Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-31T07:03:28.334Z Has data issue: false hasContentIssue false

Part II - Medical Topics

Published online by Cambridge University Press:  05 June 2019

Carrie D. Llewellyn
Affiliation:
University of Sussex
Susan Ayers
Affiliation:
City, University of London
Chris McManus
Affiliation:
University College London
Stanton Newman
Affiliation:
City, University of London
Keith J. Petrie
Affiliation:
University of Auckland
Tracey A. Revenson
Affiliation:
City University of New York
John Weinman
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Antoniou, A., Pharoah, P. D., Narod, S., et al. (2003). Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. American Journal of Human Genetics, 72(5), 11171130.CrossRefGoogle ScholarPubMed
Bleiker, E. M., Esplen, M. J., Meiser, B., et al. (2013). 100 years Lynch syndrome: what have we learned about psychosocial issues? Familial Cancer 2, 325339.CrossRefGoogle Scholar
Burke, W., Daly, M. & Garber, J. (1997). Recommendations for follow-up care of individuals with an inherited predisposition to cancer: II. BRCA1 and BRCA2. Cancer Genetics Study Consortium. Journal of the American Medical Association 277, 9971003.CrossRefGoogle Scholar
Chen, S. & Parmigiani, G.(2007). Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of Clinical Oncology, 25(11), 13291333.Google Scholar
Chompret, A. (2002). The Li-Fraumeni syndrome. Biochemie, 84, 7582.Google Scholar
Chompret, A., Brugieres, L., Ronsin, M., et al. (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. British Journal of Cancer, 82, 19321937.Google ScholarPubMed
Cousens, N., Kaur, R., Meiser, B., et al. (2016). Community attitudes towards a Jewish community BRCA1/2 testing program. Familial Cancer, epublication ahead of print.Google Scholar
Daly, M. B., Pilarski, R., Axilbund, J. E., et al. (2015). Genetic/familial high-risk assessment: breast and ovarian, version 2.2015. Journal of the National Comprehensive Cancer Network 14, 153162.CrossRefGoogle Scholar
Douma, K. F., Bleiker, E. M., Aaronson, N. K., et al. (2010). Long-term compliance with endoscopic surveillance for familial adenomatous polyposis. Colorectal Disease, 12, 11981207.Google Scholar
Elrick, A., Ashida, S., Ivanovich, J., et al. (2017). Psychosocial and clinical factors associated with family communication of cancer genetic test results among women diagnosed with breast cancer at a young age. Journal of Genetic Counseling, 26(1), 173181.Google Scholar
Forman, A. D. & Hall, M. J. (2009). Influence of race/ethnicity on genetic counseling and testing for hereditary breast and ovarian cancer. Breast Journal, 15 (Suppl. 1), S56S62.Google Scholar
Glassey, R., Ives, A., Saunders, C., et al. (2016). Decision making, psychological wellbeing and psychosocial outcomes for high risk women who choose to undergo bilateral prophylactic mastectomy: a review of the literature. Breast, 28, 130135.Google Scholar
Graves, K. D., Vegella, P., Poggi, E. A., et al. (2012). Long-term psychosocial outcomes of BRCA1/BRCA2 testing: differences across affected status and risk-reducing surgery choice. Cancer Epidemiology, Biomarkers & Prevention, 21(3): 445455.Google Scholar
Hirschberg, A. M., Chan-Smutko, G. & Pirl, W. F. (2015). Psychiatric implications of cancer genetic testing. Cancer, 121, 341360.Google Scholar
Howard, A. F., Balneaves, L. G. & Bottorff, J. L. (2009). Women’s decision making about risk-reducing strategies in the context of hereditary breast and ovarian cancer: a systematic review. Journal of Genetic Counseling, 18, 578597CrossRefGoogle ScholarPubMed
Jasperson, K. W., Tuohy, T. M., Neklason, D. W., et al. (2010). Hereditary and familial colon cancer. Gastroenterology, 138, 20442058.CrossRefGoogle ScholarPubMed
Kinney, A. Y., Butler, K. M., Schwartz, M. D., et al. (2014). Expanding access to BRCA1/2 genetic counseling with telephone delivery: a cluster randomized trial. Journal of the National Cancer Institute, 106, dju328.Google Scholar
Lesko, L. J. & Schmidt, S. (2013). Clinical implementation of genetic testing in medicine: a US regulatory science perspective. British Journal of Clinical Pharmacology, 77, 606611.Google Scholar
Lynch, H. T., Lynch, P. M., Lanspa, S. J., et al. (2009). Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clinical Genetics , 76, 118.Google Scholar
Malkin, D., Li, F. P., Strong, L. C., et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science, 250, 12331238.CrossRefGoogle Scholar
Malkin, D., Garber, J. E., Strong, L., et al. (2016). The cancer predisposition revolution: how was the inherited basis of cancer foreshadowed? Science, 352, 10521053.Google Scholar
Meiser, B., Quinn, V. F., Gleeson, M., et al. (2016). When knowledge of a heritable gene mutation comes out of the blue: treatment-focused genetic testing in women newly diagnosed with breast cancer. European Journal of Human Genetics, epublication in advance of print.Google Scholar
Monahan, K. J. & Hopkins, L. ( 2016). Diagnosis and management of hereditary gastric cancer. Recent Results in Cancer Research, 205, 4560.Google Scholar
Nichols, K. E., Malkin, D., Garber, J. E., et al. (2001). Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer, Epidemiology, Biomarkers and Prevention, 10, 8387.Google Scholar
Noar, S. M., Althouse, B. M., Ayers, J. W., Francis, D. B. & Ribisl, K. M. (2015). Cancer information seeking in the digital age: effects of Angelina Jolie’s prophylactic mastectomy announcement. Medical Decision Making, 35(1), 1621.Google Scholar
Patenaude, A. F. (2012), Prophylactic Mastectomy: Insights from Women who Chose to Reduce Their Risk. Santa Barbara, CA; Praeger.Google Scholar
Patenaude, A. F. & Schneider, K. A. (2016). Issues arising in psychological consultations to help parents talk to minor and young adult children about their cancer genetic test result: a guide to providers. Journal of Genetic Counseling, 26, 251260.Google Scholar
Ringwald, J., Wochnowski, C., Bosse, K., et al. (2016). Psychological distress, anxiety and depression of cancer-affected BRCA1/2 mutation carriers: a systematic review. Journal of Genetic Counseling, epublished ahead of print.Google Scholar
Robinson, L. S., Hendrix, A., Xie, X. J. et al., (2015). Prediction of cancer prevention: from mammogram screening to identification of BRCA1/2 mutation carriers in underserved populations. EBioMedicine, 21, 18271833.Google Scholar
Rodriguez, V. M., Corona, R., Bodurtha, J. N., et al. (2016). Family ties: the role of family context in family health history communication about cancer. Journal of Health Communication, 21, 346355.Google Scholar
Roussi, P. & Miller, S. M. (2014). Monitoring style of coping with cancer related threats: a review of the literature. Journal of Behavioral Medicine, 37(5), 931954.CrossRefGoogle ScholarPubMed
Stan, D. L., Schuster, L. T. & Wick, M. J. (2013). Challenging and complex decisions in the management of the BRCA mutation carrier. Journal of Women’s Health, 22, 825834.Google Scholar
Syngal, S., Brand, R. E., Church, J. M., et al. (2015). ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. American Journal of Gastroenterology, 110, 223262.Google Scholar
Tercyak, K. P., Mays, D., DeMarco, T. A., et al. (2013). Decisional outcomes of maternal disclosure of BRCA1/2 genetic test results to children. Cancer Epidemiology, Biomarkers & Prevention, 22(7), 12601266.Google Scholar
van Oostrom, I., Meijers-Heijboer, H., Duivenvoorden, H. J., et al. (2006). Experience of parental cancer in childhood is a risk factor for psychological distress during genetic cancer susceptibility testing. Annals of Oncology, 17(7), 10901095.CrossRefGoogle ScholarPubMed
Villani, A., Tabori, U., Schiffman, J., et al. (2011). Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncology, 12, 559567.Google Scholar
Wakefield, C. E., Hanlon, L. V., Tucker, K. M., et al. (2016). The psychological impact of genetic information on children: a systematic review. Genetics in Medicine, 18(8): 755762.Google Scholar

References

Allsup, S. J. & Gosney, M. A. (2002). Anxiety and depression in an older research population and their impact on clinical outcomes in a randomised controlled trial. Postgraduate Medical Journal, 78, 674677.Google Scholar
Burns, V. E., Ring, C., Drayson, M., et al. (2002). Cortisol and cardiovascular reactions to mental stress and antibody status following hepatitis B vaccination: a preliminary study. Psychophysiology, 39, 361368.CrossRefGoogle ScholarPubMed
Burns, V. E., Carroll, D., Ring, C., et al. (2003). Antibody response to vaccination and psychosocial stress in humans: relationships and mechanisms. Vaccine, 21, 25232534.CrossRefGoogle ScholarPubMed
Gallagher, S., Phillips, A. C., Ferraro, A. J., et al. (2008). Social support is positively associated with the immunoglobulin M response to vaccination with pneumococcal polysaccharides. Biology and Psychology, 78, 211215.CrossRefGoogle ScholarPubMed
Gallagher, S., Phillips, A. C., Drayson, M. T., et al. (2009). Caregiving for children with developmental disabilities is associated with a poor antibody response to influenza vaccination. Psychosomatic Medicine, 71, 341344.Google Scholar
Glaser, R., Kiecolt-Glaser, J. K., Bonneau, R. H., et al. (1992). Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosomatic Medicine, 54, 2229.Google Scholar
Glaser, R., Sheridan, J., Malarkey, W. B., et al. (2000). Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosomatic Medicine, 62: 804807.Google Scholar
Hayney, M. S., Love, G. D., Buck, J. M., et al. (2003). The association between psychosocial factors and vaccine-induced cytokine production. Vaccine, 21, 24282432.Google Scholar
Hayney, M. S., Coe, C. L., Muller, D., et al. (2014). Age and psychological influences on immune responses to trivalent inactivated influenza vaccine in the meditation or exercise for preventing acute respiratory infection (MEPARI) trial. Human Vaccines & Immunotherapeutics, 10, 8391.Google Scholar
Irwin, M. R., Olmstead, R. & Oxman, M. N. (2007). Augmenting immune responses to varicella zoster virus in older adults: a randomized, controlled trial of Tai Chi. Journal of the American Geriatric Society, 55, 511517.Google Scholar
Irwin, M. R., Levin, M. J., Carrillo, C., et al. (2011). Major depressive disorder and immunity to varicella-zoster virus in the elderly. Brain, Behavior & Immunity, 25, 759766.Google Scholar
Jabaaij, L., Grosheide, P. M., Heijtink, R. A., et al. (1993). Influence of perceived psychological stress and distress on antibody response to low dose rDNA hepatitis B vaccine. Journal of Psychosomatic Research, 37, 361369.Google Scholar
Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., et al. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Sciences USA, 93, 30433047.Google Scholar
Kohut, M. L., Cooper, M. M., Nickolaus, M. S., et al. (2002). Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 57, M557–562.Google Scholar
Kohut, M. L., Lee, W., Martin, A., et al. (2005). The exercise-induced enhancement of influenza immunity is mediated in part by improvements in psychosocial factors in older adults. Brain, Behavior & Immunity, 19, 357366.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S., et al. (2001). Associations between stress, trait negative affect, acute immune reactivity, and antibody response to hepatitis B injection in healthy young adults. Health and Psychology, 20, 411.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S., et al. (2006). Trait positive affect and antibody response to hepatitis B vaccination. Brain, Behavior & Immunity, 20, 261269.Google Scholar
Miller, G. E., Cohen, S., Pressman, S., et al. (2004). Psychological stress and antibody response to influenza vaccination: when is the critical period for stress, and how does it get inside the body? Psychosomatic Medicine, 66, 215223.CrossRefGoogle ScholarPubMed
Morag, M., Morag, A., Reichenberg, A., et al. (1999). Psychological variables as predictors of rubella antibody titers and fatigue: a prospective, double blind study. Journal of Psychiatric Research, 33, 389395.Google Scholar
Moynihan, J. A., Larson, M. R., Treanor, J., et al. (2004). Psychosocial factors and the response to influenza vaccination in older adults. Psychosomatic Medicine, 66, 950953.CrossRefGoogle ScholarPubMed
O’Connor, T. G., Winter, M. A., Hunn, J., et al. (2013). Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain, Behavior & Immunity, 32, 2128.Google Scholar
Pedersen, A. F., Zachariae, R. & Bovbjerg, D. H. (2009). Psychological stress and antibody response to influenza vaccination: a meta-analysis. Brain, Behavior & Immunity, 23, 427433.Google Scholar
Phillips, A. C., Carroll, D., Burns, V. E., et al. (2005). Neuroticism, cortisol reactivity, and antibody response to vaccination. Psychophysiology, 42, 232238.Google Scholar
Phillips, A. C., Carroll, D., Burns, V. E., et al. (2006). Bereavement and marriage are associated with antibody response to influenza vaccination in the elderly. Brain, Behavior & Immunity, 20, 279289.Google Scholar
Phillips, A. C., Gallagher, S., Carroll, D., et al. (2008). Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology, 45, 663666.Google Scholar
Pressman, S. D., Cohen, S., Miller, G. E., et al. (2005). Loneliness, social network size, and immune response to influenza vaccination in college freshmen. Health and Psychology, 24, 297306.CrossRefGoogle ScholarPubMed
Segerstrom, S. C., Schipper, L. J. & Greenberg, R. N. (2008). Caregiving, repetitive thought, and immune response to vaccination in older adults. Brain, Behavior & Immunity, 22, 744752.Google Scholar
Vedhara, K., Cox, N. K., Wilcock, G. K., et al. (1999). Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet, 353, 627631.Google Scholar
Vedhara, K., Bennett, P. D., Clark, S., et al. (2003). Enhancement of antibody responses to influenza vaccination in the elderly following a cognitive-behavioural stress management intervention. Psychotherapy and Psychosomatics, 72, 245252.Google Scholar
Wong, S. Y., Wong, C. K., Chan, F. W., et al. (2013). Chronic psychosocial stress: does it modulate immunity to the influenza vaccine in Hong Kong Chinese elderly caregivers? Age (Dordr) 35: 14791493.CrossRefGoogle Scholar
Yirmiya, R., Pollak, Y., Morag, M., et al. (2000). Illness, cytokines, and depression. Annals of the New York Academy of Sciences, 917, 478487.Google Scholar

References

Andermann, A., Blancquaert, I., Beauchamp, S., et al. (2008). Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bulletin of the World Health Organization, 86 (4), 317319.Google Scholar
Anderson, A. S., Craigie, A. M., Caswell, S., et al. (2014). The impact of a bodyweight and physical activity intervention (BeWEL) initiated through a national colorectal cancer screening programme: randomised controlled trial. BMJ, 348, g1823.Google Scholar
Brodersen, J. & Siersma, V. D. (2013). Long-term psychosocial consequences of false-positive screening mammography. Annals of Family Medicine, 11(2), 106115.Google Scholar
Brouwers, M. C., De, V. C., Bahirathan, L., et al. (2011a). Effective interventions to facilitate the uptake of breast, cervical and colorectal cancer screening: an implementation guideline. Implementation Science, 6, 112.Google Scholar
Brouwers, M. C., De, V. C., Bahirathan, L., et al. (2011b). What implementation interventions increase cancer screening rates? A systematic review. Implementation Science, 6, 111.Google Scholar
Ferroni, E., Camilloni, L., Jimenez, B., et al. (2012). How to increase uptake in oncologic screening: a systematic review of studies comparing population-based screening programs and spontaneous access. Preventive Medicine, 55 (6), 587596.Google Scholar
Hall, S., Bobrow, M. & Marteau, T. M. (2000). Psychological consequences for parents of false negative results on prenatal screening for Down’s syndrome: retrospective interview study. BMJ 320(7232), 407412.Google Scholar
Hall, S., Chitty, L., Dormandy, E., et al. (2007). Undergoing prenatal screening for Down’s syndrome: presentation of choice and information in Europe and Asia. European Journal of Human Genetics, 15 (5), 563569.Google Scholar
Hoffmann, T. C. & Del, M. C. (2015). Patients’ expectations of the benefits and harms of treatments, screening, and tests: a systematic review. JAMA Internal Medicine, 175 (2), 274286.Google Scholar
Jorgensen, K. J., Keen, J. D. & Gotzsche, P. C. (2011). Is mammographic screening justifiable considering its substantial overdiagnosis rate and minor effect on mortality? Radiology, 260 (3), 621627.Google Scholar
Kopans, D. B., Smith, R. A. & Duffy, S. W. (2011). Mammographic screening and ‘overdiagnosis’. Radiology, 260 (3), 616620.Google Scholar
Lazcano-Ponce, E., Palacio-Mejia, L. S., Allen-Leigh, B., et al. (2008). Decreasing cervical cancer mortality in Mexico: effect of Papanicolaou coverage, birthrate, and the importance of diagnostic validity of cytology. Cancer Epidemiology, Biomarkers & Prevention, 17 (10), 28082817.Google Scholar
Lu, M., Moritz, S., Lorenzetti, D., et al. (2012). A systematic review of interventions to increase breast and cervical cancer screening uptake among Asian women. BMC Public Health, 12, 413.Google Scholar
Miles, A., Cockburn, J., Smith, R. A., et al. (2004). A perspective from countries using organized screening programs. Cancer, 101 (Suppl. 5), 12011213.CrossRefGoogle ScholarPubMed
Miles, A., Rainbow, S. & von Wagner, C. (2011). Cancer fatalism and poor self-rated health mediate the association between socioeconomic status and uptake of colorectal cancer screening in England. Cancer Epidemiology, Biomarkers & Prevention, 20 (10), 21322140.Google Scholar
Miles, A., McClements, P. L., Steele, R. J., et al. (2015). The psychological impact of a colorectal cancer diagnosis following a negative fecal occult blood test result. Cancer Epidemiology, Biomarkers & Prevention, 24 (7), 17.Google Scholar
Raffle, A. E. & Gray, J. A. M. (2007). Screening: Evidence and Practice. Oxford: Oxford University Press.Google Scholar
Solmi, F., von Wagner, C., Kobayashi, L. C., et al. (2015). Decomposing socio-economic inequality in colorectal cancer screening uptake in England. Social Science and Medicine, 134, 7686.Google Scholar
Troein, M., Rastam, L. & Selander, S. (2002). Changes in health beliefs after labelling with hypercholesterolaemia. Scandinavian Journal of Public Health, 30 (1), 7679.Google Scholar
van der Aalst, C. M., van Klaveren, R. J. & De Koning, H. J. (2010). Does participation to screening unintentionally influence lifestyle behaviour and thus lifestyle-related morbidity? Best Practice & Research: Clinical Gastroenterology, 24 (4), 465478.Google Scholar
van Rijn, A. F., van Rossum, L. G., Deutekom, M., et al. (2008). Getting adequate information across to colorectal cancer screening subjects can be difficult. Journal of Medical Screening, 15 (3), 149152.Google Scholar
Vlemmix, F., Warendorf, J. K., Rosman, A. N., et al. (2013). Decision aids to improve informed decision-making in pregnancy care: a systematic review. BJOG, 120 (3), 257266.Google Scholar
Wilson, J. M. & Junger, C. T. (1968). Principles and practice of screening for disease. Public Health Paper 34. World Health Organization.Google Scholar

References

Asplin, N., Wessel, H., Marions, L., et al. (2012). Pregnant women’s experiences, needs and preferences regarding information about malformation detected by ultrasound scan. Sexual and Reproductive Healthcare, 3, 7378.CrossRefGoogle ScholarPubMed
Asplin, N., Wessel, H., Marions, L., et al. (2015). Maternal emotional wellbeing over time and attachment to the fetus when a malformation is detected. Sexual and Reproductive Healthcare. 6, 191195.Google Scholar
Biaggi, A., Conroy, S., Pawlby, S., et al. (2016). Identifying the women at risk of antenatal anxiety and depression: a systematic review. Journal of Affective Disorders, 191, 6277.CrossRefGoogle ScholarPubMed
Byatt, N., Moore Simas, T. A., Lundquist, R. S., et al. (2012). Strategies for improving perinatal depression treatment in North American outpatient obstetric settings. Journal of Psychosomatic Obstetrics and Gynecology, 33(4), 143161.Google Scholar
Chew-Graham, C. A., Sharp, D., Chamberlain, E., et al. (2009). Disclosure of symptoms of postnatal depression, the perspectives of health professionals and women: a qualitative study. BMC Family Practice, 10, 7. DOI: 10.1186/1471-2296-10-7.Google Scholar
Dahl, H., Hvidman, L., Jorgensen, F. S., et al. (2011). Knowledge of prenatal screening and psychological management of test decisions. Ultrasound in Obstetrics and Gynecology. 38: 152157.Google Scholar
Dennis, C.-L. & Chung-Lee, L. 2006. Postpartum depression help-seeking barriers and maternal treatment preferences: a qualitative systematic review. Birth, 33(4), 323331Google Scholar
Desgrées-Du-Loû, A., Brou, H., Djohanm, G., et al. (2009). Beneficial effects of offering prenatal HIV counselling and testing on developing a HIV preventive attitude among couples. Aids Behaviour. 13, 348.Google Scholar
El Den, S., O’Reilly, C. L. & Chen, T. F. (2015). A systematic review on the acceptability of perinatal depression screening. Journal of Affective Disorders, 188, 284303.Google Scholar
Field, T. A., Diego, M., Hernandez-Reif, M., et al. (2010). Comorbid depression and anxiety effects on pregnancy and neonatal outcome. Infant Behavior and Development, 33, 2329.Google Scholar
Gavin, N. I., Gaynes, B. N., Lohr, K. N., et al. (2005). Perinatal depression: a systematic review of prevalence and incidence. Obstetrics and Gynecology, 106, 10711083.Google Scholar
Georgsson Ohman, S., Grunewald, C. & Waldenstrom, U. (2009). Perception of risk in relation to ultrasound screening for Down’s syndrome during pregnancy. Midwifery, 25, 264276.Google Scholar
Harris, J. M., Franck, L. & Michie, S. (2012). Assessing the psychological effects of prenatal screening tests for maternal and foetal conditions: a systematic review. Journal of Reproductive and Infant Psychology, 30(3), 222246.Google Scholar
Hewison, J. (2015). Psychological aspects of individualized choice and reproductive autonomy in prenatal screening. Bioethics, 29, 918.Google Scholar
Kaasen, A., Helbig, A., Malt, U. F., et al. (2010). Acute maternal social dysfunction, health perception and psychological distress after ultrasonographic detection of a fetal structural anomaly. BJOG. 117, 11271138.Google Scholar
Kingston, D. E., Biringer, A., McDonald, S. W., et al. (2015a). Preferences for mental health screening among pregnant women: a cross-sectional study. American Journal of Preventive Medicine, 49.Google Scholar
Kingston, D. E., Biringer, A., Toosi, A., et al. (2015b). Disclosure during prenatal mental health screening. Journal of Affective Disorders, 186, 9094.Google Scholar
Lancet (2016, 10 February). Screening for perinatal depression: A missed opportunity [Editorial]. Lancet, 387. http://dx.doi.org/10.1016/S0140-6736(16)00265-8Google Scholar
Lou, S., Mikkelsen, L., Hvidman, L., et al. (2014). Does screening for Down’s syndrome cause anxiety in pregnant women? A systematic review. Acta Obstetricia et Gynecologica Scandinavica, 94(1), 1527.Google Scholar
McCoyd, J. L. (2013). Preparation for prenatal decision-making: a baseline of knowledge and reflection in women participating in prenatal screening. Journal of Psychosomatic Obstetrics and Gynaecology, 34, 38.Google Scholar
Milgrom, J., Gemmill, A. W., Bilszta, J. L., et al. (2008). Antenatal risk factors for postnatal depression: a large prospective study. Journal of Affective Disorders, 108, 147157.Google Scholar
Muller, C. & Cameron, L. D. (2015). It’s complicated: factors predicting decisional conflict in prenatal diagnostic testing. Health Expectations, 19, 338342.Google Scholar
National Institute for Health and Care Excellence. (2014). Antenatal and Postnatal Mental Health: Clinical Management and Service Guidance. Clinical Guideline 192. London: National Institute for Health and Care Excellence.Google Scholar
O’Connor, T. G., Heron, J., Golding, J., et al. (2003). Maternal anxiety and behavioural/emotional problems in children: a test of a programming hypothesis. Journal of Child Psychology and Psychiatry, 44, 10251036Google Scholar
Public Health England. (2015) Evidence review criteria: national screening programmes. www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes.Google Scholar
van den Berg, M., Timmermans, D. R. M., Knol, D. L., et al. (2008). Understanding pregnant women’s decision making concerning prenatal screening. Health Psychology, 27, 430437.Google Scholar
Viaux-Savelon, S., Dommergues, M., Rosenblum, O., et al. (2012). Prenatal ultrasound screening: false positive soft markers may alter maternal representations and mother-infant interaction. PLOS One. http://dx.doi.org/10.1371/journal.pone.0030935.Google Scholar
World Health Organization (2011). Community genetics services: report of a WHO Consultation on community genetics in low- and middle-income countries. http://apps.who.int/iris/bitstream/10665/44532/1/9789241501149_eng.pdf.Google Scholar
World Health Organization (2016). mhGAP Intervention Guide: Version 2.0 for mental, neurological and substance use disorders in non-specialized health settings. www.who.int/mental_health/mhgap/mhGAP_intervention_guide_02/en.Google Scholar

References

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179211.Google Scholar
Edwards, A. G. K., Naik, G., Ahmed, H., et al. (2013). Personalised risk communication for informed decision making about taking screening tests. Cochrane Database of Systematic Reviews, 2. DOI: 10.1002/14651858.CD001865.pub3.Google Scholar
Hay, J. L., McCaul, K. D. & Magnan, R. E. (2006). Does worry about breast cancer predict screening behaviors? A meta-analysis of the prospective evidence. Preventive Medicine, 42, 401408.Google Scholar
Janz, N. K. & Becker, M. H. (1984). The health belief model: a decade later. Health Education Quarterly, 11, 147.Google Scholar
Kivineimi, M. T., Bennett, A., Zaiter, M. & Marshall, J. R. (2011). Individual-level factors in colorectal cancer screening: a review of the literature on the relation of individual-level health behavior constructs and screening behavior. Psycho-Oncology, 20, 10231033.Google Scholar
Klein, M. P., Bloch, M., Hesse, B. W., McDonald, P. G., Nebeling, L., et al. (2014). Behavioral research in cancer prevention and control: a look to the future. American Journal of Preventive Medicine, 46, 303311.Google Scholar
Leventhal, H., Brisette, I. & Leventhal, E. A. (2003). The common-sense model of self-regulation of health and illness. In Cameron, L. D. & Leventhal, H. (eds), The self-Regulation of Health and Illness Behaviour (pp. 4265). London: Routledge.Google Scholar
Noar, S. M. & Zimmerman, R. S. (2005). Health behavior theory and cumulative knowledge regarding health behaviors: are we moving in the right direction? Health Education Research, 20, 275290.Google Scholar
O’Brien, M. A., Whelan, T. J., Villasis-Keever, M., et al. (2009). Do patient decision aids meet effectiveness criteria of the International Patient Decision Aid Standards Collaboration? A systematic review and meta-analysis. Medical Decision Making, 27, 554574.Google Scholar
O’Connor, A. M., Bennett, C., Stacey, D., et al. (2007). Do patient decision aids meet effectiveness criteria of the international patient decision aid standards collaboration? A systematic review and meta-analysis. Medical Decision Making, 27, 554574.Google Scholar
Prochaska, J. O. & DiClemente, C. C. (1983). Stages and processes of self-change in smoking: toward an integrative model of change. Journal of Consulting and Clinical Psychology, 5, 390395.Google Scholar
Rogers, R. W. (1983). Cognitive and physiological processes in fear appeals and attitude change: a revised theory of protection motivation. In Cacioppo, J. & Petty, R. (eds), Social Psychophysiology. New York: Guilford Press.Google Scholar
Rothman, A. J. (2000). Toward a theory-based analysis of behavioral maintenance. Health Psychology, 19, 6469.Google Scholar
Rutter, D. R. (2000). Attendance and reattendance for breast cancer screening: a prospective 3-year test of the Theory of Planned Behavior. British Journal of Health Psychology, 5, 113.Google Scholar
Smith, R. A., Andrews, K., Brooks, D., et al. (2016). Cancer screening in the United States, 2016: a review of current American Cancer Society guidelines and current issues in cancer screening. CA: A Cancer Journal for Clinicians, 66, 95114.Google Scholar
Sohl, S. J. & Moyer, A. (2007). Tailored interventions to promote mammography screening: a meta-analytic review. Preventive Medicine, 45, 252261.Google Scholar
Spencer, L. S., Pagell, F. & Adams, T. (2005). Applying the transtheoretical model to cancer screening behavior. American Journal of Health Behavior, 29, 3656.Google Scholar
Wardle, J., Robb, K., Vernon, S. & Waller, J. (2015). Screening for prevention and early diagnosis of cancer. American Psychologist, 70, 119133.Google Scholar
Weinstein, N. D. (1988). The precaution adoption process. Health Psychology, 7, 355386.Google Scholar

References

Asif, I. M., Price, D., Fisher, L. A., et al. (2015a). Stages of psychological impact after diagnosis with serious or potentially lethal cardiac disease in young competitive athletes: a new model. Journal of Electrocardiology, 48(3), 289310.Google Scholar
Asif, I. M., Price, D., Harmon, K. G., et al. (2015b). The psychological impact of cardiovascular screening in young athletes: perspectives across age, race and gender. Clinical Journal of Sports Medicine, 25(6), 464471.Google Scholar
Borjesson, M., Urhausen, A., Kouidi, E., et al. (2011). Cardiovascular evaluation of middle-aged/senior individuals engaged in leisure-time sport activities: position stand from the sections of exercise physiology and sports cardiology of the European Association of Cardiovascular Prevention and Rehabilitation. The European Journal of Cardiovascular Prevention and Rehabilitation , 18, 446458.Google Scholar
Bowles-Biesecker, B., Schwartz, M. D., Marteau, T. M. (2013) Enhancing informed choice to undergo health screening: a systematic review. American Journal of Health Behaviour, 37(3), 351359. DOI: 10.5993/AJHB.37.3.8.Google Scholar
Christensen, B., Engberg, M. & Lauritzen, T. (2004). No long-term psychological reaction to information about increased risk of coronary heart disease in general practice. European Journal of Cardiovascular Prevention and Rehabilitation, 11, 239243.Google Scholar
Connelly, J., Cooper, J., Mann, A. et al. (1998). The psychological impact of screening for risk of coronary heart disease in primary care settings. Journal of Cardiovascular Risk, 5, 185191.Google Scholar
Corrado, D., Pelliccia, A., Bjørnstad, H., et al. (2005). Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. European Heart Journal, 26: 516524.Google Scholar
Department of Health. (2000). Preventing coronary heart disease in high risk patients. In National Service Framework for Coronary Heart Disease. London: Stationery Office.Google Scholar
Ebrahim, S., Tayor, F., Ward, K., et al. (2011). Multiple risk factor interventions for primary prevention of coronary heart disease. Cochrane Database of Systematic Reviews. DOI: 10.1002/14651858.cd001561.pub3.Google Scholar
Goldberg, D. & Williams, P. (1988) A User’s Guide to the General Health Questionnaire. Windsor: NFER Nelson.Google Scholar
Haynes, R. B., Sackett, D. L., Taylor, W., et al. (1978). Increased absenteeism from work after detection and labeling of hypertensive patients. New England Journal of Medicine, 299, 741744.Google Scholar
Kaltman, J. R., Thompson, P. D., Lantos, J., et al. (2011). Screening for sudden cardiac death in the young: report from a National Heart, Lung, and Blood Institute working group. Circulation, 123, 19111918.Google Scholar
Ljungqvist, A., Jenoure, P. J., Engebretsen, L., et al. (2009). The International Olympic Committee (IOC) statement on periodic health evaluation of elite athletes, March 2009. Clinical Journal of Sports Medicine, 19, 347365.Google Scholar
Marteau, T. M. & Kinmonth, A. L. (2002). Screening for cardiovascular risk: public health imperative or matter for individual informed choice? British Medical Journal, 325, 7880.Google Scholar
Marteau, T. M., Kinmonth, A. L., Pyke, S., et al. (1995). Readiness for lifestyle advice: self-assessment of coronary risk prior to screening in the British family heart study. British Journal of General Practice, 45, 58.Google Scholar
Marteau, T. M., Kinmonth, A. L., Thompson, S., et al. (1996). The psychological impact of cardiovascular screening and intervention in primary care: a problem of false reassurance? British Journal of General Practice, 46, 577582.Google Scholar
National Institute for Health and Care Excellence (NICE). (2014). Cardiovascular disease risk assessment and management. https://cks.nice.org.uk/cvd-risk-managment.Google Scholar
Shaw, C., Abrams, K. & Marteau, T. M. (1999). Psychological impact of predicting individuals’ risks of illness: a systematic review. Social Science and Medicine, 49, 15711598.Google Scholar
Stampfer, M. J., Hu, F. B., Manson, J. E., et al. (2000). Primary prevention of coronary heart disease in women through diet and lifestyle. New England Journal of Medicine, 343, 1622.Google Scholar
Tymstra, T. & Bieleman, B. (1987). The psychosocial impact of mass screening for cardiovascular risk factors. Family Practice, 4, 287290.Google Scholar
World Health Organization (WHO). (2016). Fact Sheet: Cardiovascular Diseases (CVDs) Updated June 2016. Geneva: WHO.Google Scholar

References

Adler, N. E., David, H. P., Major, B. N., et al. (1990). Psychological responses after abortion. Science, 248, 4144.Google Scholar
Beutel, M., Deckardt, R., von Rad, M., et al. (1995). Grief and depression after miscarriage: their separation, antecedents and course. Psychosomatic Medicine, 57, 517526.Google Scholar
Bradshaw, Z. & Slade, P. (2003). The effects of induced abortion on emotional experiences and relationships: a critical review of the literature. Clinical Psychology Review, 23, 929958.Google Scholar
Broen, A. M., Moum, T., Brodtker, A. S. & Ekeberg, O. (2005). Reasons for induced abortions and their relation to women’s emotional distress: a prospective two year follow up study. General Hospital Psychiatry, 27, 3643.Google Scholar
Geller, P. A., Kerns, D. & Klier, M. C. (2004). Anxiety following miscarriage and the subsequent pregnancy: a review of the literature and furture directions. Journal of Psychosomatic Research, 56, 3545.Google Scholar
Gilchrist, A. C., Hannaford, P. S., Frank, P. & Kay, C. R. (1995). Termination of pregnancy and psychiatric morbidity. British Journal of Psychiatry, 167, 243248.CrossRefGoogle ScholarPubMed
Grimes, D. A. & Stuart, G. (2010). Abortion jabberwocky: the need for better terminology. Contraception, 81, 9396.Google Scholar
Lazarus, R. & Folkman, S. (1984). Stress, Appraisal, and Coping. New York: Springer Verlag.Google Scholar
Lee, C. & Rowlands, I. J. (2015). When mixed methods produce mixed results: integrating disparate findings about miscarriage and women’s well-being. British Journal of Health Psychology, 20, 3644.Google Scholar
Lok, I. H. & Neugebauer, R. (2007). Psychological morbidity following miscarriage. Best Practice & Research Clinical Obstetrics & Gynaecology, 21, 229247.Google Scholar
Madden, M. E. (1994). The variety of emotional reactions to miscarriage. Women and Health, 12, 85104.CrossRefGoogle Scholar
Maker, C. & Ogden, J. (2003). The miscarriage experience: More then just a trigger to psychological morbidity? Psychology & Health, 18, 403415.CrossRefGoogle Scholar
Miller, W. B., Pasta, D. J., & Dean, C. L. (1998). Testing the model of the psychological consequences of abortion. In Beckman, L. J. & Harvey, S. M. (eds), The New Civil War (pp. 235267). Washington, DC: American Psychological Association.Google Scholar
Munk-Olsen, T., Munk Laursen, T., Pedersen, C. B., Lidegaard, O. & Mortensen, P. B. (2011). Induced first-trimester abortion and risk of mental disorder. New England Journal of Medicine, 364, 332339.Google Scholar
Murphy, F. A., Lipp, A. & Powles, D. L. (2012). Follow-up for improving psychological well being for women after a miscarriage. Cochrane Database of Systematic Reviews, 3, CD008679Google Scholar
National Collaborating Centre for Mental Health (NCCMH) (2011). Academy of Medical Royal Colleges Induced Abortion and Mental Health, 2011: A Systematic Review of the Mental Health Outcomes of Induced Abortions, Including Their Prevalence and Associated factors. London: NCCMHGoogle Scholar
Nikčević, A. V., Tunkel, S. A. & Nicolaides, K. H. (1998). Psychological outcomes following missed abortions and provision of follow-up care. Ultrasound in Obstetrics & Gynaecology, 11, 123128.Google Scholar
Raymond, E. G. & Grimes, D. A. (2012). The comparative safety of legal induced abortion and childbirth in the United States. Obstetrics & Gynecology, 119, 215219.Google Scholar
RCOG (2006). Management of Early Pregnancy Loss. London: Royal College of Obstetricians and Gynaecologists.Google Scholar
Sedgh, G., Bearak, J., Singh, S., et al. (2016). Abortion incidence between 1990 and 2014: global, regional, and subregional levels and trends. Lancet, 388, 258267.Google Scholar
Wells, N. (1992). Reducing distress during abortion: a test of sensory information. Journal of Advanced Nursing, 17, 10501056.Google Scholar
World Health Organization (2011). Unsafe Abortion: Global and Regional Estimates of the Incidence of Unsafe Abortion and Associated Mortality in 2008 (6th edn). Geneva: World Health Organization.Google Scholar

References

Altshuler, L. L., Kupka, R. W., Hellemann, G., et al. (2010). Gender and depressive symptoms in 711 patients with bipolar disorder evaluated prospectively in the Stanley Foundation bipolar treatment outcome network. American Journal of Psychiatry, 167(6), 708715.Google Scholar
American Psychiatric Association (APA) (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.) (DSM-V). Washington, DC; American Psychiatric Association Press.Google Scholar
Anderson, N. B. (2003). Emotional Longevity: What Really Determines How Long You Live. New York: Viking.Google Scholar
Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893897.Google Scholar
Beck, A. T., Steer, R. A. & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Cipriani, A., Hawton, K., Stockton, S. & Geddes, J. R. (2013). Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis. BMJ, 346. https://doi.org/10.1136/bmj.f3646Google Scholar
Dell’Aglio, J. C. Jr., Basso, L. A., Argimon, I. I. & Arteche, A. (2013). Systematic review of the prevalence of bipolar disorder and bipolar spectrum disorders in population based studies. Trends in Psychiatry and Psychotherapy, 35(2), 99105.Google Scholar
Depue, R., Krauss, S., Spoont, M. R. & Arbisi, P. (1989). General behavior inventory identification of unipolar and bipolar affective conditions in a nonclinical university population. Journal of Abnormal Psychology, 98(2), 117126.Google Scholar
DeRubeis, R. J., Siegle, G. J. & Hollon, S. D. (2008). Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nature Reviews Neuroscience, 9, 788796.Google Scholar
Fiedorowicz, J. G., Palagummi, N. M., Forman-Hoffman, V. L., Miller, D. D. & Haynes, W. G. (2008). Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Annals of Clinical Psychiatry, 20(3), 131137.Google Scholar
Goldstein, B. I., Fagiolini, A., Houck, P. & Kupfer, D. J. (2009). Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disorders, 11(6), 657662.Google Scholar
Goodwin, G. M., Haddad, P. M., Ferrier, I. N., et al. (2016) Evidence-based guidelines for treating bipolar disorder: revised third edition recommendations from the British Association for Psychopharmacology. Journal of Psychopharmacology, 30(6), 495553.Google Scholar
Gurpegui, M., Martínez-Ortega, J. M., Gutiérrez-Rojas, L., et al. (2012). Overweight and obesity in patients with bipolar disorder or schizophrenia compared with a non-psychiatric sample. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 37(1), 169175.Google Scholar
Hamilton, M. C. (1960). Hamilton Depression Rating Scale (HAM-D). Redloc, 23, 5662.Google Scholar
Hirschfeld, R. M. (2014). Differential diagnosis of bipolar disorder and major depressive disorder. Journal of Affective Disorders, 169, S12S16.Google Scholar
Hirschfeld, R. M., Williams, J. B., Spitzer, R. L., et al. (2000). Development and validation of a screening instrument for bipolar spectrum disorder: the Mood Disorder Questionnaire. American Journal of Psychiatry, 157(11), 18731875.Google Scholar
Key, B. L., Campbell, T. S., Bacon, S. L. & Gerin, W. (2008). The influence of trait and state rumination on cardiovascular recovery from a negative emotional stressor. Journal of Behavioral Medicine, 31, 237248.Google Scholar
Kroenke, K., Spitzer, R. L. & Williams, J. B. W. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613.Google Scholar
Kubzansky, L. D. & Kawachi, I. (2000). Going to the heart of the matter: do negative emotions cause coronary heart disease? Manual of Psychosomatic Research, 48, 323337.Google Scholar
Nanayakkara, S., Misch, D., Chang, L. & Henry, D. (2013). Depression and exposure to suicide predict suicide attempt. Depression and Anxiety, 30(10), 991996.Google Scholar
National Institute of Mental Health (NIMH) (2016a). Major depression among adults. www.nimh.nih.gov/health/statistics/prevalence/major-depression-among-adults.shtml.Google Scholar
National Institute of Mental Health (NIMH) (2016b). Anxiety disorders. www.nimh.nih.gov/health/topics/anxiety-disorders/index.shtml.Google Scholar
National Institute of Mental Health (NIMH) (2016c). Any anxiety disorder among adults. www.nimh.nih.gov/health/statistics/prevalence/any-anxiety-disorder-among-adults.shtml.Google Scholar
Paterniti, M., Zureik, M., Ducimetiere, P., Feve, J. M. & Alperovitch, A. (2001). Sustained anxiety and 4-year progression of carotid atherosclerosis. Atherosclerosis, Thrombosis and Vascular Biology, 21, 136141.Google Scholar
Pennix, B. W. J. H., Guralnik, J. M., Pahor, M., et al. (1998). Chronically depressed mood and cancer risk in older persons. Journal of the National Cancer Institute, 90, 18881893.Google Scholar
Peters, A., Sylvia, L. G., da Silva Magalhães, P. V., et al. (2014). Age at onset, course of illness and response to psychotherapy in bipolar disorder: results from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Psychological Medicine, 44, 34553467.Google Scholar
Phillips, M. L. & Kupfer, D. J. (2013). Bipolar disorder diagnosis: challenges and future directions. Lancet, 381(9878), 16631671.Google Scholar
Rhebergen, D., Graham, R., Hadzi-Pavlovic, D., et al. (2012). The categorisation of dysthymic disorder: can its constituents be meaningfully apportioned? Journal of Affective Disorders, 143(1–3), 179186.Google Scholar
Spielberger, C. D. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Swartz, H. & Fagiolini, A. (2012) Cardiovascular diseases and bipolar disorder: risk and clinical implications. Journal of Clinical Psychology, 73(12), 15631565.Google Scholar
Sylvia, L. G., Nierenberg, A. A., Stange, J. P., Peckham, A. D. & Deckersbach, T. (2011). Development of an integrated psychosocial treatment to address the medical burden associated with bipolar disorder. Journal of Psychiatric Practice, 17(3), 224232.Google Scholar
Wu, E., Chien, I. & Lin, C. (2014). Increased risk of hypertension in patients with anxiety disorders: a population-based study. Journal of Psychosomatic Research, 77(6), 522527.Google Scholar

