Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-16T01:54:21.628Z Has data issue: true hasContentIssue false

4 - Neighbourhood effects on sapling growth and survival in a neotropical forest and the ecological-equivalence hypothesis

Published online by Cambridge University Press:  25 August 2009

María Uriarte
Affiliation:
Institute of Ecosystem Studies, Millbrook
Stephen P. Hubbell
Affiliation:
University of Georgia and Smithsonian Tropical Research Institute
Robert John
Affiliation:
University of Georgia and Smithsonian Tropical Research Institute
Richard Condit
Affiliation:
Smithsonian Tropical Research Institute
Charles D. Canham
Affiliation:
Institute of Ecosystem Studies, Millbrook
David Burslem
Affiliation:
University of Aberdeen
Michelle Pinard
Affiliation:
University of Aberdeen
Sue Hartley
Affiliation:
University of Sussex
Get access

Summary

Introduction

In 1980 S. P. Hubbell and R. B. Foster began a long-term, large-scale study of tropical forest dynamics on Barro Colorado Island (BCI), Panama. The objective of the study was to test competing hypotheses about the maintenance of high tree species richness in the BCI forest, and in tropical moist forests more generally. Hubbell and Foster established a 50-ha permanent plot on the summit plateau of BCI, within which all free-standing woody plants with a stem diameter at breast height (DBH) of a centimetre or larger were tagged, measured, mapped and identified by 1982. Subsequent complete censuses of the BCI plot have been conducted from 1985 to 2000 at 5-year intervals. In setting up the BCI plot, Hubbell and Foster (1983) reasoned that whatever diversity-maintaining mechanisms were important, they would have to operate in a spatially dependent manner in communities of sessile plants such as the BCI tree community, which meant that the trees had to be mapped. A decade earlier, Janzen (1970) and Connell (1971) had independently proposed a spatially explicit ‘enemies hypothesis’, now known as the Janzen–Connell hypothesis. They hypothesized that host-specific seed and seedling predators were responsible for maintaining tropical tree diversity by causing dependence on density and frequency (rare species advantage), through an interaction between seed dispersal and density-dependent seed predation.

In 1980, there were essentially just two principal tropical forest diversity theories to test: the enemies hypothesis and its variants, and the ‘intermediate disturbance’ hypothesis (Connell 1977) and its variants that invoked a role for disturbances associated with opening, growth and closure of light gaps (e.g. Ricklefs 1978; Hartshorn 1978; Orians 1982; Denslow 1987).

Type
Chapter
Information
Biotic Interactions in the Tropics
Their Role in the Maintenance of Species Diversity
, pp. 89 - 106
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×