrossRefGoogle ScholarPubMed
Ma, T. Y., Boivin, M. A., Ye, D., Pedram, A., and Said, H. M. (2005). Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G422–430.CrossRefGoogle ScholarPubMed
Madara, J. L. (1990). Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J. Membr. Biol. 116, 177–184.CrossRefGoogle ScholarPubMed
Madara, J. L. and Pappenheimer, J. R. (1987). Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membr. Biol. 100, 149–164.CrossRefGoogle ScholarPubMed
Madara, J. L. and Stafford, J. (1989). Interferon-gamma directly affects barrier function of cultured intestinal epithelial monolayers. J. Clin. Invest. 83, 724–727.CrossRefGoogle ScholarPubMed
McCrea, P. D., Turck, C. W., and Gumbiner, B. (1991). A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254, 1359–1361.CrossRefGoogle ScholarPubMed
Mengaud, J., Lecuit, M., Lebrun, M., et al. (1996). Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect. Immun. 64, 5430–5433.Google ScholarPubMed
Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M., and Cossart, P. (1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932.CrossRefGoogle ScholarPubMed
Miyamoto, K., Takagi, T., Fujii, T., et al. (1992). Role of liver-type glucose transporter (GLUT2) in transport across the basolateral membrane in rat jejunum. FEBS Lett. 314, 466–470.CrossRefGoogle ScholarPubMed
Moller, P., Koretz, K., Leithauser, F., et al. (1994). Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int. J. Cancer 57, 371–377.CrossRefGoogle Scholar
Mostov, K. E., Bruyn Kops, A., and Deitcher, D. L. (1986). Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell 47, 359–364.CrossRefGoogle ScholarPubMed
Munzenmaier, A., Lange, C., Glocker, E., et al. (1997). A secreted/shed product of Helicobacter pylori activates transcription factor nuclear factor-kappa B. J. Immunol. 159, 6140–6147.Google ScholarPubMed
Murphy, S. M. and Stearns, T. (1996). Cytoskeleton: microtubule nucleation takes shape. Curr. Biol. 6, 642–644.CrossRefGoogle ScholarPubMed
Musch, M. W., Clarke, L. L., Mamah, D., et al. (2002). T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J. Clin. Invest. 110, 1739–1747.CrossRefGoogle ScholarPubMed
Narumiya, S., Morii, N., Sekine, A., and Kozaki, S. (1990). ADP-ribosylation of the rho/rac gene products by botulinum ADP-ribosyltransferase: identity of the enzyme and effects on protein and cell functions. J. Physiol. (Paris) 84, 267–272.Google ScholarPubMed
Neish, A. S., Gewirtz, A. T., Zeng, H., et al. (2000). Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289, 1560–1563.CrossRefGoogle ScholarPubMed
Nielson, D. W. and Lewis, M. B. (1990). Effects of amiloride on alveolar epithelial PD and fluid composition in rabbits. Am. J. Physiol. 258, L215–219.Google ScholarPubMed
Norkin, L. C., Wolfrom, S. A., and Stuart, E. S. (2001). Association of caveolin with Chlamydia trachomatis inclusions at early and late stages of infection. Exp. Cell. Res. 266, 229–238.CrossRefGoogle Scholar
Nusrat, A., Giry, M., Turner, J. R., et al. (1995). Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc. Natl. Acad. Sci. U. S. A. 92, 10 629–10 633.CrossRefGoogle ScholarPubMed
Nusrat, A., Brown, G. T., Tom, J., et al. (2005). Multiple protein interactions involving proposed extracellular loop domains of the tight junction protein occludin. Mol. Biol. Cell 16, 1725–1734.CrossRefGoogle ScholarPubMed
Obrig, T. G., Moran, T. P., and Brown, J. E. (1987). The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem. J. 244, 287–294.CrossRefGoogle ScholarPubMed
Oelschlaeger, T. A., Guerry, P., and Kopecko, D. J. (1993). Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl. Acad. Sci. U. S. A. 90, 6884–6888.CrossRefGoogle ScholarPubMed
Owens, S., Graham, W. V., Siccardi, D., Turner, J. R., and Mrsny, R. J. (2005). A strategy to identify stable membrane-permeant peptide inhibitors of myosin light chain kinase. Pharm. Res. 22, 703–709.CrossRefGoogle ScholarPubMed