References

Antolín‑Amérigo, D., Manso, L., Caminati, M., et al. (2016). Quality of life in patients with food allergy. Clinical & Mollecular Allergy, 14, 4.Google Scholar
Cheng, T. S., Chen, H., Lee, T., et al. (2015). An independent association of prenatal depression with wheezing and anxiety with rhinitis in infancy. Paediatric Allergy & Immunology, 26, 765771.CrossRefGoogle ScholarPubMed
Chida, Y., Hamer, M. & Steptoe, A. (2008). A bidirectional relationship between psychosocial factors and atopic disorders: a systematic review and meta-analysis. Psychosomatic Medicine, 70, 102116.Google Scholar
El-Turki, A., Smith, H. E., Llewellyn, C. D. & Jones, C. J. (2017). A systematic review of patients’, parents’ and health professionals’ adrenaline auto-injector administration technique. Emergency Medicine Journal. 34, 403416.Google Scholar
Garg, N. & Silverberg, J. I. (2014). Association between childhood allergic disease, psychological comorbidity, and injury requiring medical attention. Annals of Allergy, Asthma & Immunology, 116, 525532.Google Scholar
Jones, C. J., Smith, H. E., Frew, A. J., et al. (2014). Explaining adherence to self-care behaviours amongst adolescents with food allergy: a comparison of the health belief model and the common sense self-regulation model. British Journal of Health Psychology, 19, 6582.Google Scholar
Jones, C. J., Smith, H. E., Frew, A. J., et al. (2015). Factors associated with good adherence to self-care behaviours amongst adolescents with food allergy. Paediatric Allergy & Immunology, 26, 111118.Google Scholar
Kemp, S. F., Lockey, R. F. & Simons, F. E. R. (2008). Epinephrine: the drug of choice for anaphylaxis – a statement of the World Allergy Organization. World Allergy Organization Journal, 1, s18s26.Google Scholar
King, R. M., Knibb, R. C. & Hourihane, J. O. (2009). Impact of peanut allergy on quality of life, stress and anxiety in the family. Allergy, 64, 461468.Google Scholar
Knibb, R. C. (2015). Effectiveness of cognitive behaviour therapy for mothers of children with food allergy: a case series. Healthcare, 3, 11941211.Google Scholar
Lind, N., Nordin, M., Palmquist, E., et al. (2015). Coping and social support in asthma and allergy: the Västerbotten Environmental Health Study. Journal of Asthma, 52, 622629.Google Scholar
McConnell, T. H. (2007). The Nature of Disease Pathology for the Health Professions. Baltimore, MD: Lippincott Williams & Wilkins.Google Scholar
Meltzer, E. O. (2001). Quality of life in adults and children with allergic rhinitis. Journal of Allergy & Clinical Immunology, 108, S45S53.Google Scholar
Montoro, J., Mullol, J., Jáuregui, I., et al. (2009). Stress and allergy. Journal of Investigational Allergology and Clinical Immunology, 19, 4047.Google Scholar
Pawankar, R. (2014). Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organization Journal, 7, 12.Google Scholar
Pawankar, R., Canonica, G. W., Holgate, S. T., Lockey, R. F. & Blaiss, M. S. (2013). The WAO White Book on Allergy: Update 2013. World Allergy Organization. www.worldallergy.org/UserFiles/file/WhiteBook2-2013-v8.pdf (accessed 12 July 2017).Google Scholar
Polloni, L. (2014). Psychological care of food-allergic children and their families: an exploratory analysis. Pediatric Allergy & Immunology, 26, 8092.Google Scholar
Polloni, L., Ferruzza, E., Ronconi, L., et al. (2015). Perinatal stress and food allergy: a preliminary study on maternal reports. Psychology, Health & Medicine, 20, 732741.Google Scholar
Rusznak, C. & Davies, R. J. (1998). Diagnosing allergies. British Medical Journal, 28, 686689.Google Scholar
Schreier, H. M. C. & Wright, R. J. (2014). Stress and food allergy: mechanistic considerations. Annals of Allergy, Asthma & Immunology, 112, 296301.Google Scholar
Smith, H. E. & Jones, C. J. (2015). Illness perception, mood and coping in patients with rhinitis. In Akdis, C., Hellings, P. & Agache, I. (eds), Global Atlas of Allergic Rhinitis and Chronic Rhinosinusitis (pp. 276278). Zurich: European Academy of Allergy and Clinical Immunology,Google Scholar
Spergel, J. M. (2010). From atopic dermatitis to asthma: the atopic march. Annals of Asthma, Allergy & Immunology, 105, 99106.Google Scholar
Timonen, M., Jokelainen, J., Hakko, H., et al. (2003). Atopy and depression: results from the Northern Finland 1966 Birth Cohort Study. Molecular Psychiatry, 8, 738744.Google Scholar
Wamboldt, M., Hewitt, J. K., Schmitz, S., et al. (2000). Familial association between allergic disorders and depression in adult Finnish twins. American Journal of Medical Genetics, 96, 146153.Google Scholar

References

Bauer, P. J. (2014). The development of forgetting: childhood amnesia. In Bauer, P.J. & Fivush, R. (eds), The Wiley-Blackwell Handbook on the Development of Children’s Memory (pp. 519544). Chichester: Wiley-Blackwell.Google Scholar
Bauer, P. J. (2015). A complementary processes account of the development of childhood amnesia and a personal past. Psychological Review, 2, 204231.Google Scholar
Bauer, P. J. & Larkina, M. (2014a). Childhood amnesia in the making: different distributions of autobiographical memories in children and adults. Journal of Experimental Psychology: General, 143(2), 597611.Google Scholar
Bauer, P. J. & Larkina, M. (2014b). The onset of childhood amnesia in childhood: a prospective investigation of the course and determinants of forgetting of early-life events. Memory, 22, 907924.Google Scholar
Cooper, J. M., Vargha-Khadem, F., Gadian, D. G. & Maguire, E. A. (2011). The effect of hippocampal damage in children on recalling the past and imagining new experiences. Neuropsychologia, 49, 18431850.Google Scholar
Corkin, S. (1984). Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Seminars in Neurology, 4, 249259.Google Scholar
Corkin, S. (2002). What’s new with the amnesic patient H.M.? Nature Reviews, 3, 153160.Google Scholar
Fivush, R. (2011). The development of autobiographical memory. Annual Review of Psychology, 62, 559582.Google Scholar
Freud, S. (1905/1953). Childhood and concealing memories. In Brill, A. A. (ed.), The Basic Writings of Sigmund Freud. New York: The Modern Library.Google Scholar
Manns, J. R. & Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus, 16, 795808.Google Scholar
Miles, C. (1893). A study of individual psychology. American Journal of Psychology, 6, 534558.Google Scholar
Milner, B. M., Corkin, S. & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year followup study of H.M. Neuropsychologia, 6, 215234.Google Scholar
Mullally, S. L., Vargha-Khadem, F. & Maguire, E. A. (2014). Scene construction in developmental amnesia: an fMRI study. Neuropsychologia, 52, 110.Google Scholar
Reed, J. M. & Squire, L. R. (1998). Retrograde amnesia for facts and events: findings from four new cases. Journal of Neuroscience, 18, 39433954.Google Scholar
Rubin, D. (2006). The basic-systems model of episodic memory. Perspectives on Psychological Science, 1, 277311.Google Scholar
Squire, L. R. (1987). Memory and Brain. New York: Oxford University Press.Google Scholar
Squire, L. R. & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opinion in Neurobiology, 5, 169177.Google Scholar
Usher, J. & Neisser, U. (1993). Childhood amnesia and the beginnings of memory for four early life events. Journal of Experimental Psychology: General, 122, 155165.Google Scholar
Wang, Q., Conway, M. & Hou, Y. (2004). Infantile amnesia: a crosscultural investigation. Cognitive Sciences, 1, 123135.Google Scholar
West, T. W. & Bauer, P. J. (1999). Assumptions of infantile amnesia: are there differences between early and later memories? Memory, 7, 257278.Google Scholar

References

Basso, A. (1992). Prognostic factors in aphasia. Aphasiology, 6, 337348.Google Scholar
Berthier, M. (2014). Cognitive enhancing drugs in aphasia: a vote for hope. Aphasiology, 28, 128132.Google Scholar
Bhogal, S. K., Teasell, R. & Speechley, M. (2003). Intensity of aphasia therapy, impact on recovery. Stroke, 34, 987993.Google Scholar
Brumfitt, S. (1985). The use of repertory grids with aphasic people. In: Beail, N. (ed.), Repertory Grid Techniques and Personal Constructs. London: Croom Helm.Google Scholar
Cherney, L. R., Patterson, J. P. & Raymer, A. M. (2011). Intensity of aphasia therapy: evidence and efficacy. Current Neurology and Neuroscience Reports, 11, 560569.Google Scholar
Code, C. (1994). The role of the right hemisphere in the treatment of aphasia. In Chapey, R. (ed.), Language Intervention Strategies in Adult Aphasia. (3rd edn) Baltimore, MD: Williams & Wilkins.Google Scholar
Code, C. (2001). Multifactorial processes in recovery from aphasia: developing the foundations for a multilevelled framework. Brain and Language, 77, 2544.Google Scholar
Code, C. & Herrmann, M. (2003). The relevance of emotional and psychosocial factors in aphasia to rehabilitation. Neuropsychological Rehabilitation, 13, 109132.Google Scholar
Code, C. & Muller, D. J. (eds), (1995). The Treatment of Aphasia: From Theory to Practice. London: Whurr.Google Scholar
de Riesthal, M. & Wertz, R. T. (2004). Prognosis for aphasia: relationship between selected biographical and behavioural variables and outcome and improvement. Aphasiology, 18, 899915.Google Scholar
Duchan, J.F & Byng, S. (eds), (2004). Challenging Aphasia Therapies: Broadening the Discourse and Extending the Boundaries. Hove: Psychology Press.Google Scholar
El Hachioui, H., Lingsma, H. F.L, van de Sandt-Koenderman, M. W. M. E., et al. (2013). Long-term prognosis of aphasia after stroke. Journal of Neurology and Neurosurgy andPsychiatry, 84, 310315.Google Scholar
Helm-Estabrooks, N. & Albert, M. L. (1991). Manual of Aphasia Therapy. Austin, TX.: Pro-Ed.Google Scholar
Hemsley, G. & Code, C. (1996). Interactions between recovery in aphasia, emotional and psychosocial factors in subjects with aphasia, their significant others and speech pathologists. Disability & Rehabilitation, 18, 567584.Google Scholar
Herrmann, M. & Wallesch, C-W. (1989). Psychosocial changes and adjustment with chronic and severe nonfluent aphasia. Aphasiology, 3, 513526.Google Scholar
Herrmann, M., Bartells, C. & Wallesch, C.-W. (1993). Depression in acute and chronic aphasia: symptoms, pathoanatomical-clinical correlations and functional implications. Journal of Neurology, Neurosurgery, and Psychiatry, 56, 672678.Google Scholar
Holland, R. & Crinion, J. (2012). Can tDCS enhance treatment of aphasia after stroke? Aphasiology, 26, 11691191.Google Scholar
Howard, D., Webster, J. & Whitworth, A. (2013). A Cognitive Neuropsychological Approach to Assessment and Intervention in Aphasia (2nd edn). Hove: Psychology Press.Google Scholar
Kagan, A., Black, S., Duchan, J., et al., (2001). Training volunteers as conversational partners using ‘Supported Conversation with Adults with Aphasia’ (SCA): a controlled trial. Journal of Speech, Language, and Hearing Research, 44, 624638.Google Scholar
Kay, J., Lesser, R. & Coltheart, M. (1992). Psycholinguistic Assessments of Language Processing in Aphasia. Hove: Lawrence Erlbaum Associates.Google Scholar
Lam, J. M. C. & Wodchis, W. P. (2010). The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents. Medical Care, 48, 380387.Google Scholar
Lanyon, J., Rose, M. & Worrall, L. (2013). The efficacy of outpatient and community-based aphasia group interventions: a systematic review. International Journal of Speech-Language Pathology, 15, 359374.Google Scholar
Leff, A. P. & Howard, D. (2012). Has speech and language therapy been shown not to work? Nature Reviews Neurology, 8, 600601.Google Scholar
Luria, A., Naydyn, V. L., Tsvetkova, L. S., et al. (1969). Restoration of higher cortical function following local brain damage. In: Vinken, P. J. & Bruyn, G. W. (eds), Handbook of Clinical Neurology (pp. 368433). Amsterdam: North-Holland Publishing Company.Google Scholar
Pulvermüller, F. & Berthier, M. L. (2008). Aphasia therapy on a neuroscience basis. Aphasiology, 22, 563599Google Scholar
Pulvermüller, F., Neininger, B., Elbert, T., et al. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32, 16211626.Google Scholar
Robinson, R. G., Lipsey, J. R., Rao, K. & Price, T. R. (1986). A two-year longitudinal study of poststroke mood disorders: comparison of acute-onset with delayed-onset depression. American Journal of Psychiatry, 143, 12381244.Google Scholar
Rose, M., Raymer, A., Lanyon, L. & Attard, M. C. (2013). A systematic review of gesture treatments for post-stroke aphasia. Aphasiology, 27,Google Scholar
Starkstein, S. E. & Robinson, R. G. (1988). Aphasia and depression. Aphasiology, 2, 120.Google Scholar
Stern, R. A. & Bachman, D. L. (1991). Depressive symptoms following stroke. American Journal of Psychiatry, 148, 351356.Google Scholar
Tanner, D. C. & Gerstenberger, D. L. (1988). The grief response in neuropathologies of speech and language. Aphasiology, 2, 7984.Google Scholar
van der Meulen, I., van de Sandt-Koenderman, M. E. & Ribbers, G. M. (2012). Melodic intonation therapy: present controversies and future opportunities. Archives of Physical Medicine and Rehabilitation, 93, (1 Suppl. 1), 4652.Google Scholar

References

Barlow, J., Wright, C., Sheasby, J., Turner, A. & Hainsworth, J. (2002). Self-management approaches for people with chronic conditions: a review. Patient Education and Counseling, 48, 177187.Google Scholar
Creer, T. L. (1979). Asthma Therapy: A Behavioral Health Care System for Respiratory Disorders. New York: Springer.Google Scholar
Denford, S., Taylor, R. S., Campbell, J. L. & Greaves, C. J. (2014). Effective behavior change techniques in asthma self-care interventions: systematic review and meta-regression. Health Psychology, 33, 577587.Google Scholar
Gross, N. J. (1980). What is this thing called love? Or, defining asthma. American Review of Respiratory Disease, 121, 203204.Google Scholar
Hahn, E. A., Mora, P. & Leventhal, H. (2006). No symptoms, no asthma: the acute episodic disease belief is associated with poor self-management among inner-city adults with persistent asthma. Chest, 129, 573580.Google Scholar
Kaptein, A. A., Klok, T., Moss-Morris, R. & Brand, P. L. P. (2010). Illness perceptions: impact on self-management and control in asthma. Current Opinion in Allergy and Clinical Immunology, 10, 194199.Google Scholar
Kaptein, A. A., Meulenberg, F. & Smyth, J. M. (2015). A breath of fresh air: images of respiratory illness in novels, poems, films, music, and paintings. Journal of Health Psychology, 20, 246258.Google Scholar
Kinsman, R. A., Dahlem, N. W., Spector, S. & Staudenmayer, H. K. (1977). Observations on subjective symptomatology, coping behavior, and medical decisions in asthma. Psychosomatic Medicine, 39, 102119.Google Scholar
Lee, A. & Wright, R. J. (2016). Prenatal stress and childhood asthma risk: taking a broader view. European Respiratory Journal, 47, 406409.Google Scholar
Levy, B. D., Noel, P. J., Freemer, M. M., et al. (2015). Future research directions in asthma. American Journal of Respiratory and Critical Care Medicine, 192, 13661372.Google Scholar
Petrie, K. J., Perry, K., Broadbent, E. & Weinman, J. (2011). A text message programme designed to modify patients’ illness and treatment beliefs improves self-reported adherence to asthma preventer medication. British Journal of Health Psychology, 17, 7484.Google Scholar
Peytremann-Brideveaux, I., Arditi, C., Gex, G., et al. (2015). Chronic disease management programmes for adults with asthma. Cochrane Database of Systematic Reviews, 5, CD007988.Google Scholar
Queneau, R. (1987). The Skin of Dreams. London: Atlas Press.Google Scholar
Ritz, T., Meuret, A. E., Trueba, A. F., Fritsche, A. & von Leupoldt, A. (2013). Psychosocial factors and behavioral medicine interventions in asthma. Journal of Consulting and Clinical Psychology, 81, 231250.Google Scholar
Smyth, J. M., Stone, A. A., Hurewitz, A. & Kaell, A. (1999). Effects of writing about stressful experiences on symptom reduction in patients with asthma or rheumatoid arthritis: a randomized trial. JAMA, 281, 13041309.Google Scholar

References

Akerblom, S., Perrin, S., Rivano Fischer, M. & McCracken, L. (2015). The mediating role of acceptance in multidisciplinary cognitive-behavioral therapy for chronic pain. Journal of Pain, 16(7), 606615.Google Scholar
Alexanders, J., Anderson, A. & Henderson, S. (2015). Musculoskeletal physiotherapists’ use of psychological interventions: a systematic review of therapists’ perceptions and practice. Physiotherapy, 101(2), 95102.Google Scholar
Artus, M., van der Windt, D. A., Jordan, K. P., et al. (2010). Low back pain symptoms show a similar pattern of improvement following a wide range of primary care treatments: a systematic review of randomized clinical trials. Rheumatology, 49(12), 23462356.Google Scholar
Balague, F., Mannion, A. F., Pellise, F. & Cedraschi, C. (2012). Non-specific low back pain. Lancet, 379(9814), 482491.Google Scholar
Barker, E. & McCracken, L.M. (2014). From traditional cognitive-behavioural therapy to acceptance and commitment therapy for chronic pain: a mixed-methods study of staff experiences of change. British Journal of Pain, 8(3), 98106.Google Scholar
Brunner, E., De Herdt, A., Minguet, P., Baldew, S. S. & Probst, M. (2013). Can cognitive behavioural therapy based strategies be integrated into physiotherapy for the prevention of chronic low back pain? A systematic review. Disability and Rehabilitation, 35(1), 110.Google Scholar
Campbell, C. & Guy, A. (2007). Why can’t they do anything for a simple back problem? A qualitative examination of expectations for low back pain treatment and outcome. Journal of Health Psychology, 12(4), 641652.Google Scholar
Dionne, C. E., Dunn, K. M., Croft, P. R., et al. (2008). A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine, 33(1), 95103.Google Scholar
Downie, A., Williams, C. M., Henschke, N., et al. (2013). Red flags to screen for malignancy and fracture in patients with low back pain: systematic review. BMJ, 347. https://doi.org/10.1136/bmj.f7095.Google Scholar
Ferreira, M. L., Machado, G., Latimer, J., et al. (2010). Factors defining care‐seeking in low back pain: a meta‐analysis of population based surveys. European Journal of Pain, 14, 747.e741747.e747.Google Scholar
Freburger, J. K., Holmes, G. M., Agans, R. P., et al. (2009). The rising prevalence of chronic low back pain. Archives of Internal Medicine, 169(3), 251258. DOI:10.1001/archinternmed.2008.543.Google Scholar
Godfrey, E., Galea Holmes, M., Wileman, V., et al. (2016). Physiotherapy informed by Acceptance and Commitment Therapy (PACT): protocol for a randomised controlled trial of PACT versus usual physiotherapy care for adults with chronic low back pain. BMJ Open, 6, e011548. DOI:10.1136/bmjopen-2016- 011548.Google Scholar
Gore, M., Sadosky, A., Stacey, B. R., Tai, K. S. & Leslie, D. (2012). The burden of chronic low back pain: clinical comorbidities, treatment patterns, and health care costs in usual care settings. Spine, 37(11), 668677.Google Scholar
Hall, A., Richmond, H., Copsey, B., et al. (2016). Physiotherapist delivered cognitive-behavioural interventions are effective for low back pain, but can they be replicated in clinical practice? A systematic review. Disability and Rehabilitation. DOI:10.1080/09638288.2016.1236155.Google Scholar
Hayes, S. C., Strosahl, K. & Wilson, K.G.(1999). Acceptance and Commitment Therapy: An Experimental Approach to Behaviour Change. New York: Guilford Press.Google Scholar
Hill, J. C., Whitehurst, D. G., Lewis, M., et al. (2011). Comparison of stratified primary care management for low back pain with current best practice (STarT Back): a randomised controlled trial. Lancet, 378, 15601571.Google Scholar
Hong, J., Reed, C., Novick, D. & Happich, M. (2013). Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database. Spine, 38(1), 7582.Google Scholar
Hoy, D., Bain, C., Williams, G., et al. (2012). A systematic review of the global prevalence of low back pain. Arthritis and Rheumatism, 64(6), 20282037.Google Scholar
Hoy, D. G., Smith, E., Cross, M., et al. (2014). Reflecting on the global burden of musculoskeletal conditions: lessons learnt from the Global Burden of Disease 2010 Study and the next steps forward. Annals of Rheumtic Disease, 73(6), 982989.Google Scholar
Itz, C., Geurts, J., Kleef, M. V. & Nelemans, P. (2013). Clinical course of non‐specific low back pain: a systematic review of prospective cohort studies set in primary care. European Journal of Pain, 17(1), 515.Google Scholar
Koes, B. W., van Tulder, M., Lin, C.-W. C., et al. (2010). An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. European Spine Journal, 19(12), 20752094.Google Scholar
Lamb, S. E., Lall, R. S., Hansen, Z., et al. (2010). A multicentred randomised controlled trial of a primary care-based cognitive behavioural programme for low back pain: the back skills training (BeST) trial. Health Technology Assessment, 14(41), 1281.Google Scholar
McCracken, L. M. & Morley, S. (2014). The psychological flexibility model: a basis for integration and progress in psychological approaches to chronic pain management. Journal of Pain, 15, 221234.Google Scholar
Mehra, M., Hill, K., Nicholl, D. & Schadrack, J. (2012). The burden of chronic low back pain with and without a neuropathic component: a healthcare resource use and cost analysis. Journal of Medical Economics, 15(2), 245252.Google Scholar
Meucci, R. D., Fassa, A. G. & Faria, N. M. X. (2015). Prevalence of chronic low back pain: systematic review. Revista de Saúde Pública, 49. DOI:10.1590/S0034-8910.2015049005874.Google Scholar
Murray, C. J., Vos, T., Lozano, R., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380,21972223.Google Scholar
NICE (2016). Low Back Pain and Sciatica in Over 16s: Assessment and Management. NICE guideline 59. London: NICE. www.nice.org.uk/guidance/ng59 (accessed 1 December 2016).Google Scholar
Nicholas, M., Linton, S., Watson, P. & Main, C. (2011). Early identification and management of psychological risk factors (‘yellow flags’) in patients with low back pain: a reappraisal. Physical Therapy, 91, 737753.Google Scholar
Öst, L.-G. (2014). The efficacy of Acceptance and Commitment Therapy: an updated systematic review and meta-analysis. Behaviour Research and Therapy, 61, 105121.Google Scholar
Pincus, T. & McCracken, L. M. (2013). Psychological factors and treatment opportunities in low back pain. Best Practice & Research Clinical Rheumatology, 27(5), 625635.Google Scholar
Pincus, T., Burton, A. K., Vogel, S. & Field, A. P. (2002). A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine, 27, E109E120.Google Scholar
Pincus, T., Anwar, S., McCracken, L., et al. (2015). Delivering an optimised behavioural intervention (obi) to people with low back pain with high psychological risk: results and lessons learnt from a feasibility randomized controlled trial of contextual cognitive behavioural therapy (CCBT) vs. physiotherapy. BMC Musculoskeletal Disorders, 16, 147.Google Scholar
Richmond, H., Hall, A. M., Copsey, B., et al. (2015). the effectiveness of cognitive behavioural treatment for non-specific low back pain: a systematic review and meta-analysis. PLoS ONE, 10(8): e0134192. DOI:10.1371/journal.pone.0134192.Google Scholar
Straube, S., Harden, M., Schroder, H., et al. (2016). Back schools for the treatment of chronic low back pain: possibility of benefit but no convincing evidence after 47 years of research: systematic review and meta-analysis. Pain. 157(10), 21602172.Google Scholar
van Middelkoop, M., Rubinstein, S. M., Kuijpers, T., et al. (2010). A systematic review on the effectiveness of physical and rehabilitation interventions for chronic non-specific low back pain. European Spine Journal, 20, 1939.Google Scholar
Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R. et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 21632196.Google Scholar
Vowles, K. E., McCracken, L. M. & O’Brien, J. Z. (2011). Acceptance and values-based action in chronic pain: a three-year follow-up analysis of treatment effectiveness and process. Behaviour Research and Therapy, 49(11), 748755.Google Scholar
Waddell, G. (1987). A new clinical model for the treatment of low back pain. Spine, 12, 622634.Google Scholar
Williams, A., Eccleston, C. & Morley, S. (2012). Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database of Systematic Reviews, 11, CD007407.Google Scholar

References

Bliss (2016). Statistics. www.bliss.org.uk/pages/category/statistics (accessed 15 August 2016).Google Scholar
Cacciatore, J., Radestad, I. & Froen, F. J. (2008). Effects of contact with stillborn babies on maternal anxiety and depression. Birth, 35, 313320.Google Scholar
Cacciatore, J., Schnebly, S. & Froen, J. F. (2009). The effects of social support on maternal anxiety and depression after stillbirth. Health and Social Care in the Community, 17, 167176.Google Scholar
Carroll, M., Daly, D. & Begley, C. M. (2016). The prevalence of women’s emotional and physical health problems following a postpartum haemorrhage: a systematic review. BMC Pregnancy and Childbirth, 16, 261.Google Scholar
Carson, C., Redshaw, M., Gray, R. & Quigley, M. (2015). Risk of psychological distress in parents of preterm children in the first year: evidence from the UK Millennium Cohort Study. BMJ Open, 5, e007942.Google Scholar
Delahaije, D., Dirksen, D., Peeters, L. & Smits, L. (2014). Anxiety and depression following preeclampsia or hemolysis, elevated liver enzymes, and low platelets syndrome: a systematic review. Acta Obstetricia et Gynecologica Scandinavica, 92, 746761Google Scholar
Eckerdal, P., Kollia, N., Loffblad, J., et al. (2016). Delineating the association between heavy postpartum haemorrhage and postpartum depression. PLoS ONE, 11(1), e0144274.Google Scholar
Elmir, R. & Schmied, V. (2016). A meta-ethnographic synthesis of fathers’ experiences of complicated births that are potentially traumatic. Midwifery, 32, 6674.Google Scholar
Eutrope, J., Thierry, A., Lemp, F., et al. (2014). Emotional reactions of mothers facing premature births: study of 100 mother-infant dyads 32 gestational weeks. PLoS One, 9, e104093.Google Scholar
Froen, J. F., Cacciatore, J., McClure, E. M., et al. (2011). Stillbirths: why they matter. Lancet, 377, 13531366.Google Scholar
Furuta, M., Sandall, J. & Bick, D. (2014). Women’s perceptions and experiences of severe maternal morbidity: a synthesis of qualitative studies using a meta-ethnographic approach. Midwifery, 30, 158169.Google Scholar
Grekin, R. & O’Hara, M. W. (2014). Prevalence and risk factors of postpartum posttraumatic stress disorder: a meta-analysis. Clinical Psychology Review, 34, 389401.Google Scholar
Heazell, A., Siassakos, D., Blencowe, H., et al. (2016). Stillbirths: economic and psychosocial consequences. Lancet, 387, 604616.Google Scholar
Hennegan, J. M., Henderson, J. & Redshaw, M. (2015). Contact with the baby following stillbirth and parental mental health and well-being: a systematic review. BMJ Open, 5.Google Scholar
Hoedjes, M., Berks, D., Vogel, I., et al. (2011). Symptoms of posttraumatic stress disorder after preeclampsia. Journal of Psychosomatic Obstetrics & Gynaecology, 32, 126134.Google Scholar
Knight, M., Tuffnell, D., Kenyon, S., et al. (eds) (2015). Saving Lives, Improving Mothers’ Care: Surveillance of Maternal Deaths in the UK 2011–13 and Lessons Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries Into Maternal Deaths and Morbidity 2009–13. Oxford: National Perinatal Epidemiology Unit, University of Oxford.Google Scholar
Redshaw, M., Hennegan, J. M. & Henderson, J. (2016). Impact of holding the baby following stillbirth on maternal mental health and well-being: findings from a national survey. BMJ Open, 6, e010996.Google Scholar
Sentilhes, L., Gromez, A., Clavier, E., et al. (2011). Long-term psychological impact of severe postpartum haemorrhage. Acta Obstetrica Gynecologica Scandinavica, 90, 615620.Google Scholar
Snowdon, C., Elbourne, D., Forsey, M. & Alfirevic, Z. (2012). Information-hungry and disempowered: a qualitative study of women and their partners’ experiences of severe postpartum haemorrhage. Midwifery, 28, 791799.Google Scholar
Stramrood, C., Wessel, I., Doornbos, B., et al. (2011). Posttraumatic stress disorder following preeclampsia and PPROM: a prospective study with 15 months follow-up. Reproductive Sciences, 18, 645653.Google Scholar
Thombre, M. K., Talge, N. M. & Holzman, C. (2015). Association between pre-pregnancy depression/anxiety symptoms and hypertensive disorders of pregnancy. Journal of Women’s Health, 24, 228236.Google Scholar
Vigod, S. N., Villegas, L. & Dennis, C. L. (2010). Prevalence and risk factors for postpartum depression among women with preterm and low-birth-weight infants: a systematic review. BJOG, 117, 540550.Google Scholar
World Health Organization (2016). Stillbirths. www.who.int/maternal_child_adolescent/epidemiology/stillbirth/en/ (accessed 27 November 2016).Google Scholar

References

Altier, N., Malenfant, A., Forget, R., et al. (2002). Long-term adjustment in burn victims: a matched-control study. Psychological Medicine, 32, 677685.Google Scholar
Anderson, N. J., Bonauto, D. K. & Adams, D. (2011). Psychiatric diagnoses after hospitalization with work-related burn injuries in Washington State. Journal of Burn Care & Research, 32, 369378.Google Scholar
Bakker, A., Van der Heijden, P. G. M. & Van Son, M. J. M. (2013). Course of traumatic stress reactions in couples after a burn event to their young child. Health and Psychology, 32, 10761083.Google Scholar
Blakeney, P., Portman, S. & Rutan, R. (1990). Familial values as factors influencing long-term psychological adjustment of children after severe burn-injury. Journal of Burn Care and Rehabilitation, 11, 472475.Google Scholar
Bonanno, G. A. (2004). Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events? American Psychologist, 59, 2028.Google Scholar
Bradbury, E. (1996). Counselling People with Disfigurement. Leicester: BPS Books.Google Scholar
Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Medicine, 38, 300314.Google Scholar
Esselman, P. C., Thombs, B. D., Magyar-Russell, G., et al. (2006). Burn rehabilitation: state of science. American Journal of Physical Medicine & Rehabilitation, 85, 383413.Google Scholar
Gupta, M. & Kumar, A. (2015). Study of dry thermal fatal burn prevalence with occupational work in Varanasi area; India. International Journal of Science and Research, 4, 13621365.Google Scholar
Heath, J, Williamson, H, Williams, L & Harcourt, D. (2018). Parent-perceived isolation and barriers to psychosocial support: a qualitative study to investigate how peer support might help parents of burn-injured children. Scars, Burns & Healing, 4. DOI: 10.1177/2059513118763801.Google Scholar
Malic, C. C., Karoo, R. O. S., Austin, O., et al. (2007). Burns inflicted by self or by others: an 11 year snapshot. Burns, 33, 9297.Google Scholar
Muangman, P., Sullivan, S. R., Wiechman, S., et al. (2005). Social support correlates with survival in patients with massive burn-injury. Journal of Burn Care & Rehabilitation, 26, 352356.Google Scholar
National Burn Care Review. (2001). Standards and strategy for burn care: a review of burn care in the British Isles. www.ibidb.org/downloads/cat_view/14-general-reports (accessed 25 April 2016).Google Scholar
Oaie, E, Piepenstock, E & Williams, L. (2018). Risk factors for peri-traumatic distress and appearance concerns in burn-injured inpatients identified by screening tool. Scars, Burns & Healing, 4. DOI: 10.1177/2059513118765294.Google Scholar
Palmu, R., Partonen, T., Suominen, K., et al. (2016). Functioning, disability, and social adaptation six months after burn injury. Journal of Burn Care & Research, 37, e234–243.Google Scholar
Phillips, C. & Rumsey, N. (2008). Considerations for the provision of psychosocial services for families following paediatric burn injury: a quantitative study. Burns, 34, 5662.Google Scholar
Phillips, C., Fussell, A. & Rumsey, N. (2007). Considerations for psychosocial support following burn injury: a family perspective. Burns, 33, 986994.Google Scholar
Potokar, T. & Price, P. (2012). Challenges in healthcare provision in resource-poor countries. In Rumsey, N. & Harcourt, D. (eds), The Oxford Handbook of the Psychology of Appearance (pp. 7178). Oxford: Oxford University Press.Google Scholar
Rimmer, R. B., Bay, R. C., Alam, N. B., et al. (2015). Measuring the burden of pediatric burn injury for parents and caregivers: informed burn center staff can help to lighten the load. Journal of Burn Care & Research, 36, 421427.Google Scholar
Rizzone, L. P., Stoddard, F. J., Murphy, J. M., et al. (1994). Posttraumatic stress disorder in mothers of children and adolescents with burns. Journal of Burn Care & Rehabilitation, 15, 158163.Google Scholar
Thombs, B., Bresnick, M. & Magyar-Russell, G. (2006). Depression in survivors of burn-injury: a systematic review. General Hospital Psychiatry, 28, 494502.Google Scholar
Wiechman, S. & Patterson, D. (2004). Psychosocial aspects of burn injuries. British Medical Journal, 329, 391393.Google Scholar
Young, A. E. (2004). The management of severe burns in children. Current Pediatric Reviews, 14, 202207.Google Scholar

References

American Cancer Society. (2016). Cancer Facts and Figures. Atlanta, GA: American Cancer Society.Google Scholar
Bluethmann, S., Mariotto, A. & Rowland, J. (2016). Anticipating the ‘Silver Tsunami’: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiology, Biomarkers & Prevention, 25, 10291036.Google Scholar
Demark-Wahnefried, W., Aziz, N. M., Rowland, J. H. & Pinto, B. M. (2005). Riding the crest of the teachable moment: promoting long-term health after the diagnosis of cancer. Journal of Clinical Oncology, 23(24), 58145830.Google Scholar
Demark-Wahnefried, W., Pinto, B. & Gritz, E. (2006). Promoting health and physical function among cancer survivors: potential for prevention and questions that remain. Journal of Clinical Oncology, 24, 51255131.Google Scholar
Earle, C. C. (2006). Failing to plan is planning to fail: improving the quality of care with survivorship care plans. Journal of Clinical Oncology, 24(32), 51125116.Google Scholar
Faguet, G. (2005). The War on Cancer: An Anatomy of Failure. Dordrecht: Springer.Google Scholar
Kolata, G. (2009). Forty years’ war: advances elusive in the drive to cure cancer. New York Times.Google Scholar
Mukherjee, S. (2010). The Emperor of all Maladies: A Biography of Cancer. New York: Simon and Schuster.Google Scholar
Stacey, F. G., James, E. L., Chapman, K., Courneya, K. S. & Lubans, D. R. (2015). A systematic review and meta-analysis of social cognitive theory-based physical activity and/or nutrition behavior change interventions for cancer survivors. Journal of Cancer Survivorship, 9(2), 305338.Google Scholar
Stewart, B. & Wild, C. (eds). (2014). World Cancer Report 2014. https://inovelthng.files.wordpress.com/2016/11/world-cancer-report.pdf (accessed 14 December 2016).Google Scholar
Weinstein, J. N., Collisson, E. A., Mills, G. B., et al. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. [Commentary]. Nature Genetics, 45(10), 11131120. DOI: 10.1038/ng.2764.Google Scholar
Wilson, K., Senay, I., Durantini, M., et al. (2015). When it comes to lifestyle recommendations, more is sometimes less: a meta-analysis of theoretical assumptions underlying the effectiveness of interventions promoting multiple behavior domain change. Psychological Bulletin, 141(2), 474.Google Scholar
Yabroff, K., Lawrence, W., Clauser, S., Davis, W. & Brown, M. (2004). Burden of illness in cancer survivors: findings from a population-based national sample. Journal of the National Cancer Institute, 96(17), 1322.Google Scholar

References

American Cancer Society. (2016). Cancer facts and figures. www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/index (accessed 23 July 2016).Google Scholar
Bish, A., Ramirez, A., Burgess, C., et al. (2005). Understanding why women delay in seeking help for breast cancer symptoms. Journal of Psychosomatic Research, 58, 321326.Google Scholar
Brown, L. F. & Kroenke, K. (2009). Cancer-related fatigue and its associations with depression and anxiety: a systematic review. Psychosomatics, 50, 440447.Google Scholar
Christensen, S., Zachariae, R., Jensen, A. B., et al. (2009). Prevalence and risk of depressive symptoms 3–4 months post-surgery in a nationwide cohort study of Danish women treated for early stage breast-cancer. Breast Cancer Research and Treatment, 113, 339355.Google Scholar
de Boer, A. M., Taskila, T., Ojajärvi, A., et al. (2009). Cancer survivors and unemployment: a meta-analysis and meta-regression. JAMA, 301, 753762.Google Scholar
De Sanctis, V. L., Agolli, L., Visco, V., et al. (2014). Cytokines, fatigue, and cutaneous erythema in early stage breast cancer patients receiving adjuvant radiation therapy. BioMed Research International, 2014, 523568.Google Scholar
Duijts, S. F. A., Faber, M. M., Oldenburg, H. S. A., et al. (2011). Effectiveness of behavioral techniques and physical exercise on psychosocial functioning and health-related quality of life in breast cancer patients and survivors: a meta-analysis. Psycho-Oncology, 20, 115126.Google Scholar
Galway, K., Black, A., Cantwell, M., et al. (2012). Psychosocial interventions to improve quality of life and emotional wellbeing for recently diagnosed cancer patients. Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007064.pub2/abstract (accessed 23 July 2016).Google Scholar
Hafslund, B. & Nortvedt, M. W. (2009). Mammography screening from the perspective of quality of life: a review of the literature. Scandinavian Journal of Caring Sciences, 23, 539548.Google Scholar
Henselmans, I., Helgeson, V. S., Seltman, H., et al. (2010). Identification and prediction of distress trajectories in the first year after a breast cancer diagnosis. Health and Psychology, 29, 160168.Google Scholar
Hulett, J. M., Armer, J. M., Stewart, B. R., et al. (2015). Perspectives of the breast cancer survivorship continuum: diagnosis through 30 months post-treatment. Journal of Personal Medicine, 5, 174190.Google Scholar
Hutchinson, A. D., Hosking, J. R., Kichenadasse, G., et al. (2012). Objective and subjective cognitive impairment following chemotherapy for cancer: a systematic review. Cancer Treatment Reviews, 38(7), 926934.Google Scholar
Independent UK Panel of Breast Cancer Screening. (2012). The benefits and harms of breast cancer screening: an independent review. Lancet, 380, 17781786.Google Scholar
Jacobsen, P. B. & Andrykowski, M. A. (2015). Tertiary prevention in cancer care: understanding and addressing the psychological dimensions of cancer during the active treatment period. American Psychologist, 70, 134145.Google Scholar
Jassim, G. A., Whitford, D. L., Hickey, A., et al. (2015). Psychological interventions for women with non-metastatic breast cancer. Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD008729.pub2/full (accessed 23 July 2016).Google Scholar
Koch, L., Bertram, H., Eberle, A., et al. (2014). Fear of recurrence in long-term breast cancer survivors: still an issue. Results on prevalence, determinants, and the association with quality of life and depression from the Cancer Survivorship – a multi-regional population-based study. Psycho-Oncology, 23, 547554.Google Scholar
Macleod, U., Mitchell, E. D., Burgess, C., et al. (2009). Risk factors for delayed presentation and referral of symptomatic cancer: evidence for common cancers. British Journal of Cancer, 101(S2), S92S101.Google Scholar
McNeely, M. L., Campbell, K., Ospina, M., et al. (2010). Exercise interventions for upper-limb dysfunction due to breast cancer treatment Cochrane Database of Systematic Reviews. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD005211.pub2/full (accessed 23 July 2016).Google Scholar
McPherson, K., Steel, C., & Dixon, J. M. (2000). Breast cancer: epidemiology, risk factors, and genetics. BMJ, 321(7261), 624628.Google Scholar
Mitchell, A. J., Chan, M., Bhatti, H., et al. (2011). Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncology, 12, 160174.Google Scholar
Nelson, H. D., Tyne, K., Naik, A., et al. (2009). Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 151, 727737.Google Scholar
Parkin, D. M., Boyd, L., & Walker, L. C. (2011). The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. British Journal of Cancer, 105(S2), S77S81.Google Scholar
Peate, M., Meiser, B., Hickey, M., et al. (2009). The fertility-related concerns, needs and preferences of younger women with breast cancer: a systematic review. Breast Cancer Research and Treatment, 116, 215223.Google Scholar
Rayan, A. & Dadoul, A. (2015). Decrease the length of hospital stay in depressed cancer patients: nurses should be involved. American Journal of Nursing Research, 3, 47.Google Scholar
Sanjida, S., Janda, M., Kissane, D., et al. (2016). A systematic review and meta-analysis of prescribing practices of antidepressants in cancer patients. Psycho-Oncology. http://onlinelibrary.wiley.com/doi/10.1002/pon.4048/abstract (accessed 23 July 2016).Google Scholar
Stein, K. D., Syrjala, K. L. & Andrykowski, M. A. (2008). Physical and psychological long-term and late effects of cancer. Cancer, 112(S11), 25772592.Google Scholar
Torre, L. A., Bray, F., Siegel, R. L., et al. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87108.Google Scholar
Trask, P. C. (2004). Assessment of depression in cancer patients. Journal of the National Cancer Institute: Monographs, 2004, 8092.Google Scholar
Turnbull, C. & Hodgson, S. (2005). Genetic predisposition to cancer. Clinical Medicine, 5, 491498.Google Scholar
Wardle, J., Robb, K., Vernon, S., et al. (2015). Screening for prevention and early diagnosis of cancer. American Psychologist, 70, 119133.Google Scholar
Wasteson, E., Brenne, E., Higginson, I. J., et al. (2009). Depression assessment and classification in palliative cancer patients: a systematic literature review. Palliative Medicine, 23, 739753Google Scholar
WHO (2014). WHO position paper on mammography screening. www.who.int/cancer/publications/mammography_screening/en/ (accessed 23 July 2016).Google Scholar

