Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T16:05:02.302Z Has data issue: false hasContentIssue false

6 - Circadian Rhythms and Cognitive Functioning

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

The circadian timing system has pronounced effects on learning and memory, with learning and recall regulated by time of day and the cellular mechanisms underlying learning and memory being under circadian control. Given this influence of the circadian system, studies across species, including humans, reveal that circadian disruption has pronounced negative effects on cognitive functioning. Circadian disruption leads to deficits in learning and memory by negatively affecting neurogenesis, synaptic plasticity, and epigenetic events required for acquisition and recall of memories. The present chapter describes the impact of circadian disruption on learning and memory while considering the mechanisms underlying circadian control of cognitive function. Given that the modern world is rife with temporal disruptions due to work requirements, limited exposure to sunlight during the day, and exposure to artificial lighting and blue light-emitting electronic devices at night, understanding the negative impact of circadian disruption on learning and memory and developing mitigating strategies are vital.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 134 - 164
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., Nguyen, P. V., Barad, M., Deuel, T. A., Kandel, E. R., & Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 88(5), 615626.CrossRefGoogle ScholarPubMed
Adams, J. P., & Sweatt, J. D. (2002). Molecular psychology: Roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol, 42, 135163.Google Scholar
Akashi, M., & Nishida, E. (2000). Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev, 14(6), 645649.Google Scholar
Alarcón, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., & Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/‒ mice: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42(6), 947959.Google Scholar
Alberini, C. M., & Kandel, E. R. (2015). The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol, 7(1), a021741.Google Scholar
Ambrogini, P., Cuppini, R., Cuppini, C., Ciaroni, S., Cecchini, T., Ferri, P., Sartini, S., & Del Grande, P. (2000). Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett, 286(1), 2124.Google Scholar
Ameen, R. W., Warshawski, A., Fu, L., & Antle, M. C. (2022). Early life circadian rhythm disruption in mice alters brain and behavior in adulthood. Sci Rep, 12(1), 7366.Google Scholar
Anothaisintawee, T., Reutrakul, S., Van Cauter, E., & Thakkinstian, A. (2016). Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med Rev, 30, 1124.Google Scholar
Antoun, G., Bouchard-Cannon, P., Cannon, P. B., & Cheng, H.-Y. M. (2012). Regulation of MAPK/ERK signaling and photic entrainment of the suprachiasmatic nucleus circadian clock by Raf kinase inhibitor protein. J Neurosci, 32(14), 48674877.Google Scholar
Artinian, J., McGauran, A.-M. T., De Jaeger, X., Mouledous, L., Frances, B., & Roullet, P. (2008). Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation. Eur J Neurosci, 27(11), 30093019.Google Scholar
Athos, J., Impey, S., Pineda, V. V., Chen, X., & Storm, D. R. (2002). Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nat Neurosci, 5(11), 11191120.Google Scholar
Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., & Sweatt, J. D. (1998). The MAPK cascade is required for mammalian associative learning. Nat Neurosci, 1(7), 602609.Google Scholar
Atkins, N., Mitchell, J. W., Romanova, E. V., Morgan, D. J., Cominski, T. P., Ecker, J. L., Pintar, J. E., Sweedler, J. V., & Gillette, M. U. (2010). Circadian integration of glutamatergic signals by little SAAS in novel suprachiasmatic circuits. PLoS One, 5(9), e12612.Google Scholar
Ball, L. J., Palesh, O., & Kriegsfeld, L. J. (2016). The pathophysiologic role of disrupted circadian and neuroendocrine rhythms in breast carcinogenesis. Endocr Rev, 37(5), 450466.Google Scholar
Barnes, C. A., McNaughton, B. L., Goddard, G. V., Douglas, R. M., & Adamec, R. (1977). Circadian rhythm of synaptic excitability in rat and monkey central nervous system. Science, 197(4298), 9192.Google Scholar
Bedrosian, T. A., & Nelson, R. J. (2013). Influence of the modern light environment on mood. Mol Psychiatry, 18(7), 751757.Google Scholar
Bedrosian, T. A., Weil, Z. M., & Nelson, R. J. (2013). Chronic dim light at night provokes reversible depression-like phenotype: Possible role for TNF. Mol Psychiatry, 18(8), 930936.Google Scholar
Besing, R. C., Rogers, C. O., Paul, J. R., Hablitz, L. M., Johnson, R. L., McMahon, L. L., & Gamble, K. L. (2017). GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity. Hippocampus, 27(8), 890898.Google Scholar
Bird, A. (1999). DNA methylation de novo. Science, 286(5448), 22872288.CrossRefGoogle ScholarPubMed
Bolton, J. L., & Bilbo, S. D. (2014). Developmental programming of brain and behavior by perinatal diet: Focus on inflammatory mechanisms. Dialogues Clin Neurosci, 16(3), 307320.Google Scholar
Borgs, L., Beukelaers, P., Vandenbosch, R., Nguyen, L., Moonen, G., Maquet, P., Albrecht, U., Belachew, S., & Malgrange, B. (2009). Period 2 regulates neural stem/progenitor cell proliferation in the adult hippocampus. BMC Neurosci, 10, 30.Google Scholar
Borrelli, E., Nestler, E. J., Allis, C. D., & Sassone-Corsi, P. (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6), 961974.Google Scholar
Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79(1), 5968.CrossRefGoogle ScholarPubMed
Bourtchouladze, R., Lidge, R., Catapano, R., Stanley, J., Gossweiler, S., Romashko, D., Scott, R., & Tully, T. (2003). A mouse model of Rubinstein-Taybi syndrome: Defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci USA, 100(18), 1051810522.Google Scholar
Bousiges, O., de Vasconcelos, A. P., Neidl, R., Cosquer, B., Herbeaux, K., Panteleeva, I., Loeffler, J.-P., Cassel, J.-C., & Boutillier, A.-L. (2010). Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology, 35(13), 25212537.CrossRefGoogle ScholarPubMed
Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci USA, 101(40), 1451514520.Google Scholar
Bronson, S. L., & Bale, T. L. (2016). The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology, 41(1), 207218.Google Scholar
