Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-12T10:58:24.854Z Has data issue: false hasContentIssue false

13 - Ubiquity of microscopic animals? Evidence from the morphological approach in species identification

from Part IV - Pluricellular eukaryotes

Published online by Cambridge University Press:  05 August 2012

Tom Artois
Affiliation:
Hasselt University
Diego Fontaneto
Affiliation:
Swedish Museum of Natural History
William D. Hummon
Affiliation:
Ohio University
Sandra J. McInnes
Affiliation:
British Antarctic Survey
M. Antonio Todaro
Affiliation:
Università di Modena and Reggio Emilia
Martin V. Sørensen
Affiliation:
Natural History Museum of Denmark
Aldo Zullini
Affiliation:
Università di Milano-Bicocca
Diego Fontaneto
Affiliation:
Imperial College London
Get access

Summary

Introduction

Zoologists always hope to find unusual and interesting new animals in exotic places. Over the last few centuries, scientific expeditions in remote places outside Europe and North America have indeed discovered new species and even higher taxa of vertebrates, insects and other macroscopic animals, completely different from the ones previously known in the home country. In contrast, scientists working on microscopic animals, looking at samples from remote areas, have often found organisms that could be ascribed to familiar species. Microscopic animals have thus been considered not interesting in biogeography, as their distribution may not be limited by geography.

Are microscopic animals really widely distributed? Is their cosmopolitanism an actual biological property or only a common misconception based on false assumptions and unreliable evidence? Is the scenario more complex than the claimed clear-cut difference between micro- and macroscopic animals? This chapter will review all the faunistic knowledge gathered so far on the global distribution of free-living microscopic animals smaller than 2 mm (gastrotrichs, rotifers, tardigrades, micrognathozoans, cycliophorans, loriciferans, kinorhynchs and gnathostomulids). Moreover, we will deal with microscopic free-living species in other groups of animals such as nematodes and flatworms, which have both micro- and macroscopic species. The focus will be on species identification from traditional taxonomy based on morphology, whereas Chapter 14 will deal with more recent evidence gathered from analyses on molecular phylogeny and phylogeography from the same groups.

Type
Chapter
Information
Biogeography of Microscopic Organisms
Is Everything Small Everywhere?
, pp. 244 - 283
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrássy, I. (1964). Süsswasser-Nematoden aus den grossen Gebirgsgegenden Ostafrikas. Acta Zoologica, Budapest 10, 1–59.Google Scholar
Artois, T., Tessens, B. (2008). Polycystididae (Rhabditophora: Rhabdocoela: Kalyptorhynchia) from the Indian Ocean, with the description of twelve new species. Zootaxa 1849, 1–27.Google Scholar
Artois, T., Willems, W., Roeck, E., Jocqué, M., Brendonck, L. (2004). Freshwater Rhabdocoela (Platyhelminthes) from ephemeral rock pools from Botswana, with the description of four new species and one new genus. Zoological Science 21, 1063–1072.CrossRefGoogle ScholarPubMed
Baker, J.M., Giribet, G. (2007). A molecular phylogenetic approach to the phylum Cycliophora provides further evidence for cryptic speciation in Symbion americanus. Zoologica Scripta 36, 353–359.CrossRefGoogle Scholar
Baker, J.M., Funch, P., Giribet, G. (2007). Cryptic speciation in the recently discovered American cycliophoran Symbion americanus; genetic structure and population expansion. Marine Biology 151, 2183–2193.CrossRefGoogle Scholar
Balian, E.V., Segers, H., Lévêque, C., Martens, K. (2008). Freshwater animal diversity assessment: an introduction to the Freshwater Animal Diversity Assessment (FADA) project. Hydrobiologia 595, 3–8.CrossRefGoogle Scholar
Ball, I.R. (1976). Nature and formulation of biogeographical hypothesis. Systematic Zoology 24, 407–430.CrossRefGoogle Scholar
Balsamo, M. (1992) Hermaphroditism and parthenogenesis in lower Bilateria: Gnathostomulida and Gastrotricha. In Dallai, R. (ed.), Sex Origin and Evolution, pp. 309–327. Modena: Mucchi editore.Google Scholar
Balsamo, M., Todaro, M.A. (1988). Life history traits of two chaetonotids (Gastrotricha) under different experimental conditions. Invertebrate Reproduction and Development 14, 161–176.CrossRefGoogle Scholar
Balsamo, M., d'Hondt, J.-L., Kisielewski, J., Pierboni, L. (2008). Global diversity of gastrotrichs (Gastrotricha) in fresh waters. Hydrobiologia 595, 85–91.CrossRefGoogle Scholar
Balsamo, M., d'Hondt, J.-L., Pierboni, L., Grilli, P. (2009). Taxonomic and nomenclatural notes on freshwater Gastrotricha. Zootaxa 2158, 1–19.Google Scholar
Baujard, P., Martiny, B. (1994). Transport of nematodes by wind in the peanut cropping area of Senegal, West Africa. Fundamental and Applied Nematology 17, 543–550.Google Scholar
Bertolani, R. (1982). Cytology and reproductive mechanisms in tardigrades. In Nelson, D.R. (ed.), Proceedings of the Third International Symposium on the Tardigrada, pp. 93–114. August 3–6, 1980, Johnson City, Tennessee. Johnson City, TN: East Tennessee State University Press.
Bertolani, R. (1987) Sexuality, reproduction, and propagation in tardigrades. In Bertolani, R. (ed.), Biology of Tardigrades. Selected Symposia and Monographs UZI 1, 93–101.Google Scholar
Bertolani, R., Grimaldi, D. (2000). A New Eutardigrade (Tardigrada: Milnesiidae) in amber from the Upper Cretaceous (Turonian) of New Jersey. In Grimaldi, D. (ed.), Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey, pp. 103–110. Leiden: Backhuys Publishers.