References

Alberg, A. J., Brock, M. V., Ford, J. G., Samet, J. M. & Spivack, S. D. (2013). Epidemiology of lung cancer. Chest, 143(5 Suppl.), e1Se29S.Google Scholar
Arrieta, O., Angulo, L. P., Núñez-Valencia, C., et al. (2013). Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer, 98, 9198.Google Scholar
Chen, S.-C.,. Chiou, S.-C., Yu, C.-J., et al. (2016). The unmet supportive care needs: what advanced lung cancer patients’ caregivers need and related factors. Supportive Care in Cancer, 24, 29993009.Google Scholar
Choi, S. U. & Ryu, E. (2016). Effects of symptom clusters and depression on the quality of life in patients with advanced lung cancer. European Journal of Cancer Care. DOI: 10.1111/ecc.12508.Google Scholar
Dougall, A. L., Swanson, J. N., Kyutoku, Y., Belani, C. P. & Baum, A. (2017). Posttraumatic symptoms, quality of life, and survival among lung cancer patients. Journal of Applied Biobehavioral Research, 22, e12065. DOI: 10.1111/jabr.12065.Google Scholar
Ferlay, J., Soerjomataram, I., Ervik, M., et al. (2013). GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon: International Agency for Research on Cancer. http://globocan.iarc.fr (accessed 8 August 2016).Google Scholar
Graves, K. D., Arnold, S. M., Love, C. L., et al. (2007). Distress screening in a multidisciplinary lung cancer clinic: prevalence and predictors of clinically significant distress. Lung Cancer, 55, 215224.Google Scholar
Katki, H. A., Kovalchik, S. A., Berg, C. D., Cheung, L. C. & Chaturvedi, A. K. (2016). Development and validation of risk models to select ever-smokers for CT lung cancer screening. Journal of the American Medical Association, 315, 23002311.Google Scholar
Kenzik, K. M., Ganz, P. A., Martin, M. Y., et al. (2015). How much do cancer-related symptoms contribute to health-related quality of life in lung and colorectal cancer patients? A report from the Cancer Care Outcomes Research and Surveillance (CanCORS) Consortium. Cancer, 121, 28312839.Google Scholar
King, J. D., Eickhoff, J., Traynor, A. & Campbell, T. C. (2016). Integrated onco-palliative care associated with prolonged survival compared to standard care for patients with advanced lung cancer: a retrospective review. Journal of Pain and Symptom Management, 51, 10271032.Google Scholar
Linden, W., Vodermaier, A., Mackenzie, R. & Greig, D. (2012). Anxiety and depression after cancer diagnosis: prevalence rates by cancer type, gender, and age. Journal of Affective Disorders, 141, 343351.Google Scholar
Lo, C., Zimmermann, C., Rydall, A., et al. (2010). Longitudinal study of depressive symptoms in patients with metastatic gastrointestinal and lung cancer. Journal of Clinical Oncology, 28, 30843089.Google Scholar
National Lung Screening Trial Research Team, Aberle, D. R., Adams, , et al. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine, 365, 395409.Google Scholar
Nipp, R. D., El-Jawahri, A., Fishbein, J. N., et al. (2016). The relationship between coping strategies, quality of life, and mood in patients with incurable cancer. Cancer, 122, 21102116.Google Scholar
Ost, D. E., Yeung, S.-C. J., Tanoue, L. T. & Gould, M. K. (2013). Clinical and organizational factors in the initial evaluation of patients with lung cancer diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143(5 Suppl.), e121Se141S.Google Scholar
Piñeiro, B., Simmons, V. N., Palmer, A. M., Correa, J. B. & Brandon, T. H. (2016). Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer, 98, 9198.Google Scholar
Polanski, J., Jankowska-Polanska, B., Rosinczuk, J., Chabowski, M. & Szymanska-Chabowska, A. (2016). Quality of life of patients with lung cancer. OncoTargets and Therapy, 9, 10231028.Google Scholar
Porter, L. S., Keefe, F. J., Garst, J., et al. (2011). Caregiver-assisted coping skills training for lung cancer: results of a randomized clinical trial. Journal of Pain and Symptom Management, 41, 113.Google Scholar
Simoff, M. J., Lally, B., Slade, M. G., et al. (2013). Symptom management in patients with lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143(5 Suppl.), e455Se497S.Google Scholar
Thornton, A. A., Owen, J. E., Kernstine, K., et al. (2012). Predictors of finding benefit after lung cancer diagnosis. Psycho-Oncology, 21, 365373.Google Scholar
United States Department of Health and Human Services (USDHHS). (2004). The Health Consequences of Smoking: A Report of the Surgeon General. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.Google Scholar
Yun, Y. H., Kim, Y. A., Sim, J. A., et al. (2016). Prognostic value of quality of life score in disease-free survivors of surgically-treated lung cancer. BMC Cancer, 16, 505. DOI: 10.1186/s12885-016-2504-x.Google Scholar

References

Adsul, P., Wray, R., Spradling, K., et al. (2015). Systematic review of decision aids for newly diagnosed patients with prostate cancer making treatment decisions. Journal of Urology, 194(5), 12471252.Google Scholar
American Cancer Society (2016). Cancer Facts and Figures 2016. Atlanta, GA: American Cancer Society, Inc.Google Scholar
Chambers, S. K., Pinnock, C., Lepore, S. J., Hughes, S., & O’Connell, D. L. (2011). A systematic review of psychosocial interventions for men with prostate cancer and their partners. Patient Education and Counseling, 85(2), e75–88.Google Scholar
Ferlay, J., Soerjomataram, I., Dikshit, R., et al. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5), E359–386.Google Scholar
Fizazi, K., Scher, H. I., Miller, K., et al. (2014). Effect of enzalutamide on time to first skeletal-related event, pain, and quality of life in men with castration-resistant prostate cancer: results from the randomised, phase 3 AFFIRM trial. Lancet Oncology, 15(10), 11471156.Google Scholar
Han, P. K., Kobrin, S., Breen, N., et al. (2013). National evidence on the use of shared decision making in prostate-specific antigen screening. Annals of Family Medicine, 11(4), 306314.Google Scholar
Heidenreich, A., Bellmunt, J., Bolla, M., et al. (2011). EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. European Urology, 59(1), 6171.Google Scholar
Kim, S. P., Gross, C. P., Nguyen, P. L., et al. (2014). Perceptions of active surveillance and treatment recommendations for low-risk prostate cancer: results from a national survey of radiation oncologists and urologists. Medical Care, 52(7), 579585.Google Scholar
Lepore, S. J., Helgeson, V. S., Eton, D. T. & Schulz, R. (2003). Improving quality of life in men with prostate cancer: a randomized controlled trial of group education interventions. Health and Psychology, 22(5), 443452.Google Scholar
Lepore, S. J., Nair, R. G., Davis, S. N., et al. (2016). Patient and physician factors associated with undisclosed prostate cancer screening in a sample of predominantly immigrant black men. Journal of Immigrant and Minority Health. Epub ahead of print.Google Scholar
Marcus, A. C., Diefenbach, M. A., Stanton, A. L., et al. (2013). Cancer patient and survivor research from the cancer information service research consortium: a preview of three large randomized trials and initial lessons learned. Journal of Health Communications, 18(5), 543562.Google Scholar
Parahoo, K., McDonough, S., McCaughan, E., et al. (2015). Psychosocial interventions for men with prostate cancer: a Cochrane systematic review. BJU International, 116(2), 174183.Google Scholar
Resnick, M. J. & Penson, D. F. (2012). Quality of life with advanced metastatic prostate cancer. Urologic Clinics of North America, 39(4), 505515.Google Scholar
Sidana, A., Hernandez, D. J., Feng, Z., et al. (2012). Treatment decision-making for localized prostate cancer: what younger men choose and why. Prostate, 72(1), 5864.Google Scholar
Steginga, S. K., Ferguson, M., Clutton, S., Gardiner, R. A. & Nicol, D. (2008). Early decision and psychosocial support intervention for men with localised prostate cancer: an integrated approach. Supportive Care in Cancer, 16(7), 821829.Google Scholar
Volk, R. J., Hawley, S. T., Kneuper, S., et al. (2007). Trials of decision aids for prostate cancer screening: a systematic review. American Journal of Preventive Medicine, 33(5), 428434.Google Scholar

References

Andersen, P. A., Buller, D. B., Walkosz, B. J. et al. (2016). Environmental variables associated with vacationers’ sun protection at warm weather resorts in North America. Environmental Research, 146, 200206.Google Scholar
Australian Institute of Health and Welfare (2016). Skin Cancer in Australia. Canberra: AIHW.Google Scholar
Autier, P., Boniol, M. & Doré, J.F. (2007). Sunscreen use and increased duration of intentional sun exposure: still a burning issue. International Journal of Cancer, 121(1), 15.Google Scholar
Chang, C., Murzaku, E. C., Penn, L. et al. (2014). More skin, more sun, more tan, more melanoma. American Journal of Public Health, 104(11), e92–99.Google Scholar
Cust, A. E., Jenkins, M. A., Goumas, C. et al. (2011). Early-life sun exposure and risk of melanoma before age 40 years. Cancer Causes and Control, 22(6), 885897.Google Scholar
Dixon, H. G., Warne, C. D., Scully, M. L. et al. (2011). Does the portrayal of tanning in Australian women’s magazines relate to real women’s tanning beliefs and behavior? Health Education & Behavior, 38(2), 132142.Google Scholar
Dobbinson, S. J., Jamsen, K., Dixon, H. G., et al. (2014). Assessing population-wide behaviour change: concordance of 10-year trends in self-reported and observed sun protection. International Journal of Public Health, 59(1), 157166.Google Scholar
Dobbinson, S. J., White, V., Wakefield, M. A., et al. (2009). Adolescents’ use of purpose built shade in secondary schools: cluster randomised controlled trial. BMJ, 338, b95.Google Scholar
Dobbinson, S., Wakefield, M., Hill, D. et al. (2008). Prevalence and determinants of Australian adolescents’ and adults’ weekend sun protection and sunburn, summer 2003–2004. Journal of the American Academy of Dermatology, 59(4), 602614.Google Scholar
Fransen, M., Karahalios, A., Sharma, N., et al. (2012). Non-melanoma skin cancer in Australia. Medical Journal of Australia, 197(10), 565568.Google Scholar
Friedman, B., English, J. C. & Ferris, L.K. (2015). Indoor tanning, skin cancer and the young female patient: a review of the literature. Journal of Pediatric & Adolescent Gynecology, 28(4), 275283.Google Scholar
Gies, P., Roy, C. & Udelhofen, P. (2004). Solar and ultraviolet radiation. In Hill, D., Elwood, J. M. & English, D. R. (eds), Prevention of Skin Cancer (pp. 2154). Dordrecht: Kluwer Academic Publishers.Google Scholar
Glanz, K., Buller, D. B. & Saraiya, M. (2007). Reducing ultraviolet radiation exposure among outdoor workers: state of the evidence and recommendations. Environmental Health, 6 ,22.Google Scholar
Glanz, K., Yaroch, A. L., Dancel, M. et al. (2008.). Measures of sun exposure and sun protection practices for behavioral and epidemiologic research. Archives of Dermatology, 144(2), 217222.Google Scholar
Global Burden of Disease Cancer Collaboration, Fitzmaurice, C., Dicker, D., et al. (2015). The global burden of cancer 2013. JAMA Oncology 1(4), 505527Google Scholar
Gordon, L., Youl, P. H., Elwood, M., et al. (2007). Diagnosis and management costs of suspicious skin lesions from a population-based melanoma screening programme. Journal of Medical Screening, 14(2), 98102.Google Scholar
Guy, G. P. & Ekwueme, D. U. (2011). Years of potential life lost and indirect costs of melanoma and non-melanoma skin cancer: a systematic review of the literature. Pharmacoeconomics, 29(10), 863874.Google Scholar
Haque, T., Rahman, K. M., Thurston, D. E., et al. (2015). Topical therapies for skin cancer and actinic keratosis. European Journal of Pharmaceutical Sciences, 77, 279289.Google Scholar
Hill, D. J., Dobbinson, S. J. & Makin, J. (2009). Interventions to lower ultraviolet radiation exposure: education, legislation and public policy. In: ASCO 2009 Education Book. Arlington, VA: ASCO.Google Scholar
Hill, D. & Boulter, J. (1996). Sun protection behaviour: determinants and trends. Cancer Forum, 20, 204211.Google Scholar
Hill, D., Rassaby, J. & Gardner, G. (1984). Determinants of intentions to take precautions against skin cancer. Community Health Studiesiesies, 8(1), 3344.Google Scholar
Jackson, K. M. & Aiken, L. S. (2000). A psychosocial model of sun protection and sunbathing in young women: the impact of health beliefs, attitudes, norms, and self-efficacy for sun protection. Health and Psychology, 19(5), 469478.Google Scholar
Joel Hillhouse, G. C., Thompson, J. K., Jacobsen, P. B. et al. (2009). Investigating the role of appearance-based factors in predicting sunbathing and tanning salon use. Journal of Behavioral Medicine, 32(6), 532544.Google Scholar
Lorenc, T., Jamal, F. & Cooper, C. (2013). Resource provision and environmental change for the prevention of skin cancer: systematic review of qualitative evidence from high-income countries. Health Promotion International, 28(3), 345356.Google Scholar
Mayer, J. A., Woodruff, S. I., Slymen, D. J., et al. (2011). Adolescents’ use of indoor tanning: a large-scale evaluation of psychosocial, environmental, and policy-level correlates. American Journal of Public Health, 101(5), 930938.Google Scholar
Noar, S. M., Myrick, J. G., Zeitany, A., et al. (2015). Testing a social cognitive theory-based model of indoor tanning: implications for skin cancer prevention messages. Health Communications, 30(2), 164174.Google Scholar
Norval, M., Lucas, R. M., Cullen, A. P., et al. (2011). The human health effects of ozone depletion and interactions with climate change. Photochemical & Photobiological Sciences, 10(2), 199225.Google Scholar
Olsen, C. M., Wilson, L. F., Green, A. C., et al. (2015). Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Australian and New Zealand Journal of Public Health, 39(5), 471476.Google Scholar
Potente, S., Coppa, K., Williams, A., et al. (2011). Legally brown: using ethnographic methods to understand sun protection attitudes and behaviours among young Australians ‘I didn’t mean to get burnt – it just happened!’. Health Education Research, 26(1), 3952.Google Scholar
Radiotis, G., Roberts, N., Czajkowska, A., Khanna, M. & Korner, A. (2014). Nonmelanoma skin cancer: disease-specific quality-of-life concerns and distress. Oncology Nursing Forum, 41(1), 5765.Google Scholar
Sandhu, P. K., Elder, R., Patel, M., et al. (2016). Community-wide interventions to prevent skin cancer: two community guide systematic reviews. American Journal of Preventive Medicine, 51(4), 531539.Google Scholar
Saraiya, M., Glanz, K., Briss, P. A., et al. (2004). Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. American Journal of Preventive Medicine, 27(5), 422466.Google Scholar
Shoveller, J. A. & Lovato, C. Y. (2001). Measuring self-reported sunburn: challenges and recommendations. Chronic Diseases in Canada, 22(3–4), 8398.Google Scholar
Sinclair, C., Makin, J., Tang, A., et al. (2014). The role of public health advocacy in achieving an outright ban on commercial tanning beds in Australia. American Journal of Public Health, 104(2), e7–9.Google Scholar
Sneyd, M. J. & Cox, B. (2013). A comparison of trends in melanoma mortality in New Zealand and Australia: the two countries with the highest melanoma incidence and mortality in the world. BMC Cancer, 13, 372.Google Scholar
Starfelt Sutton, L. C. & White, K.M. (2016). Predicting sun-protective intentions and behaviours using the theory of planned behaviour: a systematic review and meta-analysis. Psychology and Health, 31(11), 12721292.Google Scholar
Street, T. D. & Thomas, D. L. (2015). Employee factors associated with interest in improving sun protection in an Australian mining workforce. Health Promotion Journal of Australia, 26(1), 3338.Google Scholar
Tripp, M. K., Watson, M., Balk, S. J. et al. (2016). State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now. CA: A Cancer Journal for Clinicians. DOI: 10.3322/caac.21352.Google Scholar
Ugurel, S., Röhmel, J., Ascierto, P. A., et al. (2016). Survival of patients with advanced metastatic melanoma: the impact of novel therapies. European Journal of Cancer, 53, 125134.Google Scholar
Vuong, K., Armstrong, B. K., Weiderpass, E., et al. (2016). Development and external validation of a melanoma risk prediction model based on self-assessed risk factors. JAMA Dermatology, 152(8), 889896.Google Scholar
Wallingford, S. C., Iannacone, M. R., Youlden, D. R., et al. (2015). Comparison of melanoma incidence and trends among youth under 25 years in Australia and England, 1990–2010. International Journal of Cancer, 137(9), 22272233.Google Scholar
Watts, C. G., Cust, A. E., Menzies, S. W., et al. (2015). Specialized surveillance for individuals at high risk for melanoma: a cost analysis of a high-risk clinic. JAMA Dermatology, 151(2), 178186.Google Scholar
Wernli, K. J., Henrikson, N. B., Morrison, C. C., et al. (2016). Screening for skin cancer in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 316(4), 436447.Google Scholar
World Health Organization (2016). Ultraviolet radiation and the Intersun programme: UV Index. www.who.int/uv/intersunprogramme/activities/uv_index/en/ (accessed 3 September 2016).Google Scholar

References

Anderson, L. & Taylor, R. S. (2014). Cardiac rehabilitation for people with heart disease: an overview of Cochrane systematic reviews. Cochrane Database of Systematic Reviews, 12, CD011273.Google Scholar
Ayerbe, L., Ayis, S., Wolfe, C. D. & Rudd, A. G. (2013). Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. British Journal of Psychiatry, 202(1), 1421.Google Scholar
BACPR. (2012). BACPR standards and core components for cardiovascular disease prevention and rehabilitation. www.bacpr.com/resources/46C_BACPR_Standards_and_Core_Components_2012.pdf.Google Scholar
Boehm, J. K. & Kubzansky, L. D. (2012). The heart’s content: the association between positive psychological well-being and cardiovascular health. Psychological Bulletin, 138(4), 655691.Google Scholar
Byrne, M., Doherty, S., Fridlund, B. G., et al. (2016). Sexual counselling for sexual problems in patients with cardiovascular disease. Cochrane Database of Systematic Reviews, 2, CD010988.Google Scholar
Chida, Y. & Steptoe, A. (2008). Positive psychological well-being and mortality: a quantitative review of prospective observational studies. Psychosomatic Medicine, 70(7), 741756.Google Scholar
Cunningham, M. A., Swanson, V., O’Carroll, R. E. & Holdsworth, R. J. (2012). Randomized clinical trial of a brief psychological intervention to increase walking in patients with intermittent claudication. British Journal of Surgery, 99(1), 4956.Google Scholar
Dalal, H. M., Doherty, P. & Taylor, R. S. (2015). Cardiac rehabilitation. BMJ, 351. https://doi.org/10.1136/bmj.h5000.Google Scholar
DuBois, C. M., Lopez, O. V., Beale, E. E., et al. (2015). Relationships between positive psychological constructs and health outcomes in patients with cardiovascular disease: a systematic review. International Journal of Cardiology, 195, 265280.Google Scholar
Edmondson, D., Richardson, S., Falzon, L., et al. (2012). Posttraumatic stress disorder prevalence and risk of recurrence in acute coronary syndrome patients: a meta-analytic review. PLoS One, 7(6), e38915.Google Scholar
Everson-Rose, S. A. & Lewis, T. T. (2005). Psychosocial factors and cardiovascular diseases. Annual Review of Public Health, 26, 469500.Google Scholar
Fransson, E. I., Nyberg, S. T., Heikkila, K., et al. (2015). Job strain and the risk of stroke: an individual-participant data meta-analysis. Stroke, 46(2), 557559.Google Scholar
Hackett, M. L. & Pickles, K. (2014). Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. International Journal of Stroke, 9(8), 10171025.Google Scholar
Holt-Lunstad, J., Smith, T. B. & Layton, J. B. (2010). Social relationships and mortality risk: a meta-analytic review. PLoS Medicine, 7(7), e1000316.Google Scholar
Jiang, W. (2015). Emotional triggering of cardiac dysfunction: the present and future. Current Cardiology Reports, 17(10), 91.Google Scholar
Johnston, M., Bonetti, D., Joice, S., et al. (2007). Recovery from disability after stroke as a target for a behavioural intervention: results of a randomized controlled trial. Disability and Rehabilitation, 29(14), 11171127.Google Scholar
Kalra, L., Evans, A., Perez, I., et al. (2004). Training carers of stroke patients: randomised controlled trial. BMJ, 328(7448), 1099.Google Scholar
Kaplan, G. A. & Keil, J. E. (1993). Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation, 88(4 Pt 1), 19731998.Google Scholar
Kivimaki, M., Nyberg, S. T., Batty, G. D., et al. (2012). Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. Lancet, 380(9852), 14911497.Google Scholar
Kronish, I. M. & Ye, S. (2013). Adherence to cardiovascular medications: lessons learned and future directions. Progress in Cardiovascular Diseases, 55(6), 590600.Google Scholar
Lee, S., Colditz, G. A., Berkman, L. F. & Kawachi, I. (2003). Caregiving and risk of coronary heart disease in U.S. women: a prospective study. American Journal of Preventive Medicine, 24(2), 113119.Google Scholar
Molloy, G. J., Johnston, D. W. & Witham, M. D. (2005). Family caregiving and congestive heart failure: review and analysis. European Journal of Heart Failure, 7(4), 592603.Google Scholar
Molloy, G. J., Stamatakis, E., Randall, G. & Hamer, M. (2009). Marital status, gender and cardiovascular mortality: behavioural, psychological distress and metabolic explanations. Social Science and Medicine, 69(2), 223228.Google Scholar
Naderi, S. H., Bestwick, J. P. & Wald, D. S. (2012). Adherence to drugs that prevent cardiovascular disease: meta-analysis on 376,162 patients. American Journal of Medicine, 125(9), 882887.Google Scholar
Nicholson, A., Kuper, H. & Hemingway, H. (2006). Depression as an aetiologic and prognostic factor in coronary heart disease: a meta-analysis of 6362 events among 146 538 participants in 54 observational studies. European Heart Journal, 27(23), 27632774.Google Scholar
Nieuwlaat, R., Wilczynski, N., Navarro, T., et al. (2014). Interventions for enhancing medication adherence. Cochrane Database of Systematic Reviews, 11, CD000011.Google Scholar
O’Neil, A., Sanderson, K. & Oldenburg, B. (2010). Depression as a predictor of work resumption following myocardial infarction (MI): a review of recent research evidence. Health and Quality of Life Outcomes, 8, 95.Google Scholar
O’Reilly, D., Rosato, M. & Maguire, A. (2015). Caregiving reduces mortality risk for most caregivers: a census-based record linkage study. International Journal of Epidemiology, 44(6), 19591969.Google Scholar
Pittman, D. G., Chen, W., Bowlin, S. J. & Foody, J. M. (2011). Adherence to statins, subsequent healthcare costs, and cardiovascular hospitalizations. American Journal of Cardiology, 107(11), 16621666.Google Scholar
Randall, G., Molloy, G. J. & Steptoe, A. (2009). The impact of an acute cardiac event on the partners of patients: a systematic review. Health Psychology Review, 3(1), 184.Google Scholar
Robles, T. F., Slatcher, R. B., Trombello, J. M. & McGinn, M. M. (2014). Marital quality and health: a meta-analytic review. Psychological Bulletin, 140(1), 140187.CrossRefGoogle Scholar
Roger, V. L. (2013). Epidemiology of heart failure. Circulation Research, 113(6), 646659.Google Scholar
Rozanski, A. (2014). Behavioral cardiology: current advances and future directions. Journal of the American College of Cardiology, 64(1), 100110.Google Scholar
Rutledge, T., Reis, V. A., Linke, S. E., Greenberg, B. H. & Mills, P. J. (2006). Depression in heart failure: a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. Journal of the American College of Cardiology, 48(8), 15271537.Google Scholar
Sin, N. L. (2016). The protective role of positive well-being in cardiovascular disease: review of current evidence, mechanisms, and clinical implications. Current Cardiology Reports, 18(11), 106.Google Scholar
Sin, N. L., Moskowitz, J. T. & Whooley, M. A. (2015). Positive affect and health behaviors across 5 years in patients with coronary heart disease: the heart and soul study. Psychosomatic Medicine, 77(9), 10581066.Google Scholar
Smyth, A., O’Donnell, M., Lamelas, P., et al. (2016). Physical activity and anger or emotional upset as triggers of acute myocardial infarction: the INTERHEART Study. Circulation, 134(15), 10591067.Google Scholar
Steinke, E. E., Jaarsma, T., Barnason, S. A., et al. (2013). Sexual counselling for individuals with cardiovascular disease and their partners: a consensus document from the American Heart Association and the ESC Council on Cardiovascular Nursing and Allied Professions (CCNAP). European Heart Journal, 34(41), 32173235.Google Scholar
Steptoe, A. & Molloy, G. J. (2007). Personality and heart disease. Heart, 93(7), 783784.Google Scholar
Suls, J. & Bunde, J. (2005). Anger, anxiety, and depression as risk factors for cardiovascular disease: the problems and implications of overlapping affective dispositions. Psychological Bulletin, 131(2), 260300.Google Scholar
Thombs, B. D., Bass, E. B., Ford, D. E., et al. (2006). Prevalence of depression in survivors of acute myocardial infarction. Journal of General Internal Medicine, 21(1), 3038.Google Scholar
Treger, I., Shames, J., Giaquinto, S. & Ring, H. (2007). Return to work in stroke patients. Disability and Rehabilitation, 29(17), 13971403.Google Scholar
Valtorta, N. K., Kanaan, M., Gilbody, S., Ronzi, S. & Hanratty, B. (2016). Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart, 102(13), 10091016.Google Scholar
Vrijens, B., Vincze, G., Kristanto, P., Urquhart, J. & Burnier, M. (2008). Adherence to prescribed antihypertensive drug treatments: longitudinal study of electronically compiled dosing histories. BMJ, 336(7653), 11141117.Google Scholar
Whalley, B., Rees, K., Davies, P., et al. (2011). Psychological interventions for coronary heart disease. Cochrane Database of Systematic Reviews, 8, CD002902.Google Scholar
WHO. (2016). Cardiovascular diseases (CVDs). World Health Organization Fact Sheet. www.who.int/mediacentre/factsheets/fs317/en/Google Scholar

References

Afari, N. & Buchwald, D. (2003). Chronic fatigue syndrome: a review. The American Journal of Psychiatry, 160, 221236.Google Scholar
Cairns, R. & Hotopf, M. (2005). Review article: the prognosis of chronic fatigue syndrome. Occupational Medicine, 55, 2031.Google Scholar
Castell, B., Kazantzis, N. & Moss-Morris, R. (2011). Cognitive behavioural therapy and graded exercise for chronic fatigue syndrome: a meta-analysis. Clinical Psychology: Science and Practice, 18, 311324.Google Scholar
Chalder, T., Goldsmith, K., White, P., Sharpe, M. & Pickles, A. (2015). Rehabilitative therapies for chronic fatigue syndrome: a secondary mediation analysis of the PACE trial. Lancet Psychiatry, 2, (2), 141152.Google Scholar
Cleare, A. J. & Wessely, S. C. (1996). Chronic fatigue syndrome: a stress disorder? British Journal of Hospital Medicine, 55, 571574.Google Scholar
Deale, A. & Wessely, S. (2001). Patients’ perceptions of medical care in chronic fatigue syndrome. Social Science and Medicine, 52, 18591864.Google Scholar
Fukuda, K., Straus, S., Hickie, I., et al. (1994). The chronic fatigue syndrome: a comprehensive approach to its definition and study. Annals of Internal Medicine, 121, 953959.Google Scholar
Hatcher, S. & House, A. (2003). Life events, difficulties and dilemmas in the onset of chronic fatigue syndrome: a case-control study. Psychological Medicine, 33, 11851192.CrossRefGoogle ScholarPubMed
Larun, L., Brurberg, K. G., Odgaard-Jensen, J. & Price, J.R. (2016). Exercise therapy for chronic fatigue syndrome. Cochrane Database of Systematic Reviews, 6, CD003200. DOI: 10.1002/14651858.CD003200.pub5.Google Scholar
Petrie, K., Moss-Morris, R. & Weinman, J. (1995). Catastophic beliefs and their implications in chronic fatigue syndrome. Journal of Psychosomatic Research, 39, 3137.Google Scholar
Price, J., Mitchell, E., Tidy, E. & Hunot, V. (2008). Cognitive behaviour therapy for chronic fatigue syndrome in adults. Cochrane Database of Systematic Reviews, 3. CD001027. DOI: 10.1002/14651858.CD001027.pub2.Google Scholar
Prins, J. B., van der Meer, J. W. & Bleijenberg, G. (2006). Chronic fatigue syndrome. Lancet, 367, 346355.Google Scholar
Reid, S., Chalder, T., Cleare, A., Hotopf, M. & Wessely, S. (2004). Chronic fatigue syndrome. Clinical Evidence, 11, 13.Google Scholar
Rimes, K. A. & Chalder, T. (2005). Treatments for chronic fatigue syndrome. Occupational Medicine, 55, 3239.Google Scholar
Sharpe, M., Arcard, L. C., Banatvala, J. E., et al. (1991). A report: chronic fatigue syndrome – guidelines for research. Journal of the Royal Society of Medicine, 84, 118121.Google Scholar
Stahl, D., Rimes, K. & Chalder, T. (2014). Mechanisms of change underlying the efficacy of cognitive behaviour therapy for chronic fatigue syndrome in a specialist clinic: a mediation analysis. Psychological Medicine, 44, 13311344.Google Scholar
Van Houdenhove, B., Neerinckx, E., Onghena, P. et al. (2002). Daily hassles reported by chronic fatigue syndrome and fibromyalgia patients in tertiary care: a controlled quantitative and qualitative study. Psychotherapy and Psychosomatics, 71, 207213.Google Scholar
Wessely, S. (1995). The epidemiology of chronic fatigue syndrome. Epidemiologic Reviews, 17, 139151.Google Scholar
Wessely, S., David, A., Butler, S. & Chalder, T. (1991). The cognitive behavioural management of the postviral fatigue syndrome. In Jenkins, R. & Mowbray, J. (eds), The Postviral Syndrome (ME) (pp. 297334). Chichester: Wiley.Google Scholar
Wessely, S., Hotopf, M. & Sharpe, M. (1998). Chronic Fatigue and its Syndromes. New York: Oxford University Press.Google Scholar
White, P., Goldsmith, K., Johnson, A., et al. (2011). Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. Lancet, 377, 823836.CrossRefGoogle Scholar
White, P., Goldsmith, K., Johnson, A., Chalder, T. & Sharpe, M. (2013). Recovery from chronic fatigue syndrome after treatments given in the PACE trial. Psychological Medicine, 43(10), 22272235.Google Scholar
Wilson, A., Hickie, I., Lloyd, A., et al. (1994). Longitudinal study of outcome of chronic fatigue syndrome. British Medical Journal, 308, 756759.Google Scholar

References

Agle, D. P., Baum, G. L., Chester, E. H. & Wendt, M. (1973). Multidiscipline treatment of chronic pulmonary insufficiency: 1. Psychologic aspects of rehabilitation. Psychosomatic Medicine, 35, 4149.Google Scholar
Atkins, C. J., Kaplan, R. M., Timms, R. M., Reinsch, S. & Lofback, K. (1984). Behavioral exercise programs in the management of chronic obstructive pulmonary disease. Journal of Consulting and Clinical Psychology, 52, 591603.Google Scholar
Bartlett, Y. K., Sheeran, P. & Hawley, M. S. (2014). Effective behaviour change techniques in smoking cessation interventions for people with chronic obstructive pulmonary disease: a meta-analysis. British Journal of Health Psychology, 19, 181203.Google Scholar
Cleutjens, F. A. H. M., Franssen, F. M. E., Spruit, M. A., et al. (2017). Domain-specific cognitive impairment in patients with COPD and control subjects. International Journal of COPD, 12, 111.Google Scholar
GOLD (Global initiative for chronic Obstructive Lung Disease) (2017). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Bethesda, MD: NIH,.Google Scholar
Guyatt, G. H., Berman, L. B., Townsend, M., et al. (1987). A measure of quality of life for clinical trials in chronic lung disease. Thorax, 42, 773778.CrossRefGoogle ScholarPubMed
Hill, K., Vogiatzis, I. & Burtin, C. (2013). The importance of pulmonary rehabilitation, other than exercise training, in COPD. European Respiratory Review, 22, 405413.Google Scholar
Jones, P. W., Quirk, F. H., Baveystock, C. M. & Littlejohns, P. A. (1992). Self-complete measure of health status for chronic airflow limitation. American Review of Respiratory Disease, 145, 13211327.Google Scholar
Jonkman, N. H., Schuurmans, M. J., Groenwold, R. H. H., Hoes, A. W. & Trappenburg, J. C. A. (2016). Identifying components of self-management interventions that improve health-related quality of life in chronically ill patients: systematic review and meta-regression analysis. Patient Education and Counseling, 99, 10781098.Google Scholar
Kaptein, A. A., Scharloo, M., Fischer, M. J., et al. (2009). 50 years of psychological research on patients with COPD: road to ruin or highway to heaven? Respiratory Medicine, 103, 311.Google Scholar
Kaptein, A. A., Scharloo, M., Fischer, M. J., et al. (2008). Illness perceptions and COPD: an emerging field for COPD patient management. Journal of Asthma, 45, 625629.Google Scholar
Kaptein, A. A., Fischer, M. J. & Scharloo, M. (2014). Self-management in patients with COPD: theoretical context, content, outcomes, and integration into clinical care. International Journal of COPD, 9, 907917.Google Scholar
Kaptein, A. A., Meulenberg, F. & Smyth, J. M. (2015). A breath of fresh air: images of respiratory illness in novels, poems, films, music and paintings. Journal of Health Psychology, 20, 246258.Google Scholar
Kinsman, R. A., Yaroush, R. A., Fernandez, E., et al. (1983). Symptoms and experiences in chronic bronchitis and emphysema. Chest, 83, 755761.Google Scholar
Levinson, A. H. (2017). Where the U.S. tobacco epidemic still rages: most remaining smokers have lower socioeconomic status. Journal of Health Care for the Poor and Underserved, 28, 100107.Google Scholar
Luthy, C., Cedraschi, C., Pasquina, P., et al. (2013). Perception of chronic respiratory impairment in patients’ drawings. Journal of Rehabilitation Medicine, 45, 694700.Google Scholar
McCarthy, B., Casey, D., Devane, D., et al. (2015). Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database of Systematic Reviews, 2, CD003793.Google Scholar
Nici, L., Donner, C., Wouters, E., et al. (2006). ATS/ERS statement on pulmonary rehabilitation. American Journal of Respiratory and Critical Care Medicine, 173, 13901413.Google Scholar
Peytremann-Bridevaux, I., Staeger, P., Brideveaux, P. O., Ghali, W. A. & Burnand, B. (2008). Effectiveness of chronic obstructive pulmonary disease-management programs: systematic review and meta-analysis. American Journal of Medicine, 121, 433443.Google Scholar
Ringbaek, T. J. & Lange, P. (2014). Trends in long-term oxygen therapy for COPD in Denmark. Respiratory Medicine, 108, 511516.Google Scholar
Scharloo, M. & Kaptein, A. A. (2003). Chronic obstructive pulmonary disease: a behavioural medicine approach. In Llewelyn, S. & Kennedy, P. (eds), Handbook of Clinical Health Psychology (pp. 155179). Chichester: Wiley.Google Scholar
Schou, L., Østergaard, B., Rasmussen, L. S., Rydahl-Hansen, S. & Phanareth, K. (2012). Cognitive dysfunction in patients with chronic obstructive pulmonary disease: a systematic review. Respiratory Medicine, 106, 10711081.Google Scholar
Vaske, I., Thöne, M. F., Kühl, K., et al. (2015). For better or for worse: a longitudinal study on dyadic coping and quality of life among couples with a partner suffering from COPD. Journal of Behavioral Medicine, 38, 851862.Google Scholar
Webb, M. W. & Lawton, A. H. (1961). Basic personality traits characteristic of patients with primary obstructive pulmonary emphysema. Journal of the American Geriatrics Society, 9, 590610.Google Scholar