Broussard, J. L., & Van Cauter, E. (2016). Disturbances of sleep and circadian rhythms: Novel risk factors for obesity. Curr Opin Endocrinol Diabetes Obes, 23(5), 353359.Google Scholar
Buchmann, A., Ringli, M., Kurth, S., Schaerer, M., Geiger, A., Jenni, O. G., & Huber, R. (2011). EEG sleep slow-wave activity as a mirror of cortical maturation. Cereb Cortex, 21(3), 607615.Google Scholar
Buijs, R. M., Soto Tinoco, E. C., Hurtado Alvarado, G., & Escobar, C. (2021). The circadian system: From clocks to physiology. Handb Clin Neurol, 179, 233247.Google Scholar
Butcher, G. Q., Doner, J., Dziema, H., Collamore, M., Burgoon, P. W., & Obrietan, K. (2002). The p42/44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment. J Biol Chem, 277(33), 2951929525.Google Scholar
Cain, S. W., McDonald, R. J., & Ralph, M. R. (2008). Time stamp in conditioned place avoidance can be set to different circadian phases. Neurobiol Learn Mem, 89(4), 591594.Google Scholar
Cameron, H. A., & Glover, L. R. (2015). Adult neurogenesis: Beyond learning and memory. Annu Rev Psychol, 66, 5381.Google Scholar
Caroni, P., Donato, F., & Muller, D. (2012). Structural plasticity upon learning: Regulation and functions. Nat Rev Neurosci, 13(7), 478490.Google Scholar
Cauller, L. J., Boulos, Z., & Goddard, G. V. (1985). Circadian rhythms in hippocampal responsiveness to perforant path stimulation and their relation to behavioral state. Brain Res, 329(1–2), 117130.Google Scholar
Chatterjee, S., Angelakos, C. C., Bahl, E., Hawk, J. D., Gaine, M. E., Poplawski, S. G., Schneider-Anthony, A., Yadav, M., Porcari, G. S., Cassel, J.-C., Giese, K. P., Michaelson, J. J., Lyons, L. C., Boutillier, A.-L., & Abel, T. (2020). The CBP KIX domain regulates long-term memory and circadian activity. BMC Biol, 18(1), 155.Google Scholar
Chaudhury, D., & Colwell, C. S. (2002). Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res, 133(1), 95108.Google Scholar
Chaudhury, D., Wang, L. M., & Colwell, C. S. (2005). Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms, 20(3), 225236.Google Scholar
Chellappa, S. L., Morris, C. J., & Scheer, F. A. J. L. (2018). Daily circadian misalignment impairs human cognitive performance task-dependently. Sci Rep, 8(1), 3041.CrossRefGoogle ScholarPubMed
Cheng, H.-Y. M., Dziema, H., Papp, J., Mathur, D. P., Koletar, M., Ralph, M. R., Penninger, J. M., & Obrietan, K. (2006). The molecular gatekeeper Dexras1 sculpts the photic responsiveness of the mammalian circadian clock. J Neurosci, 26(50), 1298412995.Google Scholar
Cho, K. (2001). Chronic “jet lag” produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci, 4(6), 567568.Google Scholar
Cho, K., Ennaceur, A., Cole, J. C., & Suh, C. K. (2000). Chronic jet lag produces cognitive deficits. J Neurosci, 20(6), RC66.Google Scholar
Chun, L. E., Woodruff, E. R., Morton, S., Hinds, L. R., & Spencer, R. L. (2015). Variations in phase and amplitude of rhythmic clock gene expression across prefrontal cortex, hippocampus, amygdala, and hypothalamic paraventricular and suprachiasmatic nuclei of male and female rats. J Biol Rhythms, 30(5), 417436.Google Scholar
Chwang, W. B., Arthur, J. S., Schumacher, A., & Sweatt, J. D. (2007). The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci, 27(46), 1273212742.Google Scholar
Clark, J. W., Hoyer, D., Cain, S. W., Phillips, A., Drummond, S. P. A., & Jacobson, L. H. (2020). Circadian disruption impairs fear extinction and memory of conditioned safety in mice. Behav Brain Res, 393, 112788.Google Scholar
Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. J Neurosci, 20(23), 88538860.Google Scholar
Connors, S. L., Levitt, P., Matthews, S. G., Slotkin, T. A., Johnston, M. V., Kinney, H. C., Johnson, W. G., Dailey, R. M., & Zimmerman, A. W. (2008). Fetal mechanisms in neurodevelopmental disorders. Pediatr Neurol, 38(3), 163176.Google Scholar
Conrad, C. D. (2006). What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? Behav Cogn Neurosci Rev, 5(1), 4160.Google Scholar
Costa, G. (1996). The impact of shift and night work on health. Appl Ergon, 27(1), 916.Google Scholar
Cox, K. H., & Takahashi, J. S. (2019). Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol, 63(4), R93R102.Google Scholar
Craig, L. A., & McDonald, R. J. (2008). Chronic disruption of circadian rhythms impairs hippocampal memory in the rat. Brain Res Bull, 76(1), 141151.Google Scholar
Crosio, C., Cermakian, N., Allis, C. D., & Sassone-Corsi, P. (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci, 3(12), 12411247.CrossRefGoogle ScholarPubMed
Curtis, A. M., Seo, S., Westgate, E. J., Rudic, R. D., Smyth, E. M., Chakravarti, D., FitzGerald, G. A., & McNamara, P. (2004). Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem, 279(8), 70917097.Google Scholar
Dana, R. C., & Martinez, J. L. (1984). Effect of adrenalectomy on the circadian rhythm of LTP. Brain Res, 308(2), 392395.Google Scholar
Dang, F., Sun, X., Ma, X., Wu, R., Zhang, D., Chen, Y., Xu, Q., Wu, Y., & Liu, Y. (2016). Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat Commun, 7, 12696.Google Scholar
Danysz, W., Wroblewski, J. T., & Costa, E. (1988). Learning impairment in rats by N-methyl-D-aspartate receptor antagonists. Neuropharmacology, 27(6), 653656.CrossRefGoogle ScholarPubMed
Davies, J. A., Navaratnam, V., & Redfern, P. H. (1973). A 24-hour rhythm in passive-avoidance behaviour in rats. Psychopharmacologia, 32(2), 211214.Google Scholar
Davies, J. A., Navaratnam, V., & Redfern, P. H. (1974). The effect of phase-shift on the passive avoidance response in rats and the modifying action of chlordiazepoxide. Br J Pharmacol, 51(3), 447451.Google Scholar
Day, J. J., Childs, D., Guzman-Karlsson, M. C., Kibe, M., Moulden, J., Song, E., Tahir, A., & Sweatt, J. D. (2013). DNA methylation regulates associative reward learning. Nat Neurosci, 16(10), 14451452.Google Scholar
De Bundel, D., Gangarossa, G., Biever, A., Bonnefont, X., & Valjent, E. (2013). Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front Behav Neurosci, 7, 152.Google Scholar
Deng, N., Kohn, T. P., Lipshultz, L. I., & Pastuszak, A. W. (2018). The relationship between shift work and men’s health. Sex Med Rev, 6(3), 446456.Google Scholar
Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5), 339350.CrossRefGoogle ScholarPubMed
Depner, C. M., Stothard, E. R., & Wright, K. P. (2014). Metabolic consequences of sleep and circadian disorders. Curr Diabetes Rep, 14(7), 507.Google Scholar