Ozawa, M., Ringwald, M., and Kemler, R. (1990). Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl. Acad. Sci. U. S. A. 87, 4246–4250.CrossRefGoogle ScholarPubMed
Palade, G. E. and Bruns, R. R. (1968). Structural modulations of plasmalemmal vesicles. J. Cell Biol. 37, 633–649.CrossRefGoogle ScholarPubMed
Parrello, T., Monteleone, G., Cucchiara, S., et al. (2000). Up-regulation of the IL-12 receptor beta 2 chain in Crohn's disease. J. Immunol. 165, 7234–7239.CrossRefGoogle ScholarPubMed
Pearse, B. M. (1976). Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl. Acad. Sci. U. S. A. 73, 1255–1259.CrossRefGoogle ScholarPubMed
Penela, P., Ribas, C., and Mayor, F. Jr (2003). Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell. Signal. 15, 973–981.CrossRefGoogle ScholarPubMed
Philpott, D. J., McKay, D. M., Mak, W., Perdue, M. H., and Sherman, P. M. (1998). Signal transduction pathways involved in enterohemorrhagic Escherichia coli-induced alterations in T84 epithelial permeability. Infect. Immun. 66, 1680–1687.Google ScholarPubMed
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., and Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241.CrossRefGoogle ScholarPubMed
Reisbig, R., Olsnes, S., and Eiklid, K. (1981). The cytotoxic activity of Shigella toxin: evidence for catalytic inactivation of the 60 S ribosomal subunit. J. Biol. Chem. 256, 8739–8744.Google ScholarPubMed
Riordan, J. R., Rommens, J. M., Kerem, B., et al. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.CrossRefGoogle ScholarPubMed
Rosenblatt, J., Raff, M. C., and Cramer, L. P. (2001). An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11, 1847–1857.CrossRefGoogle ScholarPubMed
Saitou, M., Furuse, M., Sasaki, H., et al. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell 11, 4131–4142.CrossRefGoogle ScholarPubMed
Sandvig, K. and Deurs, B. (1996). Endocytosis, intracellular transport, and cytotoxic action of Shiga toxin and ricin. Physiol. Rev. 76, 949–966.CrossRefGoogle ScholarPubMed
Sandvig, K. and Deurs, B. (2000). Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J. 19, 5943–5950.CrossRefGoogle ScholarPubMed
Sargiacomo, M., Sudol, M., Tang, Z., and Lisanti, M. P. (1993). Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122, 789–807.CrossRefGoogle Scholar
Savkovic, S. D., Koutsouris, A., and Hecht, G. (1997). Activation of NF-kappaB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am. J. Physiol. 273, C1160–1167.CrossRefGoogle ScholarPubMed
Seveau, S., Bierne, H., Giroux, S., Prevost, M. C., and Cossart, P. (2004). Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J. Cell. Biol. 166, 743–753.CrossRefGoogle ScholarPubMed
Sharma, S. A., Tummuru, M. K., Blaser, M. J., and Kerr, L. D. (1998). Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J. Immunol. 160, 2401–2407.Google ScholarPubMed
Shifflett, D. E.Clayburgh, D. R.Koutsouris, A., Turner, J. R., and Hecht, G. A. (2005). Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Lab. Invest. 85, 1308–1324.CrossRefGoogle ScholarPubMed
Simon, D. B., Lu, Y., Choate, K. A., et al. (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106.CrossRefGoogle ScholarPubMed
Simonovic, I., Rosenberg, J., Koutsouris, A., and Hecht, G. (2000). Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell. Microbiol. 2, 305–315.CrossRefGoogle ScholarPubMed
Soler, A. P., Marano, C. W., Bryans, M., et al. (1999). Activation of NF-kappaB is necessary for the restoration of the barrier function of an epithelium undergoing TNF-alpha-induced apoptosis. Eur. J. Cell. Biol. 78, 56–66.CrossRefGoogle ScholarPubMed
Song, W., Bomsel, M., Casanova, J., et al. (1994). Stimulation of transcytosis of the polymeric immunoglobulin receptor by dimeric: IgA an autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Proc. Natl. Acad. Sci. U. S. A. 91, 163–166.CrossRefGoogle Scholar