References

Alappattu, M. J. & Bishop, M. D. (2011). Psychological factors in chronic pelvic pain in women: relevance and application of the fear-avoidance model of pain. Physical Therapy, 91, 15421550.CrossRefGoogle ScholarPubMed
As-Sanie, S., Clevenger, L. A., Geisser, M. E., et al. (2014). History of abuse and its relationship to pain experience and depression in women. American Journal of Obstetrics & Gynecology. 210(4):317.e1–8. DOI: 10.1016/j.ajog.2013.12.048.Google Scholar
Ballweg, M. L. (2004). Impact of endometriosis on women’s health: comparative historical data show that the earlier the onset, the more severe the disease. Best Practice & Research Clinical Obstetrics & Gynaecology, 18, 201218.Google Scholar
Bawa, F. L., Mercer, S. W., Atherton, R. J., et al. (2015). Does mindfulness improve outcomes in patients with chronic pain? Systematic review and meta-analysis. British Journal of General Practice, 65, e387–400.Google Scholar
Berkley, K. J., Rapkin, A. J. & Papka, R. E. (2005). The pains of endometriosis. Science, 308(5728), 15871589.Google Scholar
Bryant, C., Cockburn, R., Plante, A. F., et al. (2016). The psychological profile of women presenting to a multidisciplinary clinic for chronic pelvic pain: high levels of psychological dysfunction and implications for practice. Journal of Pain Research, 9, 10491056.Google Scholar
Carey, E. T. & As-Sanie, S. (2016). New developments in the pharmacotherapy of neuropathic chronic pelvic pain. Future Science OA, 2(4). DOI: 10.4155/fsoa-2016-0048.Google Scholar
De Graaff, A. A., Van Lankveld, J., Smits, L. J., et al. (2016). Dyspareunia and depressive symptoms are associated with impaired sexual functioning in women with endometriosis, whereas sexual functioning in their male partners is not affected. Human Reproduction, 31(11), 25772586.Google Scholar
Dunne, F. (2011). Depression and pain: is there a common pathway? British Journal of Medical Practitioners, 4.Google Scholar
Fenton, B. W. (2007). Limbic associated pelvic pain: a hypothesis to explain the diagnostic relationships and features of patients with chronic pelvic pain. Medical Hypotheses, 69(2), 282286.Google Scholar
Greene, R. S. P., Cleary, S. D., Ballweg, M. L. & Sinaii, N. (2009). Diagnostic experience among 4,334 women reporting surgically diagnosed endometriosis. Fertility and Sterility, 91, 3239.Google Scholar
Heim, C., Ehlert, U., Hanker, J. P. et al. (1998). Abuse-related posttraumatic stress disorder and alterations of the of the hypothalamic-pituitary-adrenal axis in women with chronic pelvic pain. Psychosomatic Medicine, 60(3), 309318.Google Scholar
Howard, F. M. (2003). The role of laparoscopy in the chronic pelvic pain patient. Clinical Obstetrics and Gynecology, 46(4), 749766.Google Scholar
Kaya, S., Hermans, L., Willems, T., et al. (2013). Central sensitization in urogynecological chronic pelvic pain: a systematic literature review. Pain Physician Journal, 16(4), 291308.Google Scholar
Latthe, P., Mignini, L., Gray, R., Hills, R. & Khan, K. (2006). Factors predisposing women to chronic pelvic pain: systematic review. BMJ, 332(7544), 749755.Google Scholar
Leserman, J., Zolnoun, D., Meltzer-Brody, S., et al. (2006). Identification of diagnostic subtypes of chronic pelvic pain and how subtypes differ in health status and trauma history. American Journal of Obstetrics & Gynecology, 195(2), 554560; discussion 560–561.Google Scholar
Meltzer-Brody, S., Leserman, J., Zolnoun, D., et al. (2007). Trauma and posttraumatic stress disorder in women with chronic pelvic pain. Obstetrics & Gynecology, 109(4), 902908.Google Scholar
Miller-Matero, L. R., Saulino, C., Clark, S., et al. (2016). When treating the pain is not enough: a multidisciplinary approach for chronic pelvic pain. Archives of Women’s Mental Health, 19(2), 349354. DOI: 10.1007/s00737-015-0537-9.CrossRefGoogle Scholar
Peters, A. A., Van Dorst, E., Jellis, B., et al. (1991). A randomized clinical trial to compare two different approaches in women with chronic pelvic pain. Obstetrics & Gynecology, 77, 740744.Google ScholarPubMed
Romao, A. P., Gorayeb, R., Romao, G. S. & Poli-Neto, O. B. (2009). High levels of anxiety and depression have a negative effect on quality of life. International Journal of Clinical Practice, 63(5), 707711. DOI: 10.1111/j.1742-1241.2009.02034.x.Google Scholar
Simoens, S., Dunselman, G., Dirksen, C., et al. (2012). The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Human Reproduction, 27, 12921299.Google Scholar
Tirlapur, S. A., Kuhrt, K., Chaliha, C., et al (2013). The ‘evil twin syndrome’ in chronic pelvic pain: a systematic review of prevalence studies of bladder pain syndrome and endometriosis. International Journal of Surgery, 11(3), 233237. DOI: 10.1016/j.ijsu.2013.02.003.Google Scholar
Williams, A. C., Eccleston, C. & Morley, S. (2012). Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database of Systematic Reviews, 11, CD007407.Google Scholar
Zondervan, K. T., Yudkin, P. L., Vessey, M. P., et al. (2001). Chronic pelvic pain in the community–symptoms, investigations, and diagnoses. American Journal of Obstetrics & Gynecology, 184(6), 11491155.Google Scholar

References

Bell, J. C., Raynes-Greenow, C., Turner, R., et al. (2016). School performance for children with cleft lip and palate: a population-based study. Child: Care, Health, and Development. Epub ahead of print.Google Scholar
Berry, L. A., Witt, P. D., Marsh, J. L., Pilgram, T. K. & Eder, R. A. (1997). Personality attributions based on speech samples of children with repaired cleft palates. Cleft Palate Craniofacial Journal, 34, 385389.Google Scholar
Broder, H. L., Smith, F. B. & Strauss, R. P. (1994). Effects of visible and invisible orofacial defects on self-perception and adjustment across developmental eras and gender. Cleft Palate-Craniofacial Journal, 31, 429436.Google Scholar
Chapman, K. L. (2011). The relationship between early reading skills and speech and language performance in young children with cleft lip and palate. Cleft Palate Craniofacial Journal, 48(3), 301311.Google Scholar
Conrad, A. L., McCoy, T. E., DeVolder, I., Richman, L. C. & Nopoulos, P. (2014). Reading in subjects with an oral cleft: speech, hearing and neuropsychological skills. Neuropsychology, 28(3), 415422.Google Scholar
Coy, K., Speltz, M. L., Jones, K., Hill, S. & Omnell, M. L. (2000). Do psychosocial variables predict the physical growth of infants with orofacial clefts? Journal of Developmental & Behavioral Pediatrics, 21, 198206.Google Scholar
Feragen, K. B. & Borge, A. I. (2010). Peer harassment and satisfaction with appearance in children with and without a facial difference. Body Image, 7(2), 97105.Google Scholar
Hutchinson, K., Wellman, M. A., Noe, D. A. & Kahn, A. (2011). The psychosocial effects of cleft lip and palate in non-Anglo populations: a cross-cultural meta-analysis. Cleft Palate Craniofacial Journal, 48(5), 497508.Google Scholar
Lee, A., Gibbon, F. E. & Spivey, K. (2016). Children’s attitudes toward peers with unintelligible speech associated with cleft lip and/or palate. Cleft Palate Craniofacial Journal. Epub ahead of print.Google Scholar
Mai, C. T., Cassell, C. H., Meyer, R. E., et al. (2014). Birth defects data from population-based birth defects surveillance programs in the United States, 2007 to 2011: highlighting orofacial clefts. Birth Defects Research Part A: Clinical and Molecular Teratology, 100(11), 895904.Google Scholar
Montirosso, R., Fedeli, C., Murray, L., et al. (2012). The role of negative maternal affective states and infant temperament in early interactions between infants with cleft lip and their mothers. Journal of Pediatric Psychology, 37, 241250.Google Scholar
Murray, J. C. (2002). Gene/environment causes of cleft lip and/or palate. Clinical Genetics, 61(4), 248256.Google Scholar
Murray, L., Hentges, F., Hill, J., et al. (2008). The effect of cleft lip and palate, and the timing of lip repair on mother–infant interactions on infant development. Journal of Child Psychology and Psychiatry, 49, 115123.Google Scholar
Nidey, N., Moreno Uribe, L. M., Marazita, M. M. & Wehby, G. L. (2016). Psychosocial well-being of parents of children with oral clefts. Child: Care, Health, and Development, 42(1), 4250.Google Scholar
Queiroz Herkrath, A. P., Herkrath, F. J., Rebelo, M. A. & Vettore, M. V. (2015). Measurement of health-related and oral health-related quality of life among individuals with nonsyndromic orofacial clefts: a systematic review and meta-analysis. Cleft Palate Craniofacial Journal, 52(2), 157172.Google Scholar
Richman, L. C., McCoy, T. E., Conrad, A. L. & Nopoulos, P. C. (2012). Neuropsychological, behavioral, and academic sequelae of cleft: early developmental, school age, and adolescent/young adult outcomes. Cleft Palate Craniofacial Journal, 49(4), 387396.Google Scholar
Roberts, R. M., Mathias, J. L. & Wheaton, P. (2012). Cognitive functioning in children and adults with nonsyndromal cleft lip and/or palate: a meta-analysis. Journal of Pediatric Psychology, 37(7), 786797.Google Scholar
Ruff, R. R., Sischo, L. & Broder, H. (2016). Resiliency and socioemotional functioning in youth receiving surgery for orofacial anomalies. Community Dentistry and Oral Epidemiology, 44(4), 371380.Google Scholar
Sischo, L., Clouston, S. A., Phillips, C. & Broder, H. L. (2016). Caregiver responses to early cleft palate care: a mixed method approach. Health and Psychology, 35(5), 474482.Google Scholar
Speltz, M. L., Endriga, M. C., Fisher, P. A. & Mason, C. A. (1997). Early predictors of attachment in infants with cleft lip and/or palate. Child Development, 68, 1225.Google Scholar
Speltz, M. L., Endriga, M. C., Hill, S., et al. (2000). Cognitive and psychomotor development of infants with orofacial clefts. Journal of Pediatric Psychology, 25, 185190.Google Scholar
Wehby, G. L., Collett, B., Barron, S., et al. (2014). Academic achievement of children and adolescents with oral clefts. Pediatrics, 133(5), 785792.Google Scholar

References

Cohen, S. (2004). Social relationships and health. American Psychologist, 59, 676684.Google Scholar
Cohen, S., Alper, C. M., Doyle, W. J., Treanor, J. J. & Turner, R. B. (2006). Positive emotional style predicts resistance to illness after experimental exposure to rhinovirus or influenza A virus. Psychosomatic Medicine, 68, 809815.Google Scholar
Cohen, S., Doyle, W. J. & Skoner, D. P. (1999). Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosomatic Medicine, 61, 175180.Google Scholar
Cohen, S., Doyle, W. J., Skoner, D. P., Rabin, B. S. & Gwaltney, J. M. (1997). Social ties and susceptibility to the common cold. Journal of the American Medical Association, 277, 19401944.Google Scholar
Cohen, S., Doyle, W. J., Turner, R. B., Alper, C. M. & Skoner, D. P. (2003). Emotional style and susceptibility to the common cold. Psychosomatic Medicine, 65, 652657.CrossRefGoogle ScholarPubMed
Cohen, S., Frank, E., Doyle, W. J., et al. (1998). Types of stressors that increase susceptibility to the common cold in healthy adults. Health and Psychology, 17, 214223.Google Scholar
Cohen, S., Janicki-Deverts, D., Doyle, W. J., et al. (2012). Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proceedings of the National Academy of Sciences, 109, 59955999.Google Scholar
Cohen, S., Tyrrell, D. A. & Smith, A. P. (1991). Psychological stress and susceptibility to the common cold. New England Journal of Medicine, 325, 606612.Google Scholar
Cohen, S. & Williamson, G. M. (1991). Stress and infectious disease in humans. Psychological Bulletin, 109, 524.Google Scholar
Glaser, R., Rice, J., Sheridan, J., et al. (1987). Stress-related immune suppression: health implications. Brain, Behavior, and Immunity, 1, 720.Google Scholar
Graham, N. M., Douglas, R. M. & Ryan, P. (1986). Stress and acute respiratory infection. American Journal of Epidemiology, 124, 389401.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S. & Manuck, S. B. (2006). Trait positive affect and antibody response to hepatitis B vaccination. Brain, Behavior, and Immunity, 20, 261269.Google Scholar
Pedersen, A., Zachariae, R. & Bovbjerg, D. H. (2010). Influence of psychological stress on upper respiratory infection: a meta-analysis of prospective studies. Psychosomatic Medicine, 72, 823832.Google Scholar
Pressman, S. D. & Cohen, S. (2005). Does positive affect influence health? Psychological Bulletin, 131, 925971.Google Scholar
Steptoe, A., Wardle, J. & Marmot, M. (2005). Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proceedings of the National Academy of Sciences, 102, 65086512.Google Scholar
Takkouche, B., Regueira, C. & Gestal-Otero, J. J. (2001). A cohort study of stress and the common cold. Epidemiology, 12, 345349.Google Scholar
Turner-Cobb, J. M. & Steptoe, A. (1996). Psychosocial stress and susceptibility to upper respiratory tract illness in an adult population sample. Psychosomatic Medicine, 58, 404412.Google Scholar

References

Albus, C. (2010). Psychological and social factors in coronary heart disease. Annals of Medicine, 42(7), 487494.Google Scholar
Angus, N., Patience, F., MacLean, E., et al. (2012). Cardiac misconceptions in healthcare workers. European Journal of Cardiovascular Nursing, 11(4), 396401.Google Scholar
Barth, J., Schneider, S. & von Kanel, R. (2010). Lack of social support in the etiology and the prognosis of coronary heart disease: a systematic review and meta-analysis. Psychosomatic Medicine, 72(3), 229238.Google Scholar
Broadbent, E., Petrie, K. J., Ellis, C. J., Ying, J. & Gamble, G. (2004). A picture of health: myocardial infarction patients drawings of their hearts and subsequent disability: a longitudinal study. Journal of Psychosomatic Research, 57(6), 583587. DOI: 10.1016/j.jpsychores.2004.03.014.Google Scholar
Cooper, A. F., Weinman, J., Hankins, M., Jackson, G. & Horne, R. (2007). Assessing patients’ beliefs about cardiac rehabilitation as a basis for predicting attendance after acute myocardial infarction. Heart, 93(1), 5358. DOI: 10.1136/hrt.2005.081299.Google Scholar
Dale, L. P., Whittaker, R., Jiang, Y., et al. (2015). Text message and internet support for coronary heart disease self-management: results from the text4heart randomized controlled trial, Journal of Medical Internet Research, 17(10). DOI: 10.2196/jmir.4944.Google Scholar
De Ridder, D. T. D. & De Wit, J. B. F. (2006). Self-regulation in health behavior: concepts, theories, and central issues. In De Ridder, D. T. D. & De Wit, J. B. F. (eds) Self-Regulation in Health Behavior (pp. 124). Chichester: Wiley.Google Scholar
de Waure, C., Lauret, G.-J., Ricciardi, W., et al. (2013). Lifestyle interventions in patients with coronary heart disease: a systematic review. American Journal of Preventive Medicine, 45(2), 207216. DOI: 10.1016/j.amepre.2013.03.020.Google Scholar
Dupre, M. E., George, L. K., Liu, G. & Peterson, E. D. (2012). The cumulative effect of unemployment on risks for acute myocardial infarction., Archives of Internal Medicine, 172(22), 1731–7. DOI: 10.1001/2013.jamainternmed.447.Google Scholar
Figueiras, M. J., Maroco, J., Monteiro, R. & Caeiro, R. (2015). Cardiac misconceptions among healthy adults: implications for the promotion of health in the community. Ciência & Saúde Coletiva, 20(3), 841850. DOI: 10.1590/1413-81232015203.10932014.Google Scholar
Figueiras, M. J., Maroco, J., Monteiro, R., Caeiro, R. & Dias Neto, D. (2016). Randomized controlled trial of an intervention to change cardiac misconceptions in myocardial infarction patients. Psychology, Health & Medicine, February, 1–11. DOI: 10.1080/13548506.2016.1153677.Google Scholar
Foxwell, R., Morley, C. & Frizelle, D. (2013). Illness perceptions, mood and quality of life: a systematic review of coronary heart disease patients. Journal of Psychosomatic Research, 75(3), 211222. DOI: 10.1016/j.jpsychores.2013.05.003.Google Scholar
Furze, G. (2007). Cardiac misconceptions: a problem in need of treatment? Risk Management, 5(1), 1315.Google Scholar
Furze, G., Lewin, R. J. P., Murberg, T., Bull, P. & Thompson, D. R. (2005). Does it matter what patients think? The relationship between changes in patients’ beliefs about angina and their psychological and functional status. Journal of Psychosomatic Research, 59(5), 323329. DOI: 10.1016/j.jpsychores.2005.06.071.Google Scholar
Glozier, N., Tofler, G. H., Colquhoun, D. M., et al. (2013). Psychosocial risk factors for coronary heart disease., The Medical Journal of Australia, 199(3), 179180. DOI: 10.5694/mja13.10440.Google Scholar
Goldston, K. & Baillie, A. J. (2008). Depression and coronary heart disease: A review of the epidemiological evidence, explanatory mechanisms and management approaches, Clinical Psychology Review, 28(2), 289307. DOI: 10.1016/j.cpr.2007.05.005.Google Scholar
Goulding, L., Furze, G. & Birks, Y. (2010). Randomized controlled trials of interventions to change maladaptive illness beliefs in people with coronary heart disease: systematic review. Journal of Advanced Nursing, 66(5), 946961. DOI: 10.1111/j.1365-2648.2010.05306.x.Google Scholar
Heran, B. S., Chen, J. M. H., Ebrahim, S., et al. (2011). Exercise-based cardiac rehabilitation for coronary heart disease, The Cochrane Library. DOI: 10.1002/14651858.CD001800.pub2.Google Scholar
Hirani, S. P., Pugsley, W. B. & Newman, S. P. (2006). Illness representations of coronary artery disease: an empirical examination of the Illness Perceptions Questionnaire (IPQ) in patients undergoing surgery, angioplasty and medication. British Journal of Health Psychology, 11, 199220. DOI: 10.1348/135910705X53443.Google Scholar
Jackson, C., Eliasson, L., Barber, N. & Weinman, J. (2014). Applying COM-B to medication adherence, Bulletin of the European Health Psychology Society (EHP), 16(1), 717.Google Scholar
Khawaja, I. S., Westermeyer, J. J., Gajwani, P. & Feinstein, R. E. (2009). Depression and coronary artery disease: the association, mechanisms, and therapeutic implications., Psychiatry (Edgmont (Pa. : Township)), 6(1), 3851. DOI: 10.1016/j.tics.2014.02.011.Google Scholar
Kidd, T., Poole, L., Leigh, E., et al. (2016). Health-related personal control predicts depression symptoms and quality of life but not health behaviour following coronary artery bypass graft surgery. Journal of Behavioral Medicine, 39(1), 120127. DOI: 10.1007/s10865-015-9677-7.Google Scholar
Laba, T. L., Bleasel, J., Brien, J. A., et al. (2013). Strategies to improve adherence to medications for cardiovascular diseases in socioeconomically disadvantaged populations: a systematic review. International Journal of Cardiology, 167(6), 24302440.Google Scholar
László, K. D., Ahnve, S., Hallqvist, J., Ahlbom, A. & Janszky, I. (2010). Job strain predicts recurrent events after a first acute myocardial infarction: The Stockholm Heart Epidemiology Program. Journal of Internal Medicine, 267(6), 599611. DOI: 10.1111/j.1365-2796.2009.02196.x.Google Scholar
Lau-Walker, M. (2006). Predicting self-efficacy using illness perception components: a patient survey., British Journal of Health Psychology, 11, 643661. DOI: 10.1348/135910705X72802.Google Scholar
Leventhal, H., Brissette, I. & Leventhal, E. A. (2003). The common-sense model of self-regulation of health and illness. In Cameron, L. D. & Leventhal, H. (eds), The Self-Regulation of Health and Illness Behaviour (pp. 4265). London: Routledge.Google Scholar
Lin, Y.-P. (2012). Coronary heart disease beliefs and misconceptions among cardiac patients and people with chronic illness. Open Journal of Nursing, 2(1), 17. DOI: 10.4236/ojn.2012.21001.Google Scholar
Lin, Y.-P., Furze, G., Spilsbury, K. & Lewin, R. J. P. (2008). Cardiac misconceptions: comparisons among nurses, nursing students and people with heart disease in Taiwan. Journal of Advanced Nursing, 64(3), 251–60. DOI: 10.1111/j.1365-2648.2008.04802.x.Google Scholar
Linden, W., Phillips, M. J. & Leclerc, J. (2007). Psychological treatment of cardiac patients: a meta-analysis. European Heart Journal, 28(24), 29722984. DOI: 10.1093/eurheartj/ehm504.Google Scholar
Lundin, A., Falkstedt, D., Lundberg, I. & Hemmingsson, T. (2014). Unemployment and coronary heart disease among middle-aged men in Sweden: 39 243 men followed for 8 years. Occupational and Environmental Medicine, 71(3), 183188. DOI: 10.1136/oemed-2013-101721.Google Scholar
Maas, A. H. E. M. & Appelman, Y. E. A. (2010). Gender differences in coronary heart disease. Netherlands Heart Journal, 18(12), 598603. DOI: 10.1007/s12471-010-0841-y.Google Scholar
Marma, A. K. & Lloyd-Jones, D. M. (2009). Systematic examination of the updated Framingham heart study general cardiovascular risk profile. Circulation, 120(5), 384390. DOI: 10.1161/CIRCULATIONAHA.108.835470.Google Scholar
McAndrew, L. M., Mora, P. A., Quigley, K. S., Leventhal, E. A. & Leventhal, H. (2014). Using the common sense model of self-regulation to understand the relationship between symptom reporting and trait negative affect. International Journal of Behavioral Medicine. DOI: 10.1007/s12529-013-9372-4.Google Scholar
Michie, S., Abraham, C., Whittington, C., McAteer, J. & Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: a meta-regression, Health and Psychology, 28(6), 690701. DOI: 10.1037/a0016136.Google Scholar
Michie, S., van Stralen, M. M. & West, R. (2011). The behaviour change wheel: a new method for characterising and designing behaviour change interventions., Implementation Science, 6(1), 42. DOI: 10.1186/1748-5908-6-42.Google Scholar
Morgan, K., Villiers-Tuthill, A., Barker, M. & McGee, H. (2014). The contribution of illness perception to psychological distress in heart failure patients. BMC Psychology, 2(1), 50. DOI: 10.1186/s40359-014-0050-3.Google Scholar
Moser, D. K., Dracup, K., Evangelista, L. S., et al. (2011). Comparison of prevalence of symptoms of depression, anxiety and hostility in elderly heart failure, myocardial infarction and coronary artery bypass graft patients, Heart & Lung, 39(5), 378385. DOI: 10.1016/j.hrtlng.2009.10.017.Comparison.Google Scholar
Moss-Morris, R., Weinman, J., Petrie, K., et al. (2002). The Revised Illness Perception Questionnaire (IPQ-R). Psychology and Health, 17(1), 116. DOI: 10.1080/08870440290001494.Google Scholar
Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. (2015). Heart disease and stroke statistics: 2015 update. A report from the American Heart Association, Circulation. DOI: 10.1161/CIR.0000000000000152.Google Scholar
O’Neil, A. (2013). The relationship between coronary heart disease (CHD) and major depressive disorder (MDD): key mechanisms and the role of quality of life, Europe’s Journal of Psychology, 9(1), 163184. DOI: 10.5964/ejop.v9i1.466.Google Scholar
Petrie, K. J. & Weinman, J. (2012). Patients’ perceptions of their illness: the dynamo of volition in health care, Current Directions in Psychological Science, 21(1), 6065. DOI: 10.1177/0963721411429456.Google Scholar
Reid, J., Ski, C. F. & Thompson, D. R. (2013). Psychological interventions for patients with coronary heart disease and their partners: a systematic review. PLoS ONE, 8(9). DOI: 10.1371/journal.pone.0073459.Google Scholar
Reynolds, L., Broadbent, E., Ellis, C. J., Gamble, G. & Petrie, K. J. (2007). Patients’ drawings illustrate psychological and functional status in heart failure. Journal of Psychosomatic Research, 63(5), 525532. DOI: 10.1016/j.jpsychores.2007.03.007.Google Scholar
Roest, A. M., Martens, E. J., de Jonge, P. & Denollet, J. (2010). Anxiety and risk of incident coronary heart disease. a meta-analysis. Journal of the American College of Cardiology, 56(1), 3846. DOI: 10.1016/j.jacc.2010.03.034.Google Scholar
Santo, K., Chalmers, J., Chow, C. K. & Redfern, J. (2016). m-health in coronary disease preventive care. Journal of Cardiology and Therapy, 2(6), 18.Google Scholar
Steptoe, A. & Kivimaki, M. (2013). Stress and cardiovascular disease: an update on current knowledge, Annual Review of Public Health, 34, 337354. DOI: 10.1146/annurev-publhealth-031912-114452.Google Scholar
Valtorta, N. K., Kanaan, M., Gilbody, S., Ronzi, S. & Hanratty, B. (2016). Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart (British Cardiac Society). DOI: 10.1136/heartjnl-2015-308790.Google Scholar
Whalley, B., Thompson, D. & Taylor, R. (2014). Psychological interventions for coronary heart disease: Cochrane systematic review and meta-analysis. International Journal of Behavioral Medicine, 21(1), 109121. DOI: 10.1007/s12529-012-9282-x.Google Scholar
World Health Organization (2011). Global Atlas on Cardiovascular Disease Prevention and Control. Geneva: World Health Organization.Google Scholar
Wulsin, L. (2013). Psychological challenges of coping with coronary artery disease. In Dornelas, E. A. (ed.), Stress Proof the Heart: Behavioral Interventions for Cardiac Patients (pp. 924). New York: Springer.Google Scholar

References

Bluebond-Langner, M. (1991). Living with cystic fibrosis: a family affair. In Morgan, J. D. (ed.) Young People and Death (pp. 4662). Philadelphia, PA: Charles Press.Google Scholar
Bobadilla, J. L., Macek, M. Jr., Fine, J. P. & Farrell, P. M. (2002). Cystic fibrosis: a worldwide analysis of CFTR mutations – correlation with incidence data and application to screening. Human Mutation, 19, 575606.Google Scholar
Brodlie, M., Haq, I. J., Roberts, K. & Elborn, J. S. (2015). Targeted therapies to improve CFTR function in cystic fibrosis. Genome Medicine, 7,(101).Google Scholar
Bush, A., Bilton, D. & Hodson, M. E. (eds) (2015). Hodson and Geddes’ Cystic fibrosis (4th edn). London: Taylor & Francis.Google Scholar
Castellani, C., Massie, J., Sontag, M. & Southern, K. W. (2016). Newborn screening for cystic fibrosis. Lancet Respiratory Medicine, 4,(8), 653661.Google Scholar
Conway, S., Balfour-Lynn, I. M., De Rijcke, K., et al. (2014). European cystic fibrosis standards of care: framework for the Cystic Fibrosis Centre. Journal of Cystic Fibrosis, 13,S3S22.Google Scholar
Dodge, J. A., Lewis, P. A., Stanton, M. & Wilsher, J. (2007). Cystic fibrosis mortality and survival in the UK: 1947–2003. European Respiratory Journal, 29(3), 522526.Google Scholar
Ernst, M. M., Johnson, M. C. & Stark, L. J., (2011). Developmental and psychosocial issues in cystic fibrosis. Pediatric Clinics of North America, 58(4), 865885.Google Scholar
FitzSimmons, S. C. (1993). The changing epidemiology of cystic fibrosis. Journal of Pediatrics, 122, 19.Google Scholar
Glasscoe, C. & Smith, J. A. (2011). Unravelling the complexities in parenting a child with cystic fibrosis: an interpretative phenomenological analysis. Clinical Child Psychology & Psychiatry, 16(2), 279298.Google Scholar
Goldbeck, L., Fidika, A., Herle, M., Quittner, A. L. (2014). Psychological interventions for individuals with cystic fibrosis and their families. Cochrane Database of Systematic Reviews, 6, CD003148.Google Scholar
Havermans, T., Tack, J., Vertommen, A., Proesmans, M. & de Boeck, K. (2015). Breaking bad news, the diagnosis of cystic fibrosis in childhood. Journal of Cystic Fibrosis, 14, 540546.Google Scholar
Janicke, D. M., Mitchell, M. J. & Stark, L. J. (2005). Family functioning in school-age children with cystic fibrosis: an observational assessment of family interactions in the mealtime environment. Journal of Pediatric Psychology, 30(2), 179186.Google Scholar
Kerem, B., Rommens, J. M., Buchanan, J. A., et al. (1989). Identification of the cystic fibrosis gene: genetic analysis. Science, 145, 10731080.Google Scholar
Koocher, G. P., McGrath, M. L. & Gudas, L. J. (1990). Typologies of nonadherence in cystic fibrosis. Developmental and Behavioural Pediatrics, 11, 353358.Google Scholar
Patterson, J. M., McCubbin, H. I. & Warwick, W. J. (1990). The impact of family functioning on health changes in children with cystic fibrosis. Social Science and Medicine, 31, 159164.Google Scholar
Pearson, D. A., Pumariega, A. J. & Seilheimer, D. K. (1991). The development of psychiatric symptomatology in patients with cystic fibrosis. Journal of the American Academy of Child and Adolescent Psychiatry, 30, 290297.Google Scholar
Quittner, A. L., Goldbeck, L., Abbott, J., et al. (2014). Prevalence of depression and anxiety in patients with cystic fibrosis and parent caregivers: results of the International Depression Epidemiological Study across nine countries Thorax, 69, 10901097.Google Scholar
Quittner, A. L., Abbott, J., Georgiopoulos, A. M., et al. (2015). Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus statements for screening and treating depression and anxiety. Thorax. DOI: 10.1136/thoraxjnl-2015-207488.Google Scholar
Quon, B. S., Bentham, W. D., Unutzer, J., et al. (2015). Prevalence of symptoms of depression and anxiety in adults with cystic fibrosis based on the PHQ-9 and GAD-7 screening questionnaires. Psychosomatics, 56, 345353.Google Scholar
Schechter, M. S. & Gutierrez, H. H. (2010). Improving the quality of care for patients with cystic fibrosis. Current Opinion in Pediatrics, 22, 296301.Google Scholar
Simmons, R. J. & Goldberg, S. (2001). Infants and preschool children. In Bluebond-Langner, M., Lask, B. & Angst, D. B. (eds), Psychosocial Aspects of Cystic Fibrosis (pp. 110–24). London: Arnold.Google Scholar
Stark, L. J., Millar, S. T., Plienes, A. J. & Drabman, R. S. (1987). Behavioral contracting to increase chest physiotherapy: a study of a young cystic fibrosis patient. Behavior Modification, 11, 7586.Google Scholar
Stark, L. J., Bowen, A. M., Tyc, V. L., Evans, S. & Passero, M. A. (1990). A behavioral approach to increasing calorie consumption in children with cystic fibrosis. Journal of Pediatric Psychology, 15, 309326.Google Scholar
Tsui, L.-C. (1990). Population analysis of the major mutation in cystic fibrosis (Editorial). Human Genetic, 85, 391392.Google Scholar
Wilson, J., Fosson, A., Kanga, J. F. & D’Angelo, S. L. (1996). Homeostatic interactions: a longitudinal study of biological and family variables in children with cystic fibrosis. Journal of Family Therapy, 18, 123139.Google Scholar

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn). Arlington, VA: American Psychiatric Publishing.Google Scholar
Bahar-Fuchs, A., Clare, L. & Woods, B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer’s disease and vascular dementia. Cochrane Database of Systematic Reviews, 6, CD003260.Google Scholar
Department of Health. (2009). Living Well With Dementia: A National Dementia Strategy. London; Department of Health.Google Scholar
Guerreiro, R. J., Gustafson, D. R. and Hardy, J. (2012). The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiology of Aging, 33, 437456.Google Scholar
Hsieh, S., Schubert, S., Hoon, C., Mioshi, E. & Hodges, J. R. (2013). Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 36, 242250.Google Scholar
Jack, C. R., Knopman, D. S., Jagust, W. J., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9, 119128.CrossRefGoogle ScholarPubMed
Jack, C. R., Wiste, H. J., Weigand, S. D., et al (2015). Age, sex, and APOE ε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurology, 16..Google Scholar
National Institute for Health and Clinical Excellence. (2006). Dementia: Supporting People with Dementia and Their Carers in Health and Social Care. NICE Guideline CG42. London: NICE.Google Scholar
O’Brien, J. T., Burns, A. & BAP Dementia Consensus Group. (2015). Clinical practice with anti-dementia drugs: a revised (second) consensus statement from the British Association for Psychopharmacology. Journal of Psychopharmacology, 25, 9971019.Google Scholar
Office for National Statistics. (2014). National Population Projections: 2014-based Statistical BulletinGoogle Scholar
Solomon, A., Mangialashe, F., Richard, E., et al. (2014). Advances in the prevention of Alzheimer’s disease and dementia. Journal of Internal Medicine, 275, 229250.Google Scholar
Wisniewski, T. & Goni, F. (2015). Immunotherapeutic approaches for Alzheimer’s disease. Neuron, 85, 11621176.Google Scholar

References

Amiel, S., Beveridge, S., Bradley, C., et al. (2002). Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ, 325, 746749.Google Scholar
Anderbro, T., Gonder-Frederick, L., Bolinder, J., et al. (2015). Fear of hypoglycaemia: relationship to hypoglycemic risk and psychological factors. Acta Diabetologica, 52, 581589.Google Scholar
Anderson, R. M. & Funnell, M. M. (2010). Patient empowerment: myths and misconceptions. Patient Education and Counseling, 79, 277282.Google Scholar
Barnard, K. D. & Oliver, N. (2015). Technological advancement in the treatment of diabetes: ignoring psychosocial impact at our peril. Diabetes Technology and Therapeutics, 17, 149151.Google Scholar
Barnard, K. D., Skinner, T. C. & Peveler, R. (2006). The prevalence of co-morbid depression in adults with Type 1 diabetes: systematic literature review. Diabetic Medicine, 23, 445448.Google Scholar
Bradley, C. & Speight, J. (2002). Patient perceptions of diabetes and diabetes therapy: assessing quality of life. Diabetes/Metabolism Research and Reviews, 18, S64S69.Google Scholar
Cameron, F. J., Skinner, T. C., De Beaufort, C. E., et al. (2008). Are family factors universally related to metabolic outcomes in adolescents with type 1 diabetes? Diabetic Medicine, 25, 463468.Google Scholar
Cameron, L. D., Young, M. J. & Wiebe, D. J. (2007). Maternal trait anxiety and diabetes control in adolescents with type 1 diabetes. Journal of Pediatric Psychology, 32, 733744.Google Scholar
Cohen, D. M., Lumley, M. A., Naar-King, S., et al. (2004). Child behavior problems and family functioning as predictors of adherence and glycemic control in economically disadvantaged children with type 1 diabetes: a prospective study. Journal of Pediatric Psychology, 29, 171184.Google Scholar
Cox, D. J., Gonder-Frederick, L., Ritterband, L., et al. (2006). Blood glucose awareness training: what is it, where is it, and where is it going? Diabetes Spectrum, 19, 4349.Google Scholar
De Wit, M., Delemarre-van De Waal, H. A., Bokma, J. A., et al. (2008). Monitoring and discussing health-related quality of life in adolescents with type 1 diabetes improves psychosocial well-being: a randomized controlled trial. Diabetes Care, 31, 15211526.Google Scholar
Fisher, L., Gonzalez, J. S. & Polonsky, W. H. (2014). The confusing tale of depression and distress in patients with diabetes: a call for greater clarity and precision. Diabetic Medicine, 31, 764772.Google Scholar
Hagger, V., Hendrieckx, C., Sturt, J., et al. (2016). Diabetes distress among adolescents with type 1 diabetes: a systematic review. Current Diabetes Reports, 16, 9. DOI: 10.1007/s11892-11015-10694-11892.Google Scholar
Hendrieckx, C., Halliday, J. A., Bowden, J. P., et al. (2014). Severe hypoglycaemia and its association with psychological well-being in Australian adults with type 1 diabetes attending specialist tertiary clinics. Diabetes Research and Clinical Practice, 103, 430436.Google Scholar
Hendrieckx, C., Halliday, J. A., Beeney, L. J., et al. (2016). Diabetes and Emotional Health: a Handbook for Health Professionals Supporting Adults with Type 1 or Type 2 Diabetes. Canberra: National Diabetes Services Scheme.Google Scholar
Hendrieckx, C., Poole, L. A., Sharifi, A., et al. (2017) “It is definitely a game changer”: a qualitative study of experiences with in-home overnight closed-loop technology among adults with type 1 diabetes. Diabetes Technology and Therapeutics, 19(7), 410416.Google Scholar
Kovacs, M., Goldston, D., Obrosky, D. S. & Bonar, L. K. (1997). Psychiatric disorders in youths with IDDM: rates and risk factors. Diabetes Care, 20(1): 3644.Google Scholar
Lawton, J., Rankin, D., Elliott, J., et al. (2014). Experiences, views, and support needs of family members of people with hypoglycemia unawareness: interview study. Diabetes Care, 37, 109115.Google Scholar
Little, S. A., Leelarathna, L., Barendse, S. M., et al. (2014a). Severe hypoglycaemia in type 1 diabetes mellitus: underlying drivers and potential strategies for successful prevention. Diabetes/Metabolism Research and Reviews, 30, 175190.Google Scholar
Little, S. A., Leelarathna, L., Walkinshaw, E., et al. (2014b). Recovery of hypoglycaemia awareness in long-standing type 1 diabetes: a multicenter 2×2 factorial RCT comparing insulin pump with multiple daily injections, and continuous with conventional glucose monitoring (HypoCOMPaSS). Diabetes Care, 37, 21142122.Google Scholar
Nefs, G., Bevelander, S., Hendrieckx, C., et al. (2015). Fear of hypoglycaemia in adults with type 1 diabetes: results from Diabetes MILES – the Netherlands. Diabetic Medicine, 32, 12891296.Google Scholar
Nicolucci, A., Kovacs Burns, K., Holt, R. I. G., et al. (2013). Diabetes attitudes, wishes and needs second study (DAWN2™): cross-national benchmarking of diabetes-related psychosocial outcomes for people with diabetes. Diabetic Medicine, 30, 767777.Google Scholar
Northam, E. A., Matthews, L. K., Anderson, P. J., et al. (2005). Psychiatric morbidity and health outcome in Type 1 diabetes: perspectives from a prospective longitudinal study. Diabetic Medicine, 22, 152157.Google Scholar
Pouwer, F., Beekman, A. T. F., Lubach, C., et al. (2006). Nurses’ recognition and registration of depression, anxiety and diabetes-specific emotional problems in outpatients with diabetes mellitus. Patient Education and Counseling, 60, 235240.Google Scholar
Pouwer, F., Geelhoed-Duijvestijn, P. H. L. M., Tack, C. J., et al. (2010). Prevalence of comorbid depression is high in out-patients with Type 1 or Type 2 diabetes mellitus: results from three out-patient clinics in the Netherlands. Diabetic Medicine, 27, 217224.Google Scholar
Pouwer, F., Snoek, F. J., Van Der Ploeg, H. M., et al. (2001). Monitoring of psychological well-being in outpatients with diabetes: effects on mood, HbA1c, and the patient’s evaluation of the quality of diabetes care: A randomized controlled trial. Diabetes Care, 24, 19291935.Google Scholar
Speight, J., Conn, J., Dunning, T., et al. (2012). Diabetes Australia position statement: a new language for diabetes: improving communications with and about people with diabetes. Diabetes Research and Clinical Practice, 97, 425431.Google Scholar
Speight, J., Holmes-Truscott, E., Harvey, D. M., et al. (2016). Structured type 1 diabetes education delivered in routine care in Australia reduces diabetes-related emergencies and severe diabetes-related distress: the OzDAFNE program. Diabetes Research and Clinical Practice, 112, 6572.Google Scholar
Sturt, J., Dennick, K., Due-Christensen, M., et al. (2015a). The detection and management of diabetes distress in people with type 1 diabetes. Current Diabetes Reports, 15 (11), 101. DOI: 10.1007/s11892-015-0660-z.Google Scholar
Sturt, J., Dennick, K., Hessler, D., et al. (2015b). Effective interventions for reducing diabetes distress: systematic review and meta-analysis. International Diabetes Nursing, 12, 4055.Google Scholar
The DCCT Research Group. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine, 329, 977986.Google Scholar
Vallis, M., Jones, A. & Pouwer, F. (2014). Managing hypoglycemia in diabetes may be more fear management than glucose management: a practical guide for diabetes care providers. Current Diabetes Reviews, 10, 364370.Google Scholar
van der Feltz-Cornelis, C. M., Nuyen, J., Stoop, C., et al. (2010). Effect of interventions for major depressive disorder and significant depressive symptoms in patients with diabetes mellitus: a systematic review and meta-analysis. General Hospital Psychiatry, 32, 380395.Google Scholar