Devan, B. D., Goad, E. H., Petri, H. L., Antoniadis, E. A., Hong, N. S., Ko, C. H., Leblanc, L., Lebovic, S. S., Lo, Q., Ralph, M. R., & McDonald, R. J. (2001). Circadian phase-shifted rats show normal acquisition but impaired long-term retention of place information in the water task. Neurobiol Learn Mem, 75(1), 5162.Google Scholar
Duy, P. Q., & Hattar, S. (2017). Chronic circadian misalignment without circadian arrhythmicity or sleep deprivation does not impair adult hippocampal neurogenesis. J Biol Rhythms, 32(6), 621626.Google Scholar
Dziema, H., Oatis, B., Butcher, G. Q., Yates, R., Hoyt, K. R., & Obrietan, K. (2003). The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur J Neurosci, 17(8), 16171627.Google Scholar
Eckel-Mahan, K. L., Phan, T., Han, S., Wang, H., Chan, G. C. K., Scheiner, Z. S., & Storm, D. R. (2008). Circadian oscillation of hippocampal MAPK activity and cAmp: Implications for memory persistence. Nat Neurosci, 11(9), 10741082.Google Scholar
Eckel-Mahan, K., & Sassone-Corsi, P. (2013). Metabolism and the circadian clock converge. Physiol Rev, 93(1), 107135.Google Scholar
English, J. D., & Sweatt, J. D. (1997). A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem, 272(31), 1910319106.Google Scholar
Epp, J. R., Spritzer, M. D., & Galea, L. A. M. (2007). Hippocampus-dependent learning promotes survival of new neurons in the dentate gyrus at a specific time during cell maturation. Neuroscience, 149(2), 273285.Google Scholar
Esmaily, A., Jambarsang, S., Mohammadian, F., & Mehrparvar, A. H. (2022). Effect of shift work on working memory, attention and response time in nurses. Int J Occup Saf Ergon, 28(2), 10851090.Google Scholar
Etchegaray, J.-P., Lee, C., Wade, P. A., & Reppert, S. M. (2003). Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature, 421(6919), 177182.Google Scholar
Evans, M. D. R., Kelley, P., & Kelley, J. (2017). Identifying the best times for cognitive functioning using new methods: Matching university times to undergraduate chronotypes. Front Hum Neurosci, 11, 188.Google Scholar
Fekete, M., Van Ree, J. M., & De Wied, D. (1986). The ACTH-(4-9) analog ORG 2766 and desglycinamide9-(Arg8)-vasopressin reverse the retrograde amnesia induced by disrupting circadian rhythms in rats. Peptides, 7(4), 563568.Google Scholar
Feng, D., Liu, T., Sun, Z., Bugge, A., Mullican, S. E., Alenghat, T., Liu, X. S., & Lazar, M. A. (2011). A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science, 331(6022), 13151319.Google Scholar
Fernandez, D. C., Fogerson, P. M., Lazzerini Ospri, L., Thomsen, M. B., Layne, R. M., Severin, D., Zhan, J., Singer, J. H., Kirkwood, A., Zhao, H., Berson, D. M., & Hattar, S. (2018). Light affects mood and learning through distinct retina–brain pathways. Cell, 175(1), 7184.e18.Google Scholar
Fields, R. D. (2011). Imaging learning: The search for a memory trace. Neuroscientist, 17(2), 185196.CrossRefGoogle ScholarPubMed
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., & Tsai, L.-H. (2007). Recovery of learning and memory is associated with chromatin remodelling. Nature, 447(7141), 178182.Google Scholar
Fishbein, A. B., Knutson, K. L., & Zee, P. C. (2021). Circadian disruption and human health. J Clin Invest, 131(19), e148286.Google Scholar
Fonken, L. K., Kitsmiller, E., Smale, L., & Nelson, R. J. (2012). Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent. J Biol Rhythms, 27(4), 319327.CrossRefGoogle Scholar
Fonken, L. K., & Nelson, R. J. (2014). The effects of light at night on circadian clocks and metabolism. Endocr Rev, 35(4), 648670.Google Scholar
Foster, R. G., Peirson, S. N., Wulff, K., Winnebeck, E., Vetter, C., & Roenneberg, T. (2013). Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog Mol Biol Transl Sci, 119, 325346.Google Scholar
Frey, U., Huang, Y. Y., & Kandel, E. R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science, 260(5114), 16611664.Google Scholar
Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385(6616), 533536.Google Scholar
Fujioka, A., Fujioka, T., Tsuruta, R., Izumi, T., Kasaoka, S., & Maekawa, T. (2011). Effects of a constant light environment on hippocampal neurogenesis and memory in mice. Neurosci Lett, 488(1), 4144.Google Scholar
Gallego, M., & Virshup, D. M. (2007). Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol, 8(2), 139148.Google Scholar
Gerstner, J. R., & Yin, J. C. P. (2010). Circadian rhythms and memory formation. Nat Rev Neurosci, 11(8), 577588.Google Scholar
Gibson, E. M., Wang, C., Tjho, S., Khattar, N., & Kriegsfeld, L. J. (2010). Experimental “jet lag” inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PLoS One, 5(12), e15267.Google Scholar
González-Burgos, I., Letechipía-Vallejo, G., López-Loeza, E., Moralí, G., & Cervantes, M. (2007). Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats. Neurosci Lett, 423(2), 162166.Google Scholar
Good, M. A., Barnes, P., Staal, V., McGregor, A., & Honey, R. C. (2007). Context- but not familiarity-dependent forms of object recognition are impaired following excitotoxic hippocampal lesions in rats. Behav Neurosci, 121(1), 218223.Google Scholar
Gotlieb, N., Moeller, J., & Kriegsfeld, L. J. (2018). Circadian control of neuroendocrine function: Implications for health and disease. Curr Opin Physiol, 5, 133140.Google Scholar
Gould, E., Beylin, A., Tanapat, P., Reeves, A., & Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 2(3), 260265.Google Scholar
Groeger, J. A., Viola, A. U., Lo, J. C. Y., von Schantz, M., Archer, S. N., & Dijk, D.-J. (2008). Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep, 31(8), 11591167.Google Scholar
Guan, J.-S., Haggarty, S. J., Giacometti, E., Dannenberg, J.-H., Joseph, N., Gao, J., Nieland, T. J. F., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R., & Tsai, L.-H. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243), 5560.Google Scholar
Gupta, S., Kim, S. Y., Artis, S., Molfese, D. L., Schumacher, A., Sweatt, J. D., Paylor, R. E., & Lubin, F. D. (2010). Histone methylation regulates memory formation. J Neurosci, 30(10), 35893599.Google Scholar
Gupta-Agarwal, S., Franklin, A. V., Deramus, T., Wheelock, M., Davis, R. L., McMahon, L. L., & Lubin, F. D. (2012). G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci, 32(16), 54405453.Google Scholar