Bertolani, R., Rebecchi, L. (1993). A revision of the Macrobiotus hufelandi group (Tardigrada, Macrobiotidae), with some observations on the taxonomic characters of eutardigrades. Zoologica Scripta 22, 127–152.CrossRefGoogle Scholar
Bertolani, R., Rebecchi, L. (1999). Tardigrada. In Knobil, E., Neill, J.D. (eds.), Encyclopedia of Reproduction, Vol. 4, pp. 703–718. San Diego, CA: Academic Press.Google Scholar
Binda, M.G., Kristensen, R.M. (1986). Notes on the genus Oreella (Oreellidae) and the systematic position of Carphania fluviatilis Binda, 1978 (Carphanidae fam. nov., Heterotardigrada). Animalia 13, 9–20.Google Scholar
Boaden, P.J.S. (1964). Grazing in the interstitial habitat: a review. In Crisp, D.J. (ed.), Grazing in terrestrial and marine environments. British Ecological Society Symposium 4, 299–303.Google Scholar
Boaden, P.J.S. (1968). Water movement – a dominant factor in interstitial ecology. Sarsia 34, 125–136.CrossRefGoogle Scholar
Boag, B., Yeates, G.W. (1998). Soil nematode biodiversity in terrestrial ecosystems. Biodiveristy and Conservation 7, 617–630.CrossRefGoogle Scholar
Carroll, J.J., Viglierchio, D.R. (1981). On the transport of nematodes by the wind. Journal of Nematology 13, 476–482.Google ScholarPubMed
Casu, M., Curini-Galletti, M. (2006). Genetic evidence for the existence of cryptic species in the mesopsammic flatworm Pseudomonocelis ophiocephala (Rhabditophora: Proseriata). Biological Journal of the Linnean Society 87, 553–576.CrossRefGoogle Scholar
Claxton, S.K. (1998). A revision of the genus Minibiotus (Tardigrada: Macrobiotidae) with descriptions of eleven new species from Australia. Records of the Australian Museum 50, 125–160.CrossRefGoogle Scholar
Convey, P., McInnes, S. (2005). Exceptional tardigrade-dominated ecosystems in Ellsworth Land, Antarctica. Ecology 86, 519–527.CrossRefGoogle Scholar
Coomans, A. (1996). Phylogeny of the Longidoridae. Russian Journal of Nematology 4, 51–60.Google Scholar
Cooper, K.W. (1964). The first fossil tardigrade: Beorn leggi Cooper, from Cretaceous amber. Psyche 71, 41–48.CrossRefGoogle Scholar
Cromer, L., Gibson, J.A.E., Swadling, K.M., Hodgson, D.A. (2006). Evidence for a lacustrine faunal refuge in the Larsemann Hills, East Antarctica, during the Last Glacial Maximum. Journal of Biogeography 33, 1314–1323.CrossRefGoogle Scholar
Cromer, L., Gibson, J.A.E., McInnes, S.J., Agius, J.T. (2008). Tardigrade remains from lake sediments. Journal of Paleolimnology 39, 143–150.CrossRefGoogle Scholar
Curčic, B.P.M., Sudhaus, W., Dimitrijevic, R.N. (2004). Phoresy of Rhabditophanes schneideri (Bütschli) (Rhabditida: Alloionematidae) on pseudoscorpiones (Arachnida: Pseudoscorpiones). Nematology 6, 313–317.CrossRefGoogle Scholar
Curini-Galletti, M.C., Puccinelli, I. (1998). The Gyratix hermaphroditus species complex (Kalyptorynchia: Polycystididae) in marine habitats of eastern Australia. Hydrobiologia 383, 287–298.CrossRefGoogle Scholar
Dao, F. (1970). Climatic influence on the distribution pattern of plant parasitic and soil inhabiting nematodes. Mededelingen Landbouwhogenschool Wageningen 70, 1–181.Google Scholar
Ridder, M. (1981). Some considerations on the geographic distribution of rotifers. Hydrobiologia 85, 209–225.CrossRefGoogle Scholar
Rooij-van der Goes, P.C.E.M., Dijk, C., Putten, W.H, Jungerius, P.D. (1997). Effects of sand movement by wind on nematodes and soil-borne fungi in coastal foredunes. Journal of Coastal Conservation 3, 133–142.CrossRefGoogle Scholar
Smet, W.H. (2002). A new record of Limnognathia maerski Kristensen & Funch, 2000 (Micrognathozoa) from the subantarctic Crozet Islands, with redescription of the trophi. Journal of Zoology 258, 381–393.CrossRefGoogle Scholar
Degma, P., Guidetti, R. (2007). Notes to the current checklist of Tardigrada. Zootaxa 1579, 41–53.Google Scholar
Dózsa-Farkas, K. (1965). Untersuhungen über die Fauna des Budapester Leitungswassers, mit besonderer Berücksichtigung der Nematoden. Opuscola Zoologica, Budapest 5, 173–181.Google Scholar
Dumont, H.J. (1980). Workshop on taxonomy and biogeography. Hydrobiologia 73, 205–206.CrossRefGoogle Scholar
Dumont, H.J. (1983). Biogeography of rotifers. Hydrobiologia 104, 19–30.CrossRefGoogle Scholar
Dumont, H., Segers, H. (1996). Estimating lacustrine zooplankton species richness and complementarity. Hydrobiologia 341, 125–132.CrossRefGoogle Scholar
Ettema, C.H., Wardle, D. (2002). Spatial soil ecology. Trends in Ecology and Evolution 17, 177–183.CrossRefGoogle Scholar
Eyualem-Abebe, Coomans, A. (1995). Freshwater nematodes of the Galápagos. Hydrobiologia 299, 1–51.CrossRefGoogle Scholar