References

Adriaanse, M. C. & Snoek, F.J. (2006). The psychological impact of screening for type 2 diabetes. Diabetes/Metabolism Research and Reviews, 22(1), 2025.Google Scholar
Browne, J. L., Ventura, A., Mosely, K. & Speight, J. (2013). ‘I call it the blame and shame disease’: a qualitative study about perceptions of social stigma surrounding type 2 diabetes. BMJ Open, 3(11), e003384.Google Scholar
De Groot, M., Anderson, R., Freedland, K. E., et al. (2001). Association of depression and diabetes complications: a meta-analysis. Psychosomatic Medicine, 63, 619630.Google Scholar
Eborall, H. C., Griffin, S. J., Prevost, A. T., et al. (2007). Psychological impact of screening for type 2 diabetes: controlled trial and comparative study embedded in the ADDITION (Cambridge) randomised controlled trial. BMJ, 335(7618), 486.Google Scholar
Fisher, L., Skaff, M. M., Mullan, J. T., et al. (2008). A longitudinal study of affective and anxiety disorders, depressive affect and diabetes distress in adults with Type 2 diabetes. Diabetic Medicine, 25, 10961101.Google Scholar
Fisher, L., Gonzalez, J. S. & Polonsky, W. H. (2014). The confusing tale of depression and distress in patients with diabetes: a call for greater clarity and precision. Diabetic Medicine, 31, 764772.Google Scholar
Holmes-Truscott, E., Skinner, T. C., Pouwer, F. & Speight, J. (2015). Negative appraisals of insulin therapy are common among adults with Type 2 diabetes using insulin: results from Diabetes MILES – Australia cross-sectional survey. Diabetic Medicine, 32(10), 12971303.Google Scholar
International Diabetes Federation. (2015). IDF Diabetes Atlas (7th edn). Brussels: International Diabetes Federation.Google Scholar
Inzucchi, S. E., Bergenstal, R. M., Buse, J. B., et al. (2015). Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 38(1), 140149.Google Scholar
Ismail, K., Winkley, K. & Rabe-Hesketh, S. (2004). Systematic review and meta-analysis of randomised controlled trials of psychological interventions to improve glycaemic control in patients with type 2 diabetes. Lancet, 363(9421), 15891597.Google Scholar
Malanda, U. L., Bot, S. D. & Nijpels, G. (2013). Self-monitoring of blood glucose in noninsulin-using type 2 diabetic patients: it is time to face the evidence. Diabetes Care, 36(1), 176178.Google Scholar
Meurs, M., Roest, A. M., Wolffenbuttel, B. H., et al. (2016). Association of depressive and anxiety disorders with diagnosed versus undiagnosed diabetes: an epidemiological study of 90,686 participants. Psychosomatic Medicine, 78(2), 233241.Google Scholar
Nefs, G., Pouwer, F., Denollet, J., et al. (2012). The course of depressive symptoms in primary care patients with type 2 diabetes: results from the Diabetes, Depression, Type D Personality Zuidoost-Brabant (DiaDDZoB) Study. Diabetologia, 55, 608616Google Scholar
Nouwen, A., Winkley, K., Twisk, J., et al. (2010). Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic review and meta-analysis. Diabetologia, 53(12), 24802486.Google Scholar
Nouwen, A., Nefs, G., Caramlau, I. (2011). Prevalence of depression in individuals with impaired glucose metabolism or undiagnosed diabetes: a systematic review and meta-analysis of the European Depression in Diabetes (EDID) Research Consortium. Diabetes Care, 34(3), 752762.Google Scholar
Pan, H. H., Li, C. Y., Chen, P. C., et al. (2012). Contributions of diabetic macro-vascular complications and hip fracture to depression onset in elderly patients with diabetes: an 8-year population-based follow-up study. Journal of Psychosomatic Research, 73, 180184.Google Scholar
Polonsky, W. H. & Fisher, L. (2013). Self-monitoring of blood glucose in noninsulin-using type 2 diabetic patients: right answer, but wrong question: self-monitoring of blood glucose can be clinically valuable for noninsulin users. Diabetes Care, 36(1), 179182.Google Scholar
Pouwer, F., Beekman, A. T., Nijpels, G., et al. (2003). Rates and risks for co-morbid depression in patients with Type 2 diabetes mellitus: results from a community-based study. Diabetologia, 46(7), 892898.Google Scholar
Pouwer, F., Nefs, G. & Nouwen, A. (2013). Adverse effects of depression on glycemic control and health outcomes in people with diabetes: a review. Endocrinology Metabolism Clinics of North America, 42(3), 529544.Google Scholar
Solomon, A., Mangialashe, F., Richard, E., et al. (2014). Advances in the prevention of Alzheimer’s disease and dementia. Journal of Internal Medicine, 275, 229250.Google Scholar
Speight, J., Browne, J. L. & Furler, J. (2013). Challenging evidence and assumptions: is there a role for self-monitoring of blood glucose in people with type 2 diabetes not using insulin? Current Medical Research and Opinion, 29,161168.Google Scholar
Tovote, K. A., Fleer, J., Snippe, E., et al. (2014). Individual mindfulness-based cognitive therapy and cognitive behavior therapy for treating depressive symptoms in patients with diabetes: results of a randomized controlled trial. Diabetes Care, 37(9), 24272434.Google Scholar
UK Hypoglycaemia Study Group. (2007). Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia, 50, 11401147.Google Scholar
UK Prospective Diabetes Study Group (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 352, 837853.Google Scholar
Van Bastelaar, K. M., Pouwer, F., Cuijpers, P., Riper, H. & Snoek, F.J. (2011). Web-based depression treatment for type 1 and type 2 diabetic patients: a randomized,controlled trial. Diabetes Care, 34(2), 320325.Google Scholar
Van der Feltz-Cornelis, C. M., Nuyen, J., Stoop, C., et al. (2010). Effect of interventions for major depressive disorder and significant depressive symptoms in patients with diabetes mellitus: a systematic review and meta-analysis. General Hospital Psychiatry, 32(4), 380395.Google Scholar
Van Son, J., Nyklícek, I., Pop, V. J., et al. (2013). The effects of a mindfulness-based intervention on emotional distress, quality of life, and HbA(1c) in outpatients with diabetes (DiaMind): a randomized controlled trial. Diabetes Care, 36(4), 823830.Google Scholar
Zhao, F., Suhonen, R., Koskinen, S., et al. (2017). Theory-based self-management educational interventions on patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Journal of Advanced Nursing, 73(4), 812833.Google Scholar

References

Bessell, A. & Moss, T. P. (2007). Evaluating the effectiveness of psychosocial interventions for individuals with visible differences: a systematic review of the empirical literature. Body Image, 4, 227238.Google Scholar
Bessell, A., Brough, V., Clarke, A., et al. (2012). Evaluation of the effectiveness of Face IT, a computer-based psychosocial intervention for disfigurement-related distress, Psychology, Health & Medicine,17, 565577.Google Scholar
Clarke, A., Thompson, A. R., Jenkinson, E., et al. (2014). CBT for Appearance Anxiety: Psychosocial Interventions for Anxiety due to Visible Difference. Chichester: WileyGoogle Scholar
Egan, K., Harcourt, D., Rumsey, N., et al. (2011). A qualitative study of the experiences of people who identify themselves as having adjusted positively to a visible difference, Journal of Health Psychology., 16, 739749.Google Scholar
Garbett, K., Harcourt, D. & Buchanan, H. (2016). Using online blogs to explore positive outcomes after burn injuries, Journal of Health Psychology, 22, 17551766.Google Scholar
Griffiths, C., Williamson, H. & Rumsey, N. (2012).The romantic experiences of adolescents with a visible difference: exploring concerns, protective factors and support needs. Journal of Health Psychology, 17, 10531064.Google Scholar
Jenkinson, E., Williamson, H., Byron-Daniel, J., et al. (2015). Systematic review: psychosocial interventions for children and young people with visible differences resulting from appearance altering conditions, injury or treatment effects. Journal of Pediatric Psychology, 40, 10171033.Google Scholar
Montgomery, K., Norman, P., Messenger, A., et al. (2016). The importance of mindfulness in psychosocial distress and quality of life in dermatology patients. British Journal of Dermatology, 175, 930936.Google Scholar
Moss, T. & Rosser, B. (2012). Adult psychosocial adjustment to visible differences: physical and psychological predictors of variation. In Rumsey, N. & Harcourt, D. (eds), The Oxford Handbook of the Psychology of Appearance (pp. 273292). Oxford: Oxford University Press.Google Scholar
Muftin, Z. & Thompson, A. R. (2013). A systematic review of self-help for disfigurement: effectiveness, usability, and acceptability. Body Image, 10, 442450.Google Scholar
Norman, A. & Moss, T. (2015). Psychosocial interventions for adults with visible differences: a systematic review. PeerJ, 3 (e870).Google Scholar
Rumsey, N. & Harcourt, D. (2004). Body image and disfigurement: issues and interventions, Body Image, 1, 8397.Google Scholar
Rumsey, N. & Harcourt, D. (eds) (2012).The Oxford Handbook of the Psychology of Appearance. Oxford: Oxford University Press.Google Scholar
Williamson, H., Griffiths, C. & Harcourt, D. (2015). The design and acceptability of YP Face IT: an internet intervention for adolescents struggling with appearance-altering conditions, injury or treatment effects. Health and Psychology Open. DOI: 10.1177/2055102915619092.Google Scholar

References

Ball, J. & Ross, A. (1991). The Effectiveness of Methadone Maintenance Treatment. New York: Springer.Google Scholar
Bradley, B., Phillips, G., Green, L. & Gossop, M. (1989). Circumstances surrounding the initial lapse to opiate use following detoxification. British Journal of Psychiatry, 154, 354359.Google Scholar
Brown, B., Kinlock, T. & Nurco, D. (2001). Self-help initiatives to reduce the risk of relapse. In Tims, F., Leukefeld, C. & Platt, J. (eds), Relapse and Recovery in Addictions. New Haven, CT: Yale University Press.Google Scholar
De Leon, G. (2000). The Therapeutic Community: Theory, Model, and Method. New York: Springer.Google Scholar
de Lima, M. S., de Oliveira Soares, B. G., Reisser, A. A. P. & Farrell, M. (2002). Pharmacological treatment for cocaine dependence: a systematic review. Addiction, 97, 931949.Google Scholar
Einstein, S. (1966). The narcotics dilemma: who is listening to what? International Journal of the Addictions, 1, 16.Google Scholar
Emrick, C. D. (1999). Alcoholics Anonymous and other 12-step groups. In Galanter, M. & Kleber, H. D. (eds), The American Psychiatric Press Textbook of Substance Abuse Treatment (2nd edn; pp. 403412). Washington, DC: American Psychiatric Press.Google Scholar
Gossop, M. (2001). A web of dependence. Addiction, 96, 677678.Google Scholar
Gossop, M. (2003) Drug Addiction and Its Treatment. Oxford: Oxford University Press.Google Scholar
Gossop, M. & Grant, M. (1990). The Content and Structure of Methadone Treatment Programmes: A Study in Six Countries. Geneva: World Health Organization.Google Scholar
Gossop, M., Powis, B., Griffiths, P. & Strang, J. (1993). Sexual behaviour and its relationship to drug taking among prostitutes in south London. Addiction, 89, 961970.Google Scholar
Gossop, M., Griffiths, P. & Strang, J. (1994a). Sex differences in patterns of drug taking behaviour: a study at a London community drug team. British Journal of Psychiatry, 164, 101104.Google Scholar
Gossop, M., Powis, B., Griffiths, P. & Strang, J. (1994b) Multiple risks for HIV and hepatitis B infection among heroin users. Drug and Alcohol Review, 13, 293300.Google Scholar
Gossop, M., Marsden, J., Stewart, D. & Kidd, T. (2003). The National Treatment Outcome Research Study (NTORS): 4–5 year follow-up results. Addiction, 98, 291303.Google Scholar
Hart, G. J., Sonnex, C., Petherick, A., et al. (1989). Risk behaviours for HIV infection among injecting drug users attending a drug dependency clinic. British Medical Journal, 298, 10811083.Google Scholar
Hubbard, R., Marsden, M., Rachal, V., et al. (1989). Drug Abuse Treatment: A National Study of Effectiveness. Chapel Hill, NC: University of North Carolina Press.Google Scholar
Hubbard, R. L., Craddock, S. G., Flynn, P., Anderson, J. & Etheridge, R. (1997). Overview of 1-year outcomes in the Drug Abuse Treatment Outcome Study (DATOS). Psychology of Addictive Behaviors, 11, 279293.Google Scholar
Kunøe, N., Lobmaier, P., Vederhus, J., et al. (2010). Retention in naltrexone implant treatment for opioid dependence. Drug and Alcohol Dependence, 111, 166169.Google Scholar
Lader, M., (2011). Benzodiazepines revisited: will we ever learn? Addiction, 106, 20862190.Google Scholar
Lago, J. A. & Kosten, T. R. (1994). Stimulant withdrawal. Addiction, 89, 14771481Google Scholar
Marlatt, G. A. & Gordon, J. R. (1985). Relapse Prevention. New York: Guilford Press.Google Scholar
Marsch, L. A. (1998) The efficacy of methadone maintenance interventions in reducing illicit opiate use, HIV risk behaviour and criminality: a meta‑analysis. Addiction, 93, 515532.Google Scholar
Mathers, B. M., Degenhardt, L., Ali, H., et al. (2010). HIV prevention, treatment, and care services for people who inject drugs: a systematic review of global, regional, and national coverage. Lancet, 375, 10141028.Google Scholar
Mattick, R. P., Breen, C., Kimber, J. & Davoli, M. (2014). Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database of Systematic Reviews, 2, CD002207. DOI: 10.1002/14651858.CD002207.pub4.Google Scholar
McLellan, A. T., Arndt, I., Metzger, D., Woody, G. & O’Brien, C. (1993). The effects of psychosocial services in substance abuse treatment. Journal of the American Medical Association, 269, 19531959.Google Scholar
Miller, W. R. & Rollnick, S. (2012). Motivational Interviewing (3rd edn). New York: Guilford Press.Google Scholar
Minozzi, S., Amato, L., Vecchi, S., et al. (2011). Oral naltrexone maintenance treatment for opioid dependence. Cochrane Database of Systematic Reviews, 4, CD001333.Google Scholar
Moos, R. H., Finney, J. W., Ouimette, P. C. & Suchinsky, R. (1999) A comparative evaluation of substance abuse treatment: I. Treatment orientation, amount of care, and 1 year outcomes. Alcoholism, Clinical and Experimental Research, 23, 529536.Google Scholar
Ouimette, P. C., Finney, J. W. & Moos, R. H. (1997). Twelve step and cognitive-behavioural treatment for substance abuse: a comparison of treatment effectiveness. Journal of Consulting and Clinical Psychology, 65, 230240.Google Scholar
Ouimette, P. C., Moos, R. H. & Finney, J. W. (1998). Influence of outpatient treatment and 12‑step group involvement on one‑year substance abuse treatment outcomes. Journal of Studies on Alcohol, 59, 513522.Google Scholar
Palmateer, N., Kimber, J., Hickman, M., et al. (2010). Evidence for the effectiveness of sterile injecting equipment provision in preventing hepatitis C and human immunodeficiency virus transmission among injecting drug users: a review of reviews. Addiction, 105, 844859.Google Scholar
Reed, L., Glasper, A., de Wet, C., Bearn, J. & Gossop, M. (2007). Comparison of buprenorphine and methadone in the treatment of opiate withdrawal: possible advantages of buprenorphine for the treatment of opiate-benzodiazepine codependent patients? Journal of Clinical Psychopharmacology, 27, 188192.Google Scholar
Simpson, D. D. (1997). Effectiveness of drug-abuse treatment: a review of research from field settings. In Egerton, J. A., Fox, D. M. & Leshner, A. I. (eds), Treating Drug Abusers Effectively. Oxford: Blackwell.Google Scholar
Simpson, D. & Sells, S. (1990). Opioid Addiction and Treatment. Malabar: Krieger.Google Scholar
Stewart, D., Gossop, M., Marsden, J. & Strang, J. (2000). Variation between and within drug treatment modalities: data from the National Treatment Outcome Research Study (UK). European Addiction Research, 6, 106114.Google Scholar
Stitzer, M., Bigelow, G. & Gross, J. (1989). Behavioral treatment of drug abuse. In Karasu, T.B. (ed.), Treatments of Psychiatric Disorders: A Task Force Report of the American Psychiatric Association, Vol. 2. Washington, DC: American Psychiatric Association.Google Scholar
Strain, E. C. & Stoller, K. B. (1999) Introduction and historical overview. In Strain, E. & Stitzer, M. (eds), Methadone Treatment for Opioid Dependence. Baltimore, MD: Johns Hopkins University Press.Google Scholar

References

Bulik, C. M., Berkman, N. D., Brownley, K. A., Sedway, J. A, & Lohr, K. N. (2007). Anorexia nervosa treatment: a systematic review of randomized controlled trials. International Journal of Eating Disorders, 40(4), 310320.Google Scholar
Dare, C. & Crowther, C. (1995). Psychodynamic models of eating disorders. In Szmukler, G., Dare, C. & Treasure, J. (eds), Handbook of Eating Disorders: Theory, Treatment and Research (pp. 125139). London: Wiley.Google Scholar
Dare, C., Russell, G., Treasure, J. & Dodge, L. (2001). Psychological therapies for adults with anorexia nervosa. British Journal of Psychiatry, 178, 216221.Google Scholar
Eisler, I., Dare, C., Russell, G. F., et al. (1997). Family and individual therapy in anorexia nervosa: a five-year follow up. Archives of General Psychiatry, 54, 10251030.Google Scholar
Favaro, A. & Santonastaso, P. (1997). Suicidality in bulimia nervosa: clinical and psychological correlates. Acta Psychiatrica Scandinavica, 95, 508514.Google Scholar
Grogan, S. (2008). Body Image: Understanding Body Dissatisfaction in Men, Women and Children (2nd edn). London: Routledge.Google Scholar
Harbottle, E. J., Birmingham, C. L. & Sayani, F. (2008). Anorexia nervosa: a survival analysis. Eating and Weight Disorders, 21(5), 495498.Google Scholar
Minuchin, S., Rosman, B. L. & Baker, L. (1978). The anorectic family. In Psychosomatic Families: Anorexia Nervosa in Context. Cambridge, MA: Harvard University Press.Google Scholar
Ogden, J. (2010). The Psychology of Eating: From Healthy to Disordered Behaviour (2nd edn). London: Blackwell.Google Scholar
Shapiro, J. R., Berkman, N. D., Brownley, K. A., et al. (2007). Bulimia nervosa treatment: a systematic review of randomized controlled trials. International Journal of Eating Disorders, 40(4), 321336.Google Scholar
Strober, M., Lampert, C., Morrell, W., Burroughs, J. & Jacobs, C. (1990). A controlled family study of anorexia nervosa: evidence of familial aggregation and lack of shared transmission with affective disorders. International Journal of Eating Disorders, 9, 239253.Google Scholar
Tierney, S. & Wyatt, K. (2005). What works for adolescents with AN? A systematic review of psychosocial interventions. Eating and Weight Disorders, 10(2), 6675.Google Scholar
Treasure, J., Todd, G. & Szmukler, G. I. (1995). The inpatient treatment of anorexia nervosa. In Szmukler, G., Dare, C. & Treasure, J. (eds), Handbook of Eating Disorders: Theory, Treatment and Research (pp. 275291). London: Wiley.Google Scholar
Wade, T. D., Tiggemann, M., Bulik, C. M., et al. (2008). Shared temperament risk factors for anorexia nervosa: a twin study. Psychosomatic Medicine, 70(2), 239244.Google Scholar
Wilson, G. T. (1989). The treatment of bulimia nervosa: a cognitive-social learning analysis. In Stunkard, A. J. & Baum, A. (eds), Perspectives in Behavioral Medicine: Eating, Sleeping and Sex. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Zachrisson, H. D., Vedul-Kjelsås, E., Götestam, K. G. & Mykletun, A. (2008). Time trends in obesity and eating disorders. International Journal of Eating Disorders, 41(8), 673680.Google Scholar

References

Alp, R., Saygin, M., Ucisik, M., et al. (2004). Initial presentation of Hashimoto’s thyroiditis with psychotic symptoms: a case report. Bulletin of Clinical Psychopharmacology, 14, 8387.Google Scholar
Arnaldi, G., Angeli, A., Atkinson, A. B., et al. (2003). Diagnosis and complications of Cushing’s syndrome: a consensus statement. The Journal of Clinical Endocrinology and Metabolism, 88, 55935602.Google Scholar
Auer, R. N. (2004). Hypoglycemic brain damage. Forensic Science International, 146, 105110.Google Scholar
Bahn, R. S., Burch, H. B., Cooper, D. S., et al. (2011). Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid, 21, 593646.Google Scholar
Bilezikian, J. P. & Silverberg, S. J. (2004). Asymptomatic primary hyperparathyroidism. New England Journal of Medicine, 350, 17461751.Google Scholar
Boscaro, M., Barzon, L., Fallo, F., et al. (2001). Cushing’s syndrome. Lancet, 357, 783791.Google Scholar
Cederlöf, M., Gotby, A. O., Larsson, H., et al. (2014). Klinefelter syndrome and risk of psychosis, autism and ADHD. Journal of Psychiatric Research, 48, 128130.Google Scholar
Chaplin, J. E., Kriström, B., Jonsson, B., et al. (2011). Improvements in behaviour and self-esteem following growth hormone treatment in short prepubertal children. Hormone Research in Paediatrics, 75, 291303.Google Scholar
Charan, A., Shewade, D. G., Rajkumar, R. P., et al. (2016). Relation between serum prolactin levels and antipsychotic response to risperidone in patients with schizophrenia. Psychiatry Research, 240, 209213.Google Scholar
Collins, M. M., Corcoran, P. & Perry, I. J. (2008). Anxiety and depression symptoms in patients with diabetes. Diabetic Medicine, 26, 153161.Google Scholar
Dayan, R. S. & Panicker, V. (2013). Hypothyroidism and depression. European Thyroid Journal, 2, 168179.Google Scholar
Downey, J., Ehrhardt, A. A., Gruen, R., Bell, J. J. & Morishima, A. (1989). Psychopathology and social functioning in women with Turner syndrome. Journal of Nervous and Mental Disorders, 177(4), 191201.Google Scholar
Flicker, L. & Ames, D. (2005). Metabolic and endocrinological causes of dementia. International Psychogeriatrics, 17, S79S92.Google Scholar
Forget, H., Lacroix, A., Somma, M., et al. (2000). Cognitive decline in patients with Cushing’s syndrome. Journal of the International Neuropsychological Society, 6, 2029.Google Scholar
Fries, E., Hesse, J., Hellhammer, J., et al. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30, 10101016.Google Scholar
Geffken, G. R., Ward, H. E., Staab, J. P., et al. (1998). Psychiatric morbidity in endocrine disorders. The Psychiatric Clinics of North America, 21, 473489.Google Scholar
Hellhammer, J., Schlotz, W., Stone, A. A., et al. (2004). Allostatic load, perceived stress, and health: a prospective study in two age groups. Annals of the New York Academy of Sciences, 1032, 813.Google Scholar
Holt, R. I. G., de Groot, M. & Golden, S. H. (2014). Diabetes and depression. Current Diabetes Reports, 14 (6), 491.Google Scholar
Hong, D. S. & Reiss, A. L. (2012). Cognition and behavior in Turner syndrome: a brief review. Pediatric Endocrinology Reviews, 9(2), 710712.Google Scholar
Hwang, J. W. & Seo, J. Y. (2015). Parents’ perception about child’s height and psychopathology in community children with relatively short stature. Annals of Pediatric Endocrinology & Metabolism, 20, 7985.Google Scholar
Ladenson, P. W., Braverman, L. E., Mazzaferri, E. L., et al. (1997). Comparison of recombinant human thyrotropin administration to thyroid hormone withdrawal for radioactive iodine scanning in patients with thyroid carcinoma. New England Journal of Medicine, 337, 888896.Google Scholar
Michaud, K., Foget, H. & Cohen, H. (2009). Chronic glucocorticoid hypersecretion in Cushing’s syndrome exacerbates cognitive aging. Brain and Cognition, 71, 18.Google Scholar
Oelkers, W. (2000). Clinical diagnosis of hyper- and hypoconrtisolism. Noise & Health, 2, 3948.Google Scholar
Papa, A., Bononi, F., Sciubba, S., et al. (2003). Primary hyperparathyroidism: acute paranoid psychosis. American Journal of Emergency Medicine, 21, 250251.Google Scholar
Petty, R. G. (1999). Prolactin and antipsychotic medications: mechanism of action. Schizophrenia Research, 35, S67S73.Google Scholar
Radanovic-Grguric, L., Filakovic, P., Jelena, B., et al. (2003). Depression in patients with thyroid dysfunction. European Journal of Psychiatry, 17, 133144.Google Scholar
Sait Gonen, M., Kisakol, G., Savas Cilli, A., et al. (2004). Assessment of anxiety in subclinical thyroid disorders. Endocrinology Journal, 51, 311315.Google Scholar
Sharpe, L. & Curran, L. (2006). Understanding the process of adjustment to illness. Social Science & Medicine, 62, 11531166.Google Scholar
Sheehan, D. V. & Sheehan, K. H. (1982). The classification of anxiety and hysterical states: towards a more heuristic classification. Journal of Clinical Psychopharmacology, 2, 386393.Google Scholar
Shoback, D. M., Bilezikian, J. P., Costa, A. G., et al. (2016). Presentation of hypoparathyroidism: etiologies and clinical features. Journal of Clinical Endocrinology & Metabolism, 101, 23002312.Google Scholar
Silverberg, S. J., Walker, M. D. & Bilezikian, J. P. (2013). Asymptomatic primary hyperparathyroidism. Journal of Clinical Densitometry, 16, 1421.Google Scholar
Sonino, N. & Fava, G. A. (2001). Psychiatric disorders associated with Cushing’s syndrome: epidemiology, pathophysiology, and treatment. CNS Drugs, 15, 361373.Google Scholar
Storch, E. A., Lewin, A., Silverstein, J. H., et al. (2005). Psychological adjustment of children with short stature: a comparison of children with short stature and type one diabetes. Journal of Pediatric Endocrinology and Metabolism, 18, 395401.Google Scholar
Ulph, F., Betts, P., Mulligan, J. & Stratford, R. J. (2004). Personality functioning: the influence of stature. Archives of Disease in Childhood, 89, 1721.Google Scholar
Wild, S., Sicref, R., Rogilc, G., et al. (2004). Global prevalence of diabetes. Diabetes Care, 27, 10471053.Google Scholar

References

Butler, R. J., Robinson, J. C., Holland, P. & Doherty-Williams, D. (2004). Investigating the three systems approach to complex childhood nocturnal enuresis: medical treatment interventions. Scandinavian Journal of Urology and Nephrology, 38, 117121.Google Scholar
Butler, R. J., Golding, J. & Northstone, K. (2005). Nocturnal enuresis at 7.5 years old: prevalence and analysis of clinical signs. BJU International, 96 (3).Google Scholar
Caldwell, P. H. Y., Nankivell, G. & Sureshkumar, P. (2013a). Simple behavioural interventions for nocturnal enuresis in children. Cochrane Database of Systematic Reviews, 7, CD003637.Google Scholar
Caldwell, P. H., Deshpande, A. V. & Von Gontard, A. (2013b). Management of nocturnal enuresis. British Medical Journal, 347, https://doi.org/10.1136/bmj.f6259.Google Scholar
Caldwell, P. H. Y., Sureshkumar, P. & Wong, W. C. F. (2016). Tricyclic and related drugs for nocturnal enuresis in children. Cochrane Database of Systematic Reviews, 1, CD002117.Google Scholar
Deshpande, A. V., Caldwell, P. H. Y. & Sureshkumar, P. (2012). Drugs for nocturnal enuresis in children (other than desmopressin and tricyclics). Cochrane Database of Systematic Reviews, 12, CD002238.Google Scholar
Glazener, C. M. A. & Evans, J. H.C. (2002). Desmopressin for nocturnal enuresis in children. Cochrane Database of Systematic Reviews, 3, CD002112.Google Scholar
Glazener, C. M. A., Evans, J. H. C. & Peto, R.E. (2004). Complex behavioural and educational interventions for nocturnal enuresis in children. Cochrane Database of Systematic Reviews, 1, CD004668.Google Scholar
Glazener, C. M. A., Evans, J. H. C. & Peto, R. E. (2005). Alarm interventions for nocturnal enuresis in children. Cochrane Database of Systematic Reviews, 2, CD002911.Google Scholar
Huang, T., Shu, X., Huang, Y. S. & Cheuk, D. K. L. (2011). Complementary and miscellaneous interventions for nocturnal enuresis in children. Cochrane Database of Systematic Reviews, 12, CD005230.Google Scholar
Jeyakumar, A., Rahman, S. I., Armbrecht, E. S. & Mitchell, R. (2012). The association between sleep-disordered breathing and enuresis in children. Laryngoscope, 122, 18731877.Google Scholar
National Clinical Guideline Centre (2010, updated 2015). Bedwetting in Under 19s. Clinical Guideline 111. London: National Clinical Guideline Centre.Google Scholar
Von Gontard, A., Heron, J. & Joinson, C. (2011). Family history of nocturnal enuresis and urinary incontinence: results from a large epidemiological study. Journal of Urology, 185, 23032307.Google Scholar

References

Baxendale, S. (2017). Populations referred for neuropsychological rehabilitation: epilepsy. In Barbara, T. O., Wilson, A., Winegardener, J. & van Heugten, C. (ed.), Neuropsychological Rehabilitation: The International Handbook (pp. 7780). Abingdon: Taylor & Francis.Google Scholar
Baxendale, S. & O’Toole, A. (2007). Epilepsy myths: alive and foaming in the 21st century. Epilepsy & Behavior: E&B, 11(2), 192196.Google Scholar
Baxendale, S. & Thompson, P. (2010). Beyond localization: the role of traditional neuropsychological tests in an age of imaging. Epilepsia, 51(11), 22252230.Google Scholar
Berg, A. T., Berkovic, S. F., Brodie, M. J., et al. (2010). Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, 51(4), 676685.Google Scholar
Fisher, R. S., Acevedo, C., Arzimanoglou, A., et al. (2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia, 55(4), 475482.Google Scholar
Hesdorffer, D. C., Hauser, W. A., Annegers, J. F. & Cascino, G. (2000). Major depression is a risk factor for seizures in older adults. Annals of Neurology, 47(2), 246249.Google Scholar
Kanner, A. M., Schachter, S. C., Barry, J. J., et al. (2012). Depression and epilepsy: epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy & Behavior: E&B, 24(2), 156168.Google Scholar
Khoujah, D. & Abraham, M. K. (2016). Status epilepticus: what’s new? Emergency Medicine Clinics of North America, 34(4), 759776.Google Scholar
Muthaffar, O. Y. & Jan, M. M. (2014). Public awareness and attitudes toward epilepsy in Saudi Arabia is improving. Neurosciences (Riyadh, Saudi Arabia), 19(2), 124126.Google Scholar
Singh, A. & Trevick, S. (2016). The epidemiology of global epilepsy. Neurologic Clinics, 34(4), 837847.Google Scholar
Taylor, J., Kolamunnage-Dona, R., Marson, A. G., et al. (2010). Patients with epilepsy: cognitively compromised before the start of antiepileptic drug treatment? Epilepsia, 51(1), 4856.Google Scholar
Waxman, S. G. & Geschwind, N. (2005). Hypergraphia in temporal lobe epilepsy. 1974. Epilepsy & Behavior: E&B, 6(2), 282291.Google Scholar
Wilson, S. J. & Baxendale, S. (2016). Reprint of: The new approach to classification: rethinking cognition and behavior in epilepsy. Epilepsy & Behavior: E&B, 64(Pt B), 300303.Google Scholar

References

Buchwald, D. & Komaroff, A. L. (1991). Review of laboratory findings for patients with chronic fatigue syndrome. Reviews of Infectious Disease, 13, S12S18.Google Scholar
Buchwald, D. S., Rea, T. D., Katon, W. J., Russo, J. E. & Ashley, R. L. (2000). Acute infectious mononucleosis: characteristics of patients who report failure to recover. American Journal of Medicine, 109, 531537.Google Scholar
Candy, B., Chalder, T., Cleare, A. J., et al. (2003). Predictors of fatigue following the onset of infectious mononucleosis. Psychological Medicine, 33, 847855.Google Scholar
Candy, B., Chalder, T., Cleare, A. J., Wessely, S. & Hotopf, M. (2004). A randomised controlled trial of a psycho-educational intervention to aid recovery in infectious mononucleosis. Journal of Psychosomatic Research, 57, 8994.Google Scholar
Esterling, B. A., Antoni, M. H., Fletcher, M. A., Margulies, S. & Schneiderman, N. (1994). Emotional disclosure through writing or speaking modulates latent Epstein–Barr virus antibody titers. Journal of Consulting and Clinical Psychology, 62(1), 130140.Google Scholar
Esterling, B. A., Antoni, M. H., Kumar, M. & Schneiderman, N. (1993). Defensiveness, trait anxiety, and Epstein–Barr viral capsid antigen antibody titers in healthy college students. Health and Psychology, 12, 132139.Google Scholar
Fagundes, C. P., Glaser, R. & Kiecolt-Glaser, J. K. (2013). Stressful early life experiences and immune dysregulation across the lifespan. Brain, Behavior, and Immunity, 27, 812.Google Scholar
Heim, C., Nater, U. M., Maloney, E., et al. (2009). Childhood trauma and risk for chronic fatigue syndrome: association with neuroendocrine dysfunction. Archives of General Psychiatry, 66, 7280.Google Scholar
Hickie, I., Davenport, T., Wakefield, D., et al. (2006). Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ, 333, 575578.Google Scholar
Jason, L. A., Katz, B. Z., Shiraishi, Y., et al. (2014). Predictors of post-infectious chronic fatigue syndrome in adolescents. Health Psychology and Behavioral Medicine, 2, 4151.Google Scholar
Kasl, S. V., Evans, A. & Niederman, J. C. (1979). Psychosocial risk factors in the development of infectious mononucleosis. Psychosomatic Medicine, 41, 445466.Google Scholar
Katz, B. Z., Shiraishi, Y., Mears, C. J., Binns, H. J. & Taylor, R. (2009). Chronic fatigue syndrome after infectious mononucleosis in adolescents. Pediatrics, 124,189193.Google Scholar
Lovell, B. & Wetherell, M. A. (2011). The cost of caregiving: endocrine and immune implications in elderly and non-elderly caregivers. Neuroscience & Biobehavioral Reviews, 35(6), 13421352.Google Scholar
Macsween, K. F. & Crawford, D. H. (2003). Epstein–Barr virus-recent advances. Lancet Infectious Diseases, 3, 131140.Google Scholar
Moss-Morris, R. & Petrie, K. (2000). Chronic Fatigue Syndrome. London: Routledge.Google Scholar
Moss-Morris, R. & Spence, M. (2006). To ‘lump’ or to ‘split’ the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosomatic Medicine, 68, 463469.Google Scholar
Moss-Morris, R., Spence, M. & Hou, R. (2011). The pathway from glandular fever to chronic fatigue syndrome: can the cognitive behavioural model provide the map? Psychological Medicine, 41, 10991107.Google Scholar
Moss-Morris, R., Deary, V. & Castell, B. (2012). Chronic fatigue syndrome. In Barnes, M. & Good, D. (eds), Neuro-Rehabilitation in the Handbook of Clinical Neurology, (3rd series). New York: Elsevier.Google Scholar
Papesch, M. & Watkins, R. (2001). Epstein–Barr virus infectious mononucleosis. Clinical Otolaryngology & Allied Sciences, 26, 38.Google Scholar
Petersen, I., Thomas, J. M., Hamilton, W. T. & White, P. D. (2006). Risk and predictors of fatigue after infectious mononucleosis in a large primary-care cohort. QJM, 99, 4955.Google Scholar
Powell, D. J. H., Liossi, C., Moss-Morris, R. & Schlotz, W. (2013). Unstimulated cortisol secretory activity in everyday life and its relationship with fatigue and chronic fatigue syndrome: a systematic review and subset meta-analysis. Psychoneuroendocrinology, 38, 24052422.Google Scholar
Rea, T. D., Russo, J. E., Katon, W., Ashley, R. L. & Buchwald, D. S. (2001). Prospective study of the natural history of infectious mononucleosis caused by Epstein–Barr virus. Journal of the American Board of Family Practice, 14, 234242.Google Scholar
Segerstrom, S. C. & Miller, G. E. (2004). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological Bulletin, 130(4), 601630.Google Scholar
Surawy, C., Hackmann, A., Hawton, K. & Sharpe, M. (1995). Chronic fatigue syndrome: a cognitive approach. Behaviour Research Therapy, 33, 535544.Google Scholar
Van Rood, Y. R., Bogaards, M., Goulmy, E. & van Houwelingen, H. C. (1993). The effects of stress and relaxation on the in vitro immune response in man: a meta-analytic study. Journal of Behavioural Medicine, 16, 163181.Google Scholar
White, P. D., Thomas, J. M., Kangro, H. O., et al. (2001). Predictions and associations of fatigue syndromes and mood disorders that occur after infectious mononucleosis. Lancet, 358, 19461954.Google Scholar

References

Bresnick, W. H., Rask-Madsen, C., Hogan, D. L., et al. (1993). The effect of acute emotional stress on gastric acid secretion in normal subjects and duodenal ulcer patients. Journal of Clinical Gastroenterology, 17, 117122.Google Scholar
Brooks, G. R. & Richardson, F. C. (1980). Emotional skills training: a treatment program for duodenal ulcer. Behavior Therapy, 11, 198207.Google Scholar
Ciociola, A. A., McSorley, D. J., Turner, K., et al. (1999). Helicobacter pylori infection rates in duodenal ulcer patients in the United States may be lower than previously estimated. American Journal of Gastroenterology, 94, 18341840.Google Scholar
Feldman, M., Walker, P., Goldschmiedt, M., et al. (1992). Role of affect and personality in gastric acid secretion and serum gastrin concentration: comparative studies in normal men and in male duodenal ulcer patients. Gastroenterology, 102, 175180.Google Scholar
Holtmann, G., Armstrong, D., Poppel, E., et al. (1992). Influence of stress on the healing and relapse of duodenal ulcers. Scandinavian Journal of Gastroenterology, 27, 917923.Google Scholar
Hui, W. M., Shiu, L. P., Lok, A. S. F., et al. (1992). Life events and daily stress in duodenal ulcer disease. Digestion, 52, 165172.Google Scholar
Jia, K., An, L., Wang, F., et al. (2016). Aggravation of Helicobacter pylori stomach infections in stressed military recruits. Journal of International Medical Research, 44, 367376.Google Scholar
Jones, M. P. (2006). The role of psychosocial factors in peptic ulcer disease: beyond Helicobacter pylori and NSAIDs. Journal of Psychosomatic Research, 60, 407412.Google Scholar
Kanno, T., Iijima, K., Abe, Y. et al. (2013). Peptic ulcers after the Great East Japan earthquake and tsunami: possible existence of psychosocial stress ulcers in humans. Journal of Gastroenterology, 48, 483490.Google Scholar
Levenstein, S. (2000). The very model of a modern etiology: a biopsychosocial view of peptic ulcer. Psychosomatic Medicine, 62, 176185.Google Scholar
Levenstein, S., Prantera, C., Varvo, V., et al. (1995). Patterns of biologic and psychologic risk factors for duodenal ulcer. Journal of Clinical Gastroenterology, 21, 110117.Google Scholar
Levenstein, S., Prantera, C., Scribano, M. L., et al. (1996). Psychologic predictors of duodenal ulcer healing. Journal of Clinical Gastroenterology, 22, 8489.Google Scholar
Levenstein, S., Rosenstock, S., Jacobsen, R. K., et al. (2015). Psychological stress increases risk for peptic ulcer, regardless of Helicobacter pylori infection or use of nonsteroidal anti-inflammatory drugs. Clinical Gastroenterology and Hepatology, 13, 498506.Google Scholar
Medalie, J. H., Stange, K. C., Zyzanski, S. J., et al. (1992). The importance of biopsychosocial factors in the development of duodenal ulcer in a cohort of middle-aged men. American Journal of Epidemiology, 136, 12801287.Google Scholar
Scott, K. M., Alonso, J., de Jonge, P., et al. (2013). Associations between DSM-IV mental disorders and onset of self-reported peptic ulcer in the World Mental Health Surveys. Journal of Psychosomatic Research, 75, 121127.Google Scholar
Wu, D.-Y., Guo, M., Gao, Y.-S., et al. (2012). Clinical effects of psychological intervention and drug therapy against peptic ulcer. Asian Pacific Journal of Tropical Medicine, 5, 831833.Google Scholar

References

Baron, J., Sävendahl, L., De Luca, F., et al. (2015). Short and tall stature: a new paradigm emerges. Nature Reviews Endocrinology, 11, 735746.Google Scholar
Bullinger, M., Sandberg, D., Chaplin, J., et al. (2009). Health-related quality of life of children and adolescents with Idiopathic Short Stature (ISS) or Growth Hormone Deficiency (GHD): a literature review. Hormone Research, 72, 6573.Google Scholar
Cheetham, T. & Davies, J.H. (2014). Investigation and management of short stature. Archives of Disease in Childhood, 99, 767771.Google Scholar
Cohen, L. E. (2014). Idiopathic short stature: a clinical review. JAMA, 311, 17871796.Google Scholar
Noeker, M. (2009). Management of idiopathic short stature: psychological endpoints, assessment strategies and cognitive-behavioral intervention. Hormome Research, 71 (suppl 1), 7581.Google Scholar
Noeker, M. & Haverkamp, F. (2000). Adjustment in conditions with short stature: a conceptual framework. Journal of Pediatric Endocrinology and Metabolism, 13, 15851594.Google Scholar
Oostdijk, W., Floor, K., Grote, S., et al. (2009). Diagnostic approach in children with short stature. Hormone Research, 72, 206217.Google Scholar
Ranke, M. B., Lindberg, A., Mullis, P. E. et al. (2013). Towards optimal treatment with growth hormone in short children and adolescents: evidence and theses. Hormone Research and Paediatrics, 79, 325334Google Scholar
Wit, J. M. & Oostdijk, W. (2015). Novel approaches to short stature therapy. Best Practice & Research: Clinical Endocrinology & Metabolism, 29, 353366.Google Scholar
Wit, J. M., Ranke, M. & Kelnar, C. J. H. (2007). ESPE classification of paediatric endocrine diagnoses. Hormone Research, 68 (Suppl. 2), 1120.Google Scholar