Gupta-Agarwal, S., Jarome, T. J., Fernandez, J., & Lubin, F. D. (2014). NMDA receptor- and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation. Learn Mem, 21(7), 351362.Google Scholar
Ha, M., & Park, J. (2005). Shiftwork and metabolic risk factors of cardiovascular disease. J Occup Health, 47(2), 8995.Google Scholar
Haettig, J., Stefanko, D. P., Multani, M. L., Figueroa, D. X., McQuown, S. C., & Wood, M. A. (2011). HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem, 18(2), 7179.Google Scholar
Han, J., Li, Y., Wang, D., Wei, C., Yang, X., & Sui, N. (2010). Effect of 5-aza-2-deoxycytidine microinjecting into hippocampus and prelimbic cortex on acquisition and retrieval of cocaine-induced place preference in C57BL/6 mice. Eur J Pharmacol, 642(1–3), 9398.Google Scholar
Harbour, V. L., Weigl, Y., Robinson, B., & Amir, S. (2014). Phase differences in expression of circadian clock genes in the central nucleus of the amygdala, dentate gyrus, and suprachiasmatic nucleus in the rat. PLoS One, 9(7), e103309.Google Scholar
Hardin, P. E., & Yu, W. (2006). Circadian transcription: Passing the HAT to CLOCK. Cell, 125(3), 424426.Google Scholar
Harris, K. M., & Teyler, T. J. (1983). Age differences in a circadian influence on hippocampal LTP. Brain Res, 261(1), 6973.Google Scholar
Harrison, Y., Jones, K., & Waterhouse, J. (2007). The influence of time awake and circadian rhythm upon performance on a frontal lobe task. Neuropsychologia, 45(8), 19661972.Google Scholar
Hasegawa, S., Fukushima, H., Hosoda, H., Serita, T., Ishikawa, R., Rokukawa, T., Kawahara-Miki, R., Zhang, Y., Ohta, M., Okada, S., Tanimizu, T., Josselyn, S. A., Frankland, P. W., & Kida, S. (2019). Hippocampal clock regulates memory retrieval via dopamine and PKA-induced GluA1 phosphorylation. Nat Comm, 10(1), 5766.Google Scholar
Hawk, J. D., Florian, C., & Abel, T. (2011). Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn Mem, 18(6), 367370.Google Scholar
Henry, R. A., Kuo, Y.-M., & Andrews, A. J. (2013). Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry, 52(34), 57465759.Google Scholar
Hernández, F., Borrell, J., Guaza, C., Avila, J., & Lucas, J. J. (2002). Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem, 83(6), 15291533.Google Scholar
Honma, K., Katabami, F., & Hiroshige, T. (1978). A phase response curve for the locomotor activity rhythm of the rat. Experientia, 34(12), 16021603.Google Scholar
Horowitz, T. S., Cade, B. E., Wolfe, J. M., & Czeisler, C. A. (2003). Searching night and day: A dissociation of effects of circadian phase and time awake on visual selective attention and vigilance. Psychol Sci, 14(6), 549557.Google Scholar
Horsey, E. A., Maletta, T., Turner, H., Cole, C., Lehmann, H., & Fournier, N. M. (2019). Chronic jet lag simulation decreases hippocampal neurogenesis and enhances depressive behaviors and cognitive deficits in adult male rats. Front Behav Neurosci, 13, 272.Google Scholar
Hsieh, C.-Y., Hung, C.-H., Lee, Y.-H., Wu, S.-T., & Hu, C.-J. (2015). Effects of light-dark cycle on hippocampal iNOS expression and CREB activation in rats. Chin J Physiol, 58(1), 1926.Google Scholar
Hwang, S. Y., & Lee, J. H. (2005). Comparison of cardiovascular risk profile clusters among industrial workers. Taehan Kanho Hakhoe Chi, 35(8), 15001507.Google Scholar
Ikeno, T., & Nelson, R. J. (2015). Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters. Hippocampus, 25(2), 142148.Google Scholar
Ikeno, T., Weil, Z. M., & Nelson, R. J. (2013). Photoperiod affects the diurnal rhythm of hippocampal neuronal morphology of Siberian hamsters. Chronobiol Int, 30(9), 10891100.Google Scholar
Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G., Deloulme, J. C., Chan, G., & Storm, D. R. (1998). Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron, 21(4), 869883.Google Scholar
Inda, M. C., Muravieva, E. V., & Alberini, C. M. (2011). Memory retrieval and the passage of time: From reconsolidation and strengthening to extinction. J Neurosci, 31(5), 16351643.Google Scholar
Jagannath, A., Butler, R., Godinho, S. I. H., Couch, Y., Brown, L. A., Vasudevan, S. R., Flanagan, K. C., Anthony, D., Churchill, G. C., Wood, M. J. A., Steiner, G., Ebeling, M., Hossbach, M., Wettstein, J. G., Duffield, G. E., Gatti, S., Hankins, M. W., Foster, R. G., & Peirson, S. N. (2013). The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell, 154(5), 11001111.Google Scholar
Jarome, T. J., & Lubin, F. D. (2014). Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem, 115, 116127.CrossRefGoogle ScholarPubMed
Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 10741080.CrossRefGoogle ScholarPubMed
Jilg, A., Bechstein, P., Saade, A., Dick, M., Li, T. X., Tosini, G., Rami, A., Zemmar, A., & Stehle, J. H. (2019). Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. J Pineal Res, 66(3), e12553.Google Scholar
Jilg, A., Lesny, S., Peruzki, N., Schwegler, H., Selbach, O., Dehghani, F., & Stehle, J. H. (2010). Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus, 20(3), 377388.Google Scholar
Johnson, C. A., White, D. A., Lavender, J. S., O’Neill, L. P., & Turner, B. M. (2002). Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J Biol Chem, 277(11), 95909597.Google Scholar
Kandel, E. R., Dudai, Y., & Mayford, M. R. (2014). The molecular and systems biology of memory. Cell, 157(1), 163186.Google Scholar
Karatsoreos, I. N., Bhagat, S., Bloss, E. B., Morrison, J. H., & McEwen, B. S. (2011). Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci USA, 108(4), 16571662.Google Scholar
Katada, S., & Sassone-Corsi, P. (2010). The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol, 17(12), 14141421.Google Scholar
Kelleher, R. J., Govindarajan, A., Jung, H.-Y., Kang, H., & Tonegawa, S. (2004). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell, 116(3), 467479.Google Scholar
Kelly, A., Laroche, S., & Davis, S. (2003). Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J Neurosci, 23(12), 53545360.Google Scholar
Kerimoglu, C., Agis-Balboa, R. C., Kranz, A., Stilling, R., Bahari-Javan, S., Benito-Garagorri, E., Halder, R., Burkhardt, S., Stewart, A. F., & Fischer, A. (2013). Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J Neurosci, 33(8), 34523464.Google Scholar
Kim, M.-S., Akhtar, M. W., Adachi, M., Mahgoub, M., Bassel-Duby, R., Kavalali, E. T., Olson, E. N., & Monteggia, L. M. (2012). An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci, 32(32), 1087910886.Google Scholar
