Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T03:02:21.126Z Has data issue: false hasContentIssue false

7 - Mycorrhizas and ecosystem processes in tropical rain forest: implications for diversity

Published online by Cambridge University Press:  25 August 2009

Ian. J. Alexander
Affiliation:
University of Aberdeen
S. S. Lee
Affiliation:
Forest Research Institute of Malaysia
David Burslem
Affiliation:
University of Aberdeen
Michelle Pinard
Affiliation:
University of Aberdeen
Sue Hartley
Affiliation:
University of Sussex
Get access

Summary

Introduction

The roots of almost all species of tropical rainforest trees contain mycorrhizal fungi (Alexander 1989a). Our aim here is to demonstrate that not only are these fungi central to ecosystem processes such as carbon- and nutrient-cycling, but that they also have the potential to influence biotic interactions between species, and so help to shape the structure and composition of forest communities. As such, they should be of interest to all ecologists, not just those who are primarily concerned with nutrient dynamics.

Mycorrhizas have continued to be the subject of intensive research in the 15 years since we last reviewed their role in tropical rain forest (Alexander 1989a). The processes by which mycorrhizal fungi access mineral nutrients in natural substrates are more fully understood, and important functional differences between types of mycorrhiza have been recognized (Read & Perez-Moreno 2003). There have been major advances in our understanding of the role of mycorrhizal fungi in forest carbon cycles. In boreal forest, for example, 20%–30% of current assimilate is consumed by mycorrhizal fungi (Söderström 2002), over 50% of CO2 released from soils is accounted for by the respiration of tree roots and their associated mycorrhizal fungi (Högberg et al. 2001) and 30% of the soil microbial biomass is the extraradical hyphae of mycorrhizal fungi (Högberg & Högberg 2002). There is also growing evidence that mycorrhizal associations are multifunctional, and that benefit to the host may not accrue solely or entirely through enhanced capture of mineral nutrients (Newsham et al. 1995a).

Type
Chapter
Information
Biotic Interactions in the Tropics
Their Role in the Maintenance of Species Diversity
, pp. 165 - 203
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abuzinadah, R. A. & Read, D. J. (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. 1. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytologist, 103, 481–493CrossRefGoogle Scholar
Agerer, R. (1986) Studies on ectomycorrhizae. 2. Introducing remarks on characterization and identification. Mycotaxon, 26, 473–492Google Scholar
Agerer, R. (2001) Exploration types of ectomycorrhizae – a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza, 11, 107–114CrossRefGoogle Scholar
ed. (1987–2002) Colour Atlas of Ectomycorrhizae. Schwäbisch Gmünd: Einhorn-Verlag
Agerer, R., Danielson, R. M., Egli, S., Ingleby, K., Luoma, D. & Treu, R., eds. (1996–2002) Descriptions of Ectomycorrhizae, Vol. 1–6. Schwäbisch Gmünd: Einhorn-VerlagGoogle Scholar
Alexander, I. J. (1989a) Mycorrhizas in tropical forests. In Mineral Nutrients in Tropical Forest and Savanna Ecosystems (ed. , J. Proctor). Oxford: Blackwell Scientific Publications, pp. 169–188Google Scholar
Alexander, I. J. (1989b) Systematics and ecology of ectomycorrhizal legumes. Advances in Legume Biology, Monographs in Systematic Botany, 29, 607–624Google Scholar
Alexander, I. J., Ahmad, N. & Lee, S. S. (1992) The role of mycorrhizae in the regeneration of some Malaysian forest trees. Philosophical Transactions of the Royal Society B, 335, 379–388CrossRefGoogle Scholar
Allen, M. F. & Allen, E. B. (1990) The mediation of competition by mycorrhizae in successional and patchy environments. Perspectives on Plant Competition (ed. , J. B. Grace & , D. Tilman). New York: Academic Press, pp. 367–389Google Scholar
Antibus, R. K., Sinsabaugh, R. L. & Linkins, A. E. (1992) Phosphatase-activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Canadian Journal of Botany, 70, 794–801CrossRefGoogle Scholar
Augé, R. M. (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42Google Scholar
Augspurger, C. K. (1990) Spatial patterns of damping-off disease during seedling recruitment in tropical forests. Pests, Pathogens and Plant Communities (ed. , J. Burdon & , S. Leather). Oxford: Blackwell Scientific Publications, pp. 3–14Google Scholar
Augspurger, C. K. & Kelly, C. K. (1984) Pathogen mortality of tropical tree seedlings – experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61, 211–217CrossRefGoogle ScholarPubMed
Ba, A. M., Sanon, K. B., Duponnois, R. & Dexheimer, J. (1999) Growth response of Afzelia africana Sm. seedlings to ectomycorrhizal inoculation in a nutrient-deficient soil. Mycorrhiza, 9, 91–95CrossRefGoogle Scholar