References

Acharya, S. S. (2012). Exploration of the pathogenesis of haemophilic joint arthropathy: understanding implications for optimal clinical management. British Journal of Haematology, 156, 1323.Google Scholar
Bérubé, S., Mouillard, F., Amesse, C. & Sultan, S. (2016). Motivational techniques to improve self-care in hemophilia: the need to support autonomy in children. BMC Pediatrics, 16(1), 1.Google Scholar
Elander, J. (2014). A review of evidence about behavioural and psychological aspects of chronic joint pain among people with haemophilia. Haemophilia, 20, 168175.Google Scholar
Elander, J., Robinson, G. & Morris, J. (2011). Randomized trial of a DVD intervention to improve readiness to self-manage joint pain. Pain, 152, 23332341.Google Scholar
Elander, J., Morris, J. & Robinson, G. (2013). Pain coping and acceptance as longitudinal predictors of health-related quality of life among people with hemophilia-related chronic joint pain. European Journal of Pain, 17, 929938.Google Scholar
Elander, J., Robinson, G., Mitchell, K. & Morris, J. (2009). An assessment of the relative influence of pain coping, negative thoughts about pain, and pain acceptance on health-related quality of life among people with hemophilia. Pain, 145, 169175.Google Scholar
Emiliani, F., Bertocchi, S., Potì, S. & Palareti, L. (2011). Process of normalization in families with children affected by hemophilia. Qualitative Health Research, 21, 16671678.Google Scholar
Holstein, K., Klamroth, R., Richards, M., et al. (2012). Pain management in patients with haemophilia: a European survey. Haemophilia, 18, 743752.Google Scholar
Humphries, T. J. & Kessler, C. M. (2016). Pain in haemophilia: are we listening? Haemophilia, 22, 175178.Google Scholar
Khair, K., Phillott, A., Loran, C., et al. (2014). HaemophiliaLIVE: an ethnographic study on the impact of haemophilia on daily life. Journal of Haemophilia Practice, 1, 1420.Google Scholar
Kliegman, R. (2011). Nelson Textbook of Pediatrics (19th edn). Philadelphia, PA: Saunders.Google Scholar
Mazepa, M. A., Monahan, P. E., Baker, J. R., Riske, B. K. & Soucie, J. M. (2016). Men with severe hemophilia in the United States: birth cohort analysis of a large national database. Blood. DOI: 10.1182/blood-2015-10-675140.Google Scholar
Mulvany, R., Zucker-Levin, A. R., Jeng, M., et al. (2010). Effects of a 6-week, individualized, supervised exercise program for people with bleeding disorders and hemophilic arthritis. Physical Therapy, 90, 509526.Google Scholar
Nichols, S., Mahoney, E. M., Sirois, P. A., et al. (2000). HIV-associated changes in adaptive, emotional, and behavioral functioning in children and adolescents with hemophilia: results from the Hemophilia Growth and Development Study. Journal of Pediatric Psychology, 25, 545556.Google Scholar
Nienhuis, A. W., Nathwani, A. C. & Davidoff, A. M. (2016). Gene therapy for hemophilia. Human Gene Therapy, 27, 305308.Google Scholar
Penica, S. & Williams, K. E. (2008). The use of a psychological intervention to increase adherence during factor administration in a child with haemophilia. Haemophilia, 14, 939944.Google Scholar
Poon, J. L., Zhou, Z.-Y., Doctor, J. N., et al. (2012). Quality of life in haemophilia A: Hemophilia Utilization Group Study Va (HUGS-Va). Haemophilia, 18, 699707.Google Scholar
Remor, E. (2013). Development and psychometric testing of the hemophilia well-being index. International Journal of Behavioral Medicine, 20, 609617.Google Scholar
Remor, E., Young, N. L., Von Mackensen, S. & Lopatinas, E. G. (2004). Disease-specific quality of life measurement tools for haemophilia patients. Haemophilia, 10 (Suppl. 4), 3034.Google Scholar
Royal, S., Schramm, W., Berntorp, E., et al. (2002). Quality of life differences between prophylactic and on-demand factor replacement therapy in European haemophilia patients. Haemophilia, 8, 4450.Google Scholar
Schäfer, G. S., Valderramas, S., Gomes, A. R., et al. (2016). Physical exercise, pain and musculoskeletal function in patients with haemophilia: a systematic review. Haemophilia, 22, e119-e129.Google Scholar
Spitzer, A. (1993). The significance of pain in children’s experiences of hemophilia. Clinical Nursing Research, 2, 523.Google Scholar
Stalker, C. & Elander, J. (2015). Effects of a pain self-management intervention combining written and video elements on health-related quality of life among people with different levels of education. Journal of Pain Research, 8, 581590.Google Scholar
Szende, A., Schramm, W., Flood, E., et al. (2003). Health-related quality of life assessment in adult haemophilia patients: a systematic review and evaluation of instruments. Haemophilia, 9, 678687.Google Scholar
Tabriznia-Tabrizi, S., Gholampour, M. & Mansouritorghabeh, H. (2016). A close insight to factor VIII inhibitor in the congenital hemophilia A. Expert Review of Hematology, 9, 903913.Google Scholar
Vears, D. F., Delany, C., Massie, J. & Gillam, L. (2016). Parents’ experiences with requesting carrier testing for their unaffected children. Genetics in Medicine. DOI:10.1038/gim.2016.24.Google Scholar
Witkop, M., Lambing, A., Kachalsky Divine, G., Rushlow, D. & Dinnen, J. (2011). Assessment of acute and persistent pain management in patients with haemophilia. Haemophilia, 17, 612619.Google Scholar
Witkop, M., Lambing, A., Divine, G., et al. (2012). A national study of pain in the bleeding disorders community: a description of haemophilia pain. Haemophilia, 18, e115e119.Google Scholar
World Federation of Hemophilia (2013). Report on the Annual Global Survey 2012. Québec: World Federation of Hemophilia. www1.wfh.org/publications/files/pdf-1574.pdfGoogle Scholar
Zhou, Z. Y., Koerper, M. A., Johnson, K. A., et al. (2015). Burden of illness: direct and indirect costs among persons with hemophilia A in the United States. Journal of Medical Economics, 18, 457465.Google Scholar

References

Abu Bakar, N., Tanprawate, S., Lambru, G., et al. (2016). Quality of life in primary headache disorders: a review. Cephalalgia, 36, 6791.Google Scholar
Andress-Rothrock, D., King, W. & Rothrock, J. (2010). An analysis of migraine triggers in a clinic-based population. Headache, 50, 13661370.Google Scholar
Buse, D., Manack, A., Serrano, D. & Reed, M., et al. (2012). Headache impact of chronic and episodic migraine: results from the American Migraine Prevalence and Prevention study. Headache, 52, 317.Google Scholar
Fagan, M. A. (2003). Exploring the relationship between maternal migraine and child functioning. Headache, 43, 10421048.Google Scholar
Harpole, L. H., Samsa, G. P., Jurgelski, A. E., et al. (2003). Headache management program improves outcome for chronic headache. Headache, 43, 715724.Google Scholar
Houle, T. T., Butschek, R. A., Turner, D. P., et al. (2012). Stress and sleep duration predict headache severity in chronic headache sufferers. Pain, 153, 24322440.Google Scholar
Huguet, A., McGrath, P. J., Stinson, J., Tougas, M. E. & Doucette, S. (2014). Efficacy of psychological treatment for headaches: an overview of systematic reviews and analysis of potential modifiers of treatment efficacy, Clinical Journal of Pain, 30, 353369.Google Scholar
IHS (2013). International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia, 33, 629808.Google Scholar
Jacobson, E. (1938). Progressive Relaxation. Chicago, IL: University of Chicago Press.Google Scholar
Kelman, L. & Rains, J. C. (2005). Headache and sleep: examination of sleep patterns and complaints in a large clinical sample of migraineurs. Headache, 45, 904910.Google Scholar
Kindelan-Calvo, P., Gil-Martinez, A., Paris-Alemany, A., et al. (2014). Effectiveness of therapeutic patient education for adults with migraine: a systematic review and meta-analysis of randomized controlled trials. Pain and Medicine, 15, 16191636.Google Scholar
Lipton, R. B., Silberstein, S. D., Saper, J. R., Bigal, M. E. & Goadsby, P. J. (2003). Why headache treatment fail. Neurology, 60, 10641070.Google Scholar
Louter, M. A., Bosker, J. E., Oosterhout van, P. W., et al. (2013). Cutaneous allodynia as a predictor of migraine chronification, Brain, 136, 34893496.Google Scholar
Maleki, N., Becerra, L. & Borsook, D.. (2012). Migraine: maladaptive brain responses to stress. Headache, 52(Suppl. 2), 102106.Google Scholar
Martin, P. R. & MacLeod, C. (2009). Behavioral management of headache triggers: avoidance of triggers is an inadequate strategy. Clinical Psychology Review, 29, 483495.Google Scholar
Milde-Busch, A., Blaschek, A., Heinen, F., et al. (2011). Associations between stress and migraine and tension-type headache: results from a school-based study in adolescents from grammar schools in Germany. Cephalalgia, 31, 774785.Google Scholar
Nestoriuc, Y. & Martin, A. (2007). Efficacy of biofeedback for migraine: a meta-analysis. Pain, 128, 111127.Google Scholar
Nicholson, R. A., Buse, D. C., Andrasik, F., & Lipton, R. B. (2011). Nonpharmacologic treatments for migraine and tension-type headache: how to choose and when to use. Current Treatment Options in Neurology, 13, 2840.Google Scholar
Ong, J. C. & Park, M. (2012). Chronic headaches and insomnia: working toward a biobehavioral model. Cephalalgia, 32, 10591070.Google Scholar
Pincus, T., Holt, N., Vogel, S., et al. (2013). Cognitive and affective reassurance and patient outcomes in primary care: a systematic review. Pain, 154, 24072416.Google Scholar
Pincus, T., Probyn, K., Mistry, D. et al. (2016). Predictors and moderators of chronic headache: a systematic review in preparation for the CHESS program. Neurology. DOI: 10.1212/WNL.0000000000004112.Google Scholar
Pistoia, F., Sacco, S. & Carolei, A. (2013). Behavioral therapy for chronic migraine. Current Pain and Headache Reports, 17, 304.Google Scholar
Powers, S. W., Patton, S. R., Hommel, K. A. & Hershey, A. D. (2004). Quality of life in paediatric migraine: characterization of age-related effects using PedsQL 4.0, Cephalalgia, 24, 120127.Google Scholar
Rains, J. C. (2008). Chronic headache and potentially modifiable risk factors: screening and behavioral management of sleep disorders, Headache, 48, 3239.Google Scholar
Rains, J. C., Penzien, D. B., McCrory, D. C. & Gray, R. N. (2005). Behavioral headache treatment: history, review of the empirical literature, and methodological critique. Headache, 45(Suppl. 2): S92S109.Google Scholar
Reed, K. (2010). Therapeutic Patient Education. Sydney: Royal Prince Alfred Hospital.Google Scholar
Rime, C. & Andrasik, F. (2011). Relaxation techniques and guided imagery. In Waldman, S. (ed.), Pain Management. Philadephia, PA: Saunders Elsevier.Google Scholar
Singer, A. B., Buse, D. C. & Seng, E. K. (2015). Behavioral treatments for migraine management: useful at each step of migraine care. Current Neurology and Neuroscience Reports, 15, 14.Google Scholar
Smitherman, T. A., Burch, R., Sheikh, H. & Loder, E. (2013). The prevalence, impact, and treatment of migraine and severe headaches in the United States: a review of statistics from national surveillance studies. Headache, 53, 427436.Google Scholar
Smitherman, T. A., Penzien, D. B., Rains, J. C., Nicholson, R. A. & Houle, T. T. (2015). Headache. Oxford: Hograefe.Google Scholar
Vanegas, H. & Schaible, H. G. (2004). Descending control of persistent pain: inhibitory or facilitatory? Brain Research Reviews, 46, 295309.Google Scholar
Vos, T., Flaxman, A. D., Naghavi, M., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 21632196.Google Scholar

References

Andersson, G. (2015). Clinician-supported internet-delivered psychological treatment of tinnitus. American Journal of Audiology, 24, 299301 DOI:10.1044/2015_AJA-14-0080Google Scholar
Andersson, G., Strömgren, T., Ström, L. & Lyttkens, L. (2002). Randomised controlled trial of Internet based cognitive behavior therapy for distress associated with tinnitus. Psychosomatic Medicine, 64, 810816.Google Scholar
Baguley, D. M., Andersson, G., McKenna, L. & McFerran, D. J. (2013). Tinnitus: A Multidisciplinary Approach (2nd edn). Chichester: Wiley.Google Scholar
Barnett, M., Hixon, B., Okwiri, N., et al. (2016). Factors involved in access and utilization of adult hearing healthcare: a systematic review. The Laryngoscope. DOI:10.1002/lary.26234.Google Scholar
Cima, R. F. F., Andersson, G., Schmidt, C. & Henry, J. A. (2014). Cognitive-behavioral therapy for tinnitus: a review of literature. Journal of the American Academy of Audiology, 25, 2961.Google Scholar
Hesser, H., Weise, C., Zetterqvist Westin, V. & Andersson, G. (2011). A systematic review and meta-analysis of randomized controlled trials of cognitive-behavioral therapy for tinnitus distress. Clinical Psychology Review, 31, 545553. DOI:10.1016/j.cpr.2010.12.006.Google Scholar
Hesser, H., Bånkestad, E. & Andersson, G. (2015). Acceptance of tinnitus as an independent correlate of tinnitus disability. Ear and Hearing, 36, e176–182. DOI:10.1097/AUD.0000000000000148.Google Scholar
Jüris, L., Andersson, G., Larsen, H.-C. & Ekselius, L. (2014). Cognitive behavioural therapy for hyperacusis: a randomized controlled trial. Behaviour Research and Therapy, 54, 3037. DOI:10.1016/j.brat.2014.01.001.Google Scholar
Laplante-Lévesque, A., Brännström, K. J., Andersson, G. & Lunner, T. (2012a). Quality and readability of English-language internet information for adults with hearing impairment and their significant others. International Journal of Audiology, 51, 618626.Google Scholar
Laplante-Lévesque, A., Knudsen, L. V., Preminger, J. E., et al. (2012b). Hearing help-seeking and rehabilitation: perspectives of adults with hearing impairment. International Journal of Audiology, 51(2), 93102. DOI:10.3109/14992027.2011.606284.Google Scholar
Meyer, C. & Hickson, L. (2012). What factors influence help-seeking for hearing impairment and hearing aid adoption in older adults? International Journal of Audiology, 51, 6674. DOI:10.3109/14992027.2011.611178.Google Scholar
Molander, P., Nordqvist, P., Öberg, M., et al. (2013). Internet-based hearing screening using speech-in-noise: validation and comparisons of self-reported hearing problems, quality of life, and phonological representation. BMJ Open, 3, e003223. DOI:10.1136/bmjopen-2013-003223.Google Scholar
Rönnberg, J., Lunner, T., Zekveld, A., et al. (2013). The ease of language understanding (ELU) model: theoretical, empirical, and clinical advances. Frontiers in Systems Neuroscience, 7, 31. DOI:10.3389/fnsys.2013.00031.Google Scholar
Stevens, G., Flaxman, S., Brunskill, E., et al. (2013). Global and regional hearing impairment prevalence: an analysis of 42 studies in 29 countries. European Journal of Public Health, 23, 146152. DOI:10.1093/eurpub/ckr176.Google Scholar
Thorén, E. S., Öberg, M., Wänström, G., Andersson, G. & Lunner, T. (2014). A randomized controlled trial evaluating the effects of online rehabilitative intervention for adult hearing-aid users. International Journal of Audiology, 53, 452461. DOI:10.3109/14992027.2014.892643.Google Scholar
Zetterqvist Westin, V., Schulin, M., Hesser, H., et al. (2011). Acceptance and Commitment Therapy versus Tinnitus Retraining Therapy in the treatment of tinnitus distress: a randomized controlled trial. Behaviour Research and Therapy, 49, 737747.Google Scholar

References

Antoni, M. H. (2003). Stress management and psychoneuroimmunology in HIV infection. CNS Spectrums, 8, 4051.Google Scholar
Bangsberg, D. R., Perry, S., Charlebois, E. D., et al. (2001). Non-adherence to highly active antiretroviral therapy predicts progression to AIDS. AIDS, 15(9), 11811183.Google Scholar
Bing, E. G., Burnam, M. A., Longshore, D., et al. (2001). Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Archives of General Psychiatry, 58, 721728.Google Scholar
Byakwaga, H., Boum, Y., Huang, Y., et al. (2014). The kynurenine pathway of tryptophan catabolism, CD4+ T-cell recovery, and mortality among HIV-infected Ugandans initiating antiretroviral therapy. Journal of Infectious Diseases, 210(3), 383391.Google Scholar
Carrico, A. W. (2011). Substance use and HIV disease progression in the HAART era: implications for the primary prevention of HIV. Life Sciences, 88(21), 940947.Google Scholar
Carrico, A. & Antoni, M. H. (2008). The effects of psychological interventions on neuroendocrine hormone regulation and immune status in HIV-positive persons: a review of randomized controlled trials. Psychosomatic Medicine, 70, 575584.Google Scholar
Carrico, A. W., Johnson, M. O., Morin, S. F., et al. (2008). Stimulant use is associated with immune activation and depleted tryptophan among HIV-positive persons on anti-retroviral therapy. Brain, Behavior, and Immunity, 22(8), 12571262.Google Scholar
Carrico, A. W., Riley, E. D., Johnson, , et al. (2011). Psychiatric risk factors for HIV disease progression: the role of inconsistent patterns of anti-retroviral therapy utilization. Journal of Acquired Immune Deficiency Syndromes, 56(2), 146.Google Scholar
Carrico, A. W., Shoptaw, S., Cox, C., et al. (2014). Stimulant use and progression to AIDS or mortality after the initiation of highly active anti-retroviral therapy. Journal of Acquired Immune Deficiency Syndromes, 67(5), 508.Google Scholar
Carrico, A. W., Hunt, P. W., Emenyonu, N. I., et al. (2015). Unhealthy alcohol use is associated with monocyte activation prior to starting antiretroviral therapy. Alcoholism: Clinical and Experimental Research, 39(12), 24222426.Google Scholar
Carrico, A. W., Zepf, R., Meanley, S., Batchelder, A. & Stall, R. (2016). When the party is over: a systematic review of behavioral interventions for substance-using men who have sex with men. Journal of Acquired Immune Deficiency Syndromes, 73, 299306.Google Scholar
Castillo-Mancilla, J. R., Brown, T. T., Erlandson, , et al. (2016). Suboptimal adherence to combination antiretroviral therapy is associated with higher levels of inflammation despite HIV suppression. Clinical Infectious Diseases, 63(12), 16611667.Google Scholar
Cielsa, J. A. & Roberts, J. E. (2001). Meta-analysis of the relationship between HIV infection and the risk for depressive disorders. American Journal of Psychiatry, 158(5), 725730.Google Scholar
Clerici, M., Trabattoni, D., Piconi, S., et al. (1997). A possible role for the cortisol/anticortisols imbalance in the progression of Human Immunodeficiency Virus. Psychoneuroendocrinology, 22, S27S31.Google Scholar
Cohen, M. S., Chen, Y. Q., McCauley, M., et al. (2016). Antiretroviral therapy for the prevention of HIV-1 transmission. New England Journal of Medicine, 375(9), 830839.Google Scholar
Cole, S. W. (2008). Psychosocial influences on HIV-1 disease progression: neural, endocrine, and virologic mechanisms. Psychosomatic Medicine, 70, 562568.Google Scholar
Cole, S. W. & Kemeny, M. E. (2001). Psychosocial influences on the progression of HIV infection. In Ader, R., Felten, D. L. & Cohen, S. (eds), Psychoneuroimmunology (3rd edn). San Diego, CA: Academic Press.Google Scholar
Cole, S. W., Korin, Y. D., Fahey, J. L. & Zack, J.A. (1998). Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. Journal of Immunology, 161, 610616.Google Scholar
Grinsztejn, B., Hosseinipour, M. C., Ribaudo, H. J., et al. (2014). Effects of early versus delayed initiation of antiretroviral treatment on clinical outcomes of HIV-1 infection: results from the phase 3 HPTN 052 randomised controlled trial. Lancet Infectious Diseases, 14(4), 281290.Google Scholar
Havlir, D. & Beyrer, C. (2012). The beginning of the end of AIDS?. New England Journal of Medicine, 367(8), 685687.Google Scholar
Healthy Living Project Team. (2007). Effects of a behavioral intervention to reduce risk of transmission among people living with HIV: the healthy living project randomized controlled study. Journal of Acquired Immune Deficiency Syndromes, 44(2), 213221.Google Scholar
Ironson, G., O’Cleirigh, C., Kumar, M., et al. (2015). Psychosocial and neurohormonal predictors of HIV disease progression (CD4 cells and viral load): a 4 year prospective study. AIDS and Behavior, 19(8), 13881397.Google Scholar
Justice, A. & Falutz, J. (2014). Aging and HIV: an evolving understanding. Current Opinion in HIV and AIDS, 9(4), 291.Google Scholar
Kalichman, S. C., Difonzo, K., Austin, J., Luke, W. & Rompa, D. (2002). Prospective study of emotional reactions to changes in HIV viral load. AIDS Patient Care and STDs, 16(3), 113120.Google Scholar
Kopinsky, K. L., Stoff, D. M. & Rausch, D. M. (2004). Workshop report: the effects of psychological variables on the progression of HIV-1 disease. Brain, Behavior, and Immunity, 18, 246261.Google Scholar
Kuller, L. H., Tracy, R., Belloso, W., et al. (2008). Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Medicine, 5(10), e203.Google Scholar
Lederman, M. M., Funderburg, N. T., Sekaly, R. P., Klatt, N. R. & Hunt, P. W. (2013). Residual immune dysregulation syndrome in treated HIV infection. Advances in immunology, 119, 51.Google Scholar
Leserman, J. (2003). HIV disease progression: depression, stress, and possible mechanisms. Biological Psychiatry, 54(3), 295306.Google Scholar
Leserman, J. (2008). Role of depression, stress, and trauma in HIV disease progression. Psychosomatic Medicine, 70(5), 539545.Google Scholar
Leserman, J., Petitto, J. M., Golden, R. N., et al. (2000). Impact of stressful life events, depression, social support, coping, and cortisol on progression to AIDS. American Journal of Psychiatry, 157(8), 12211228.Google Scholar
Lyketsos, C. G., Hoover, D. R., Guccione, M., et al. (1996). Changes in depressive symptoms as AIDS develops. American Journal of Psychiatry, 153(11), 14301437.Google Scholar
Markham, P. D., Salahuddin, S. Z., Veren, K., et al. (1986). Hydrocortisone and some other hormones enhance the expression of HTLV-III. International Journal of Cancer, 37, 6772.Google Scholar
Norbiato, G., Bevilacqua, M., Vago, T., et al. (1997). Glucocorticoids and immune function in Human Immunodeficiency Virus infection: a study of hypercortisolemic and cortisol-resistant patients. Journal of Clinical Endocrinology and Metabolism, 82, 32603263.Google Scholar
Pereira, D., Antoni, M. H., Simon, T., et al. (2003). Stress and squamous intraepithelial lesions in women with Human Papillomavirus and Human Immunodeficiency Virus. Psychosomatic Medicine, 65, 427434.Google Scholar
Siegel, K., Karus, D. & Raveis, V. H. (1997). Correlates of change in depressive symptomatology among gay men with AIDS. Health and Psychology, 16(3), 230238.Google Scholar
World Health Organization (2015). Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. http://apps.who.int/iris/bitstream/10665/186275/1/9789241509565_eng.pdf.Google Scholar

References

Arnsten, A. F. (2009). Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs, 23(Suppl. 1), 3341.Google Scholar
Barkley, R. A. (1997). ADHD and the Nature of Self-Control. New York: Guilford Press.Google Scholar
Castellanos, F. X. (1997). Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clinical Pediatrics, 36(7), 381393.Google Scholar
Coghill, D. R., Hayward, D., Rhodes, S. M., et al. (2014). A longitudinal examination of neuropsychological and clinical functioning in boys with attention deficit hyperactivity disorder (ADHD): improvements in executive functioning do not explain clinical improvement. Psychology and Medicine, 44(5), 10871099.Google Scholar
Connor, D. F. (2015). Stimulant and nonstimulant medications for childhood ADHD. In Barkley, R.A. (ed.), Attention-Deficit Hyperactivity Disorder (4th edn). New York: Guilford Press.Google Scholar
Evans, S. W., Owens, J. S. & Bunford, N. (2014). Evidence-based psychosocial treatments for children and adolescents with attention-deficit/hyperactivity disorder. Journal of Clinical Child & Adolescent Psychology, 43(4), 527551.Google Scholar
Gallo, E. F. & Posner, J. (2016). Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry, 3(6), 555567.Google Scholar
Gatt, J. M., Burton, K. L., Williams, L. M. & Schofield, P. R. (2015). Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. Journal of Psychiatric Research, 60, 113.Google Scholar
Hanwella, R., Senanayake, M. & de Silva, V. (2011). Comparative efficacy and acceptability of methylphenidate and atomoxetine in treatment of attention deficit hyperactivity disorder in children and adolescents: a meta-analysis. BMC Psychiatry, 11, 176.Google Scholar
Hawi, Z., Cummins, T. D., Tong, J., et al. (2015). The molecular genetic architecture of attention deficit hyperactivity disorder. Molecular Psychiatry, 20(3), 289297.Google Scholar
Hinshaw, S. P. & Arnold, L. E. (2015). Attention-deficit hyperactivity disorder, multimodal treatment, and longitudinal outcome: evidence, paradox, and challenge. Wiley Interdisciplinary Reviews: Cognitive Science, 6(1), 3952.Google Scholar
Klein, R. G., Mannuzza, S., Olazagasti, M. A., et al. (2012). Clinical and functional outcome of childhood attention-deficit/hyperactivity disorder 33 years later. Archives of General Psychiatry, 69(12), 12951303.Google Scholar
Langberg, J. M. & Becker, S. P. (2012). Does long-term medication use improve the academic outcomes of youth with attention-deficit/hyperactivity disorder? Clinical Child and Family Psychology Review, 15(3), 215233.Google Scholar
Larson, K., Russ, S. A., Kahn, R. S. & Halfon, N. (2011). Patterns of comorbidity, functioning, and service use for US children with ADHD, 2007. Pediatrics, 127(3), 462470.Google Scholar
Mannuzza, S., Klein, R. G., Bessler, A., et al. (1998). Adult psychiatric status of hyperactive boys grown up. American Journal of Psychiatry, 155(4), 493498.Google Scholar
McKeown, R. E., Holbrook, J. R., Danielson, M. L., et al. (2015). The impact of case definition on attention-deficit/hyperactivity disorder prevalence estimates in community-based samples of school-aged children. Journal of the American Academy of Child and Adolescent Psychiatry, 54(1), 5361.Google Scholar
Moffitt, T. E., Houts, R., Asherson, P., et al. (2015). Is Adult ADHD a childhood-onset neurodevelopmental disorder? Evidence from a four-decade longitudinal cohort study. American Journal of Psychiatry, 172(10), 967977.Google Scholar
Molina, B. S., Hinshaw, S. P., Swanson, J. M., et al. (2009). The MTA at 8 years: prospective follow-up of children treated for combined-type ADHD in a multisite study. Journal of the American Academy of Child and Adolescent Psychiatry, 48(5), 484500.Google Scholar
NICE (2008, updated February 2016). Attention Deficit Hyperactivity Disorder: Diagnosis and Management. London: NICE.Google Scholar
Nigg, J. T., Willcutt, E. G., Doyle, A. E. & Sonuga-Barke, E. J. (2005). Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biology and Psychiatry, 57(11), 12241230.Google Scholar
Pelham, W. E. Jr. (1999). The NIMH multimodal treatment study for attention-deficit hyperactivity disorder: just say yes to drugs alone? Canadian Journal of Psychiatry, 44(10), 981990.Google Scholar
Pliszka, S. R. (2015). Comorbid psychiatric disorders in children with ADHD. In Barkley, R. A. (ed.), Attention-Deficit Hyperactivity Disorder (4th edn). New York: Guilford Press.Google Scholar
Polanczyk, G., de Lima, M. S., Horta, B. L., et al. (2007). The worldwide prevalence of ADHD: a systematic review and metaregression analysis. American Journal of Psychiatry, 164(6), 942948.Google Scholar
Sagvolden, T., Aase, H., Zeiner, P. & Berger, D. (1998). Altered reinforcement mechanisms in attention-deficit/hyperactivity disorder. Behavioural Brain Research, 94(1), 6171.Google Scholar
Shaw, P., Eckstrand, K., Sharp, W., et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. PNAS USA, 104(49), 1964919654.Google Scholar
Sjowall, D., Roth, L., Lindqvist, S. & Thorell, L. B. (2013). Multiple deficits in ADHD: executive dysfunction, delay aversion, reaction time variability, and emotional deficits. Journal of Child Psychology and Psychiatry, 54(6), 619627.Google Scholar
Sonuga-Barke, E. J. (2005). Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biology and Psychiatry, 57(11), 12311238.Google Scholar
Sonuga-Barke, E. J., Taylor, E., Sembi, S. & Smith, J. (1992). Hyperactivity and delay aversion: I. The effect of delay on choice. Journal of Child Psychology and Psychiatry, 33(2), 387398.Google Scholar
Subcommittee on Attention-Deficit/Hyperactivity Disorder (2011). ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics, 128(5), 10071022.Google Scholar
Willcutt, E. G. (2012). The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics, 9(3), 490499.Google Scholar

References

Babu, G. R., Jotheeswaran, A. T., Mahapatra, T., et al. (2014). Is hypertension associated with job strain? A meta-analysis of observational studies. Occupational and Environmental Medicine, 71, 220227.Google Scholar
Baumeister, H., Hutter, N. & Bengel, J. (2011). Psychological and pharmacological interventions for depression in patients with coronary artery disease. Cochrane Database of Systematic Reviews, 9, CD008012.Google Scholar
Bevan, R. D. (1984). Trophic effects of peripheral adrenergic nerves on vascular structure. Hypertension, 6, III19–26.Google Scholar
Buckley, T. C. & Kaloupek, D. G. (2001). A meta-analytic examination of basal cardiovascular activity in posttraumatic stress disorder. Psychosomatic Medicine, 63, 585594.Google Scholar
Chida, Y. & Steptoe, A. (2010). Greater cardiovascular responses to laboratory mental stress are associated with poor subsequent cardiovascular risk status: a meta-analysis of prospective evidence. Hypertension, 55, 10261032.Google Scholar
Cornelissen, V. A. & Smart, N. A. (2013). Exercise training for blood pressure: a systematic review and meta-analysis. Journal of the American Heart Association, 2, e004473.Google Scholar
Folkow, B. & Rubinstein, E. H. (1966). The functional role of some autonomic and behavioral patterns evoked from the lateral hypothalamus of the cat. Acta Physiologica Scandinavica, 66, 182188.Google Scholar
Gay, H. C., Rao, S. G., Vaccarino, V. & Ali, M. K. (2016). Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension, 67, 733739.Google Scholar
Gerin, W., Chaplin, W., Schwartz, J. E., et al. (2005). Sustained blood pressure increase after an acute stressor: the effects of the 11 September 2001 attack on the New York City World Trade Center. Journal of Hypertension, 23, 279284.Google Scholar
Hamer, M. & Steptoe, A. (2012). Cortisol responses to mental stress and incident hypertension in healthy men and women. Journal of Clinical Endocrinology & Metabolism, 97, E29E34.Google Scholar
Hamer, M., Batty, G. D., Stamatakis, E. & Kivimaki, M. (2010). Hypertension awareness and psychological distress. Hypertension, 56, 547550.Google Scholar
Hamer, M., Kivimaki, M. & Batty, G. D. (2016). Pulse rate reactivity in childhood as a risk factor for adult hypertension: the 1970 Birth Cohort Study. Journal of Hypertension, 34, 18041807.Google Scholar
Herd, J. A., Morse, W. H., Kelleher, R. T. & Jones, L.G. (1969). Arterial hypertension in the squirrel monkey during behavioral experiments. American Journal of Physiology, 217, 2429.Google Scholar
Kaplan, J. R., Manuck, S. B., Adams, M. R., Weingand, K. W. & Clarkson, T. B. (1987). Inhibition of coronary atherosclerosis by propranolol in behaviorally predisposed monkeys fed an atherogenic diet. Circulation, 76, 13641372.Google Scholar
Mahtani, K. R., Nunan, D. & Heneghan, C. J. (2012). Device-guided breathing exercises in the control of human blood pressure: systematic review and meta-analysis. Journal of Hypertension, 30, 852860.Google Scholar
Mancia, G., Fagard, R., Narkiewicz, K., et al. (2013). ESH/ESC guidelines for the management of arterial hypertension. European Heart Journal, 34, 21592219.Google Scholar
Meng, L., Chen, D., Yang, Y., et al. (2012). Depression increases the risk of hypertension incidence: a meta-analysis of prospective cohort studies. Journal of Hypertension, 30, 842851.Google Scholar
Nabi, H., Chastang, J. F., Lefèvre, T., et al. (2011). Trajectories of depressive episodes and hypertension over 24 years: the Whitehall II prospective cohort study. Hypertension, 57, 710716.Google Scholar
Parati, G., Antonicelli, R., Guazzarotti, F., Paciaroni, E. & Mancia, G. (2001). Cardiovascular effects of an earthquake: direct evidence by ambulatory blood pressure monitoring. Hypertension, 38, 10931095.Google Scholar
Rothlin, E., Cerletti, A. & Emmenegger, H. (1956). Experimental psycho-neurogenic hypertension and its treatment with hydrogenated ergot alkaloids (hydergine). Acta Medica Scandinavica, 312, 2735.Google Scholar
Rozanski, A., Blumenthal, J. A., Davidson, K. W., Saab, P. G. & Kubzansky, L. (2005). The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology. Journal of the American College of Cardiology, 45, 637651.Google Scholar
Steptoe, A., Kivimäki, M., Lowe, G., Rumley, A. & Hamer, M.(2016). Blood pressure and fibrinogen responses to mental stress as predictors of incident hypertension over an 8-year period. Annals of Behavioral Medicine. Epub ahead of print.Google Scholar
Zomer, E., Gurusamy, K., Leach, R., et al. (2016). Interventions that cause weight loss and the impact on cardiovascular risk factors: a systematic review and meta-analysis. Obesity Review, 10, 10011011.Google Scholar

References

Atis, G., Dalkilinc, A., Altuntas, J., et al. (2011). Hyperthyroidism: a risk factor for female sexual dysfunction. Journal of Sexual Medicine, 8, 23272333.Google Scholar
Bram, I. (1927). Psychic traumas in pathogenesis of exophthalmic goiter. Endocrinology, 11, 106116.Google Scholar
Cosci, F., Fava, G. A. & Sonino, N. (2015). Mood and anxiety disorders as early manifestations of medical illness: a systematic review. Psychotherapy and Psychosomatics, 84, 2229.Google Scholar
Cramon, P., Winther, K. H., Watt, T., et al. (2016). Quality-of-life impairments persist six months after treatment of Graves’ hyperthyroidism and toxic nodular goiter: a prospective cohort study. Thyroid, 26, 10101018.Google Scholar
Demet, M. M., Ozmen, B., Deveci, A., et al. (2002). Depression and anxiety in hyperthyroidism. Archives of Medical Research, 33, 552556.Google Scholar
Effraimidis, G. & Wiersinga, W. M. (2014). Autoimmune thyroid disease: old and new players. European Journal of Endocrinology, 170, R241R252.Google Scholar
Effraimidis, G., Tijsesen, J. G. P., Brosschot, J. F. & Wiersinga, W. M. (2012). Involvement of stress in the pathogenesis of autoimmune thyroid disease: a prospective study. Psychoneuroendocrinology, 37, 11911198.Google Scholar
Fahrenfort, J. J., Wilterdirk, A. M. L. & van der Veen, E. A. (2000). Long-term residual complaints and psychosocial sequelae after remission of hyperthyroidism. Psychoneuroendocrinology, 25, 201211.Google Scholar
Falgarone, G., Hoshman, H. H., Cohen, R. & Reach, G. (2013). Role of emotional stress in the pathophysiology of Graves’ disease. European Journal of Endocrinology, 168, R13–18.Google Scholar
Kathol, R. G. & Delahunt, J. W. (1986). The relationship of anxiety and depression to symptoms of hyperthyroidism using operational criteria. General Hospital Psychiatry, 8, 2328.Google Scholar
Kathol, R. G., Turner, R. & Delahunt, J. W. (1986). Depression and anxiety associated with hyperthyroidism: response to antithyroid therapy. Psychosomatics, 27, 501505.Google Scholar
Kung, A. W. C. (1995). Life events, daily stresses and coping in patients with Graves’ disease. Clinical Endocrinology, 42, 303308.Google Scholar
Matos-Santos, A., Lacarda Nobre, E., Costa, J. G. E., et al. (2001). Relationship between the number and impact of stressful life events and the onset of Graves’ disease and toxic nodular goitre. Clinical Endocrinology, 55, 1519.Google Scholar
Nath, J. & Sagar, R. (2001). Late-onset bipolar disorder due to hyperthyroidism. Acta Psychiatrica Scandinavica, 104, 7275.Google Scholar
Peiris, A. N., Oh, E. & Diaz, S. (2007). Psychiatric manifestations of thyroid disease. Southern Medical Journal, 100, 773774Google Scholar
Radosavljevic, V. R., Jakovic, S. M. & Marinkovic, J. M. (1996). Stressful life events in the pathogenesis of Graves’ disease. European Journal of Endocrinology, 134, 699701.Google Scholar
Sonino, N. & Fava, G. A. (2012). Improving the concept of recovery in endocrine disease by consideration of psychosocial issues. Journal of Clinical Endocrinology and Metabolism, 97, 26142616.Google Scholar
Sonino, N., Fava, G. A., Belluardo, P., Girelli, M. E. & Boscaro, M. (1993a). Course of depression in Cushing’s syndrome: response to treatment and comparison with Graves’ disease. Hormone Research, 39, 202206.Google Scholar
Sonino, N., Girelli, M. E., Boscaro, M., et al. (1993b). Life events in the pathogenesis of Graves’ disease. Acta Endocrinologica, 128, 293296.Google Scholar
Sonino, N., Navarrini, C., Ruini, C. et al. (2004). Persistent psychological distress in patients treated for endocrine disease. Psychotherapy and Psychosomatics, 73, 7883.Google Scholar
Sonino, N., Guidi, J. & Fava, G. A. (2015). Psychological aspects of endocrine disease. Journal of the Royal College of Physicians of Edinburgh, 45, 5559.Google Scholar
Stern, R. A., Robinson, B., Thorner, A. R., et al. (1996). A survey of neuropsychiatric complaints in patients with Graves’ disease. Journal of Neuropsychiatry and Clinical Neuroscience, 8, 181185.Google Scholar
Terwee, C. B., Dekker, F. W., Mourits, M. P., et al. (2001). Interpretation and validity of changes in scores of the Graves’ ophtalmopathy quality of life questionnaire (GO-QOL) after different treatments. Clinical Endocrinology, 54, 391398.Google Scholar
Watt, T., Cramon, P., Hegedus, L., et al. (2014). The thyroid-related quality of life measure ThyPRO has good responsiveness and ability to detect relevant treatment effects. Journal of Clinical Endocrinology and Metabolism, 99, 37983817.Google Scholar
Winsa, B., Adami, H. O., Bergstrom, R., et al. (1991). Stressful life events and Graves’ disease. Lancet, 338, 14751479.Google Scholar
Wong, C. K. H., Lang, B. H. H. & Lam, C. L. K. (2016). A systematic review of quality of thyroid-specific health-related quality-of-life instruments recommends ThyPRO for patients with benign thyroid diseases. Journal of Clinical Epidemiology ,78, 6372.Google Scholar
Wood, L. C. (1998). Support groups for patients with Graves’ disease and other thyroid conditions. Endocrinology and Metabolism Clinics of North America, 27, 101107.Google Scholar
Yoshihuchi, K., Kumano, H., Nomura, S., et al. (1998). Psychological factors influencing the short-term outcome of antithyroid drug therapy in Graves’ disease. Psychosomatic Medicine, 60, 592596.Google Scholar

References

Berrill, J. W., Sadlier, M., Hood, K., et al. (2014). Mindfulness-based therapy for inflammatory bowel disease patients with functional abdominal symptoms or high perceived stress levels. Journal of Crohn’s and Colitis, 8, 945955.Google Scholar
El-Tawil, A. M. (2010). Smoking and inflammatory bowel diseases: what in smoking alters the course? International Journal of Colorectal Diseases, 25, 671680.Google Scholar
Feagan, B. G., McDonald, J. W. & Koval, J. J. (1996). Therapeutics and inflammatory bowel disease: a guide to the interpretation of randomized controlled trials. Gastroenterology, 110, 275283Google Scholar
Feagan, B. G., Sandborn, W. J., D’Haens, G. et al. (2015). Randomised clinical trial: vercirnon, an oral CCR9 antagonist, vs. placebo as induction therapy in active Crohn’s disease. Alimentary Pharmacology and Therapeutics, 42, 11701181.Google Scholar
Gerbarg, P. L., Jacob, V. E., Stevens, L., et al. (2015). The effect of breathing, movement, and meditation on psychological and physical symptoms and inflammatory biomarkers in inflammatory bowel disease: a randomized controlled trial. Inflammatory Bowel Disease, 21, 28862896.Google Scholar
Guthrie, E. (2007). Gastrointestinal disorders. In Lloyd, G. & Guthrie, E. (eds), Handbook of Liaison Psychiatry. Cambridge: Cambridge University Press.Google Scholar
Kane, S. V. & Robinson, A. (2010). Review article: understanding adherence to medication in ulcerative colitis: innovative thinking and evolving concepts. Alimentary Pharmacology and Therapeutics, 97, 10511058.Google Scholar
Kuenzig, M. E., Lee, S. M., Eksteen, B., et al. (2016). Smoking influences the need for surgery in patients with the inflammatory bowel diseases: a systematic review and meta-analysis incorporating disease duration. BMC Gastroenterology, 16, 143.Google Scholar
Levenstein, S., Prantera, C., Varvo, V., et al. (2000). Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission. American Journal of Gastroenterology, 95, 12131220.Google Scholar
McCombie, A., Gearry, R., Andrews, J., et al. (2016). Does computerized cognitive behavioral therapy help people with inflammatory bowel disease? A randomized controlled trial. Inflammatory Bowel Disease, 22, 171181.Google Scholar
Mikocka-Walus, A., Bampton, P., Hetzel, D., et al. (2015). Cognitive-behavioural therapy has no effect on disease activity but improves quality of life in subgroups of patients with inflammatory bowel disease: a pilot randomised controlled trial. BMC Gastroenterology, 15, 54.Google Scholar
Mittermaier, C., Dejaco, C., Waldhoer, T., et al. (2004). Impact of depressive mood on relapse in patients with inflammatory bowel disease: a prospective 18-month follow-up study. Psychosomatic Medicine, 66, 7984.Google Scholar
Moradkhani, A., Beckman, L. J. & Tabibian, J. H. (2013). Health-related quality of life in inflammatory bowel disease: psychosocial, clinical, socioeconomic, and demographic predictors. Journal of Crohn’s and Colitis, 7, 467473.Google Scholar
Mussell, M., Bocker, U., Nagel, N., et al. (2003). Reducing psychological distress in patients with inflammatory bowel disease by cognitive-behavioural treatment: exploratory study of effectiveness. Scandinavian Journal of Gastroenterology, 38, 755762.Google Scholar
Nahon, S., Lahmek, P., Saas, C., et al. (2011). Socioeconomic and psychological factors associated with nonadherence to treatment in inflammatory bowel disease patients: results of the ISSEO survey. Inflammatory Bowel Diseases, 17, 12701276.Google Scholar
Neilson, K., Ftanou, M., Monshat, K., et al. (2016). Controlled study of a group mindfulness intervention for individuals living with inflammatory bowel disease. Inflammatory Bowel Diseases, 22, 694701.Google Scholar
North, C. S., Clouse, R. E., Spitznagel, E. L., et al. (1990). The relation of ulcerative colitis to psychiatric factors: a review of findings and methods. American Journal of Psychiatry, 147, 974981.Google Scholar
Porcelli, P., Leoci, C., Guerra, V., et al. (1996). A longitudinal study of alexithymia and psychological distress in inflammatory bowel disease. Journal of Psychosomatic Research, 41, 569573.Google Scholar
Tabibian, A., Tabibian, J. H., Beckman, L. J., et al. (2015). Predictors of health-related quality of life and adherence in Crohn’s disease and ulcerative colitis: implications for clinical management. Digestive Diseases and Sciences, 60, 13661374.Google Scholar