Kivimäki, M., Virtanen, M., Elovainio, M., Väänänen, A., Keltikangas-Järvinen, L., & Vahtera, J. (2006). Prevalent cardiovascular disease, risk factors and selection out of shift work. Scand J Work Environ Health, 32(3), 204208.Google Scholar
Kocevska, D., Muetzel, R. L., Luik, A. I., Luijk, M. P. C. M., Jaddoe, V. W., Verhulst, F. C., White, T., & Tiemeier, H. (2017). The developmental course of sleep disturbances across childhood relates to brain morphology at age 7: The generation R study. Sleep, 40(1), zsw022.Google Scholar
Kole, M. H., Koolhaas, J. M., Luiten, P. G., & Fuchs, E. (2001). High-voltage-activated Ca2+ currents and the excitability of pyramidal neurons in the hippocampal CA3 subfield in rats depend on corticosterone and time of day. Neurosci Lett, 307(1), 5356.Google Scholar
Kondratova, A. A., Dubrovsky, Y. V., Antoch, M. P., & Kondratov, R. V. (2010). Circadian clock proteins control adaptation to novel environment and memory formation. Aging, 2(5), 285297.Google Scholar
Korzus, E., Rosenfeld, M. G., & Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42(6), 961972.Google Scholar
Kott, J., Leach, G., & Yan, L. (2012). Direction-dependent effects of chronic “jet-lag” on hippocampal neurogenesis. Neurosci Lett, 515(2), 177180.Google Scholar
Kropff, E., Yang, S. M., & Schinder, A. F. (2015). Dynamic role of adult-born dentate granule cells in memory processing. Curr Opin Neurobiol, 35, 2126.Google Scholar
Kwapis, J. L., Alaghband, Y., Kramár, E. A., López, A. J., Vogel Ciernia, A., White, A. O., Shu, G., Rhee, D., Michael, C. M., Montellier, E., Liu, Y., Magnan, C. N., Chen, S., Sassone-Corsi, P., Baldi, P., Matheos, D. P., & Wood, M. A. (2018). Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat Comm, 9(1), 3323.Google Scholar
Lee, Y., Lee, J., Kwon, I., Nakajima, Y., Ohmiya, Y., Son, G. H., Lee, K. H., & Kim, K. (2010). Coactivation of the CLOCK–BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci, 123(20), 35473557.Google Scholar
LeGates, T. A., Altimus, C. M., Wang, H., Lee, H.-K., Yang, S., Zhao, H., Kirkwood, A., Weber, E. T., & Hattar, S. (2012). Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature, 491(7425), 594598.Google Scholar
Lehman, M. N., Silver, R., Gladstone, W. R., Kahn, R. M., Gibson, M., & Bittman, E. L. (1987). Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci, 7(6), 16261638.Google Scholar
Leith Sly, J., & Carpenter, D. O. (2012). Special vulnerability of children to environmental exposures. Rev Environ Health, 27(4), 151157.Google Scholar
Leso, V., Fontana, L., Caturano, A., Vetrani, I., Fedele, M., & Iavicoli, I. (2021). Impact of shift work and long working hours on worker cognitive functions: Current evidence and future research needs. Int J Environ Res Public Health, 18(12), 6540.Google Scholar
Leuner, B., Mendolia-Loffredo, S., Kozorovitskiy, Y., Samburg, D., Gould, E., & Shors, T. J. (2004). Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J Neurosci, 24(34), 74777481.Google Scholar
Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem, 279(39), 4054540559.Google Scholar
Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I.-C., Desai, P., Malone, L. M., & Sweatt, J. D. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem, 281(23), 1576315773.Google Scholar
Levenson, J. M., & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nat Rev Neurosci, 6(2), 108118.Google Scholar
Liston, C., Cichon, J. M., Jeanneteau, F., Jia, Z., Chao, M. V., & Gan, W.-B. (2013). Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci, 16(6), 698705.Google Scholar
Liu, Q., Shi, J., Duan, P., Liu, B., Li, T., Wang, C., Li, H., Yang, T., Gan, Y., Wang, X., Cao, S., & Lu, Z. (2018). Is shift work associated with a higher risk of overweight or obesity? A systematic review of observational studies with meta-analysis. Int J Epidemiol, 47(6), 19561971.Google Scholar
Liu, Y., Sun, J., Wang, Y., Lopez, D., Tran, J., Bi, X., & Baudry, M. (2016). Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. Learn Mem, 23(8), 399404.Google Scholar
Loh, D. H., Navarro, J., Hagopian, A., Wang, L. M., Deboer, T., & Colwell, C. S. (2010). Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice. PLoS One, 5(9), e12546.Google Scholar
Lonze, B. E., & Ginty, D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35(4), 605623.Google Scholar
Lu, Y., Christian, K., & Lu, B. (2008). BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem, 89(3), 312323.Google Scholar
Lubin, F. D. (2011). Epigenetic gene regulation in the adult mammalian brain: Multiple roles in memory formation. Neurobiol Learn Mem, 96(1), 6878.Google Scholar
Lubin, F. D., Gupta, S., Parrish, R. R., Grissom, N. M., & Davis, R. L. (2011). Epigenetic mechanisms: Critical contributors to long-term memory formation. Neuroscientist, 17(6), 616632.Google Scholar
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci, 28(42), 1057610586.Google Scholar
Mahan, A. L., Mou, L., Shah, N., Hu, J.-H., Worley, P. F., & Ressler, K. J. (2012). Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning. J Neurosci, 32(13), 46514659.Google Scholar
Malenka, R. C. (2003). Synaptic plasticity and AMPA receptor trafficking. Ann NY Acad Sci, 1003, 111.Google Scholar
Malvaez, M., McQuown, S. C., Rogge, G. A., Astarabadi, M., Jacques, V., Carreiro, S., Rusche, J. R., & Wood, M. A. (2013). HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci USA, 110(7), 26472652.Google Scholar
Manoogian, E. N. C., Chow, L. S., Taub, P. R., Laferrère, B., & Panda, S. (2022). Time-restricted eating for the prevention and management of metabolic diseases. Endocr Rev, 43(2), 405436.Google Scholar
Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R., & Bach, M. E. (1998). Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell, 92(1), 3949.Google Scholar
Marquié, J.-C., Tucker, P., Folkard, S., Gentil, C., & Ansiau, D. (2015). Chronic effects of shift work on cognition: Findings from the VISAT longitudinal study. Occup Environ Med, 72(4), 258264.Google Scholar
Martin, S. J., Grimwood, P. D., & Morris, R. G. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis. Annu Rev Neurosci, 23, 649711.Google Scholar
Martinez, J. L., & Derrick, B. E. (1996). Long-term potentiation and learning. Annu Rev Psychol, 47, 173203.Google Scholar