Eyualem-Abebe, Decraemer, W., Ley, P. (2008). Global diversity of nematodes (Nematoda) in freshwater. Hydrobiologia 595, 67–78.CrossRefGoogle Scholar
Faubel, A., Gollasch, S. (1996). Cryptostylochus hullensis sp. nov. (Polycladida, Acotylea, Platyhelminthes): a possible case of transoceanic dispersal on a ship's hull. Helgoländer Meeresuntersuchungen 50, 533–537.CrossRefGoogle Scholar
Faulkner, L.R., Bolander, W.J. (1966). Occurrence of large nematode populations in irrigation canals in South Central Washington. Nematologica 12, 591–600.CrossRefGoogle Scholar
Faulkner, L.R., Bolander, W.J. (1970). Agriculturally-polluted irrigation water as a source of plant-parasitic nematode infestation. Journal of Nematology 2, 368–374.Google ScholarPubMed
Fenchel, T., Finlay, B.J. (2004). The ubiquity of small species: patterns of local and global diversity. Bioscience 54, 777–784.CrossRefGoogle Scholar
Ferris, V.R., Goseco, C.G., Ferris, J.M. (1976). Biogeography of free-living soil nematodes from the perspective of plate tectonics. Science 193, 508–510.CrossRefGoogle ScholarPubMed
Ferris, V.R., Ferris, J.M., Goseco, C.G. (1981). Phylogenetic and biogeographic hypotheses in Leptonchidae (Nematoda: Dorylaimida) and a new classification. Proceedings of the Helminthological Society, Washington 48, 163–171.Google Scholar
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica 45, 111–136.Google Scholar
Fontaneto, D., Melone, G. (2003). Redescription of Pleuretra hystrix, an endemic alpine bdelloid rotifer. Hydrobiologia 497, 153–160.CrossRefGoogle Scholar
Fontaneto, D., Ficetola, G.F., Ambrosini, R., Ricci, C. (2006). Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals?Global Ecology and Biogeography 15, 153–162.CrossRefGoogle Scholar
Fontaneto, D., Herniou, E.A., Barraclough, T.G., Ricci, C. (2007). On the global distribution of microscopic animals: new worldwide data on bdelloid rotifers. Zoological Studies 46, 336–346.Google Scholar
Fontaneto, D., Kaya, M., Herniou, E.A., Barraclough, T.G. (2009). Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53, 182–189.CrossRefGoogle ScholarPubMed
Freckman, D.W., Virginia, R.A. (1997). Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78, 363–369.CrossRefGoogle Scholar
Friedrich, C., Hendelberg, J. (2001). On the ecology of Acoela living in the Arctic Sea ice. Belgian Journal of Zoology 131 (Supplement 1), 213–216.Google Scholar
Funch, P., Kristensen, R.M. (1995). Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature 378, 711–714.CrossRefGoogle Scholar
Funch, P., Kristensen, R.M. (1997). Cycliophora. In Harrison, F.W., Woollacott, R.M. (eds.), Microscopic Anatomy of Invertebrates, Vol. 13. Lophophorates, Entoprocta, and Cycliophora, pp. 409–474. New York, NY: Wiley-Liss.
Gad, G. (2005a). Successive reduction of the last instar larva of Loricifera, as evidenced by two new species of Pliciloricus from the Great Meteor Seamount (Atlantic Ocean). Zoologischer Anzeiger 243, 239–271.CrossRefGoogle Scholar
Gad, G. (2005b). Giant Higgins-larvae with paedogenetic reproduction from the deep sea of the Angola Basin – evidence for a new life cycle and for abyssal gigantism in Loricifera?Organisms, Diversity and Evolution 5, 59–75.CrossRefGoogle Scholar
Gad, G. (2005c). A parthenogenetic, simplified adult in the life cycle of Pliciloricus pedicularis sp. n. (Loricifera) from the deep sea of the Angola Basin (Atlantic). Organisms, Diversity and Evolution 5, 77–103.CrossRefGoogle Scholar
Gad, G., Martinez Arbizu, P. (2005). First description of an Arctic Loricifera – a new Rugiloricus-species from the Laptev Sea. Marine Biology Research 1, 313–325.CrossRefGoogle Scholar
GaOrdóñez, D., Pardos, F., Benito, J. (2008). Three new Echinoderes (Kinorhyncha, Cyclorhagida) from North Spain, with new evolutionary aspects in the genus. Zoologischer Anzeiger 247, 95–111.CrossRefGoogle Scholar
Gaugler, R., Bilgrami, A.L. (2004). Nematode Behaviour. Wallingford: CABI Publishing.CrossRefGoogle Scholar
Gerlach, S.A. (1977). Means of meiofauna dispersal. Microfauna Meeresboden 61, 89–103.Google Scholar
Goeze, J.A.E. (1773). Über den kleinen Wasserbär. In Bonnet, K. (ed.), Abhandlungen aus der Insektologie, pp. 367–375. Halle: JJ Gebauers Wittwe und Joh Jac Gebauer.
Gómez, A., Serra, M., Carvalho, G.R., Lunt, D.H. (2002). Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56, 1431–1445.CrossRefGoogle Scholar
Gradinger, R., Friedrich, C., Spindler, M. (1999). Abundance, biomass and composition of the sea ice biota of the Greenland sea pack ice. Deep Sea Research II 46, 1457–1472.CrossRefGoogle Scholar
Graff, L. (1913). Platyhelminthes. Turbellaria II. Rhabdocoelida. Tierreich35 II–XX, 1–484.