References

American Academy of Sleep Medicine. (2014). International Classification of Sleep Disorders (3rd edn)(ICSD-3). Darien, IL: American Academy of Sleep Medicine.Google Scholar
Baglioni, C., Battagliese, G., Feige, B., et al. (2011). Insomnia as a predictor of depression: a meta-analytic evaluation of longitudinal epidemiological studies. Journal of Affective Disorders, 135, 1019.Google Scholar
Billings, M. E., Rosen, C. L., Wang, R., et al. (2013). Is the relationship between race and continuous positive airway pressure adherence mediated by sleep duration?. Sleep, 36, 221227.Google Scholar
Daley, M., Morin, C. M., LeBlanc, M., Gregoire, J. P. & Savard, J. (2009). The economic burden of insomnia: direct and indirect costs for individuals with insomnia syndrome, insomnia symptoms, and good sleepers. Sleep, 32, 5564.Google Scholar
Deary, V., Ellis, J. G., Wilson, J. A., Coulter, C. & Barclay, N. L. (2014). Simple snoring: not quite so simple after all?. Sleep Medicine Reviews, 18, 453462.Google Scholar
Ellis, J. G., Gehrman, P., Espie, C. A., Riemann, D. & Perlis, M. L. (2012a). Acute insomnia: current conceptualizations and future directions. Sleep Medicine Reviews, 16(1), 514.Google Scholar
Ellis, J. G., Perlis, M. L., Neale, L. F., Espie, C. A. & Bastien, C. H. (2012b). The natural history of insomnia: focus on prevalence and incidence of acute insomnia. Journal of Psychiatric Research, 46, 12781285.Google Scholar
Ellis, J. G., Perlis, M. L., Bastien, C. H., Gardani, M. & Espie, C. A. (2014). The natural history of insomnia: acute insomnia and first-onset depression. Sleep, 37, 97106.Google Scholar
Espie, C. A., Broomfield, N. M., MacMahon, K. M., Macphee, L. M. & Taylor, L. M. (2006). The attention–intention–effort pathway in the development of psychophysiologic insomnia: a theoretical review. Sleep Medicine Reviews, 10(4), 215245.Google Scholar
Everitt, H., McDermott, L., Leydon, G., et al. (2014). GPs’ management strategies for patients with insomnia: a survey and qualitative interview study. British Journal of General Practice, 64, e112e119.Google Scholar
Franklin, K. A. & Lindberg, E. (2015). Obstructive sleep apnea is a common disorder in the population: a review on the epidemiology of sleep apnea. Journal of Thoracic Disease, 7, 13111322.Google Scholar
Harvey, A. G. (2001). Insomnia: symptom or diagnosis?. Clinical Psychology Review, 21, 10371059.Google Scholar
Jennum, P., Ibsen, R. & Kjellberg, J. (2014). Social consequences of sleep disordered breathing on patients and their partners: a controlled national study. European Respiratory Journal, 43, 134144.Google Scholar
Luyster, F. S., Dunbar-Jacob, J., Aloia, M. S., et al. (2016). Patient and partner experiences with obstructive sleep apnea and CPAP treatment: a qualitative analysis. Behavioral Sleep Medicine, 14, 6784.Google Scholar
Marshall, N. S., Wong, K. K., Cullen, S. R., Knuiman, M. W. & Grunstein, R. R. (2014). Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. Journal of Clinical Sleep Medicine, 10, 355362.Google Scholar
Mitchell, M. D., Gehrman, P., Perlis, M. & Umscheid, C. A. (2012). Comparative effectiveness of cognitive behavioral therapy for insomnia: a systematic review. BMC Family Practice, 13, 40.Google Scholar
Mokhlesi, B., Ham, S. A. & Gozal, D. (2016). The effect of sex and age on the comorbidity burden of OSA: an observational analysis from a large nationwide US health claims database. European Respiratory Journal, 47, 11621169.Google Scholar
Morin, C. M., Bélanger, L., LeBlanc, M., et al. (2009). The natural history of insomnia: a population-based 3-year longitudinal study. Archives of Internal Medicine, 169, 447453.Google Scholar
Phillips, C. L., Grunstein, R. R., Darendeliler, M. A., et al. (2013). Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. American Journal of Respiratory and Critical Care Medicine, 187, 879887.Google Scholar
Smith, M. T., Huang, M. I. & Manber, R. (2005). Cognitive behavior therapy for chronic insomnia occurring within the context of medical and psychiatric disorders. Clinical Psychology Review, 25, 559592.Google Scholar
Spielman, A. J. (1986). Assessment of insomnia. Clinical Psychology Review, 6(1), 1125.Google Scholar
Sweetman, A., Lack, L., Catcheside, P., et al. (2017). Developing a successful treatment for co-morbid insomnia and sleep apnea. Sleep Medicine Review, 33, 2838.Google Scholar
Trauer, J. M., Qian, M. Y., Doyle, J. S., Rajaratnam, S. M. & Cunnington, D. (2015). Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis. Annals of Internal Medicine, 163, 191204.Google Scholar

References

Bennett, E. J., Tennant, C., Piesse, C., et al. (1998). Level of chronic life stress predicts clinical outcome in irritable bowel syndrome. Gut, 43, 256261.Google Scholar
Gershon, M. D. (2003). Serotonin and its implication for the management of irritable bowel syndrome. Reviews in Gastroenterological Disorders, 3(Suppl. 2), S25S34.Google Scholar
Grinsvall, C., Törnblom, H., Tack, J., et al. (2015). Psychological factors selectively upregulate rectal pain perception in hypersensitive patients with irritable bowel syndrome. Neurogastroenterology and Motility, 27, 17721782.Google Scholar
Kennedy, T., Jones, R., Darnley, S., et al. (2005). Cognitive behaviour therapy in addition to antispasmodic treatment for irritable bowel syndrome in primary care: randomised controlled trial. British Medical Journal, 331, 435.Google Scholar
Lackner, J. M., Mesmer, C., Morley, S., et al. (2004). Psychological treatments for irritable bowel syndrome: a systematic review and meta-analysis. Journal of Consulting and Clinical Psychology, 72, 11001113.Google Scholar
Latimer, P.R. (1981). Irritable bowel syndrome: a behavioral model. Behaviour Research and Therapy, 19, 475483.Google Scholar
Longstreth, G. F., Thompson, W. G., Chey, W. D., et al. (2006). Functional bowel disorders. Gastroenterology, 130, 14801491.Google Scholar
Moss-Morris, R., McAlpine, L., Didsbury, L. P., et al. (2010). A randomized controlled trial of a cognitive behavioural therapy-based self-management intervention for irritable bowel syndrome in primary care. Psychological Medicine, 40, 8594.Google Scholar
National Institute for Health and Care Excellence (2015). Irritable Bowel Syndrome in Adults: Diagnosis and Management. Clinical Guideline 61. London: NICE.Google Scholar
Ng, C., Malcolm, A., Hansen, R., et al. (2007). Feeding and colonic distension provoke altered autonomic responses in irritable bowel syndrome. Scandinavian Journal of Gastroenterology, 42, 441446.Google Scholar
Philpott, H., Gibson, P. & Thien, F. (2011). Irritable bowel syndrome: an inflammatory disease involving mast cells. Asia Pacific Allergy, 1, 3642.Google Scholar
Riddle, M. S., Welsh, M., Porter, C. K., et al. (2016). The epidemiology of irritable bowel syndrome in the US Military: findings from the Millennium Cohort Study. American Journal of Gastroenterology, 111, 93104.Google Scholar
Schaefert, R., Klose, P., Moser, G. & Häuser, W. (2014). Efficacy, tolerability, and safety of hypnosis in adult irritable bowel syndrome: systematic review and meta-analysis. Psychosomatic Medicine, 76, 389398.Google Scholar
Spence, M. J. & Moss‐Morris, R. (2007). The cognitive behavioural model of irritable bowel syndrome: a prospective investigation of gastroenteritis patients. Gut, 56, 10661071.Google Scholar
Whitehead, W. E., Crowell, M. D., Robinson, J. C., et al. (1992). Effects of stressful life events on bowel symptoms: subjects with irritable bowel syndrome compared with subjects without bowel dysfunction. Gut, 33, 825830.Google Scholar
Zernicke, K. A., Campbell, T. S., Blustein, P. K., et al. (2013). Mindfulness-based stress reduction for the treatment of irritable bowel syndrome symptoms: a randomized wait-list controlled trial. International Journal of Behavioral Medicine, 20, 385396.Google Scholar

References

Abrams, P. (1994). New words for old: lower urinary tract symptoms for prostatism. British Medical Journal, 308(6934), 929930.Google Scholar
Abrams, P., Cardozo, L., Fall, M., et al. (2002). The standardisation of terminology of lower urinary tract function: report of the International Standardisation Sub-Committee Continence Society. Neurourology and Urodynamics, 21(2), 167178. DOI:10.1002/nau.10052.Google Scholar
Apostolidis, A., de Nunzio, C. & Tubaro, A. (2012). What determines whether a patient with LUTS seeks treatment? ICI-RS 2011. Neurourology and Urodynamics, 31(3), 365369. DOI:10.1002/nau.22212.Google Scholar
Boyle, P., Robertson, C., Mazzetta, C., et al. (2003). The prevalence of lower urinary tract symptoms in men and women in four centres: the UrEpik study. BJU International, 92(4), 409414. DOI:10.1046/j.1464–410X.2003.04369.x.Google Scholar
Bradway, C., Coyne, K. S., Irwin, D. & Kopp, Z. (2008). Lower urinary tract symptoms in women: a common but neglected problem. Journal of the American Academy of Nurse Practitioners, 20(6), 311318. DOI:10.1111/j.1745–7599.2008,00329.x.Google Scholar
Brown, C. T., O’Flynn, E., Van der Meulen, J., et al. (2003). The fear of prostate cancer in men with lower urinary tract symptoms: should symptomatic men be screened? BJU International, 91(1), 3032. DOI:10.1046/j.1464-4096.2003.04013.x.Google Scholar
Brown, C. T., Yap, T., Cromwell, D. A., et al. (2007). Self management for men with lower urinary tract symptoms: randomised controlled trial. British Medical Journal, 334(7583), 2528. DOI: 10.1136/bmj.39010.551319.AE.Google Scholar
Chapple, C. R., Wein, A. J., Abrams, P., et al. (2008). Lower urinary tract symptoms revisited: a broader clinical perspective. European Urology, 54(3), 563569. DOI:10.1016/i.eururo.2008.03.109.Google Scholar
Cohen, B. L., Barboglio, P. & Gousse, A. (2008). The impact of lower urinary tract symptoms and urinary incontinence on female sexual dysfunction using a validated instrument. Journal of Sexual Medicine, 5(6), 14181423. DOI:10.1111/j.1743-6109.2008.00818.xGoogle Scholar
Coyne, K. S., Sexton, C. C., Irwin, D. E., et al. (2008). The impact of overactive bladder, incontinence and other lower urinary tract symptoms on quality of life, work productivity, sexuality and emotional well-being in men and women: results from the EPIC study. BJU International, 101(11), 13881395. DOI:10.1111/j.1464-410X.2008.07601.x.Google Scholar
Coyne, K. S., Sexton, C. C., Thompson, C. L., et al. (2009a). The prevalence of lower urinary tract symptoms (LUTS) in the USA, the UK and Sweden: results from the Epidemiology of LUTS (EpiLUTS) study. BJU International, 104(3), 352360. DOI:10.1111/j.1464-410X.2009.08427.x.Google Scholar
Coyne, K. S., Wein, A. J., Tubaro, A., et al. (2009b). The burden of lower urinary tract symptoms: evaluating the effect of LUTS on health-related quality of life, anxiety and depression: EpiLUTS. BJU International, 103, 411. DOI:10.1111/j.1464-410X.2009.08371.x.Google Scholar
Djavan, B., Fong, Y. K., Harik, M., et al. (2004). Longitudinal study of men with mild symptoms of bladder outlet obstruction treated with watchful waiting for four years. Urology, 64(6), 11441148. DOI:10.1016/j.urology.2004.08.049.Google Scholar
Donovan, J. L., Peters, T. J., Abrams, P., et al. (2000). Scoring the short form ICSmaleSF questionnaire. Journal of Urology, 164(6), 19481955. DOI:10.1016/s0022-5347(05)66926-1.Google Scholar
Engström, G., Henningsohn, L., Walker-Engstrom, M. L. & Leppert, J. (2006). Impact on quality of life of different lower urinary tract symptoms in men measured by the short form 36 SF 36 questionnaire. Scandinavian Journal of Urology and Nephrology, 40(6), 485494. DOI:10.1080/00365590600830862.Google Scholar
Faithfull, S., Cockle-Hearne, J. & Khoo, V. (2011). Self-management after prostate cancer treatment: evaluating the feasibility of providing a cognitive and behavioural programme for lower urinary tract symptoms. BJU International, 107(5), 783790. DOI:10.1111/j.1464-410X.2010.09588.x.Google Scholar
Hannestad, Y. S., Rortveit, G. & Hunskaar, S. (2002). Help-seeking and associated factors in female urinary incontinence: the Norwegian EPINCONT Study. Scandinavian Journal of Primary Health Care, 20(2), 102107. DOI:10.1080/713796408.Google Scholar
Hansen, B. L. (2004). Lower urinary tract symptoms (LUTS) and sexual function in both sexes. European Urology, 46(2), 229234. DOI:10.1016/j.eururo.2004.04.005.Google Scholar
Heidler, S., Deveza, C., Temml, C., et al. (2007). The natural history of lower urinary tract symptoms in females: analysis of a health screening project. European Urology, 52(6), 17441750. DOI:10.1016/j.eururo.2007.08.007.Google Scholar
Holroyd-Leduc, J. M., Straus, S., Thorpe, K., et al. (2011). Translation of evidence into a self-management tool for use by women with urinary incontinence. Age and Ageing, 40(2), 227233. DOI:10.1093/ageing/afq171.Google Scholar
Irwin, D. E., Milsom, I., Hunskaar, S., et al. (2006). Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. European Urology, 50(6), 13061315. DOI:10.1016/j.eururo.2006.09.019.Google Scholar
Kim, S. C. & Lee, S. Y. (2009). Men’s lower urinary tract symptoms are also mental and physical sufferings for their spouses. Journal of Korean Medical Science, 24(2), 320325. DOI:10.3346/jkms.2009.24.2.320.Google Scholar
Kupelian, V., Wei, J. T., O’Leary, M. P., et al. (2006). Prevalence of lower urinary tract symptoms and effect on quality of life in a racially and ethnically diverse random sample: the Boston Area Community Health (BACH) Survey. Archives of Internal Medicine, 166(21), 23812387. DOI:10.1001/archinte.166.21.2381.Google Scholar
Lepor, H. (2005). Pathophysiology of lower urinary tract symptoms in the aging male population. Reviews in Urology, 7(Suppl. 7), S3S11.Google Scholar
Lim, R., Liong, M. L., Leong, W. S., Khan, N. A. K. & Yuen, K. H. (2016). Effect of stress urinary incontinence on the sexual function of couples and the quality of life of patients. Journal of Urology, 196(1), 153158. DOI:10.1016/j.juro.2016.01.090.Google Scholar
Marklund-Bau, H., Edell-Gustafsson, U. & Spangberg, A. (2008). A Swedish version of a quality of life questionnaire for partners of men with symptoms suggestive of benign prostatic obstruction. Scandinavian Journal of Urology and Nephrology, 42(2), 126131. DOI:10.1080/00365590701725698.Google Scholar
Martin, R. M., Vatten, L., Gunnell, D., Romundstad, P. & Nilsen, T. I. L. (2008). Lower urinary tract symptoms and risk of prostate cancer: the HUNT 2 Cohort, Norway. International Journal of Cancer, 123(8), 19241928. DOI:10.1002/ijc.23713.Google Scholar
Maserejian, N. N., Kupelian, V., McVary, K. T., et al. (2011). Prevalence of post-micturition symptoms in association with lower urinary tract symptoms and health-related quality of life in men and women. BJU International, 108(9), 14521458. DOI:10.1111/j.1464-410X.2010.10014.x.Google Scholar
Milsom, I., Kaplan, S. A., Coyne, K. S., Sexton, C. C. & Kopp, Z. S. (2012). Effect of bothersome overactive bladder symptoms on health-related quality of life, anxiety, depression, and treatment seeking in the United States: results from EpiLUTS. Urology, 80(1), 9096. DOI:10.1016/j.urology.2012.04.004.Google Scholar
Moller, L. A., Lose, G. & Jorgensen, T. (2000). Incidence and remission rates of lower urinary tract symptoms at one year in women aged 40–60: longitudinal study. British Medical Journal, 320(7247), 14291432. DOI:10.1136/bmj.320.7247.1429.Google Scholar
Norby, B., Nordling, J. & Mortensen, S. (2005). Lower urinary tract symptoms in the Danish population: a population-based study of symptom prevalence, health-care seeking behavior and prevalence of treatment in elderly males and females. European Urology, 47(6), 817823. DOI:10.1016/j.eururo.2005.01.011.Google Scholar
Oelke, M., Wiese, B. & Berges, R. (2014). Nocturia and its impact on health-related quality of life and health care seeking behaviour in German community-dwelling men aged 50 years or older. World Journal of Urology, 32(5), 11551162. DOI:10.1007/s00345-014-1374-6.Google Scholar
Okamura, K., Usami, T., Nagahama, K., Maruyama, S. & Mizuta, E. (2002). The relationships among filling, voiding subscores from international prostate symptom score and quality of life in Japanese elderly men and women. European Urology, 42(5), 498505. DOI:10.1016/s0302-2838(02)00438-4.Google Scholar
Rees, J., Bultitude, M. & Challacombe, B. (2014). The management of lower urinary tract symptoms in men. British Medical Journal, 348. DOI:10.1136/bmj.g3861.Google Scholar
Roehrborn, C. G., Marks, L. & Harkaway, R. (2006). Enlarged prostate: a landmark national survey of its prevalence and impact on US men and their partners. Prostate Cancer and Prostatic Diseases, 9(1), 3034. DOI:10.1038/sj.pcan.4500841.Google Scholar
Rosen, R., Altwein, J., Boyle, P., et al. (2003). Lower urinary tract symptoms and male sexual dysfunction: the multinational survey of the aging male (MSAM-7). European Urology, 44(6), 637649. DOI:10.1016/j.eururo.2003.08.015.Google Scholar
Scarpero, H. M., Fiske, J., Xue, X. N. & Nitti, V. W. (2003). American Urological Association Symptom Index for lower urinary tract symptoms in women: correlation with degree of bother and impact on quality of life. Urology, 61(6), 11181122. DOI:10.1016/s0090-4295(03)00037-2.Google Scholar
Sexton, C. C., Coyne, K. S., Kopp, Z. S., et al. (2009). The overlap of storage, voiding and postmicturition symptoms and implications for treatment seeking in the USA, UK and Sweden: EpiLUTS. BJU International, 103, 1223. DOI:10.1111/j.1464-410X.2009.08369.x.Google Scholar
Sjostrom, M., Umefjord, G., Stenlund, H., et al. (2015). Internet-based treatment of stress urinary incontinence: 1-and 2-year results of a randomized controlled trial with a focus on pelvic floor muscle training. BJU International, 116(6), 955964. DOI:10.1111/bju.13091.Google Scholar
Taylor, J., McGrother, C. W., Harrison, S. C. W., Assassa, P. R. & Leicestershire, M. R. C. I. (2006). Lower urinary tract symptoms and related help-seeking behaviour in South Asian men living in the UK. BJU International, 98(3), 605609. DOI:10.1111/j.1464-410X.2006.06377.x.Google Scholar
Temml, C., Brossner, C., Schatzl, G., et al. (2003). The natural history of lower urinary tract symptoms over five years. European Urology, 43(4), 374380. DOI:10.1016/s0302-2838(03)00084-8.Google Scholar
Trueman, P., Hood, S. C., Nayak, U. S. L. & Mrazek, M. F. (1999). Prevalence of lower urinary tract symptoms and self-reported diagnosed ‘benign prostatic hyperplasia’, and their effect on quality of life in a community-based survey of men in the UK. BJU International, 83(4), 410415.Google Scholar
Welch, G., Weinger, K. & Barry, M. J. (2002). Quality-of-life impact of lower urinary tract symptom severity: results from the health professionals follow-up study. Urology, 59(2), 245250. DOI:10.1016/s0090-4295(01)01506-0.Google Scholar
Weller, D., Pinnock, C., Silagy, C., Hiller, J. E. & Marshall, V. R. (1998). Prostate cancer testing in SA men: influence of sociodemographic factors, health beliefs and LUTS. Australian and New Zealand Journal of Public Health, 22(3), 400402. DOI:10.1111/j.1467-842X.1998.tb01400.x.Google Scholar
Wennberg, A. L., Molander, U., Fall, , et al. (2009). A longitudinal population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in women. European Urology, 55(4), 783791. DOI:10.1016/j.eururo.2009.01.007.Google Scholar

References

Alcorso, J., Sherman, K. A., Koelmeyer, L. et al. (2016). Factors associated with psychological distress in women with breast cancer-related lymphoedema. Psycho-Oncology, 25, 865872.Google Scholar
Armer, J. M., Hulett., J. M., Bernas, M., et al. (2013). Best-practice guidelines in assessment, risk reduction, management, and surveillance for post-breast cancer lymphedema. Current Breast Cancer Reports, 5, 134144.Google Scholar
Connell, F. C., Gordon, K., Brice, G., et al. (2013). The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. Clinical Genetics, 84, 303314.Google Scholar
Cormier, J. N., Askew, R. L. Mungovan, K. S., et al. (2010). Lymphedema beyond breast cancer: a systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer, 116, 51385149.Google Scholar
Cormier, J., Rourke, L., Crosby, M., et al. (2012). The surgical treatment of lymphedema: a systematic review of the contemporary literature (2004–2010). Annals of Surgical Oncology, 19, 642651.Google Scholar
Cromwell, K. D., Chang, Y. J., Armer, J., et al. (2015). Is surviving enough? Coping and impact on activities of daily living among melanoma patients with lymphoedema. European Journal of Cancer Care, 24, 724733.Google Scholar
Devoogdt, N., Van Kampen, M., Feraerts, I., Coremans, T. & Christiaens, M.-R. (2011). Lymphoedema functioning, disability and health questionnaire (Lymph-ICF): reliability and validity. Physical Therapy, 91, 6, 944957.Google Scholar
DiSipio, T., Rye, S., Newman, B. & Hayes, S. (2013). Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncology, 14, 500515.Google Scholar
Ezzo, J., Manheimer, E., McNeely, M. L., et al. (2015). Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane Database of Systematic Reviews, 5. CD003475. DOI:10.1002/14651858.CD003475.pub2.Google Scholar
Finnane, A., Haynes, S. C., Obermair, A. & Janda, M. (2011). Quality of life of women with lower limb lymphoedema following gynaecological cancer. Expert Reviews in Pharmacoeconomics Outcomes Research, 11, 287297.Google Scholar
Franks, P. J., Moffatt, C. J., Doherty, D. C., et al. (2006). Assessment of health-related quality of life in patients with lymphedema of the lower limb. Wound Repair and Regeneration, 14, 110118.Google Scholar
Fu, M. R. (2010). Cancer survivors’ views of lymphoedema management. Journal of Lymphoedema, 5, 3948.Google Scholar
Fu, M., Ridner, S. H., Hu, S. H., et al. (2013). Psychosocial impact of lymphoedema: a systematic review of literature from 2004 to 2011. Psycho-Oncology, 22, 14661484.Google Scholar
International Lymphoedema Framework and Canadian Lymphedema Framework (ILF and CLF) (2010). The management of lymphedema in advanced cancer and oedema at the end of life. www.lympho.org/mod_turbolead/upload/file/Palliative%20Document%20-%20protected.pdf (accessed 1 August 2016)Google Scholar
International Society of Lymphology (ISL) (2013). The diagnosis and treatment of peripheral lymphedema: 2013 consensus document of the International Society of Lymphology, Lymphology, 46, 111.Google Scholar
Karlsson, K., Biquet, G., Johansson, K. & Nilsson-Wikmar, L. (2015). Perceptions of lymphoedema treatment in patients with breast cancer: a patient perspective. Scandinavian Journal of Caring Sciences, 29, 110117.Google Scholar
Keeley, V., Crooks, S., Locke, J., et al. (2010). A quality of life measure for limb lymphoedema (LYMQOL). Journal of Lymphoedema, 5 (1), 2637.Google Scholar
Kilbreath, S. L., Refshauge, K. M., Beith, J. M., et al. (2016). Risk factors for lymphoedema in women with breast cancer: a large prospective cohort. The Breast, 28, 2936.Google Scholar
Klernäs, P., Johsson, A., Horstmann, V., Kristjanson, L. J. & Johansson, K. (2015). Lymphedema quality of life inventory (LyQLI): development and investigations of validity and reliability. Quality of Life Research, 24, 427439.Google Scholar
Leung, E. Y. L., Tirlapur, S. A. & Meads, C. (2015). The management of secondary lower limb lymphoedema in cancer patients: a systematic review. Palliative Medicine, 29, 2, 112119.Google Scholar
Lymphoedema Framework (2006). Best Practice for the Management of Lymphoedema, International Consensus. London: MEP Ltd.Google Scholar
McGarvey, A. C., Osmotherly, P. G., Hoffman, G. R. & Chiarelli, P. E. (2013). Lymphoedema following treatment for head and neck cancer: impact on patients, and beliefs of health professionals. European Journal of Cancer Care, 23, 317327.Google Scholar
McGowan, A., Williams, A. F., Davidson, F. & Williams, J. (2013). A self-management group programme for people with lymphoedema: experience from a third sector project. Chronic Oedema, Supplement of British Journal of Community Nursing, October, S6–S12.Google Scholar
Moffatt, C. J. & Pinnington, L. (2012). Facilitating the Development of Community Based Lymphoedema Services Through Clinical Education. Derby: HIEC Project Evaluation Report.Google Scholar
Mortimer, P. S. & Levick, J. R. (2004). Chronic peripheral oedema: the critical role of the lymphatic system. Clinical Medicine, 4, 448453.Google Scholar
Noble-Jones, R., Fitzpatrick, B., Sneddon, M. C., et al. (2014). Development of the lymphoedema genito-urinary cancer questionnaire. British Journal of Nursing, 23, S14S19.Google Scholar
Ridner, S. H., Fu, M. R., Wanchai, A., et al. (2012). Self-management of lymphedema: a systematic review of the literature from 2004 to 2011. Nursing Research, 61, 291299.Google Scholar
Shaitelman, S. F., Cromwell, C. D., Rasmussen, J. C., et al. (2015). Recent progress in the treatment and prevention of cancer-related lymphedema. CA Cancer Journal, 65, 5581.Google Scholar
Tsai, R. J., Dennis, L. K., Lynch, C. F., et al. (2009). The risk of developing arm lymphedema among breast cancer survivors: a meta-analysis of treatment factors. Annals of Surgical Oncology, 16, 19591972.Google Scholar
Upton, D. & Solowiej, K. (2011). Psychosocial aspects of living with non-cancer-related lymphoedema. Nursing Standard, 25(33), 5158.Google Scholar
Williams, A. F., Moffatt, C. M. & Franks, P. J. (2004). A phenomenological study of the lived experiences of people with lymphoedema. International Journal of Palliative Nursing, 10(6), 279286.Google Scholar
Williams, A. (2011). A qualitative study of supported self-care in women with lymphoedema associated with breast cancer. Unpublished PhD thesis, Edinburgh Napier University.Google Scholar
Yost, K. J., Cheville, A. L., Al-Hilli, M. M., et al. (2014). Lymphedema after surgery for endometrial cancer prevalence, risk factors, and quality of life. Obstetrics and Gynecology, 124, 307315.Google Scholar

References

Booy, R., Habibi, P., Nadel, S., et al. (2001). Reduction in case fatality rate from meningococcal disease associated with improved healthcare delivery. Archives of Disease in Childhood, 85(5), 386390.Google Scholar
Borg, J., Christie, D., Coen, P. G., Booy, R. & Viner, R.M. (2009). Outcomes of meningococcal disease in adolescence: prospective, matched-cohort study. Pediatrics, 123(3), e502e509.Google Scholar
Edmond, K., Clark, A., Korczak, V. S., et al. (2010). Global and regional risk of disabling sequelae from bacterial meningitis: a systematic review and meta-analysis. Lancet Infectious Diseases, 10(5), 317328.Google Scholar
Gerber, J. & Nau, R. (2010). Mechanisms of injury in bacterial meningitis. Current Opinion in Neurology, 23(3), 312.Google Scholar
Greenwood, B. (2006). Editorial: 100 years of epidemic meningitis in West Africa: has anything changed? Tropical Medicine & International Health, 11(6), 773780.Google Scholar
Henke, K., Buck, A., Weber, B. & Wieser, H. G. (1998). Human hippocampus establishes associations in memory. Hippocampus, 7(3), 249256.Google Scholar
Jordan, H. T., Farley, M. M., Craig, A., et al. (2008). Revisiting the need for vaccine prevention of late-onset neonatal group B streptococcal disease: a multistate, population-based analysis. The Pediatric Infectious Disease Journal, 27(12), 10571064.Google Scholar
Kihara, M., de Haan, M., Were, E. O., et al. (2012). Cognitive deficits following exposure to pneumococcal meningitis: an event-related potential study. BMC Infectious Diseases, 12(1), 79.Google Scholar
Legood, R., Coen, P. G., Knox, K., et al. (2008). Health related quality of life in survivors of pneumococcal meningitis. Acta Paediatrica, 98(3), 543547.Google Scholar
Levent, F., Baker, C. J., Rench, M. A. & Edwards, M. S. (2010). Early outcomes of group B streptococcal meningitis in the 21st century. The Pediatric Infectious Disease Journal, 29(11), 1009.Google Scholar
Libster, R., Edwards, K. M., Levent, F., et al. (2012). Long-term outcomes of group B streptococcal meningitis. Pediatrics, 130(1), e8e15.Google Scholar
Lucey, J., Gavin, P., Cafferkey, M. & Butler, K. (2011). Pneumococcal meningitis: clinical outcomes in a pre-vaccine era at a Dublin paediatric hospital, 1999–2007. Irish Journal of Medical Science, 180(1), 4750.Google Scholar
Nadel, S. (2012). Prospects for eradication of meningococcal disease. Archives of Disease in Childhood. DOI: 10.1136/archdischild-2012-302036.Google Scholar
Schoeman, J., Hons, M. B., Zyl, F., et al. (2002). Long‐term follow up of childhood tuberculous meningitis. Developmental Medicine & Child Neurology, 44(8), 522526.Google Scholar
Schrag, S. J., Zywicki, S., Farley, M. M., et al. (2000). Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. New England Journal of Medicine, 342(1), 1520.Google Scholar
Sharshar, T., Carlier, R., Bernard, F., et al. (2007). Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Medicine, 33(5), 798806.Google Scholar
Shears, D., Nadel, S., Gledhill, J. & Garralda, M.E. (2005). Short-term psychiatric adjustment of children and their parents following meningococcal disease. Pediatric Critical Care and Medicine, 6, 3943.Google Scholar
Stephens, D. S. (2007) Conquering the meningococcus. FEMS Microbiology Reviews, 31(1), 314.Google Scholar
Sweeney, F., Viner, R. M., Booy, R. & Christie, D. (2013). Parents’ experiences of support during and after their child’s diagnosis of meningococcal disease. Acta Paediatrica, 102(3), e126e130.Google Scholar
Viner, R. M., Booy, R., Johnson, H., et al. (2012). Outcomes of invasive meningococcal serogroup B disease in children and adolescents (MOSAIC): a case-control study. Lancet Neurology. DOI: 10.1016/S1474-4422(12)70180-1.Google Scholar
Wu, X. R., Yin, Q. Q., Jiao, A. X., et al. (2012). Pediatric tuberculosis at Beijing Children’s Hospital: 2002–2010. Pediatrics, 130(6), e1433e1440.Google Scholar

References

Almeida, O. P., Marsh, K., Flicker, L., et al. (2016). Depressive symptoms in midlife: the role of reproductive stage. Menopause, 23, 6, 669675.Google Scholar
Archer, D. F., Sturdee, D. W., Baber, R., et al. (2011). Menopausal hot flushes and night sweats: where are we now?. Climacteric, 14, 5, 515528.Google Scholar
Avis, N. E., Crawford, S. L., Greendale, G., et al. (2015). Duration of menopausal vasomotor symptoms over the menopause transition. JAMA Internal Medicine, 175(4), 531539.Google Scholar
Ayers, B. & Hunter, M. S. (2013). Health-related quality of life of women with menopausal hot flushes and night sweats. Climacteric, 16, 235239.Google Scholar
Ayers, B., Forshaw, M. & Hunter, M. S. (2010). A systematic review of the role of attitudes to the menopause upon experience of menopause. Maturitas, 65, 2836.Google Scholar
Ayers, B., Forshaw, M. & Hunter, M. S. (2011). Menopause from culture to body experience. The Psychologist, 24, 5, 348352.Google Scholar
Ayers, B., Smith, M., Hellier, J., et al. (2012). Effectiveness of group and self-help cognitive behavior therapy in reducing problematic menopausal hot flushes and night sweats (MENOS 2): a randomized controlled trial. Menopause, 19, 7, 749759.Google Scholar
Busch, H., Barth-Olofsson, A. S., Rosenhagen, S., et al. (2003). Menopausal transition and psychological development. Menopause, 10, 179187.Google Scholar
Chilcot., J., Norton, S. & Hunter, M. S. (2014). Cognitive behaviour therapy for menopausal symptoms following breast cancer treatment: who benefits and how does it work? Maturitas, 78(1), 5661.Google Scholar
Davis, S. R., Castelo-Branco, C., Chedrui, P., et al. (2012). Understanding weight gain at menopause, Climacteric, 15(5), 419429.Google Scholar
Duijts, S. F., van Beurden, M., Oldenburg, H. S., et al. (2012). Efficacy of cognitive behavioral therapy and physical exercise in alleviating treatment-induced menopausal symptoms in patients with breast cancer: results of a randomized, controlled, multicenter trial. Journal of Clinical Oncology, 30, 33, 41244133.Google Scholar
Freeman, E. W. & Sherif, K. (2007). Prevalence of hot flushes and night sweats around the world: a systematic review. Climacteric, 10(3),197214.Google Scholar
Freeman, E. W., Sammel, M. D., Lin, H., et al. (2005). The role of anxiety and hormonal changes in menopausal hot flashes. Menopause, 12(3), 258266.Google Scholar
Freeman, E. W., Sammel, M. D., Boorman, D. W. & Zhang, R. (2014). Longitudinal pattern of depressive symptoms around natural menopause. JAMA Psychiatry, 71, 3643.Google Scholar
Harlow, S. D., Gass, M., Hall, J. E., et al. (2012). Executive summary of the Stages of Reproductive Aging Workshop+ 10: addressing the unfinished agenda of staging reproductive aging. Climacteric, 15(2), 105114.Google Scholar
Hunter, M. S. (2007). Biopsychosociocultural perspectives on menopause. Best Practice & Research: Clinical Obstetrics & Gynaecology, 21, 2, 261274.Google Scholar
Hunter, M. S. & Chilcot, J. (2013). Testing a cognitive model of menopausal hot flushes and night sweats. Journal of Psychosomatic Research, 74(4), 307312.Google Scholar
Hunter, M. S. & Mann, E. (2010). A cognitive model of menopausal hot flushes and night sweats. Journal of Psychosomatic Research, 69(5), 491501.Google Scholar
Hunter, M. S. & O’Dea, I. (1997). Menopause: bodily changes and multiple meanings. In Ussher, J. M. (ed.), Body Talk: The Material and Discursive Regulation of Sexuality, Madness and Reproduction. London: Routledge.Google Scholar
Hunter, M. S. & Smith, M. (2014). Managing Hot Flushes and Night Sweats: A Cognitive Behavioural Self-Help Guide to the Menopause. New York: Routledge.Google Scholar
Hunter, M. S. & Smith, M. (2015). Managing Hot Flushes with Group Cognitive Behaviour Therapy: An Evidence Based Treat Manual for Health Professionals. New York: Routledge.Google Scholar
Hunter, M. S., Gentry-Maharaj, A., Ryan, A., et al. (2012). Prevalence, frequency and problem rating of hot flushes persist in older postmenopausal women: impact of age, BMI, hysterectomy, lifestyle and mood in a cross sectional cohort study of 10,418 British women aged 54–65. British Journal of Obstetrics & Gynaecology, 119, 4050.Google Scholar
Hvas, L. (2006). Menopausal women’s positive experience of growing older. Maturitas, 54, 245251.Google Scholar
Jane, F. M. & Davis, S. R. (2014). A practitioner’s toolkit for managing the menopause. Climacteric, 17, 564579.Google Scholar
Mann, E., Smith, M. J., Hellier, J., et al. (2012). Cognitive behavioural treatment for women who have menopausal symptoms after breast cancer treatment (MENOS 1): a randomised controlled trial. Lancet Oncology, 13(3), 309318.Google Scholar
Manson, J. E., Hsia, J., Johnson, K. C., et al. (2003). Estrogen plus progestin and the risk of coronary heart disease. New England Journal of Medicine, 349, 523534.Google Scholar
Mishra, G. D. & Kuh, D. (2012). Health symptoms during midlife in relation to menopausal transition: British prospective cohort study. BMJ, 344, e402.Google Scholar
National Institutes of Health and Care Excellence (NICE) (2015). NICE Guidance on Diagnosis and Management of Menopause. London: NICE.Google Scholar
Norton, S., Chilcot, J. & Hunter, M. S. (2014). Cognitive behaviour therapy for menopausal symptoms (hot flushes and night sweats): moderators and mediators of treatment effects. Menopause, 21(6), 574578.Google Scholar
Rossouw, J. E., Anderson, G. L., Prentice, R. L., et al. (2002). Risks and benefits of oestrogen plus progestin in health postmenopausal women: principal results from the Women’s Health Initiative randomised controlled trial. JAMA, 288, 321333.Google Scholar
Toral, M. V., Godoy-Izquierdo, D., García, A. P., et al. (2014). Psychosocial interventions in perimenopausal and postmenopausal women: a systematic review of randomised and non-randomised trials and non-controlled studies. Maturitas, 77, 93110.Google Scholar
Vivian-Taylor, J. & Hickey, M. (2014). Menopause and depression: is there a link? Maturitas, 72(2), 142146.Google Scholar
Worsley, R., Bell, R., Kulkarni, J. & Davis, S. R. (2014). The association between vasomotor symptoms and depression during perimenopause: a systematic review. Maturitas, 77(2), 111117.Google Scholar