Ba, A. M., Sanon, K. B. & Duponnois, R. (2002) Influence of ectomycorrhizal inoculation on Afzelia quanzensis Welw. seedlings in a nutrient-deficient soil. Forest Ecology and Management, 161, 215–219CrossRefGoogle Scholar
Baillie, I. C., Ashton, P. S., Court, M. N., Anderson, J. A. R., Fitzpatrick, E. A. & Tinsley, J. (1987) Site characteristics and the distribution of tree species in mixed dipterocarp forest on tertiary sediments in central Sarawak, Malaysia. Journal of Tropical Ecology, 3, 201–220CrossRefGoogle Scholar
Bakarr, M. I. & Janos, D. P. (1996) Mycorrhizal associations of tropical legume trees in Sierra Leone, West Africa. Forest Ecology and Management, 89, 89–92CrossRefGoogle Scholar
Bebber, D., Brown, N. & Speight, M. (2002) Drought and root herbivory in understorey Parashorea Kurz (Dipterocarpaceae) seedlings in Borneo. Journal of Tropical Ecology, 18, 795–804CrossRefGoogle Scholar
Bending, G. D. & Read, D. J. (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. 5. Foraging behaviour and translocation of nutrients from exploited litter. New Phytologist, 130, 401–409CrossRefGoogle Scholar
Bending, G. D. & Read, D. J. (1996) Nitrogen mobilization from protein–polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biology & Biochemistry, 28, 1603–1612CrossRefGoogle Scholar
Bereau, M., Gazel, M. & Garbaye, J. (1997) Mycorhizal symbiosis in trees of the tropical rainforest of French Guiana. Canadian Journal of Botany, 75, 711–716Google Scholar
Bereau, M., Barigah, T. S., Louisanna, E. & Garbaye, J. (2000) Effects of endomycorrhizal development and light regimes on the growth of Dicorynia guianensis Amshoff seedlings. Annals of Forest Science, 57, 725–733CrossRefGoogle Scholar
Bever, J. D. (1994) Feedback between plants and their soil communities in an old field community. Ecology, 75, 1965–1977CrossRefGoogle Scholar
Bever, J. D. (2002a) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 244, 281–290CrossRefGoogle Scholar
Bever, J. D. (2002b) Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society of London B, 269, 2595–2601CrossRefGoogle Scholar
Bever, J. D. (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465–473CrossRefGoogle Scholar
Bever, J. D., Schultz, P. A., Pringle, A. & Morton, J. B. (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience, 51, 923–931CrossRefGoogle Scholar
Bidartondo, M. I. & Bruns, T. D. (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Molecular Ecology 10, 2285–2295CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Redecker, D., Hijri, I.et al. (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature, 419, 389–392CrossRefGoogle ScholarPubMed
Blee, K. A. & Anderson, A. J. (2000) Defense responses in plants to arbuscular mycorrhizal fungi. Current Advances in Mycorrhizal Research (ed. , G. K. Podila & , D. D. Douds Jr.) St Paul, Minnesota: American Phytopathological Society, pp. 27–44Google Scholar
Bolan, N. S. (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134, 189–207CrossRefGoogle Scholar
Borowicz, V. A. (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations?Ecology, 82, 3057–3068Google Scholar
Bradbury, S. M. (1998) Ectomycorrhizas of lodgepole pine (Pinus contorta) seedlings originating from seed in Southwestern Alberta cut blocks. Canadian Journal of Botany, 76, 213–217Google Scholar
Branzanti, M. B., Rocca, E. & Pisi, A. (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza, 9, 103–109CrossRefGoogle Scholar
Brearley, F. Q., Press, M. C. & Scholes, J. D. (2003) Nutrients obtained from leaf litter can improve the growth of dipterocarp seedlings. New Phytologist, 160, 101–110CrossRefGoogle Scholar
Brownlee, C., Duddridge, J. A., Malibari, A. & Read, D. J. (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in assimilate and water transport. Plant and Soil, 71, 433–443CrossRefGoogle Scholar
Bungard, R. A., Zipperlen, S. A., Press, M. C. & Scholes, J. D. (2002) The influence of nutrients on growth and photosynthesis of seedlings of two rainforest dipterocarp species. Functional Plant Biology, 29, 505–515CrossRefGoogle Scholar
Burslem, D. F. R. P., Grubb, P. J. & Turner, I. M. (1995) Responses to nutrient addition among shade-tolerant tree seedlings of lowland tropical rain-forest in Singapore. Journal of Ecology, 83, 113–122CrossRefGoogle Scholar
Cairney, J. W. G. (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza, 9, 125–135CrossRefGoogle Scholar
Chuyong, G. B., Newbery, D. M. & Songwe, N. C. (2002) Litter breakdown and mineralization in a Central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry, 61, 73–94CrossRefGoogle Scholar
Clapp, J. P., Rodriguez, A. & Dodd, J. C. (2002) Glomales rRNA gene diversity – all that glistens is not necessarily Glomalean?Mycorrhiza, 12, 269–270CrossRefGoogle Scholar