Green, J. (1972). Latitudinal variations in associations of planktonic rotifers. Journal of Zoology 167, 31–39.CrossRefGoogle Scholar
Guidetti, R., Bertolani, R. (2005). Tardigrade taxonomy: an updated check list of the taxa and a list of characters for their identification. Zootaxa 845, 1–46.CrossRefGoogle Scholar
Hagerman, G.M., Rieger, R.M. (1981). Dispersal of benthic meiofauna by wave and current action in Bogue Sound, N.C., USA. PSZNMarine Ecology 2, 245–270.CrossRefGoogle Scholar
Heiner, I. (2004). Armorloricus kristenseni (Nanaloricidae, Loricifera), a new species from the Faroe Bank (north Atlantic). Helgoland Marine Research 58, 192–205.CrossRefGoogle Scholar
Heiner, I. (2008). Rugiloricus bacatus sp. nov. (Loricifera – Pliciloricidae) and a ghost-larva with paedogenetic reproduction. Systematics and Biodiversity 6, 225–247.CrossRefGoogle Scholar
Heiner, I., Boesgaard, T.M., Kristensen, R.M. (2009). First time discovery of Loricifera from Australian waters and marine caves. Marine Biology Research 5, 529–546.CrossRefGoogle Scholar
Heitkamp, U. (1988). Life-cycles of microturbellarians of pools and their strategies of adaptation to their habitats. Progress in Zoology 36, 449–456.Google Scholar
Hejnol, A., Obst, M., Stamatakis, A. et al. (2010). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B 276, 4261–4270.CrossRefGoogle Scholar
Higgins, R.P. (1977). Redescription of Echinoderes dujardinii (Kinorhyncha) with descriptions of closely related species. Contributions to Zoology 248, 1–26.Google Scholar
Higgins, R.P., Kristensen, R.M. (1986). New Loricifera from Southeastern United States Coastal Waters. Smithsonian Contributions to Zoology 438, 1–70.CrossRefGoogle Scholar
Hillier, L.W., Miller, R.D., Baird, S.E. et al. (2007). Comparison of C. elegans and C. briggsae genome sequence reveals extensive conservation of chromosome organization and synteny. PLoS Biology 5, 1603–1616.CrossRefGoogle Scholar
Hochberg, R. (2005). Musculature of the primitive gastrotrich Neodasys (Chaetonotida): Functional adaptations to the interstitial environment and phylogenetic significance. Marine Biology 146, 315–323.CrossRefGoogle Scholar
Hodda, M., Ocaña, A., Traunspurger, W. (2006). Nematodes from extreme freshwater habitats. In Abebe, E., Traunspurgerm, W., Andrássy, I. (eds.), Freshwater Nematodes: Ecology and Taxonomy, pp. 179–210. Wallingford: CABI Publishing.Google Scholar
Hugot, J.P., Baujard, P., Morand, S. (2001). Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3, 199–208.CrossRefGoogle Scholar
Hummon, M.R. (1984). Reproduction and sexual development in a freshwater gastrotrich. 1. Oogenesis of parthenogenic eggs (Gastrotricha). Zoomorphologie 104, 33–41.CrossRefGoogle Scholar
Hummon, W.D. (2008). Gastrotricha of the North Atlantic Ocean: 1. Twenty four new and two redescribed species of Macrodasyida. Meiofauna Marina 16, 117–174.Google Scholar
Hummon, W.D., Todaro, M.A. (2007). A new species of Xenotrichulidae (Gastrotricha) from southern and southeastern USA. Cahiers de Biologie Marine 48, 297–302.Google Scholar
Hummon, W.D., Todaro, M.A. (2010). Analytic taxonomy and notes on marine, brackish-water and estuarine Gastrotricha. Zootaxa2392, 1–32.
Hutchinson, G.E. (1967). A Treatise on Limnology. Vol. II. Introduction to Lake Biology and the Limnoplankton. New York, NY: John Wiley & Sons.
Hyman, L.H. (1951). The Invertebrates. Platyhelminthes and Rhynchocoela. The Acoelomate Bilateria, Vol II. New York, NY: McGraw-Hill.
Ingole, B.S. (1987). Occurrence of resting eggs in Macrostomum orthostylum (M. Braun, 1885) (Turbellaria: Macrostomida). Zoologischer Anzeiger 219, 19–24.Google Scholar
Janiec, K. (1996). Short distance wind transport of microfauna in maritime Antarctic (King George Island, South Shetland Islands). Polish Polar Research 17, 203–211.Google Scholar
Jankovska, V. (1991). Unbekannte Objekte in Pollenpräparaten – Tardigrada. In Kovar-Eder, J. (ed.), Palaeovegetational Development in Europe and Regions Relevant to its Palaeofloristic Evolution, pp. 19–23. Pan-European Palaeobotanical Conference, Vienna, Austria, September.
Janssen, H.H., Gradinger, R. (1999). Turbellaria (Archoophora: Acoela) from Antarctic sea ice endofauna: examination of their micromorphology. Polar Biology 21, 410–416.CrossRefGoogle Scholar
Johnston, T.H. (1938). Echinoderida. Scientific Reports, Ser. C.- Zoology and Botany. Sydney: David Harold Paisley, Government Printer.
Kanneby, T., Todaro, M.A., Jondelius, U. (2009). One new species and records of Ichthydium Ehrenberg, 1830 (Gastrotricha: Chaetonotida) from Sweden with a key to the genus. Zootaxa 2278, 26–46.Google Scholar
Karling, T.G., Mack-Fira, V., Dörjes, J. (1972). First report on marine microturbellarians from Hawaii. Zoologica Scripta 1, 251–269.CrossRefGoogle Scholar
Kaya, M., Smet, W.H., Fontaneto, D. (2010). Survey of moss-dwelling bdelloid rotifers from middle Arctic Spitsbergen (Svalbard). Polar Biology33, 833–842.CrossRef
Kinchin, I.M. (1994). The Biology of Tardigrades. Chapel Hill, NC: Portland Press.