Sonoda, N., Furuse, M., Sasaki, H., et al. (1999). Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J. Cell. Biol. 147, 195–204.CrossRefGoogle ScholarPubMed
Spitz, J., Yuhan, R., Koutsouris, A., et al. (1995). Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am. J. of Physiol. Gastrointest. Liver Physiol. 268, G374–G379.CrossRefGoogle ScholarPubMed
Stevenson, B. R., Siliciano, J. D., Mooseker, M. S., and Goodenough, D. A. (1986). Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (Zonula Occludens) in a variety of epithelia. J. Cell. Biol. 103, 755–766.CrossRefGoogle Scholar
Suenaert, P., Bulteel, V., Lemmens, L., et al. (2002). Anti-tumor necrosis factor treatment restores the gut barrier in Crohn's disease. Am. J. Gastroenterol. 97, 2000–2004.CrossRefGoogle ScholarPubMed
Tabcharani, J. A., Chang, X. B., Riordan, J. R., and Hanrahan, J. W. (1991). Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352, 628–631.CrossRefGoogle Scholar
Takeichi, M. (1988). The cadherins: cell–cell adhesion molecules controlling animal morphogenesis. Development 102, 639–655.Google ScholarPubMed
Tomson, F. L., Koutsouris, A., Viswanathan, V. K., et al. (2004). Differing roles of protein kinase C-zeta in disruption of tight junction barrier by enteropathogenic and enterohemorrhagic Escherichia coli. Gastroenterology 127, 859–869.CrossRefGoogle ScholarPubMed
Turner, J. R., Lencer, W. I., Carlson, S., and Madara, J. L. (1996). Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression. J. Biol. Chem. 271, 7738–7744.CrossRefGoogle Scholar
Turner, J. R., Rill, B. K., Carlson, S. L., et al. (1997). Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am. J. Physiol. Cell Physiol. 273, C1378–C1385.CrossRefGoogle ScholarPubMed
Itallie, C. M., Fanning, A. S., and Anderson, J. M. (2003). Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am. J. Physiol. Renal Physiol. 285, F1078–1084.CrossRefGoogle ScholarPubMed
Wang, F., Graham, W. V., Wang, Y., et al. (2005). Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am. J. Pathol. 166, 409–419.CrossRefGoogle ScholarPubMed
Wilde, C., Genth, H., Aktories, K., and Just, I. (2000). Recognition of RhoA by Clostridium botulinum C3 exoenzyme. J. Biol. Chem. 275, 16 478–16 483.CrossRefGoogle ScholarPubMed
Wolf, A. A., Jobling, M. G., Wimer-Mackin, S., et al. (1998). Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J. Cell Biol. 141, 917–927.CrossRefGoogle ScholarPubMed
Wong, V. and Gumbiner, B. M. (1997). A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J. Cell Biol. 136, 399–409.CrossRefGoogle ScholarPubMed
Wright, E. M., Hirsch, J. R., Loo, D. D., and Zampighi, G. A. (1997). Regulation of Na+/glucose cotransporters. J. Exp. Biol. 200, 287–293.Google ScholarPubMed
Wu, S., Lim, K. C., Huang, J., Saidi, R. F., and Sears, C. L. (1998). Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. U. S. A. 95, 14 979–14 984.CrossRefGoogle ScholarPubMed
Yonemura, S., Itoh, M., Nagafuchi, A., and Tsukita, S. (1995). Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell. Sci. 108 (Pt 1), 127–142.Google Scholar
Yuhan, R., Koutsouris, A., Savkovic, S. D., and Hecht, G. (1997). Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113, 1873–1882.CrossRefGoogle ScholarPubMed
Zen, K., Babbin, B. A., Liu, Y., et al. (2004). JAM-C is a component of desmosomes and a ligand for CD11b/CD18-mediated neutrophil transepithelial migration. Mol. Biol. Cell 15, 3926–3937.CrossRefGoogle Scholar
Zhang, J.-R., Mostov, K. E., Lamm, M. E., et al. (2000). The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102, 827–837.CrossRefGoogle ScholarPubMed
Zolotarevsky, Y., Hecht, G., Koutsouris, A., et al. (2002). A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 123, 163–172.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×