Cleveland, C. C., Townsend, A. R. & Schmidt, S. K. (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems, 5, 680–691CrossRefGoogle Scholar
Coley, P. D. & Barone, J. A. (1996) Herbivory and plant defences in tropical forests. Annual Review of Ecology and Systematics, 27, 305–335CrossRefGoogle Scholar
Colpaert, J. V., Vanlaere, A., Vantichelen, K. K. & Vanassche, J. A. (1997) The use of inositol hexaphosphate as a phosphorus source by mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris). Functional Ecology, 11, 407–415CrossRefGoogle Scholar
Connell, J. H. (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Numbers in Populations (ed. , P. J. den Boer & , G. R. Gradwell). Wageningen: Centre for Agricultural Publishing and Documentation, pp. 298–312Google Scholar
Connell, J. H. & Lowman, M. D. (1989) Low-diversity tropical rain forests – some possible mechanisms for their existence. American Naturalist, 134, 88–119CrossRefGoogle Scholar
Coomes, D. A. & Grubb, P. J. (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecological Monographs, 70, 171–207CrossRefGoogle Scholar
Cornelissen, J. H. C., Aerts, R., Cerabolini, B., Werger, M. J. A. & Heijden, M. G. A. (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129, 611–619CrossRefGoogle ScholarPubMed
Corner, E. J. H. (1968) A monograph of Thelephoraceae. Nova Hedwigia, 27, 1–110Google Scholar
Corner, E. J. H. (1972) Boletus in Malaysia. Singapore: Government Printing OfficeGoogle Scholar
Cuevas, E. & Medina, E. (1988) Nutrient dynamics within Amazonian forests. 2. Fine-root growth, nutrient availability and leaf litter decomposition. Oecologia, 76, 222–235CrossRefGoogle ScholarPubMed
Cumming, J. R. & Ning, J. (2003) Arbuscular mycorrhizal fungi enhance aluminium resistance of broomsedge (Andropogon virginicus L.). Journal of Experimental Botany, 54, 1447–1459CrossRefGoogle Scholar
Cumming, J. R. & Weinstein, L. H. (1990) Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings. Plant and Soil, 125, 7–18CrossRefGoogle Scholar
Dahlberg, A. & Stenström, E. (1991) Dynamic changes in nursery and indigenous mycorrhiza of Pinus sylvestris seedlings planted out in forest and clearcuts. Plant and Soil, 136, 73–86CrossRefGoogle Scholar
Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology 36, 203–209CrossRefGoogle ScholarPubMed
Delissio, L. J. & Primack, R. B. (2003) The impact of drought on the population dynamics of canopy-tree seedlings in an aseasonal Malaysian rain forest. Journal of Tropical Ecology, 19, 489–500CrossRefGoogle Scholar
Denslow, J. S., Vitousek, P. M. & Schultz, J. C. (1987) Bioassays of nutrient limitation in a tropical rain-forest soil. Oecologia, 74, 370–376CrossRefGoogle Scholar
Emmerton, K. S., Callaghan, T. V., Jones, H. E., Leake, J. R., Michelsen, A. & Read, D. J. (2001a) Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi. New Phytologist, 151, 503–511CrossRefGoogle Scholar
Emmerton, K. S., Callaghan, T. V., Jones, H. E., Leake, J. R., Michelsen, A. & Read, D. J. (2001b) Assimilation and isotopic fractionation of nitrogen by mycorrhizal and nonmycorrhizal subarctic plants. New Phytologist, 151, 513–524CrossRefGoogle Scholar
Engelbrecht, B. M. J. & Kursar, T. A. (2003) Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia, 136, 383–393CrossRefGoogle ScholarPubMed
Fassi, B. & Moser, M. (1991) Micorrize nelle foreste naturali nell'Africa tropicale e nei neotropici. Funghi, Plante e Suolo. Turin: Centro di Studio sulla Micologia del Torreno, pp. 157–202Google Scholar
Feng, G., Song, Y. C., Li, X. L. & Christie, P. (2003) Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology, 22, 139–148CrossRefGoogle Scholar
Frank, A. B. (1894) Die Bedeutung der Mycorrhizapilze für de gemeine Kiefer. Forstwissenschaftliche Centralblat, 16, 1852–1890Google Scholar
Gange, A. C. (2001) Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytologist, 150, 611–618CrossRefGoogle Scholar
Gange, A. C. & West, H. M. (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist, 128, 79–87CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Canadian Journal of Botany, 74, 1572–1583CrossRefGoogle Scholar
Gehring, C. A. (2003) Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species. Plant Ecology, 167, 127–139CrossRefGoogle Scholar
Gehring, C. A. & Whitham, T. G. (1994) Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology & Evolution, 9, 251–255CrossRefGoogle Scholar
Gehring, C. A., Cobb, N. S. & Whitman, T. G. (1997) Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible Pinyon pines. American Naturalist, 149, 824–841CrossRefGoogle ScholarPubMed