Kiontke, K. (1996). The phoretic association of Diplogaster coprophila Sudhaus & Rehfeld, 1990 (Diplogastridae) from cow dung with its carriers, in particular flies of the family Sepsidae. Nematologica 42, 354–366.CrossRefGoogle Scholar
Kisielewski, J. (1991). Inland-water Gastrotricha from Brazil. Annales Zoologici (Warsaw) 43 (Suppl. 2), 1–168.Google Scholar
Kisielewski, J. (1999). A preliminary study of the inland-water Gastrotricha of Israel. Israel Journal of Zoology 45, 135–157.Google Scholar
Kozloff, E.N. (2007). Stages of development, from first cleavage to hatching, of an Echinoderes (Phylum Kinorhyncha: Class Cyclorhagida). Cahiers de Biologie Marine 48, 199–206.Google Scholar
Kristensen, R.M. (1983). Loricifera, a new phylum with Aschelminthes characters from the meiobenthos. Zeitschrift für Zoologische Systematik und Evolutionsforschung 21, 163–180.CrossRefGoogle Scholar
Kristensen, R.M. (1987). Generic revision of the Echiniscidae (Heterotardigrada), with a discussion of the origin of the family. In Bertolani, R. (ed.), Biology of Tardigrades. Selected Symposia and Monographs UZI, 1, 261–335.Google Scholar
Kristensen, R.M., Funch, P. (2000). Micrognathozoa: A new class with complicated jaws like those of Rotifera and Gnathostomulida. Journal of Morphology 246, 1–49.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Kristensen, R.M., Nørrevang, A. (1977). On the fine structure of Rastrognathia macrostoma gen. et sp. n. placed in Rastrognathiidae fam. n. (Gnathostomulida). Zoologica Scripta 6, 27–41.CrossRefGoogle Scholar
Kristensen, R.M., Nørrevang, A. (1978). On the fine structure of Valvognathia pogonostoma gen. et sp.n. (Gnathostomulida, Onychognathiidae) with special reference to the jaw apparatus. Zoologica Scripta 7, 179–186.CrossRefGoogle Scholar
Kristensen, R.M., Shirayama, Y. (1988). Pliciloricus hadalis (Pliciloricidae), a new loriciferan species collected from the Izu-Ogasawara Trench, Western Pacific. Zoological Science 5, 875–881.Google Scholar
Krnjaic', D.J., Krnjaic', S. (1973). Dispersion of nematodes by wind. Bollettino del Laboratorio di Entomologia Agraria F. Silvestri, Portici 30, 66–70.Google Scholar
Lambshead, J.D. (2004). Marine nematode biodiversity. In Chen, Z.X., Chen, S.Y., Dickson, D.W. (eds.), Nematology, Advances and Perspectives, Vol. I, pp. 438–468. Cambridge, MA: Tsinghua University Press and CABI Publishing.Google Scholar
Leasi, F., Todaro, M. A. (2009). Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha). Marine Biology 156, 1335–1346.CrossRefGoogle Scholar
Leasi, F., Todaro, M.A. (2010). The gastrotrich community of a north Adriatic Sea site, with a redescription of Musellifer profundus (Chaetonotida: Muselliferidae). Journal of the Marine Biological Association UK 90, 645–653.CrossRefGoogle Scholar
Loof, P.A.A. (1971). Freeliving and plant parasitic nematodes from Spitzbergen, collected by Mr. H. Van Rossen. Mededelingen Landbouwhogenschool Wageningen 71–7, 1–86.Google Scholar
Lupi, E., Ricci, V., Burrini, D. (1994). Occurrence of nematodes in surface water used in a drinking water plant. Journal Water SRT-Aqua 43, 107–112.Google Scholar
Luther, A. (1955). Die Dalyelliiden (Turbellaria, Neorhabdocoela): eine Monographie. Acta Zoologica Fennica 87, 1–337.Google Scholar
Luther, A. (1960). Die Turbellarien Ostfennoskandiens. I. Acoela, Catenulida, Macrostomida, Lecithoepitheliata, Prolecithophora und Proseriata. Fauna Fennica 7, 1–155.Google Scholar
Marcus, E. (1929). Tardigrada. In Bronn, H.G. (ed.), Klassen und Ordnungen des Tierreichs, Vol. 5, pp. 1–608. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Marcus, E. (1936). Tardigrada. In Schultze, F. (ed.), Das Tierreich, Vol. 66, pp. 1–340. Berlin: Walter de Gruyter.Google Scholar
Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H. et al. (2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews 4, 102–112.Google Scholar
McInnes, S.J., Pugh, P.J.A. (2007). An attempt to revisit the global biogeography of limno-terrestrial Tardigrada. Journal of Limnology 66, 90–96.CrossRefGoogle Scholar
Melnikov, I.A. (1997). The Arctic Sea Ice Ecosystem. Amsterdam: Gordon and Breach Science Publishers.
Miller, W.R., Heatwole, H.F. (2003). Tardigrades of the sub-Antarctic: 5000 year old eggs from Marion Island. Abstract: 9th International Symposium on Tardigrada, Florida, USA.