Maywood, E. S., Chesham, J. E., Winsky-Sommerer, R., Smyllie, N. J., & Hastings, M. H. (2021). Circadian chimeric mice reveal an interplay between the suprachiasmatic nucleus and local brain clocks in the control of sleep and memory. Front Neurosci, 15, 639281.Google Scholar
McDonald, R. J., Zelinski, E. L., Keeley, R. J., Sutherland, D., Fehr, L., & Hong, N. S. (2013). Multiple effects of circadian dysfunction induced by photoperiod shifts: Alterations in context memory and food metabolism in the same subjects. Physiol Behav, 118, 1424.Google Scholar
McHill, A. W., Hull, J. T., Wang, W., Czeisler, C. A., & Klerman, E. B. (2018). Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance. Proc Natl Acad Sci USA, 115(23), 60706075.Google Scholar
McMartin, L., Kiraly, M., Heller, H. C., Madison, D. V., & Ruby, N. F. (2021). Disruption of circadian timing increases synaptic inhibition and reduces cholinergic responsiveness in the dentate gyrus. Hippocampus, 31(4), 422434.Google Scholar
McNulty, S. E., Barrett, R. M., Vogel-Ciernia, A., Malvaez, M., Hernandez, N., Davatolhagh, M. F., Matheos, D. P., Schiffman, A., & Wood, M. A. (2012). Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem, 19(12), 588592.Google Scholar
McQuown, S. C., Barrett, R. M., Matheos, D. P., Post, R. J., Rogge, G. A., Alenghat, T., Mullican, S. E., Jones, S., Rusche, J. R., Lazar, M. A., & Wood, M. A. (2011). HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci, 31(2), 764774.Google Scholar
Meijman, T., van der Meer, O., & van Dormolen, M. (1993). The after-effects of night work on short-term memory performance. Ergonomics, 36(1–3), 3742.Google Scholar
Milekic, M. H., Pollonini, G., & Alberini, C. M. (2007). Temporal requirement of C/EBPbeta in the amygdala following reactivation but not acquisition of inhibitory avoidance. Learn Mem, 14(7), 504511.Google Scholar
Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53(6), 857869.Google Scholar
Mohawk, J. A., Green, C. B., & Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annu Rev Neurosci, 35, 445462.Google Scholar
Moncada, D., Ballarini, F., Martinez, M. C., Frey, J. U., & Viola, H. (2011). Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proc Natl Acad Sci USA, 108(31), 1293112936.Google Scholar
Moore, R. Y., & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res, 42(1), 201206.Google Scholar
Morin, L. P., & Allen, C. N. (2006). The circadian visual system, 2005. Brain Res Rev, 51(1), 160.Google Scholar
Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319(6056), 774776.Google Scholar
Nader, N., Chrousos, G. P., & Kino, T. (2009). Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: Potential physiological implications. FASEB J, 23(5), 15721583.Google Scholar
Narasimamurthy, R., Hunt, S. R., Lu, Y., Fustin, J.-M., Okamura, H., Partch, C. L., Forger, D. B., Kim, J. K., & Virshup, D. M. (2018). CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch. Proc Natl Acad Sci USA, 115(23), 59865991.Google Scholar
Naruse, Y., Oh-hashi, K., Iijima, N., Naruse, M., Yoshioka, H., & Tanaka, M. (2004). Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol, 24(14), 62786287.Google Scholar
Nishikawa, Y., Shibata, S., & Watanabe, S. (1995). Circadian changes in long-term potentiation of rat suprachiasmatic field potentials elicited by optic nerve stimulation in vitro. Brain Res, 695(2), 158162.Google Scholar
Obrietan, K., Impey, S., & Storm, D. R. (1998). Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat Neurosci, 1(8), 693700.Google Scholar
Oike, Y., Hata, A., Mamiya, T., Kaname, T., Noda, Y., Suzuki, M., Yasue, H., Nabeshima, T., Araki, K., & Yamamura, K. (1999). Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: Implications for a dominant-negative mechanism. Human Mol Genet, 8(3), 387396.Google Scholar
Oike, Y., Takakura, N., Hata, A., Kaname, T., Akizuki, M., Yamaguchi, Y., Yasue, H., Araki, K., Yamamura, K., & Suda, T. (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9), 27712779.Google Scholar
Oishi, K., Ohkura, N., Kadota, K., Kasamatsu, M., Shibusawa, K., Matsuda, J., Machida, K., Horie, S., & Ishida, N. (2006). Clock mutation affects circadian regulation of circulating blood cells. J Circadian Rhythms, 4(0), Art. 13.Google Scholar
Oliveira, A. M. M., Estévez, M. A., Hawk, J. D., Grimes, S., Brindle, P. K., & Abel, T. (2011). Subregion-specific p300 conditional knock-out mice exhibit long-term memory impairments. Learn Mem, 18(3), 161169.Google Scholar
Ortega-Martínez, S. (2015). A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci, 8, 46.Google Scholar
Pardo, M., Abrial, E., Jope, R. S., & Beurel, E. (2016). GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation. Genes Brain Behav, 15(3), 348355.Google Scholar
Patke, A., Young, M. W., & Axelrod, S. (2020). Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol, 21(2), 6784.Google Scholar
Peineau, S., Bradley, C., Taghibiglou, C., Doherty, A., Bortolotto, Z. A., Wang, Y. T., & Collingridge, G. L. (2008). The role of GSK-3 in synaptic plasticity. Br J Pharmacol, 153(Suppl 1), S428S437.Google Scholar
Peng, S., Zhang, Y., Zhang, J., Wang, H., & Ren, B. (2010). ERK in learning and memory: A review of recent research. Int J Mol Sci, 11(1), 222232.Google Scholar
Perazzona, B., Isabel, G., Preat, T., & Davis, R. L. (2004). The role of cAMP response element-binding protein in Drosophila long-term memory. J Neurosci, 24(40), 88238828.Google Scholar
Phan, T. X., Phan, T. H., Chan, G. C.-K., Sindreu, C. B., Eckel-Mahan, K. L., & Storm, D. R. (2011). The diurnal oscillation of MAP (mitogen-activated protein) kinase and adenylyl cyclase activities in the hippocampus depends on the suprachiasmatic nucleus. J Neurosci, 31(29), 1064010647.Google Scholar
Potter, G. D. M., Skene, D. J., Arendt, J., Cade, J. E., Grant, P. J., & Hardie, L. J. (2016). Circadian rhythm and sleep disruption: Causes, metabolic consequences, and countermeasures. Endocr Rev, 37(6), 584608.Google Scholar
Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 110(2), 251260.Google Scholar
Puckett, R. E., & Lubin, F. D. (2011). Epigenetic mechanisms in experience-driven memory formation and behavior. Epigenomics, 3(5), 649664.Google Scholar
Raghavan, A. V., Horowitz, J. M., & Fuller, C. A. (1999). Diurnal modulation of long-term potentiation in the hamster hippocampal slice. Brain Res, 833(2), 311314.Google Scholar