Gerard, P. (1960) Etude écologique de la fôret dense à Gilbertiodendron dewevrei dans la région de l'Uelé. Publication de l'Institut National pour l'Etude Agronomique du Congo Belge. Série Scientifique, 87, 1–159Google Scholar
Gilbert, G. S. (1994) Density- and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia, 98, 100–108CrossRefGoogle Scholar
Goodman, D. M., Durall, D. M., Trofymow, J. A. & Berch, S. M., eds. (1996–2002) A Manual of Concise Descriptions of North American Ectomycorrhizae. Sidney, BC: Mycologue PublicationsGoogle Scholar
Goverde, M., Heijden, M. G. A., Wiemken, A., Sanders, I. R. & Erhardt, A. (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia, 125, 362–369CrossRefGoogle ScholarPubMed
Graham, J. H. (2001) What do root pathogens see in mycorrhizas?New Phytologist, 149, 357–359CrossRefGoogle Scholar
Green, J. J. & Newbery, D. M. (2001) Light and seed size affect establishment of grove-forming ectomycorrhizal rain forest tree species. New Phytologist, 151, 271–289CrossRefGoogle Scholar
Griffiths, R. P., Ingham, E. R., Caldwell, B. A., Castellano, M. A. & Cromack, K. (1991) Microbial characteristics of ectomycorrhizal mat communities in Oregon and California. Biology and Fertility of Soils, 11, 196–202CrossRefGoogle Scholar
Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Perera, G. A. D., Burslem, D. F. R. P., Ashton, P. M. S. & Ashton, P. S. (1997) Responses to nutrient addition among seedlings of eight closely related species of Shorea in Sri Lanka. Journal of Ecology, 85, 301–311CrossRefGoogle Scholar
Hart, M. M., Reader, R. J. & Klironomos, J. N. (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology & Evolution, 18, 418–423CrossRefGoogle Scholar
Hart, T. B., Hart, J. A. & Murphy, P. G. (1989) Monodominant and species-rich forests of the humid tropics – causes for their co-occurrence. American Naturalist, 133, 613–633CrossRefGoogle Scholar
Hartnett, D. C. & Wilson, G. W. T. (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant and Soil, 244, 319–331CrossRefGoogle Scholar
Harvey, A. E., Larsen, M. F. & Jurgensen, M. F. (1978) Distribution of ectomycorrhizae in a mature Douglas-fir/larch forest soil in Western Montana. Forest Science, 22, 393–398Google Scholar
Haynes, R. J. & Mokolobate, M. S. (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems, 59, 47–63CrossRefGoogle Scholar
Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. (1998) Ploughing up the wood-wide web?Nature, 394, 431CrossRefGoogle ScholarPubMed
Helgason, T., Fitter, A. H. & Young, J. P. W. (1999) Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (Bluebell) in a seminatural woodland. Molecular Ecology, 8, 659–666CrossRefGoogle Scholar
Helgason, T., Merryweather, J. W., Denison, J., Wilson, P., Young, J. P. W. & Fitter, A. H. (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology, 90, 371–384CrossRefGoogle Scholar
Henkel, T. W. (2003) Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. Journal of Tropical Ecology, 19, 417–437CrossRefGoogle Scholar
Henkel, T. W., Terborgh, J. & Vilgalys, R. J. (2002) Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima mountains of Guyana. Mycological Research, 106, 515–531CrossRefGoogle Scholar
Hodge, A. (2003) N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. Journal of Experimental Botany, 54, 2331–2342CrossRefGoogle ScholarPubMed
Hodge, A., Campbell, C. D. & Fitter, A. H. (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297–299CrossRefGoogle ScholarPubMed
Högberg, P. & Alexander, I. J. (1995) Roles of root symbioses in African woodland and forest – evidence from N15 abundance and foliar analysis. Journal of Ecology, 83, 217–224CrossRefGoogle Scholar
Högberg, M. N. & Hogberg, P. (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist, 154, 791–795CrossRefGoogle Scholar
Högberg, P., Nordgren, A., Buchmann, N.et al. (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789–792CrossRefGoogle ScholarPubMed
Hood, L. A. (2002) Effects of pathogenic and mycorrhizal fungi on regeneration of two tropical tree species. Unpublished Ph.D. thesis, University of Aberdeen
Horton, T. R. & Bruns, T. D. (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytologist, 139, 331–339CrossRefGoogle Scholar
Horton, T. R. & Bruns, T. D. (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology, 10, 1855–1871CrossRefGoogle ScholarPubMed
Huanté, P., Rincon, E. & Chapin, F. S. (1995) Responses to phosphorus of contrasting successional tree-seedling species from the tropical deciduous forest of Mexico. Functional Ecology, 9, 760–766CrossRefGoogle Scholar
Husband, R., Herre, E. A., Turner, S. L., Gallery, R. & Young, J. P. W. (2002a) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 11, 2669–2678CrossRefGoogle Scholar
Husband, R., Herre, E. A. & Young, J. P. W. (2002b) Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest. FEMS Microbiology Ecology, 42, 131–136CrossRefGoogle Scholar