Mott, J.B., Harrison, A.D. (1983). Nematodes from river drift and surface drinking water supplies in southern Ontario. Hydrobiologia 102, 27–38.CrossRefGoogle Scholar
Murray, J. (1906). Scottish National Antarctic Expedition: Tardigrada of the South Orkneys. Transactions of the Royal Society of Edinburgh 45, 323–338.CrossRefGoogle Scholar
Navas, A., Baldwin, J.G., Barrios, L., Nombela, G. (1993). Phylogeny and biogeography of Longidorus (Nematoda: Longidoridae) in Euromediterranea. Nematologia Mediterranea 21, 71–88.Google Scholar
Nedved, O. (2004). Occurrence of the phylum Cycliophora in the Mediterranean. Marine Ecology – Progress Series 277, 297–299.CrossRefGoogle Scholar
Nelson, D.R. (1982a) Developmental biology of the Tardigrada. In Harrison, F., Cowden, R. (eds.), Developmental Biology of Freshwater Invertebrates, pp. 363–368. New York, NY: Alan R. Liss.Google Scholar
Nelson, D.R. (2002). Current status of the Tardigrada: evolution and ecology. Integrative and Comparative Biology 42, 652–659.CrossRefGoogle ScholarPubMed
Nelson, D.R., McInnes, S.J. (2002). Tardigrades. In Rundle, S.D, Robertson, A.L., Schmid-Araya, J.M. (eds.), Freshwater Meiofauna: Biology and Ecology, pp. 177–215. Leiden: Buckhuys.Google Scholar
Neves, R.C., Cunha, M.R., Funch, P., Kristensen, R.M., Wanninger, A. (2010). Comparative myoanatomy of cycliophoran life cycle stages. Journal of Morphology 271, 596–611.Google ScholarPubMed
Nkem, J.N., Wall, D.H., Virginia, R.A. et al. (2006). Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biology 29, 346–352.CrossRefGoogle Scholar
Obst, M., Funch, P. (2003). Dwarf male of Symbion pandora (Cycliophora). Journal of Morphology 255, 261–278.CrossRefGoogle Scholar
Obst, M., Funch, P., Kristensen, R.M. (2006). A new species of Cycliophora from the mouthparts of the American lobster, Homarus americanus (Nephropidae, Decapoda). Organisms, Diversity and Evolution 6, 83–97.CrossRefGoogle Scholar
Orr, C.C., Newton, O.H. (1971). Distribution of nematodes by wind. Plant Disease 55, 61–63.Google Scholar
Palmer, M.A. (1988). Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Marine Ecology – Progress Series 48, 81–91.CrossRefGoogle Scholar
Pejler, B. (1977). On the global distribution of the family Brachionidae (Rotatoria). Archiv fuer Hydrobiologie (Suppl.) 53, 255–306.Google Scholar
Pilato, G. (1979). Correlations between cryptobiosis and other biological characteristics in some soil animals. Bollettino di Zoologica, 46, 319–332.CrossRefGoogle Scholar
Pilato, G., Binda, M.G. (2001). Biogeography and limnoterrestrial tardigrades: are they truly incompatible binomials?Zoologischer Anzeiger 240, 511–516.CrossRefGoogle Scholar
Procter, D.L.C. (1984). Towards a biogeography of free-living soil nematodes. I. Changing species richness, diversity and densities with changing latitude. Journal of Biogeography 11, 103–117.CrossRefGoogle Scholar
Procter, D.L.C. (1990). Global overview of the functional roles of soil-living nematodes in terrestrial communities and ecosystems. Journal of Nematology 22, 1–7.Google ScholarPubMed
Pugh, P.J.A., McInnes, S.J. (1998). The origin of Arctic terrestrial and freshwater tardigrades. Polar Biology 19, 177–182.CrossRefGoogle Scholar
Ramazzotti, G. (1962). Il Phylum Tardigrada. Memorie dell'Istituto Italiano di Idrobiologia 16, 1–595.Google Scholar
Ramazzotti, G. (1972). Il Phylum Tardigrada. II edizione. Memorie dell'Istituto Italiano di Idrobiologia 19, 101–212.Google Scholar
Ramazzotti, G., Maucci, W. (1983). Il Phylum Tardigrada. III edizione riveduta e aggiornata. Memorie dell'Istituto Italiano di Idrobiologia 41, 1–1012.Google Scholar
Rebecchi, L., Bertolani, R. (1988). New cases of parthenogenisis and polyploidy in the genus Ramazzottius (Tardigrada, Hypsibiidae) and a hypothesis concerning their origin. Invertebrate Reproduction and Development 14, 187–196.CrossRefGoogle Scholar
Rebecchi, L., Bertolani, R. (1994). Maturative pattern of ovary and testis in eutardigrades of freshwater and terrestrial habitats. Invertebrate Reproduction and Development 26, 107–117.CrossRefGoogle Scholar
Reisinger, E., Steinböck, O. (1927). Foreløbig meddelelse om vor zoologiske Rejse i Grønland 1926. Meddelelser om Grønland, København 74, 33–42.Google Scholar
Ricci, C., Fontaneto, D. (2009). The importance of being a bdelloid: ecological and evolutionary consequences of dormancy. Italian Journal of Zoology 76, 240–249.CrossRefGoogle Scholar
Ricci, C., Melone, G., Sotgia, C. (1993). Old and new data on Seisonidea (Rotifera). Hydrobiologia 255/256, 495–511.CrossRefGoogle Scholar
Richters, F. (1905). Moss dwellers. Scientific American Supplement 60 (1556), 24937.Google Scholar
Riedl, R.J. (1969). Gnathostomulida from America – This is the first record of the new phylum from North America. Science 163, 445–452.CrossRefGoogle Scholar