Ralph, M. R., Foster, R. G., Davis, F. C., & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science, 247(4945), 975978.Google Scholar
Ramirez-Rodriguez, G., Ortíz-López, L., Domínguez-Alonso, A., Benítez-King, G. A., & Kempermann, G. (2011). Chronic treatment with melatonin stimulates dendrite maturation and complexity in adult hippocampal neurogenesis of mice. J Pineal Res, 50(1), 2937.Google Scholar
Rawashdeh, O., de Borsetti, N. H., Roman, G., & Cahill, G. M. (2007). Melatonin suppresses nighttime memory formation in zebrafish. Science, 318(5853), 11441146.Google Scholar
Rawashdeh, O., Jilg, A., Jedlicka, P., Slawska, J., Thomas, L., Saade, A., Schwarzacher, S. W., & Stehle, J. H. (2014). PERIOD1 coordinates hippocampal rhythms and memory processing with daytime. Hippocampus, 24(6), 712723.Google Scholar
Rawashdeh, O., Jilg, A., Maronde, E., Fahrenkrug, J., & Stehle, J. H. (2016). Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J Neurochem, 138(5), 731745.Google Scholar
Ripperger, J. A., & Schibler, U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet, 38(3), 369374.Google Scholar
Rogge, G. A., Singh, H., Dang, R., & Wood, M. A. (2013). HDAC3 is a negative regulator of cocaine-context-associated memory formation. J Neurosci, 33(15), 66236632.Google Scholar
Romeo, Y., Zhang, X., & Roux, P. P. (2012). Regulation and function of the RSK family of protein kinases. Biochem J, 441(2), 553569.Google Scholar
Rouch, I., Wild, P., Ansiau, D., & Marquié, J.-C. (2005). Shiftwork experience, age and cognitive performance. Ergonomics, 48(10), 12821293.Google Scholar
Ruby, N. F., Fernandez, F., Garrett, A., Klima, J., Zhang, P., Sapolsky, R., & Heller, H. C. (2013). Spatial memory and long-term object recognition are impaired by circadian arrhythmia and restored by the GABAAAntagonist pentylenetetrazole. PLoS One, 8(8), e72433.Google Scholar
Ruby, N. F., Hwang, C. E., Wessells, C., Fernandez, F., Zhang, P., Sapolsky, R., & Heller, H. C. (2008). Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci USA, 105(40), 1559315598.Google Scholar
Sakamoto, K., Norona, F. E., Alzate-Correa, D., Scarberry, D., Hoyt, K. R., & Obrietan, K. (2013). Clock and light regulation of the CREB coactivator CRTC1 in the suprachiasmatic circadian clock. J Neurosci, 33(21), 90219027.Google Scholar
Sato, F., Kawamoto, T., Fujimoto, K., Noshiro, M., Honda, K. K., Honma, S., Honma, K., & Kato, Y. (2004). Functional analysis of the basic helix-loop-helix transcription factor DEC1 in circadian regulation. Interaction with BMAL1. Eur J Biochem, 271(22), 44094419.Google Scholar
Saulle, R., Bernardi, M., Chiarini, M., Backhaus, I., & La Torre, G. (2018). Shift work, overweight and obesity in health professionals: A systematic review and meta-analysis. La Clinica Terapeutica, 169(4), e189e197.Google Scholar
Sawicka, A., & Seiser, C. (2012). Histone H3 phosphorylation: A versatile chromatin modification for different occasions. Biochimie, 94(11), 21932201.Google Scholar
Schafe, G. E., & LeDoux, J. E. (2000). Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci, 20(18), RC96.Google Scholar
Scott, R., Bourtchuladze, R., Gossweiler, S., Dubnau, J., & Tully, T. (2002). CREB and the discovery of cognitive enhancers. J Mol Neurosci, 19(1–2), 171177.Google Scholar
Sei, H., Oishi, K., Sano, A., Seno, H., Ohmori, T., Morita, Y., & Ishida, N. (2006). Clock mutant mice with Jcl/ICR background shows an impaired learning ability in water maze, but not in passive avoidance, at the beginning of dark phase. Congenit Anom, 46(2), 8185.Google Scholar
Sei, H., Sano, A., Oishi, K., Fujihara, H., Kobayashi, H., Ishida, N., & Morita, Y. (2003). Increase of hippocampal acetylcholine release at the onset of dark phase is suppressed in a mutant mice model of evening-type individuals. Neuroscience, 117(4), 785789.Google Scholar
Selcher, J. C., Atkins, C. M., Trzaskos, J. M., Paylor, R., & Sweatt, J. D. (1999). A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem, 6(5), 478490.Google Scholar
Sharma, M., Shivarama Shetty, M., Arumugam, T. V., & Sajikumar, S. (2015). Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B. Sci Rep, 5(1), 16616.Google Scholar
Shimizu, K., Kobayashi, Y., Nakatsuji, E., Yamazaki, M., Shimba, S., Sakimura, K., & Fukada, Y. (2016). SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory. Nat Comm, 7, 12926.Google Scholar
Shimizu, K., Mackenzie, S. M., & Storm, D. R. (2010). SCOP/PHLPP and its functional role in the brain. Mol BioSyst, 6(1), 3843.Google Scholar
Shimizu, K., Phan, T., Mansuy, I. M., & Storm, D. R. (2007). Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell, 128(6), 12191229.Google Scholar
Smarr, B. L., Grant, A. D., Perez, L., Zucker, I., & Kriegsfeld, L. J. (2017). Maternal and early-life circadian disruption have long-lasting negative consequences on offspring development and adult behavior in mice. Sci Rep, 7(1), 3326.Google Scholar
Snider, K. H., Dziema, H., Aten, S., Loeser, J., Norona, F. E., Hoyt, K., & Obrietan, K. (2016). Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits. Behav Brain Res, 308, 222235.Google Scholar
Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., & Wood, M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci, 106(23), 94479452.Google Scholar
Steiger, A., Farfan, J., Fisher, N., Heller, H. C., Fernandez, F.-X., & Ruby, N. F. (2022). Reversible suppression of fear memory recall by transient circadian arrhythmia. Front Integr Neurosci, 16, 900620.Google Scholar
Stephan, F. K., & Kovacevic, N. S. (1978). Multiple retention deficit in passive avoidance in rats is eliminated by suprachiasmatic lesions. Behav Biol, 22(4), 456462.Google Scholar
Stephan, F. K., & Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA, 69(6), 15831586.Google Scholar
Stevens, R. G., Brainard, G. C., Blask, D. E., Lockley, S. W., & Motta, M. E. (2013). Adverse health effects of nighttime lighting: Comments on American Medical Association policy statement. Am J Prev Med, 45(3), 343346.Google Scholar
Sultan, F. A., Wang, J., Tront, J., Liebermann, D. A., & Sweatt, J. D. (2012). Genetic deletion of Gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity. J Neurosci, 32(48), 1705917066.Google Scholar
Sweatt, J. D. (2001). Memory mechanisms: The yin and yang of protein phosphorylation. Curr Biol, 11(10), R391–394.Google Scholar