Hwang, S. F., Chakravarty, P. & Chang, K. F. (1995) The effect of two ectomycorrhizal fungi, Paxillus involutus and Suillus tomentosus, and of Bacillus subtilis, on Fusarium damping-off in Jack pine seedlings. Phytoprotection, 76, 57–66CrossRefGoogle Scholar
Ingleby, K., Munro, R. C., Noor, M., Mason, P. A. & Clearwater, M. J. (1998) Ectomycorrhizal populations and growth of Shorea parvifolia (Dipterocarpaceae) seedlings regenerating under three different forest canopies following logging. Forest Ecology & Management, 111, 171–179CrossRefGoogle Scholar
Ingleby, K., Thuy, L. T. T., Phong, N. T. & Mason, P. A. (2000) Ectomycorrhizal inoculum potential of soils from forest restoration sites in South Vietnam. Journal of Tropical Forest Science, 12, 418–422Google Scholar
Jakobsen, I., Abbott, L. K. & Robson, A. D. (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.1. Spread of hyphae and phosphorus inflow into roots. New Phytologist, 120, 371–380CrossRefGoogle Scholar
Janos, D. P. (1975) Effects of vesicular-arbuscular mycorrhizae on lowland tropical rainforest trees. Endomycorrhizas (ed. , F. E. Sanders, , B. Mosse & , P. B. Tinker) London: Academic Press, pp. 437–446Google Scholar
Janos, D. P. (1980a) Vesicular-arbuscular mycorrhizae affect lowland tropical rainforest plant growth. Ecology, 61, 151–162CrossRefGoogle Scholar
Janos, D. P. (1980b) Mycorrhizae influence tropical succession. Biotropica, 12 (supplement), 56–64CrossRefGoogle Scholar
Janos, D. P. (1983) Tropical mycorrhizas, nutrient cycles and plant growth. Tropical Rain Forest: Ecology and Management (ed. , S. L. Sutton, , T. C. Whitmore & , A. C. Chadwick) Oxford: Blackwell Scientific Publications, pp. 327–345Google Scholar
Janos, D. P. (1996) Mycorrhizas, succession, and the rehabilitation of deforested lands in the humid tropics. Fungi and Environmental Change (ed. , J. C. Frankland, , N. Magan & , G. M. Gadd) Cambridge: Cambridge University Press, pp. 129–162Google Scholar
Janzen, D. H. (1970) Herbivores and the number of trees in tropical forests. The American Naturalist, 104, 501–528CrossRefGoogle Scholar
Jentschke, G. & Godbold, D. L. (2000) Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109, 107–116CrossRefGoogle Scholar
Johnson, A. H., Frizano, J. & Vann, D. R. (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135, 487–499CrossRefGoogle ScholarPubMed
Joner, E. J. & Jakobsen, I. (1995) Uptake of P32 from labelled organic matter by mycorrhizal and nonmycorrhizal subterranean clover (Trifolium subterraneum L). Plant and Soil, 172, 221–227CrossRefGoogle Scholar
Joner, E. J., Aarle, I. M. & Vosatka, M. (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant and Soil, 226, 199–210CrossRefGoogle Scholar
Jones, C. G. & Last, F. T. (1991) Ectomycorrhizae and trees: implications for above-ground herbivory. Microbial Mediation of Plant-Herbivore Interactions (ed. , P. Barbosa, , V. A. Krischik & , C. G. Jones) Chichester: Wiley, pp. 65–103Google Scholar
Jonsson, L., Dahlberg, A., Nilsson, M. C., Karen, O. & Zackrisson, O. (1999) Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytologist, 142, 151–162CrossRefGoogle Scholar
Kiers, E. T., Lovelock, C. E., Krueger, E. L. & Herre, E. A. (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters, 3, 106–113CrossRefGoogle Scholar
Koide, R. T. & Dickie, I. A. (2002) Effects of mycorrhizal fungi on plant populations. Plant and Soil, 244, 307–317CrossRefGoogle Scholar
Koide, R. T. & Kabir, Z. (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148, 511–517CrossRefGoogle Scholar
Kyllo, D. A., Velez, V. & Tyree, M. T. (2003) Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understoroy shrubs, Piper and Psychotria. New Phytologist, 160, 443–454CrossRefGoogle Scholar
Larsen, J. & Bodker, L. (2001) Interactions between pea root-inhabiting fungi examined using signature fatty acids. New Phytologist, 149, 487–493CrossRefGoogle Scholar
Lawrence, D. (2003) The response of tropical tree seedlings to nutrient supply: meta-analysis for understanding a changing tropical landscape. Journal of Tropical Ecology, 19, 239–250CrossRefGoogle Scholar
Lee, S. S. (1998) Root symbiosis and nutrition. A Review of Dipterocarps: Taxonomy, Ecology and Silviculture (ed. , S. Appanah & , J. M. Turnbull) Bogor: CIFOR, pp. 99–114Google Scholar
Lee, S. S. & Alexander, I. J. (1994) The response of seedlings of two dipterocarp species to nutrient additions and ectomycorrhizal infection. Plant & Soil 163, 299–306Google Scholar
Lee, S. S. & Alexander, I. J. (1996) The dynamics of ectomycorrhizal infection of Shorea leprosula (Miq) seedlings in Malaysian rain forests. New Phytologist 132, 297–305Google Scholar