Roccuzzo, G., Ciancio, A. (1991). Notes on nematodes found in irrigation water in southern Italy. Nematologia Mediterranea 19, 105–108.Google Scholar
Rousselet, C.F. (1909). On the geographical distribution of the Rotifera. Journal of the Quekett Microscopical Club Ser. 2. 10, 465–470.Google Scholar
Schockaert, E.R., Hooge, M., Sluys, S. et al. (2008). Global diversity of free-living flatworms (Platyhelminthes, “Turbellaria”) in freshwater. Hydrobiologia 595, 41–48.CrossRefGoogle Scholar
Schroeder, T., Walsh, E.J. (2007). Cryptic speciation in the cosmopolitan Epiphanes senta complex (Monogononta, Rotifera) with the description of new species. Hydrobiologia 593, 129–140.CrossRefGoogle Scholar
Segers, H. (1996). The biogeography of littoral Lecane Rotifera. Hydrobiologia 323, 169–197.CrossRefGoogle Scholar
Segers, H. (2003). A biogeographical analysis of rotifers of the genus Trichocerca Lamarck. 1801 (Trichocercidae, Monogononta, Rotifera), with notes on taxonomy. Hydrobiologia 500, 103–114.CrossRefGoogle Scholar
Segers, H. (2007). A global checklist of the rotifers (Phylum Rotifera). Zootaxa 1564, 1–104.Google Scholar
Segers, H. (2008). Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595, 49–59.CrossRefGoogle Scholar
Segers, H., Smet, W.H. (2008). Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodiversity Conservation 17, 303–316.CrossRefGoogle Scholar
Sekera, E. (1906). Über die Verbreitung der Selbstbefruchtung bei den Rhabdocoeliden. Zoologischer Anzeiger 30, 142–153.Google Scholar
Sohlenius, B. (1980). Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34, 186–194.CrossRefGoogle Scholar
Sohlenius, B., Boström, S. (2005). The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biology 28, 439–448.CrossRefGoogle Scholar
Sørensen, M.V. (2003). Further structures in the jaw apparatus of Limnognathia maerski (Micrognathozoa), with notes on the phylogeny of the Gnathifera. Journal of Morphology 255, 131–145.CrossRefGoogle Scholar
Sørensen, M.V. (2008). A new kinorhynch genus from the Antarctic deep sea and a new species of Cephalorhyncha from Hawaii (Kinorhyncha: Cyclorhagida:Echinoderidae). Organisms, Diversity and Evolution 8, 230–232.CrossRefGoogle Scholar
Sørensen, M.V., Pardos, F. (2008). Kinorhynch systematics and biology – an introduction to the study of kinorhynchs, inclusive identification keys to the genera. Meiofauna Marina 16, 21–73.Google Scholar
Sørensen, M.V., Rho, H.S. (2009). Triodontoderes anulap gen. et sp. nov. – A new cyclorhagid kinorhynch genus and species from Micronesia. Journal of the Marine Biology Association UK 89, 1269–1279.CrossRefGoogle Scholar
Sørensen, M.V., Sterrer, W. (2002). New characters in the gnathostomulid mouth parts revealed by scanning electron microscopy. Journal of Morphology 253, 310–334.CrossRefGoogle ScholarPubMed
Spallanzani, L. (1776). II tardigrado Volume II, Opuscolo IV, Sezione II, 222–253. Opuscoli di Fisica Animale e Vegetabile. Modena.
Steinböck, O. (1931). Marine Turbellaria. Zoology of the Faroes 8, 1–26.Google Scholar
Sterrer, W. (1968). Beiträge zur Kenntnis der Gnathostomulida I. Anatomie und Morphologie des Genus Pterognathia Sterrer. Arkiv för Zoologi, Ser. 2 22, 1–125.Google Scholar
Sterrer, W. (1972). Systematics and evolution within the Gnathostomulida. Systematic Zoology 21, 151–173.CrossRefGoogle Scholar
Sterrer, W. (1973). Plate tectonics as a mechanism for dispersal and speciation in interstitial sand fauna. Netherlands Journal of Sea Research 7, 200–222.CrossRefGoogle Scholar
Sterrer, W. (1991). Gnathostomulida from Fiji, Tonga and New Zealand. Zoologica Scripta 20, 107–128.CrossRefGoogle Scholar
Sterrer, W. (1997). Gnathostomulida from the Canary Islands. Proceedings of the Biological Society of Washington 110, 186–197.Google Scholar
Sterrer, W. (1998). Gnathostomulida from the (sub)tropical northwestern Atlantic. Studies on the Natural History of the Caribbean Region 74, 1–178.Google Scholar
Sterrer, W. (2001). Gnathostomulida from Australia and Papua New Guinea. Cahiers de Biologie Marine 42, 363–395.Google Scholar
Sterrer, W., Farris, R. (1975). Problognathia minima n. g., n. sp., representative of a new family of Gnathostomulida, Problognathidae n. fam. from Bermuda. Transactions of the American Microscopical Society 94, 357–367.CrossRefGoogle Scholar
Sudzuki, M. (1972). An analysis of colonization in freshwater micro-organisms. II. Two simple experiments on the dispersal by wind. Japanese Journal of Ecology 22, 222–225.Google Scholar
Tchesunov, A.V. (2006). Biology of Marine Nematodes. Moscow: KMK Scientific Press Ltd. (in Russian).
Thorne, G. (1968). Nematodes of the Northern Great Plains. I. Tylenchida (Nemata, Secernentea), pp. 1–111. Brookings, SD: Agricultural Experiment Station, South Dakota State University.