Taki, Y., Hashizume, H., Thyreau, B., Sassa, Y., Takeuchi, H., Wu, K., Kotozaki, Y., Nouchi, R., Asano, M., Asano, K., Fukuda, H., & Kawashima, R. (2012). Sleep duration during weekdays affects hippocampal gray matter volume in healthy children. NeuroImage, 60(1), 471475.Google Scholar
Tapp, W. N., & Holloway, F. A. (1981). Phase shifting circadian rhythms produces retrograde amnesia. Science, 211(4486), 10561058.Google Scholar
Tischkau, S. A., Gallman, E. A., Buchanan, G. F., & Gillette, M. U. (2000). Differential cAMP gating of glutamatergic signaling regulates long-term state changes in the suprachiasmatic circadian clock. J Neurosci, 20(20), 78307837.Google Scholar
Tischkau, S. A., Mitchell, J. W., Tyan, S.-H., Buchanan, G. F., & Gillette, M. U. (2003). Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem, 278(2), 718723.Google Scholar
Tronel, S., Fabre, A., Charrier, V., Oliet, S. H. R., Gage, F. H., & Abrous, D. N. (2010). Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci USA, 107(17), 79637968.Google Scholar
Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87(7), 13271338.Google Scholar
Urban, M. W., Lo, C., Bodinayake, K. K., Brunswick, C. A., Murakami, S., Heimann, A. C., & Kwapis, J. L. (2021). The circadian clock gene Per1 modulates context fear memory formation within the retrosplenial cortex in a sex-specific manner. Neurobiol Learn Mem, 185, 107535.Google Scholar
Valor, L. M., Pulopulos, M. M., Jimenez-Minchan, M., Olivares, R., Lutz, B., & Barco, A. (2011). Ablation of CBP in forebrain principal neurons causes modest memory and transcriptional defects and a dramatic reduction of histone acetylation but does not affect cell viability. J Neurosci, 31(5), 16521663.Google Scholar
Van der Borght, K., Meerlo, P., Luiten, P. G. M., Eggen, B. J. L., & Van der Zee, E. A. (2005). Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone. Behav Brain Res, 157(1), 2330.Google Scholar
Van der Zee, E. A., Havekes, R., Barf, R. P., Hut, R. A., Nijholt, I. M., Jacobs, E. H., & Gerkema, M. P. (2008). Circadian time-place learning in mice depends on Cry genes. Curr Biol, 18(11), 844848.Google Scholar
Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., Cabrera, S. M., McDonough, C. B., Brindle, P. K., Abel, T., & Wood, M. A. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J Neurosci, 27(23), 61286140.Google Scholar
Vermeulen, M., Carrozza, M. J., Lasonder, E., Workman, J. L., Logie, C., & Stunnenberg, H. G. (2004). In vitro targeting reveals intrinsic histone tail specificity of the Sin3/histone deacetylase and N-CoR/SMRT corepressor complexes. Mol Cell Biol, 24(6), 23642372.Google Scholar
Vetter, C. (2020). Circadian disruption: What do we actually mean? Eur J Neurosci, 51(1), 531550.Google Scholar
Vieira, P. A., & Korzus, E. (2015). CBP-dependent memory consolidation in the prefrontal cortex supports object-location learning. Hippocampus, 25(12), 15321540.Google Scholar
Vilches, N., Spichiger, C., Mendez, N., Abarzua-Catalan, L., Galdames, H. A., Hazlerigg, D. G., Richter, H. G., & Torres-Farfan, C. (2014). Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS One, 9(3), e91313.Google Scholar
Vogt, M. A., Inta, D., Luoni, A., Elkin, H., Pfeiffer, N., Riva, M. A., & Gass, P. (2014). Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits. Front Behav Neurosci, 8, 407.Google Scholar
Voiculescu, S. E., Le Duc, D., Roșca, A. E., Zeca, V., Chiţimuș, D. M., Arsene, A. L., Drăgoi, C. M., Nicolae, A. C., Zăgrean, L., Schöneberg, T., & Zăgrean, A.-M. (2016). Behavioral and molecular effects of prenatal continuous light exposure in the adult rat. Brain Res, 1650, 5159.Google Scholar
Walker, W. H., Walton, J. C., DeVries, A. C., & Nelson, R. J. (2020). Circadian rhythm disruption and mental health. Transl Psychiatry, 10(1), 28.Google Scholar
Wardlaw, S. M., Phan, T. X., Saraf, A., Chen, X., & Storm, D. R. (2014). Genetic disruption of the core circadian clock impairs hippocampus-dependent memory. Learn Mem, 21(8), 417423.Google Scholar
Watanabe, Y., Gould, E., & McEwen, B. S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res, 588(2), 341345.Google Scholar
West, M. O., & Deadwyler, S. A. (1980). Circadian modulation of granule cell response to perforant path synaptic input in the rat. Neuroscience, 5(9), 15971602.Google Scholar
Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M., & Bussey, T. J. (2004). Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. J Neurosci, 24(26), 59015908.Google Scholar
Wolk, R., Gami, A. S., Garcia-Touchard, A., & Somers, V. K. (2005). Sleep and cardiovascular disease. Curr Prob Cardiol, 30(12), 625662.Google Scholar
Wood, M. A., Attner, M. A., Oliveira, A. M. M., Brindle, P. K., & Abel, T. (2006). A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn Mem, 13(5), 609617.Google Scholar
Wood, M. A., Kaplan, M. P., Park, A., Blanchard, E. J., Oliveira, A. M. M., Lombardi, T. L., & Abel, T. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn Mem, 12(2), 111119.Google Scholar
Woodruff, E. R., Chun, L. E., Hinds, L. R., Varra, N. M., Tirado, D., Morton, S. J., McClung, C. A., & Spencer, R. L. (2018). Coordination between prefrontal cortex clock gene expression and corticosterone contributes to enhanced conditioned fear extinction recall. ENeuro, 5(6), e0455-18.2018 1-13.Google Scholar
Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res, 531(1–2), 225231.Google Scholar
Wright, K. P., Hull, J. T., & Czeisler, C. A. (2002). Relationship between alertness, performance, and body temperature in humans. Am J Physiol Regul Integr Comp Physiol, 283(6), R1370R1377.Google Scholar
Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M., & Tei, H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science, 288(5466), 682685.Google Scholar
Zelinski, E. L., Deibel, S. H., & McDonald, R. J. (2014). The trouble with circadian clock dysfunction: Multiple deleterious effects on the brain and body. Neurosci Biobehav Rev, 40, 80101.Google Scholar
Zhang, X., Wharton, W., Yuan, Z., Tsai, S.-C., Olashaw, N., & Seto, E. (2004). Activation of the growth-differentiation factor 11 gene by the histone deacetylase (HDAC) inhibitor trichostatin A and repression by HDAC3. Mol Cell Biol, 24(12), 51065118.Google Scholar
Zhao, Z., Fan, L., & Frick, K. M. (2010). Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc Natl Acad Sci USA, 107(12), 56055610.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×