Lee, S. S., Alexander, I. J., Moura-Costa, P. & Yap, S. W. (1996) Mycorrhizal infection of dipterocarp seedlings in logged and undisturbed forests. Proceedings of Fifth Round-Table Conference on Dipterocarps (ed. , S. Appanah & , K. C. Khoo). Kuala Lumpur: Forest Research Institute of Malaysia, pp. 157–164Google Scholar
Lee, S. S., Watling, R. & Turnbull, E. (2003) Diversity of putative ectomycorrhizal fungi in Pasoh Forest Reserve. Pasoh: Ecology of a Lowland Rain Forest in Southeast Asia (ed. , T. Okuda, , N. Manokaran, , Y. Matsumoto, , K. Niiyama, , S. C. Thomas & , P. S. Ashton) Tokyo: Springer, pp. 149–159Google Scholar
Mader, P., Vierheilig, H., Streitwolf-Engel, R.et al. (2000) Transport of N15 from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytologist 146, 155–161CrossRefGoogle Scholar
Marschner, H. & Dell, B. (1994) Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89–102CrossRefGoogle Scholar
Martinelli, L. A., Piccolo, M. C., Townsend, A. R.et al. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry, 46, 45–65CrossRefGoogle Scholar
Marulanda, A., Azcon, R. & Ruiz-Lozano, J. M. (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiologia Plantarum, 119, 526–533CrossRefGoogle Scholar
Meharg, A. A. & Cairney, J. W. G. (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research, 30, 69–112CrossRefGoogle Scholar
Meyer, F. H. (1967) Feinwurzelnverteilung bei Waldbäume in Abhängigkeit vom Substrat. Forstarchiv, 38, 286–290Google Scholar
Mirmanto, E., Proctor, J., Green, J., Nagy, L. & Suriantata, (1999) Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philosophical Transactions of the Royal Society of London B, 354, 1825–1829CrossRefGoogle Scholar
Morandi, D. (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant & Soil 185, 241–251CrossRefGoogle Scholar
Moyersoen, B. (1993) Ectomicorrizas y micorrizas vesiculo-arbusculares en Caatinga Amazonica del Sur de Venezuela. Scientia Guianea 3, 1–82Google Scholar
Moyersoen, B. & Fitter, A. H. (1999) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza, 8, 247–253CrossRefGoogle Scholar
Moyersoen, B., Alexander, I. J. & Fitter, A. H. (1998) Phosphorus nutrition of ectomycorrhizal and arbuscular mycorrhizal tree seedlings from a lowland tropical rain forest in Korup National Park, Cameroon. Journal of Tropical Ecology, 14, 47–61CrossRefGoogle Scholar
Moyersoen, B., Fitter, A. H. & Alexander, I. J. (1998) Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup National Park Rain Forest, Cameroon, in relation to edaphic parameters. New Phytologist, 139, 311–320CrossRefGoogle Scholar
Moyersoen, B., Becker, P. & Alexander, I. J. (2001) Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests?New Phytologist, 150, 591–599CrossRefGoogle Scholar
Natarajan, K. & Chandrashekara, K. V. (1978) A new species of Tomentella from south India. Mycologia 70, 1294–1297CrossRefGoogle Scholar
Neville, J., Tessier, J. L., Morrison, I., Scarratt, J., Canning, B. & Klironomos, J. N. (2002) Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Applied Soil Ecology, 19, 209–216CrossRefGoogle Scholar
Newbery, D. M., Alexander, I. J., Thomas, D. W. & Gartlan, J. S. (1988) Ectomycorrhizal rain-forest legumes and soil phosphorus in Korup National Park, Cameroon. New Phytologist, 109, 433–450CrossRefGoogle Scholar
Newbery, D. M., Alexander, I. J. & Rother, J. A. (1997) Phosphorus dynamics in a lowland African rain forest: the influence of ectomycorrhizal trees. Ecological Monographs, 67, 367–409Google Scholar
Newbery, D. M., Alexander, I. J. & Rother, J. A. (2000) Does proximity to conspecific adults influence the establishment of ectomycorrhizal trees in rain forest?New Phytologist, 147, 401–409CrossRefGoogle Scholar
Newbery, D. M., Chuyong, G. B., Green, J. J., Songwe, N. C., Tchuenteu, F. & Zimmermann, L. (2002a) Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a Central African rainforest?New Phytologist, 156, 297–311CrossRefGoogle Scholar
Newbery, D. M., Songwe, N. C. & Chuyong, G. B. (2002b) Phenology and dynamics of an African rainforest at Korup, Cameroon. Dynamics of Ecological Communities (ed. , D. M. Newbery, , H. H. T. Prins & , N. D. Brown). Oxford: Blackwell Scientific Publications, pp. 267–308Google Scholar
Newsham, K. K., Fitter, A. H. & Watkinson, A. R. (1995a) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology & Evolution, 10, 407–411CrossRefGoogle Scholar
Newsham, K. K., Fitter, A. H. & Watkinson, A. R. (1995b) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991–1000CrossRefGoogle Scholar
O'Connor, P. J., Smith, S. E. & Smith, E. A. (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 154, 209–218CrossRefGoogle Scholar
Onguene, N. A. & Kuyper, T. W. (2002) Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of South Cameroon. Mycorrhiza, 12, 13–17CrossRefGoogle ScholarPubMed