Thulin, G. (1928). Über die Phylogenie und das System der Tardigraden. Hereditas 11, 207–266.CrossRefGoogle Scholar
Timoshkin, O.A., Kawakatsu, M., Korgina, E.M., Vvedenskaya, T.L. (2004). Preliminary analysis of the stylets of the Gyratrix hermaphroditus Ehrenberg, 1831 species complex (Platyhelminthes, Neorhabdocoela, Kalyptorhynchia) from lakes of central Russia, Pribaikalye and Kamachatka, lakes Baikal and Biwa. In Timoshkin, O.A, Sitnikova, T.Ya., Rusinek, O.T. et al. (eds.), Index of Animal Species Inhabiting Lake Baikal and its Catchment Area. Vol. 1. Lake Baikal, Book 2, pp. 1321–1343. Novosibirsk: Nauka.Google Scholar
Todaro, M.A., Hummon, W.D. (2008). An overview and a dichotomous key to genera of the phylum Gastrotricha. Meiofauna Marina 16, 3–20.Google Scholar
Todaro, M.A., Kristensen, R.M. (1998). A new species and first report of the genus Nanaloricus (Loricifera, Nanaloricida, Nanaloricidae) from the Mediterranean Sea. Italian Journal of Zoology 65, 219–226.CrossRefGoogle Scholar
Todaro, M.A., Rocha, C.E.F. (2004). Diversity and distribution of marine Gastrotricha along the northern beaches of the state of Sao Paulo (Brazil), with description of a new species of Macrodasys (Macrodasyida, Macrodasyidae). Journal of Natural History 38, 1605–1634.CrossRefGoogle Scholar
Todaro, M.A., Rocha, C.E.F. (2005). Further data on marine gastrotrichs from the State of São Paulo and the first records from the State of Rio de Janeiro (Brazil). Meiofauna Marina 14, 27–31.Google Scholar
Todaro, M.A., Fleeger, J.W., Hummon, W.D. (1995). Marine gastrotrichs from the sand beaches of the northern Gulf of Mexico: Species list and distribution. Hydrobiologia 310, 107–117.CrossRefGoogle Scholar
Todaro, M.A., Fleeger, J.W., Hu, Y.P., Hrincevich, A.W., Foltz, D.W. (1996). Are meiofauna species cosmopolitan? Morphological and molecular analysis ofXenotrichula intermedia (Gastrotricha: Chaetonotida). Marine Biology 125, 735–742.Google Scholar
Todaro, M.A., Balsamo, M., Kristensen, R.M. (2005). A new genus of marine chaetonotids (Gastrotricha), with a description of two new species from Greenland and Denmark. Journal of the Marine Biological Association UK 85, 1391–1400.CrossRefGoogle Scholar
Traunspurger, W. (1991). Das Meiobenthos des Königssees: systematische und ökologische Untersuhungen unter besonderer Berücksichtigung der Nematoda. Fischbiologie des Königssees. Nahrunsangebot und Nahrungswahl. Band I. Nationalpark Berchtesgaden: Forschungsbericht 22.
Traunspurger, W., Michiels, I.C., Eyualem-Abebe, (2006). Composition and distribution of free-living freshwater nematodes: global and local perspectives. In Eyualem-Abebe, Traunspurger, W., Andrássy, I. (eds.), Freshwater Nematodes: Ecology and Taxonomy, pp. 46–76. Wallingford: CABI Publishing.Google Scholar
Tyler, S., Schilling, S., Hooge, M., Bush, L.F. (comp.) (20062009). Turbellarian Taxonomic Database. Version 1.5 http://turbellaria.umaine.edu.
Vanschoenwinkel, B., Gielen, S., Vandewaerde, H., Seaman, M., Brendonck, L. (2008a). Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31, 567–577.CrossRefGoogle Scholar
Vanschoenwinkel, B., Gielen, S., Seaman, M., Brendonck, L. (2008b). Any way the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117, 125–134.CrossRefGoogle Scholar
Vanschoenwinkel, B., Waterkeyn, A., Vandecaetsbeek, T. et al. (2008c). Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53, 2264–2273.Google Scholar
Vanschoenwinkel, B., Gielen, S., Seaman, M., Brendonck, L. (2009). Wind mediated dispersal of freshwater invertebrates in rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 635, 363–372.CrossRefGoogle Scholar
Steenkiste, N., Davison, P., Artois, T. (2010). Bryoplana xerophila n.g. n.sp., a new limnoterrestrial microturbellarian (Platyhelminthes, Typhloplanidae, Protoplanellinae) from epilithic mosses, with notes on its ecology. Zoological Science 27, 285–291.CrossRefGoogle ScholarPubMed
Wallace, R.L., Snell, T.W., Ricci, C., Nogrady, T. (2006). Rotifera vol. 1: biology, ecology and systematics (2nd edition). In Segers, H., Dumont, H.J. (eds.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, 23. Gent: Kenobi Productions and The Hague: Backhuys Academic Publishing BV.
Weiss, M.J. (2001). Widespread hermaphroditism in freshwater gastrotrichs. Invertebrate Biology 120, 308–341.CrossRefGoogle Scholar
Wharton, D.A. (2004). Survival strategies. In Gaugler, R., Bilgrami, A.L. (eds.), Nematode Behaviour, pp. 371–399. Wallingford: CABI Publishing.CrossRef
Willems, W.R., Wallberg, A., Jondelius, U. et al. (2006). Filling a gap in the phylogeny of flatworms: relationships within the Rhabdocoela (Platyhelminthes), inferred from 18S ribosomal DNA sequences. Zoologica Scripta 35, 1–17.CrossRefGoogle Scholar
Womersley, C.Z., Wharton, D., Higa, L.M. (1998). Survival biology. In Perry, R.N., Wright, D.J. (eds.), The Physiology and Biochemistry of Free-living and Plant-parasitic Nematodes, pp. 271–302. Wallingford: CABI Publishing.Google Scholar
Wright, J.C. (2001). Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades?Zoologischer Anzeiger 240, 563–582.CrossRefGoogle Scholar
Wright, J.C., Westh, P., Ramløv, H. (1992). Cryptobiosis in Tardigrada. Biological Reviews of the Cambridge Philosophical Society 67, 1–29.CrossRefGoogle Scholar
Young, J.O. (1974). The occurence of diapause in the egg stage of the life-cycle of Phaenocora typhlops (Vejdovsky) (Turbellaria: Neorhabdocoela). Journal of Animal Ecology 43, 719–731.CrossRefGoogle Scholar
Young, J.O., Young, B.M. (1976). First records of eight species and new records of four species of freshwater microturbellaria from East Africa, with comments on modes of dispersal of the group. Zoologischer Anzeiger 96, 93–108.Google Scholar
Zelinka, C. (1913). Der Echinoderen der Deutschen Südpolar-Expedition, 1901–1903. Band 14. Berlin: Reimer.
Zullini, A. (1973). Su alcuni nematodi di alta quota del Nepal. Khumbu Himal 4, 401–412.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×