Palmer, M. W. (1991) Estimating species richness: the second-order jackknife reconsidered. Ecology, 72, 1512–1513CrossRefGoogle Scholar
Pearson, T. R. H., Burslem, D. F. R. P, Goeriz, R. E. & Dalling, J. W. (2003) Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought and herbivory on growth and survival. Oecologia, 137, 456–465CrossRefGoogle ScholarPubMed
Perez-Moreno, J. & Read, D. J. (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytologist, 145, 301–309CrossRefGoogle Scholar
Perotto, S. & Martino, E. (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation?Minerva Biotecnologica, 13, 55–63Google Scholar
Persson, J., Hogberg, P., Ekblad, A., Hogberg, M. N., Nordgren, A. & Nasholm, T. (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia, 137, 252–257CrossRefGoogle ScholarPubMed
Rabin, L. B. & Pacovsky, R. S. (1985) Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. Journal of Economic Entomology, 78, 1358–1363CrossRefGoogle Scholar
Read, D. J. (1991) Mycorrhizas in ecosystems. Experientia, 47, 376–391CrossRefGoogle Scholar
Read, D. J. (1997) The ties that bind. Nature, 388, 517–518CrossRefGoogle Scholar
Read, D. J. & Boyd, R. (1986) Water relations of mycorrhizal fungi and their host plants. Water, Fungi and Plants (ed. , P. G. Ayres & , L. Boddy). Cambridge: Cambridge University Press, pp. 287–303Google Scholar
Read, D. J. & Perez-Moreno, J. (2003) Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance?New Phytologist, 157, 475–492CrossRefGoogle Scholar
Reddell, P. & Malajczuk, N. (1984) Formation of mycorrhizae by jarrah (Eucalyptus marginata Donn ex Smith) in litter and soil. Australian Journal of Botany, 32, 511–520CrossRefGoogle Scholar
Redeker, D. (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant & Soil, 244, 67–73CrossRefGoogle Scholar
Roberts, P. J. & Spooner, B. M. (2000) Cantherelloid, clavarioid and thelephoroid fungi from Brunei Darussalam. Kew Bulletin, 55, 843–851CrossRefGoogle Scholar
Robinson, D. & Fitter, A. (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany, 50, 9–13CrossRefGoogle Scholar
Rose, S. L. & Paranka, J. E. (1987) Root and VAM distribution in tropical agricultural and forest soils. Mycorrhizae in the Next Decade (ed. , D. M. Sylvia, , L. L. Hung & , J. H. Graham) Gainesville: University of Florida, p. 165Google Scholar
Rufyikiri, G., Declerck, S., Dufey, J. E. & Delvaux, B. (2000) Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants. New Phytologist, 148, 343–352CrossRefGoogle Scholar
Sanders, F. E., Tinker, P. B., Black, R. L. B. & Palmerley, S. M. (1977) The development of endomycorrhizal root systems: I. Spread of infection and growth-promoting effects with four species of vesicular-arbuscular endophyte. New Phytologist, 78, 257–268CrossRefGoogle Scholar
Schüssler, A., Gehrig, H., Schwarzott, D. & Walker, C. (2001) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycological Research, 105, 5–15CrossRefGoogle Scholar
Sharif, , A. H. M. & Miller, H. G. (1990) Shorea leprosula as an indicator species for site fertility evaluation in dipterocarp forests of Peninsular Malaysia. Journal of Tropical Forest Science, 3, 101–110Google Scholar
Shi, L. B., Guttenberger, M., Kottke, I. & Hampp, R. (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza, 12, 303–311CrossRefGoogle ScholarPubMed
Singer, R. & Araujo, I. (1979) Litter decomposition and ectomycorrhiza in Amazonian forests 1. A comparison of litter decomposing and ectomycorrhizal basidiomycetes in latosol-terra-firme rain forest and white podsol campinarana. Acta Amazonica, 9, 25–41CrossRefGoogle Scholar
Singer, R. & Araujo-Aguiar, I. (1986) Litter decomposition and ectomycorrhizal basidiomycetes in an Igapó forest. Plant Systematics and Evolution, 153, 107–117CrossRefGoogle Scholar
Singh, K. G. (1966) Ectotrophic mycorrhiza in equatorial rain forests. Malayan Forester, 29, 13–18Google Scholar
Siqueira, J. O. & Saggin-Junior, O. J. (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 11, 245–255CrossRefGoogle Scholar
Siqueira, J. O., Carneiro, M. A. C., Curi, N., Rosado, S. C. S. & Davide, A. C. (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in southeastern Brazil. Forest Ecology and Management, 107, 241–252CrossRefGoogle Scholar
Smith, G. S. (1988) The role of phosphorus nutrition in interactions of vesicular- arbuscular mycorrhizal fungi with soil-borne nematodes and fungi. Phytopathology, 78, 371–374Google Scholar
Smith, S. E. & Read, D. J. (1997) Mycorrhizal Symbiosis, 2nd edn. San Diego: Academic Press
Söderström, B. (2002) Challenges for mycorrhizal research into the new millennium. Plant and Soil, 244, 1–7CrossRefGoogle Scholar
St John, T. V. & Machado, A. D. (1978) Efeitos da profundidade e do sistema de manejo de um solo de terra firme em infestaceos por micorrizes. Acta Amazonica, 8, 139–141CrossRefGoogle Scholar
Straatsma, G. & Krisai-Greilhuber, I. (2003) Assemblage structure, species richness, abundance, and distribution of fungal fruit bodies in a seven-year plot-based survey near Vienna. Mycological Research, 107, 632–640CrossRefGoogle Scholar
Straatsma, G., Ayer, F. & Egli, S. (2001) Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycological Research, 105, 515–523CrossRefGoogle Scholar
Supaart, S., Noritmitsu, S., Stephan, P.et al. (2003) Diversity of ectomycorrhizal fungi associated with Dipterocarpaceae in Malaysia. Proceedings of International Conference on Forestry and Forest Products Research (CFFPR 2001) Kepong: Forest Research Institute Malaysia, pp. 547–550Google Scholar
Tanner, E. V. J. (1977) Four montane rain forests of Jamaica: a quantitative characterisation of the floristics, the soils and the foliar mineral levels, and a discussion of the inter-relationships. Journal of Ecology, 65, 883–918CrossRefGoogle Scholar
Tanner, E. V. J., Kapos, V. & Franco, W. (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology, 73, 78–86CrossRefGoogle Scholar
Tanner, E. V. J., Vitousek, P. M. & Cuevas, E. (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology, 79, 10–22CrossRefGoogle Scholar
Tarafdar, J. C. & Marschner, H. (1994) Phosphatase-activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biology & Biochemistry, 26, 387–395CrossRefGoogle Scholar
Tawaraya, K., Takaya, Y., Turjaman, M.et al. (2003) Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of central Kalimantan, Indonesia. Forest Ecology and Management, 182, 381–386CrossRefGoogle Scholar
Taylor, A. F. S. & Alexander, I. J. (1990) Demography and population-dynamics of ectomycorrhizas of Sitka spruce fertilized with N. Agriculture Ecosystems & Environment, 28, 493–496CrossRefGoogle Scholar
Thomas, L., Mallesha, B. C. & Bagyaraj, D. J. (1994) Biological control of damping-off of cardamom by the VA mycorrhizal fungus, Glomus fasciculatum. Microbiological Research, 149, 413–417CrossRefGoogle Scholar
Thomson, B. D., Grove, T. S., Malajczuk, N. & Hardy, G. E. S. J. (1994) The effectiveness of ectomycorrhizal fungi in increasing the growth of Eucalyptus globulus Labill in relation to root colonization and hyphal development in soil. New Phytologist, 126, 517–524CrossRefGoogle Scholar
Tiessen, H., Cuevas, E. & Chacon, P. (1994) The role of soil organic-matter in sustaining soil fertility. Nature, 371, 783–785CrossRefGoogle Scholar
Torti, S. D. & Coley, P. D. (1999) Tropical monodominance: a preliminary test of the ectomycorrhizal hypothesis. Biotropica, 31, 220–228CrossRefGoogle Scholar
Torti, S. D., Coley, P. D. & Kursar, T. A. (2001) Causes and consequences of monodominance in tropical lowland forests. American Naturalist, 157, 141–153CrossRefGoogle ScholarPubMed
Unestam, T. & Sun, Y. P. (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza, 5, 301–311CrossRefGoogle Scholar
Heijden, M. G. A., Boller, T., Wiemken, A. & Sanders, I. R. (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79, 2082–2091Google Scholar
Heijden, M. G. A., Klironomos, J. N., Ursic, M.et al. (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72CrossRefGoogle Scholar
Vandenkoornhuyse, P., Husband, R., Daniell, T. J.et al. (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology 11, 1555–1564CrossRefGoogle Scholar
Vandenkoornhuyse, P., Ridgway, K. P., Watson, I. J., Fitter, A. H. & Young, J. P. W. (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 12, 3085–3095CrossRefGoogle ScholarPubMed
Vitousek, P. M. (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65, 285–298CrossRefGoogle Scholar
Vitousek, P. M. & Sanford, R. L. (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137–167CrossRefGoogle Scholar
Vitousek, P. M., Gerrish, G., Turner, D. R., Walker, L. R. & Mueller-Dombois, D. (1995) Literfall and nutrient cycling in four Hawaiian montane rainforests. Journal of Tropical Ecology, 11, 189–203CrossRefGoogle Scholar
Whitbeck, J. L. (2001) Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica, 33, 303–311CrossRefGoogle Scholar
Wright, S. J. (2002) Plant diversity in tropical forests: a review of mechanisms of species co-existence. Oecologia, 130, 1–14CrossRefGoogle Scholar
Yazid, S. M., Lee, S. S. & Lapeyrie, F. (1994) Growth stimulation of Hopea spp. (Dipterocarpaceae) seedlings following ectomycorrhizal inoculation with an exotic strain of Pisolithus tinctorius. Forest Ecology and Management, 67, 339–343CrossRefGoogle Scholar
Zangaro, W., Nisizaki, S. M. A., Domingos, J. C. B. & Nakano, E. M. (2003) Mycorrhizal response and successional status in 80 woody species from south Brazil. Journal of Tropical Ecology, 19, 315–324CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×