References

Abrahams, S. (2011). Social cognition in amyotrophic lateral sclerosis. Neurodegenerative Disease Management, 1(5), 397405.Google Scholar
Abrahams, S., Goldstein, L. H., Al Chalabi, A., et al. (1997). Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 62, 464472.Google Scholar
Abrahams, S., Newton, J., Niven, E., Foley, J. & Bak, T. H. (2014). Screening for cognition and behaviour changes in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15, 914.Google Scholar
Ash, S., Olm, C., McMillan, C. T., et al. (2015). Deficits in sentence expression in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 3139.Google Scholar
Elamin, M., Bede, P., Montuschi, A., et al. (2015). Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. Journal of Neurology, 262, 14471454Google Scholar
Gibbons, Z. C., Richardson, A., Neary, D. & Snowden, J. S. (2008). Behaviour in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 9, 6774.Google Scholar
Goldstein, L. H. & Abrahams, S. (2013). Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurology, 12, 368380.Google Scholar
Gould, R. L., Coulson, M. C., Brown, R. G. et al. (2015). Psychotherapy and pharmacotherapy interventions to reduce distress or improve well-being in people with amyotrophic lateral sclerosis: a systematic review. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 293302.Google Scholar
Greenaway, L. P., Martin, N. H., Lawrence, V., et al. (2015). Accepting or declining non-invasive ventilation or gastrostomy in amyotrophic lateral sclerosis: patients’ perspectives. Journal of Neurology, 262, 10021013Google Scholar
Hsieh, S., Caga, J., Leslie, F. C., et al. (2016). Cognitive and behavioral symptoms in ALSFTD: detection, differentiation, and progression. Journal of Geriatric Psychiatry and Neurology, 29, 310Google Scholar
Johnston, M., Earll, L., Giles, M., et al. (1999). Mood as a predictor of disability and survival in patients diagnosed with ALS/MND. British Journal of Health Psychology, 4, 127136.Google Scholar
Lacomblez, L., Bensimon, G., Leigh, P. N., et al. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis: Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet, 347(9013), 14251431.Google Scholar
Leigh, P. N. & Ray-Chaudhuri, K. (1994). Motor neuron disease. Journal of Neurology, Neurosurgery & Psychiatry, 57, 886896.Google Scholar
Machts, J., Bittner, V., Kasper, E., et al. (2014). Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment. BMC Neuroscience, 15, 83.Google Scholar
Manjaly, Z. R., Scott, K. M., Abhinav, K. et al. (2010). The sex ratio in amyotrophic lateral sclerosis: a population based study. Amyotrophic Lateral Sclerosis, 11, 439442.Google Scholar
Martin, N. H., Landau, S., Janssen, A., et al. (2014). Psychological as well as illness factors influence acceptance of non-invasive ventilation (NIV) and gastrostomy in amyotrophic lateral sclerosis (ALS): a prospective population study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15, 376387.Google Scholar
McCullagh, S., Moore, M., Gawel, M. & Feinstein, A. (1999). Pathological laughing and crying in amyotrophic lateral sclerosis: an association with prefrontal cognitive dysfunction. Journal of the Neurological Sciences, 169, 4348.Google Scholar
Mioshi, E., Hsieh, S., Caga, J., et al. (2014). A novel tool to detect behavioural symptoms in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15, 298304.Google Scholar
Newsom-Davis, I. C., Abrahams, S., Goldstein, L. H. & Leigh, P. N. (1999). The emotional lability questionnaire: a new measure of emotional lability in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 169, 2225.Google Scholar
Niven, E., Newton, J., Foley, J., et al. (2015). Validation of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): a cognitive tool for motor disorders. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16, 172179.Google Scholar
Palmieri, A., Abrahams, S., Soraru, G., et al. (2009). Emotional lability in MND: relationship to cognition and psychopathology and impact on caregivers. Journal of the Neurological Sciences, 278, 1620.Google Scholar
Raaphorst, J., Beeldman, E., Schmand, B. E., et al. (2012). The ALS-FTD-Q: a new screening tool for behavioral disturbances in ALS. Neurology, 79, 13771383.Google Scholar
Riva, N., Agosta, F., Lumetta, C., Filippi, M. & Quattrini, A. (2016). Recent advances in amyotropic lateral sclerosis. Journal of Neurology, 263, 12411254Google Scholar
Roche, J. C., Rojas-Garcia, R., Scott, K. M., et al. (2012). A proposed staging system for amyotrophic lateral sclerosis. Brain, 135, 847852.Google Scholar
Savage, S. A., Lillo, P., Kumfor, F., et al. (2014). Emotion processing deficits distinguish pure amyotrophic lateral sclerosis from frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15, 3946.Google Scholar
Strong, M. J., Grace, G. M., Freedman, M., et al. (2009). Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10, 131146.Google Scholar
Taylor, L., Wicks, P., Leigh, P. N. & Goldstein, L. H. (2010). Prevalence of depression in amyotrophic lateral sclerosis and other motor disorders. European Journal of Neurology, 17, 10471053.Google Scholar
Taylor, L. J., Brown, R. G., Tsermentseli, S., et al. (2013). Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? Journal of Neurology, Neurosurgery and Psychiatry, 84, 494498.Google Scholar
Tsermentseli, S., Leigh, P. N. & Goldstein, L. H. (2012). The anatomy of cognitive impairment in amyotrophic lateral sclerosis: more than frontal lobe dysfunction. Cortex, 48, 166182.Google Scholar
Tsermentseli, S., Leigh, P. N., Taylor, L. J., et al. (2016). Syntactic processing as a marker for cognitive impairment in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 17, 6976.Google Scholar
Watermeyer, T. J., Brown, R. G., Sidle, K. C. L., et al. (2015). Executive dysfunction predicts social cognition impairment in amyotrophic lateral sclerosis. Journal of Neurology, 262, 16811690.Google Scholar
Witgert, M., Salamone, A. R., Strutt, A. M., et al. (2010). Frontal-lobe mediated behavioral dysfunction in amyotrophic lateral sclerosis. European Journal of Neurology, 17, 103110.Google Scholar
Woolley, S. C., Moore, D. H. & Katz, J. S. (2010a). Insight in ALS: awareness of behavioral change in patients with and without FTD. Amyotrophic Lateral Sclerosis, 11, 5256.Google Scholar
Woolley, S. C., York, M. K., Moore, D. H., et al. (2010b). Detecting frontotemporal dysfunction in ALS: utility of the ALS Cognitive Behavioral Screen (ALS-CBS). Amyotrophic Lateral Sclerosis, 11, 303311.Google Scholar

References

Absoud, M., Lim, M. J., Chong, W. K., et al. (2013). Paediatric acquired demyelinating syndromes: incidence, clinical and magnetic resonance imaging features. Multiple Sclerosis Journal, 19(1), 7686.Google Scholar
Amato, M. P., Goretti, B., Ghezzi, A., et al. (2014). Neuropsychological features in childhood and juvenile multiple sclerosis: five-year follow-up. Neurology, 83(16), 14321438.Google Scholar
Asano, M., Berg, E., Johnson, K., Turpin, M. & Finlayson, M. L. (2015). A scoping review of rehabilitation interventions that reduce fatigue among adults with multiple sclerosis. Disability and Rehabilitation, 37(9), 729738.Google Scholar
Banwell, B., Ghezzi, A., Bar-Or, A., Mikaeloff, Y. & Tardieu, M. (2007). Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurology, 6(10), 887902.Google Scholar
Bogosian, A., Moss-Morris, R. & Hadwin, J. (2010). Psychosocial adjustment in children and adolescents with a parent with multiple sclerosis: a systematic review. Clinical Rehabilitation, 24(9), 789801.Google Scholar
Carroll, S., Chalder, T., Hemingway, C., Heyman, I. & Moss-Morris, R. (2016). Understanding fatigue in paediatric multiple sclerosis: a systematic review of clinical and psychosocial factors. Developmental Medicine and Child Neurology, 58(3), 229239.Google Scholar
Compston, A. & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 15021517.Google Scholar
Dendrou, C. A., Fugger, L. & Friese, M. A. (2015). Immunopathology of multiple sclerosis. Nature Reviews Immunology, 15(9), 545558.Google Scholar
Dennison, L. & Moss-Morris, R. (2010). Cognitive behavioral therapy: what benefits can it offer people with multiple sclerosis? Expert Review of Neurotherapeutics, 10(9), 13831390.Google Scholar
Dennison, L., Moss-Morris, R. & Chalder, T. (2009). A review of psychological correlates of adjustment in patients with multiple sclerosis. Clinical Psychology Review, 29(2), 141153.Google Scholar
Fiest, K. M., Walker, J. R., Bernstein, C. N., et al. (2016). Systematic review and meta-analysis of interventions for depression and anxiety in persons with multiple sclerosis. Multiple Sclerosis and Related Disorders, 5, 1226.Google Scholar
Goldenberg, M. M. (2012). Multiple sclerosis review. Pharmacy and Therapeutics, 37(3), 175184.Google Scholar
Harrison, A. M., McCracken, L. M., Bogosian, A. & Moss-Morris, R. (2015). Towards a better understanding of MS pain: a systematic review of potentially modifiable psychosocial factors. Journal of Psychosomatic Research, 78(1), 1224.Google Scholar
Jopson, N. M. & Moss-Morris, R. (2003). The role of illness severity and illness representations in adjusting to multiple sclerosis. Journal of Psychosomatic Research, 54(6), 503511.Google Scholar
Mackenzie, I. S., Morant, S. V., Bloomfield, G. A., MacDonald, T. M. & O’Riordan, J. (2013). Incidence and prevalence of multiple sclerosis in the UK 1990–2010: a descriptive study in the General Practice Research Database. Journal of Neurology, Neurosurgery & Psychiatry, 85(1), 7684.Google Scholar
Marrie, R. A., Reingold, S., Cohen, J., et al. (2015). The incidence and prevalence of psychiatric disorders in multiple sclerosis: a systematic review. Multiple Sclerosis Journal, 21(3), 305317.Google Scholar
McKeown, L., Porter-Armstrong, A. & Baxter, G. (2003). The needs and experiences of caregivers of individuals with multiple sclerosis: a systematic review. Clinical Rehabilitation, 17(3), 234248.Google Scholar
Moss-Morris, R., Dennison, L., Landau, S., et al. (2013). A randomized controlled trial of cognitive behavioral therapy (CBT) for adjusting to multiple sclerosis (the saMS trial): does CBT work and for whom does it work? Journal of Consulting and Clinical Psychology, 81(2), 251262.Google Scholar
Murray, T. J. (2006). Diagnosis and treatment of multiple sclerosis. BMJ, 332(7540), 525527.Google Scholar
Van Kessel, K. & Moss-Morris, R. (2006). Understanding multiple sclerosis fatigue: a synthesis of biological and psychological factors. Journal of Psychosomatic Research, 61(5), 583585.Google Scholar

References

Aronson, A. E. (1990). Clinical Voice Disorders (3rd edn). New York: Thieme Medical.Google Scholar
Aronson, A. E. & Bless, D. M. (2009). Clinical Voice Disorders (4th edn). New York: Thieme.Google Scholar
Ball, J. R. B. & Lloyd, J. H. (1971). Myasthenia gravis as hysteria. Medical Journal of Australia, 1, 10181020.Google Scholar
Boldingh, M. I., Dekker, L., Maniaol, A. E., et al. (2015). An up-date on health-related quality of life in myasthenia gravis: results from population based cohorts. Health and Quality of Life Outcomes, 13, 115.Google Scholar
Colton, R. H. & Casper, J. K. (1990). Understanding Voice Problems. Baltimore, MD: Williams & Williams.Google Scholar
Fisher, J., Parkinson, K. & Kothari, M. (2003). Self-reported depressive symptoms in myasthenia gravis. Journal of Clinical Neuromuscular Disease, 4(3), 105108.Google Scholar
Fritze, D., Hermann, C., Naiem, F., Smith, G. S. & Walford, R. L. (1974). HL-A antigens in myasthenia gravis. Lancet, 1, 240.Google Scholar
Garfinkle, T. & Kimmelman, C. (1982). Neurologic disorders: amyotrophic lateral sclerosis, myasthenia gravis, multiple sclerosis and poliomyelitis. American Journal of Otolaryngology, 3, 204212.Google Scholar
Grob, W. (1961). Myasthenia gravis. Archives of Internal Medicine, 108, 615638.Google Scholar
Hoffman, S., Ramm, J., Grittner, U., et al. (2016). Fatigue in myasthenia gravis: risk factors and impact on quality of life. Brain and Behaviour, 6, 18 e00538. DOI: 10.1002/brb3.538.Google Scholar
Howard, J. F. (2015). Clinical review of MG. Myasthenia Gravis Foundation of America.Google Scholar
Knieling, J., Weiss, H.Faller, H. & Lang, H. (1995). Psychological causal attributions by myasthenia gravis patients: a longitudinal study of the significance of subjective illness theories after diagnosis and in follow-up. Psychotherapie, Psychosomatik, medizinische Psychologie, 45 (11), 373380.Google Scholar
Luo, J. & Lindstrom, J. (2014). Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis. Journal of Immunology, 193(10), 50445055.Google Scholar
Magni, G. Micaglio, G. F., Lalli, R., et al. (1988). Psychiatric disturbances associated with myasthenia gravis. Acta Psychiatrica Scandinavica, 77(4): 443445.Google Scholar
Padua, L., Evoli, A., Aprile, I., et al. (2002). Quality of life in patients with myasthenia gravis. Muscle and Nerve, 25, 466467.Google Scholar
Paul, R. H., Nash, J. M., Cohen, R. A., Gilchrist, J. M., & Goldstein, J. M. (2001). Quality of life and well-being of patients with myasthenia gravis. Muscle and Nerve, 24, 512516.Google Scholar
Phillips, L. (1994). The epidemiology of myasthenia gravis. Neurology Clinics of North America, 2, 263271.Google Scholar
Rostedt, A., Padua, L. & Stalberg, E. V. (2005). Correlations between a patient-derived functional questionnaire and abnormal neuromuscular transmission in myasthenia gravis patients. Clinical Neurophysiology, 116, 20582064.Google Scholar
Seldin, M. F., Alkhairy, O. K., Lee, A. T., et al. (2015). Genome-wide association study of late-onset myasthenia gravis: confirmation of TNFRSF11A and identification of ZBTB10 and three distinct HLA. Molecular Medicine, 21(1), 769781.Google Scholar
Smith, M. & Ramig, L. O. (2003). Neurologic disorders and the voice. In Rubin, J., Sataloff, R & Korovin, G. (eds), Diagnosis and Treatment of Voice Disorders. Clifton Park, NY: Delmar Learning.Google Scholar
Stell, P.M. (ed.) (1987). Scott-Brown’s Otolaryngology (5th edn). London: Butterworth & Co.Google Scholar
Twork, S., Weismeth, S., Klewer, J., Pohlau, D. & Kugler, J. (2010). Quality of life and life circumstances in German myasthenia gravis patients. Health Quality and Life Outcomes, 8, 129.Google Scholar
Wolfe, G. I., Kaminski, H. J., Aban, I. B. et al. (2016). Randomized trial of thymectomy in myasthenia gravis. New England Journal of Medicine, 216(375), 511522.Google Scholar

References

Bostrom, K. & Ahlstrom, G. (2004). Living with a chronic deteriorating disease: the trajectory with muscular dystrophy over ten years. Disability and Rehabilitation, 26(23), 13881398.Google Scholar
Budych, K., Helms, T. M. & Schulta, C. (2012). How do patients with rare diseases experience the medical encounter? Exploring role behaviour and its impact on patient–physician interaction. Health Policy, 105, 154164.Google Scholar
Dany, A., Rapin, A., Réveillère, C., et al. (2017). Exploring quality of life in people with slowly-progressive neuromuscular disease. Disability and Rehabilitation, 39(13), 12621270.Google Scholar
Deenen, J. C. W., Horlings, C. G. C., Verschurren, J. G. M., Verbeek, A. L. M. & van Engelen, B. G. M. (2015). The epidemiology of neuromuscular disorders: a comprehensive overview of the literature. Journal of Neuromuscular Disorders, 2(1), 7385.Google Scholar
Fanos, J. H., Gelinas, D. F. & Miller, R. G. (2004). ‘You have shown me my end’: attitudes toward presymptomatic testing for familial amytrophic lateral sclerosis. American Journal of Medical Genetics, 129A(3), 248253.Google Scholar
Fowler, W. M., Abresch, R. T., Koch, T. R., et al. (1997). Employment profiles in neuromuscular disorders. American Journal of Physical Medicine and Rehabilitation, 76(1), 2637.Google Scholar
Gibson, B. E., Zitzelsberger, H. & McKeever, P. (2009). ‘Futureless persons’: shifting life expectancies and the vicissitudes of progressive illness. Sociology of Health and Illness, 31(4), 554568.Google Scholar
Graham, C. D., Rose, M. R., Grunfeld, E. A., Kyle, S. D. & Weinman, J. (2011). A systematic review of quality of life in adults with muscle disease. Journal of Neurology, 258(9), 15811592.Google Scholar
Higgs, E. J., McClaren, B. J., Sahhar, M. A., Ryan, M. M. & Forbes, R. (2016). ‘A short time but a lovely little short time’: bereaved parents’ experiences of having a child with spinal muscular atrophy type 1. Journal of Paediatric Child Health, 52(1), 4046.Google Scholar
Krause-Bachand, J. & Koopman, W. (2008). Living with oculopharyngeal muscular dystrophy: a phenomenological study. Canadian Journal of Neuroscience Nursing, 30(1), 3539.Google Scholar
LaDonna, K. A. (2011). A literature review of studies using qualitative research to explore chronic neuromuscular disease. Journal of Neuroscience Nursing, 43(3), 172182.Google Scholar
Magliano, L., Patalano, M., Sagliocchi, A., et al. (2015). Burden, professional support, and social network in families of children and young adults with muscular dystrophies. Muscle and Nerve, 52(1), 1321.Google Scholar
Minis, M. A. H., Satink, T., Kinebanian, A., et al. (2014). How persons with a neuromuscular disease perceive employment participation: a qualitative study. Journal of Occupational Rehabilitation, 24(1), 5267.Google Scholar
Read, J., Kinali, M., Muntoni, F., Weaver, T. & Garralda, M. E. (2011). Siblings of young people with Duchenne muscular dystrophy: a qualitative study of impact and coping. European Journal of Paediatric Neurology, 15(1), 2128.Google Scholar
Rose, M. R., Sadjadi, R., Weinman, J., et al. (2012). Role of disease severity, illness perceptions and mood on quality of life in muscle disease. Muscle and Nerve, 46(3), 351359.Google Scholar
United States Department of Labor (2014). Bureau of Labor Statistics: labour force statistics from the current population survey. http://data.bls.gov/timeseries/LNS12300000.Google Scholar
Webb, C. L. (2005). Parents’ perspectives on coping with Duchenne muscular dystrophy. Child Care, Health and Development, 31(4), 385396.Google Scholar
Zaccaro, A. & Freda, M. F. (2014). Making sense of risk diagnosis in case of prenatal and reproductive genetic counselling for neuromuscular diseases. Journal of Health Psychology, 19(3), 344357Google Scholar

References

Asbury, E. A., Kanji, N., Ernst, E., Barbir, M. & Collins, P. (2007). Autogenic training to manage chest pain in women with angina and normal coronary arteries. Circulation, 116(16), 677.Google Scholar
Chambers, J. & Bass, C. (1990). Chest pain with normal coronary anatomy: a review of natural history and possible etiologic factors. Progress in Cardiovasc Diseases, 33, 161184.Google Scholar
Chambers, J. B., Kiff, P. S., Gardner, W. N. & Jackson, G. (1988). Value of measuring end-tidal partial pressure of carbon dioxide as an adjunct to treadmill exercise. BMJ, 296, 12811285.Google Scholar
Chambers, J., Marks, E., Russell, V. & Hunter, M. A. (2014). Multidisciplinary, biopsychosocial treatment for non-cardiac chest pain. International Journal of Clinical Practice. DOI: 10.1111/ijcp.12533.Google Scholar
Chambers, J., Marks, E. & Hunter, M. (2015). The head says yes but the heart says no: what is non-cardiac chest pain and how is it managed? Heart Education, 101, 12401249.Google Scholar
Cooke, R., Smeeton, N. & Chambers, J. (1997). Comparative study of chest pain characteristics in patients with normal and abnormal coronary angiograms. Heart, 78, 142146.Google Scholar
DeGuire, S., Gevirtz, R., Hawkinson, D. & Dixon, K. (1996). Breathing retraining: a three year follow-up study of treatment for hyperventilation syndrome and associated functional cardiac symptoms. Biofeedback and Self-Regulation, 21, 191198.Google Scholar
Dumville, J. C., MacPherson, H., Griffith, K., Miles, J. N. V. & Lewin, R. J. (2007). Non-cardiac chest pain: a retrospective cohort study of patients who attended a Rapid Access Chest Pain Clinic. Family Practice, 24, 152157.Google Scholar
Esler, J. L., Barlow, D. H., Woolard, R. H., et al. (2003). A brief cognitive-behavioral intervention for patients with noncardiac chest pain. Behavioral Therapy, 34, 129148.Google Scholar
Eslick, G. D. & Talley, N. J. (2004). Non-cardiac chest pain: predictors of health care seeking, the types of health care professional consulted, work absenteeism and interruption of daily activities. Alimentary Pharmacology and Therapeutics, 20, 909915.Google Scholar
Fagring, A. J., Lappas, G., Kjellgren, K. I., et al. (2010). Twenty-year trends in incidence and 1-year mortality in Swedish patients hospitalised with non-AMI chest pain: data from 1987–2006 from the Swedish hospital and death registries. Heart, 96, 10431049.Google Scholar
Faxon, D. P., McCabe, C. H., Kreigel, D. E., et al. (1982). Therapeutic and economic value of a normal coronary angiogram. American Journal of Medicine, 73, 500505.Google Scholar
Glombiewski, J. A., Rief, W., Bosner, S., et al. (2010). The course of nonspecific chest pain in primary care: symptom persistence and health care usage. Archives of Internal Medicine, 170, 251255.Google Scholar
Hemingway, H., Langenberg, C., Damant, J., et al. (2008). Prevalence of angina in women versus men: a systematic review and meta-analysis of international variations across 31 countries. Circulation, 117, 15261536.Google Scholar
Jonsbu, E., Dammen, T., Morken, G., Moum, T. & Martinsen, E. W. (2011). Short-term cognitive behavioural therapy for non-cardiac chest pain and benign palpitations: a randomized controlled trial. Journal of Psychosomatic Research, 70, 117123.Google Scholar
Klimes, I., Mayou, R., Pearce, M. J., Coles, L. & Fagg, J. R. (1990). Psychological treatment for atypical chest pain: a controlled evaluation. Psychology and Medicine, 20, 605611.Google Scholar
Kline, J. & Stubblefield, W. (2014). Clinician gestalt estimate of pretest probability for acute coronary syndrome and pulmonary embolism in patients with chest pain and dyspnea. Annals of Emergency Medicine, 63, 275280.Google Scholar
Kroenke, K., Spitzer, R. L., Williams, J. B.. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16, 606613.Google Scholar
Mayou, R., Bryant, B., Sanders, D., et al. (1997). A controlled trial of cognitive behavioural therapy for non-cardiac chest pain. Psychology and Medicine, 27, 10211031.Google Scholar
Nimnuan, C., Hotopf, M. & Wessely, S. (2001). Medically unexplained symptoms: an epidemiological study in seven specialities. Journal of Psychosomatic Research, 51, 361367.Google Scholar
Patel, M. R., Peterson, E. D., Dai, D., et al. (2010). Low diagnostic yield of elective coronary angiography. New England Journal of Medicine, 362, 886895.Google Scholar
Petrie, K. J., Müller, J. T., Schirmbeck, F., et al. (2007). Effect of providing information about normal test results on patients’ reassurance: randomised controlled trial. BMJ, 334, 352354.Google Scholar
Potts, S. G., Lewin, R., Fox, K. A. & Johnstone, E. C. (1999). Group psychological treatment for chest pain and normal coronary arteries: a controlled trial. Quarterly Journal of Medicine, 91, 8186.Google Scholar
Robertson, N., Javed, N., Samani, N. J. & Khunti, K. (2008). Psychological morbidity and illness appraisals of patients with cardiac and non-cardiac chest pain attending a rapid access chest pain clinic: a longitudinal cohort study. Heart, 94, e12.Google Scholar
Sanders, D., Bass, C., Mayou, R. A., et al. (1997). Non-cardiac chest pain: why was a brief intervention apparently ineffective? Psychology and Medicine, 27, 10331040.Google Scholar
Sekhri, N., Feder, G. S., Junghans, C., Hemingway, H. & Timmis, A. D. (2007). How effective are rapid access chest pain clinics? Prognosis of incident angina and non-cardiac chest pain in 8762 consecutive patients. Heart, 93, 458463.Google Scholar
Spalding, L., Reay, E. & Kelly, C. (2003). Cause and outcome of atypical chest pain in patients admitted to hospital. Journal of the Royal Society of Medicine, 96, 122125.Google Scholar
Spinhoven, P., Van der Does, A. J. W., Van Dijk, E. & Van Rood, Y. R. (2010). Heart-focused anxiety as a mediating variable in the treatment of noncardiac chest pain by CBT and paroxetine. Journal of Psychosomatic Research, 69, 227235.Google Scholar
Spitzer, R. L., Kooenke, K., Williams, J. B. W., et al. (2006). A brief measure for assessing Generalized Anxiety Disorder: the GAD-7. Archives of Internal Medicine, 166, 10921097.Google Scholar
Tenkorang, J. N., Fox, K. F., Collier, T. J. & Wood, D. A. (2006). A rapid access cardiology service for chest pain, heart failure and arrhythmias accurately diagnoses cardiac disease and identifies patients at high risk: a prospective cohort study. Heart, 92, 10841090.Google Scholar
Tyni-Lenne, R., Stryjan, S., Eriksson, B., Berglund, M. & Sylven, C. (2002). Beneficial therapeutic effects of physical training and relaxation therapy in women with coronary syndrome X. Physiotherapy Research International, 7, 3543.Google Scholar
van Peski-Oosterbaan, A. S., Spinhoven, P., van Rood, Y, et al. (1999). Cognitive-behavioral therapy for noncardiac chest pain: a randomized trial. American Journal of Medicine, 106, 424429.Google Scholar

References

Bocchieri, L. E., Meana, M. & Fisher, B. L. (2002). A review of psychosocial outcomes of surgery for morbid obesity. Journal of Psychosomatic Research, 52(3), 155165.Google Scholar
Bruch, H. (1985). Four decades of eating disorders. In Garner, D. M. & Garfinkel, P. E. (eds), Handbook of Psychotherapy for Anorexia Nervosa and Bulimia. New York: Guilford Press.Google Scholar
Christakis, N. A. & Fowler, J. H. (2007). The spread of obesity in a large social network over 32 years. New England Journal of Medicine, 357(4), 370379.Google Scholar
Foresight. (2007). Tackling Obesities: Future Choices—Project Report. London: The Stationery Office. www.foresight.gov.uk/Obesity/obesity_final/Index.html.Google Scholar
Higgs, S. (2005). Memory and its role in appetite regulation. Appetite, 85(1), 6772.Google Scholar
Hill, J. O. & Peters, J. C. (1998). Environmental contributions to the obesity epidemic. Science, 280(5368), 13711374.Google Scholar
Misra, A. & Ganda, O. P. (2007). Migration and its impact on adiposity and type 2 diabetes. Nutrition, 23(9), 696708.Google Scholar
Ogden, J., Clementi, C. & Aylwin, S. (2006). The impact of obesity surgery and the paradox of control: a qualitative study. Psychology and Health, 21(2), 273293.Google Scholar
Ogden, J., Coop, N., Cousins, C., et al. (2013). Distraction, the desire to eat and food intake: towards an expanded model of mindless eating. Appetite, 62, 119126.Google Scholar
Ogden, J., Oikonoumou, E. & Alemany, G. (2015). Distraction, restrained eating and disinhibition: an experimental study of food intake and the impact of ‘eating on the go’. International Journal of Health Psychology. DOI: 10.1177/1359105315595119.Google Scholar
Prentice, A. (1999). Aetiology of obesity I: introduction. In Obesity: The Report of the British Nutrition Foundation Task Force (pp. 3738). Oxford: Blackwell Science.Google Scholar
Rissanen, A. M., Heliovaara, M., Knekt, P., Reunanen, A. & Aromaa, A. (1991). Determinants of weight gain and overweight in adult Finns. European Journal of Clinical Nutrition, 45, 419430.Google Scholar
Robinson, E., Aveyard, P., Daley, A., et al. (2013). Eating attentively: a systematic review and meta-analysis of the effect of food intake memory and awareness on eating. American Journal of Clinical Nutrition, 97(4), 728742.Google Scholar
Rucker, D., Padwal, R., Li, S. K., Curioni, C. & Lau, D. C. W. (2007). Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ, 335, 11941199.Google Scholar
Shenassa, E. D., Frye, M., Braubach, M. & Daskalakis, C. (2008). Routine stair climbing in place of residence and Body Mass Index: a Pan-European population based study. International Journal of Obesity, 32(3), 490494.Google Scholar
Sjostrom, L., Nabro, K. & Sjostrom, C. D. (2007). Effects of bariatric surgery on mortality in Swedish obese subjects. New England Journal of Medicine, 357(8), 741752.Google Scholar
Van Strien, T., Frijters, J., Bergers, G. & Defares, P. (1986). The Dutch Eating Behaviour Questionnaire (DEBQ) for assessment of restrained, emotional and external eating behavior. International Journal of Eating Disorders, 5, 747755.Google Scholar
Waller, K., Kaprio, J. & Kujala, U. M. (2008). Associations between long-term physical activity, waist circumference and weight gain: a 30-year longitudinal twin study. International Journal of Obesity, 32(2), 353361.Google Scholar
Wansink, B. (2004). Environmental factors that increase the food intake and consumption volume of unknowing consumers. Annual Review of Nutrition, 24, 455479.Google Scholar

References

Arden, N. K. & Leyland, K. M. (2013). Osteoarthritis: year 2013 in review: clinical. Osteoarthritis and Cartilage, 21, 14091413.Google Scholar
Bellamy, N., Buchanan, W. W., Goldsmith, C. H., et al. (1988). Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. Journal of Rheumatology, 15, 18331840.Google Scholar
Beswick, A., Wylde, V., Gooberman-Hill, R., et al. (2012). What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open, 2, 1.Google Scholar
Collins, J. E., Deshpande, B. R., Katz, J. N. & Losina, E. (2016). Race- and sex-specific incidence rates and predictors of total knee arthroplasty: seven-year data from the Osteoarthritis Initiative. Arthritis Care and Research, 68, 965973.Google Scholar
Cutolo, M., Berenbaum, F., Hochberg, M., et al. (2015). Commentary on recent therapeutic guidelines for osteoarthritis. Seminars in Arthritis and Rheumatism, 44, 611617.Google Scholar
Dawson, J., Fitzpatrick, R., Murray, D. & Carr, A. (1998). Questionnaire on the perceptions of patients about total knee replacement. Journal of Bone and Joint Surgery (British), 80, 6369.Google Scholar
Dieppe, P. (2011). Developments in osteoarthritis. Rheumatology, 50, 245247.Google Scholar
Fransen, M., McConnell, S., Harmer, A. R., et al. (2015). Exercise for osteoarthritis of the knee. Cochrane Database of Systematic Reviews, 9, 1.Google Scholar
Hawker, G. A., Davis, A. M., French, M. R. et al. (2008a). Development and preliminary psychometric testing of a new OA pain measure: an OARSI/OMERACT initiative. Osteoarthritis and Cartilage, 16, 409414.Google Scholar
Hawker, G. A., Stewart, L., French, M. R., et al. (2008b). Understanding the pain experience in hip and knee osteoarthritis: an OARSI/OMERACT initiative. Osteoarthritis and Cartilage, 16, 415422.Google Scholar
Hawkins, K., Escoto, K. H., Ozminkowski, R. J., et al. (2011). Disparities in major joint replacement surgery among adults with medicare supplement insurance. Population Health Management, 14, 231288.Google Scholar
Helman, C. G. (1981). Disease versus illness in general practice. Journal of the Royal College of General Practitioners, 31, 548552.Google Scholar
Judge, A., Arden, N. K., Cooper, C., et al. (2012). Predictors of outcomes of total knee replacement surgery. Rheumatology, 51, 18041813.Google Scholar
Kraus, V. B., Blanco, F. J., Englund, M., et al. (2015). Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis and Cartilage, 23, 12331241.Google Scholar
Kurtz, S., Ong, K., Lau, E., et al. (2007). Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. Journal of Bone and Joint Surgery (America), 89, 780785.Google Scholar
Lawrence, R. C., Felson, D. T., Helmick, C. G., et al. (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part II. Arthritis and Rheumatism, 58, 2635.Google Scholar
Mann, C. & Gooberman-Hill, R. (2011). Healthcare provision for osteoarthritis: concordance between what patients would like and what health professionals think they should have. Arthritis Care and Research, 63, 963972.Google Scholar
National Clinical Guideline Centre. (2014). Osteoarthritis: Care and Management in Adults. Clinical Guideline 177. London: NICE.Google Scholar
National Joint Registry for England and Wales. (2015). National Joint Registry for England and Wales: 12th Annual Report. Hemel Hempstead: NJR Centre.Google Scholar
Neogi, T. (2013). The epidemiology and impact of pain in osteoarthritis. Osteoarthritis and Cartilage, 21, 11451153.Google Scholar
Neogi, T., Felson, D., Niu, J., et al. (2009). Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies. BMJ, 339, b2844.Google Scholar
Phyomaung, P. P., Dubowitz, J., Cicuttini, F. M., et al. (2014). Are depression, anxiety and poor mental health risk factors for knee pain? A systematic review. BMC Musculoskeletal Disorders, 5, 10.Google Scholar
Prieto-Alhambra, D., Judge, A., Javaid, M. K., et al. (2014). Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Annals of the Rheumatic Diseases, 73, 16591664.Google Scholar
Riddle, D. L. & Stratford, P. W. (2013). Body weight changes and corresponding changes in pain and function in persons with symptomatic knee osteoarthritis: a cohort study. Arthritis Care and Research, 65, 1522Google Scholar
Smith, T. O., Purdy, R., Lister, S., et al. (2014). Attitudes of people with osteoarthritis towards their conservative management: a systematic review and meta-ethnography. Rheumatology International, 34, 299313.Google Scholar
Somers, T. J., Blumenthal, J. A., Guilak, F., et al. (2012a). Pain coping skills training and lifestyle behavioral weight management in patients with knee osteoarthritis: a randomized controlled study. Pain, 153, 11991209.Google Scholar
Somers, T. J., Wren, A. A. & Shelby, R. A. (2012b). The context of pain in arthritis: self-efficacy for managing pain and other symptoms. Current Pain and Headache Reports, 16, 502508.Google Scholar
Suokas, A. K., Walsh, D. A., McWilliams, D. F., et al. (2012). Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis. Osteoarthritis and Cartilage, 20, 10751078.Google Scholar
Wise, B. L., Niu, J., Zhang, Y., et al. (2010). Psychological factors and their relation to osteoarthritis pain. Osteoarthritis and Cartilage, 18, 883887.Google Scholar

References

Aagnostis, P. G. & Stevenson, J. C. (2015). Hormonal management of osteoporosis. Panay, N., Briggs, P. & Kovacs, G. (eds), Managing the Menopause, Cambridge: Cambridge University Press.Google Scholar
Blalock, S. J., Smith, S. S., DeVellis, R. F., et al. (2000). Effects of educational materials concerning osteoporosis on women’s knowledge, beliefs and behaviour. American Journal of Health Promotion, 14, 161169.Google Scholar
Curry, L. C., Hogstel, M. O., Davis, G. C. & Frable, P. J. (2002). Population-based osteoporosis education for older women. Public Health Nursing, 19, 460469.Google Scholar
Horan, M. L., Kim, K. K., Gendler, P., et al. (1998). Development and evaluation of the osteoporosis self-efficacy scale. Research in Nursing and Health, 21(5), 395403.Google Scholar
Jeihooni, A. K., Hidarnia, A., Kaveh, M. H., et al. (2015). The effect of an educational program based on Health Belief Model on preventing osteoporosis in women. International Journal of Preventive Medicine, 24(6), 115.Google Scholar
Kim, K. K., Horan, M. L., Gendler, P., et al. (1991). Development and evaluation of the osteoporosis health belief scale. Research in Nursing & Health, 14(2), 155163.Google Scholar
Klohn, L. S. & Rogers, R. W. (1991). Dimensions of the severity of a health threat: the persuasive effects of visibility, time of onset and rate of onset on young women’s intentions to prevent osteoporosis. Health Psychology, 10, 323329.Google Scholar
Lorbergs, A. L. & Holland, A. (2016). Falling between the cracks: attitudes and perceptions toward osteoporosis prevention among postmenopausal women. Journal of Osteoporosis and Physical Activity, 4, 168.Google Scholar
Marques, E. A., Mota, J. & Carvalho, J. (2012). Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age, 34, 14931515.Google Scholar
McLeod, K. M. & Johnson, C. S. (2011). A systematic review of osteoporosis health beliefs in adult men and women. Osteoporosis. DOI: 10.4061/2011/197454.Google Scholar
Miko, I., Szerb, I., Szerb, A. & Poor, G. (2016). Effectiveness of balance training programme in reducing the frequency of falling in established osteoporotic women: a randomized controlled trial. Clinical Rehabilitation. pii: 0269215516628616. Epub ahead of print.Google Scholar
National Institutes of Health and Care Excellence (NICE). (2015). NICE guidance on Diagnosis and Management of Menopause. London: NICE.Google Scholar
National Institute for Health and Care Excellence (NICE). (2016). Osteoporosis: Assessing the Risk of Fragility Fracture. London: NICE.Google Scholar
National Osteoporosis Society (2015). The Osteoporosis agenda: improving the lives of people with osteoporosis and fragility fractures. www.nos.org.uk/.2015/Agenda-for-osteoporosis-England-2015.Google Scholar
Sedlack, C. A., Doheny, M. O. & Jones, S. L. (2000). Osteoporosis edcation programmes: changing knowledge and behaviours. Public Health Nursing, 17, 398402.Google Scholar
Shifren, J. L., Gass, M. L. & NAMS Recommendations for Clinical Care of Midlife Women Working Group. (2014). The North American Menopause Society recommendations for clinical care of midlife women. Menopause, 21(10), 10381062.Google Scholar
Silver Wallace, L. (2002). Osteoporosis prevention in college women: application of the expanded health belief model. American Journal of Health Behaviour, 26, 163172.Google Scholar
Terrio, K. & Auld, G. W. (2002). Osteoporosis knowledge, calcium intake and weight-bearing physical activity in three age groups of women. Journal of Community Health, 27, 307319.Google Scholar

References

Aarsland, D., Larsen, J. P., Lim, N. G., et al. (1999). Range of neuropsychiatric disturbances in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 67(4), 492496.Google Scholar
Aarsland, D., Larsen, J. P., Tandberg, E. & Laake, K. (2000). Predictors of nursing home placement in Parkinson’s disease: a population-based, prospective study. Journal of the American Geriatric Society, 48, 938942.Google Scholar
Aarsland, D., Andersen, K., Larsen, J. P., Lolk, A., & Kragh-Sørensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Archive of Neurology, 60(3), 387392.Google Scholar
British Psychological Society Dementia Advisory group (2016). Psychological dimensions of dementia: putting the person at the centre of care. https://beta.bps.org.uk/news-and-policy/psychological-dimensions-dementia-putting-person-centre-care.Google Scholar
Brown, R. G. & Jahanshahi, M. (1995). Depression in Parkinson’s disease: a psychosocial viewpoint. In Weiner, W. J. & Lang, A. E. (eds), Behavioural Neurology of Movement Disorders (pp. 6184). New York: Raven Press.Google Scholar
Brown, R. G., Jahanshahi, M., Quinn, N. & Marsden, C. D. (1990). Sexual function in patients with Parkinson’s disease and their partners. Journal of Neurology, Neurosurgery & Psychiatry, 53, 480486.Google Scholar
de Rijk, M. C., Launer, L. J., Berger, K., et al. (2000). Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology, 54(11 Suppl. 5), S21S23.Google Scholar
Dirnberger, G. & Jahanshahi, M. (2013). Executive dysfunction in Parkinson’s Disease: a review. Journal of Neuropsychology, 7(2), 193224. DOI: 10.1111/jnp.12028.Google Scholar
Dobkin, R. D., Menza, M., Allen, L. A., et al. (2011). Cognitive-behavioral therapy for depression in Parkinson’s disease: a randomized, controlled trial. American Journal of Psychiatry, 168(10), 10661074.Google Scholar
Ellgring, H., Seiler, S., Nagel, U., et al. (1990). Psychosocial problems of Parkinson patients: approaches to assessment and treatment. In Streifler, M. B., Korcyzn, A. D., Melamed, E. & Youdim, M. H. H. (eds), Parkinson’s Disease: Anatomy, Pathology and Therapy (pp. 349353). New York: Raven Press.Google Scholar
Emre, M., Aarsland, D., Brown, R., et al. (2007). Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Movement Disorders, 22, 16891707.Google Scholar
Gratwicke, J., Kahan, J., Zrinzo, L., et al. (2013). The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neuroscience & Biobehavioral Reviews. DOI: 10.1016/j.neubiorev.2013.09.003. Epub ahead of print.Google Scholar
Gratwicke, J., Jahanshahi, M. & Foltynie, T. (2015). Parkinson’s disease dementia: a neural network perspective. Brain. pii: awv104. Epub ahead of print.Google Scholar
Hely, M. A., Reid, W. G. J., Adena, M. A., Halliday, G. M. & Morris, J. G. L. (2008). The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Movement Disorders, 23, 837844.Google Scholar
Jahanshahi, M., Wilkinson, L., Gahir, H., Dharminda, A. & Lagnado, D. A. (2010). Medication impairs probabilistic classification learning in Parkinson’s disease. Neuropsychologia, 48(4), 10961103.Google Scholar
Kish, S. J., Shannak, K. & Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease: pathophysiologic and clinical implications. New England Journal of Medicine., 318(14), 876880.Google Scholar
Levy, G., Jacobs, D. M., Tang, M.-X., et al. (2002a). Memory and executive function impairment predict dementia in Parkinson’s disease. Movement Disorders; 17, 12211226.Google Scholar
Levy, G., Tang, M.-X., Louis, E. D., et al. (2002b). The association of incident dementia with mortality in PD. Neurology, 59, 17081713.Google Scholar
Litvan, I., Goldman, J. G., Tröster, A. I., et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27(3), 349356. DOI: 10.1002/mds.24893.Google Scholar
Miyasaki, J. M., Shannon, K., Voon, V., et al. (2006). Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: evaluation and treatment of depression, psychosis, and dementia in Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 66(7), 9961002.Google Scholar
Pagonabarraga, J., Kulisevsky, J., Strafella, A. P. & Krack, P. (2015). Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurology, 14(5), 518531. DOI: 10.1016/S1474-4422(15)00019–8.Google Scholar
Schrag, A. Jahanshahi, M. & Quinn, N. P. (2000). What contributes to quality of life in patients with Parkinson’s disease? Journal of Neurology, Neurosurgery & Psychiatry, 69, 308312.Google Scholar
Schrag, A., Hovris, A., Morley, D., Quinn, N. & Jahanshahi, M. (2003). Young vs old onset Parkinson’s disease: impact of disease and psychosocial consequences. Movement Disorders, 18, 12501256.Google Scholar
Schrag, A., Morley, D., Quinn, N. & Jahanshahi, M. (2004). Impact of Parkinson’s disease on the patients’ adolescent and adult children. Parkinsonism & Related Disorders, 10, 391397.Google Scholar
Schrag, A., Morley, D., Quinn, N. & Jahanshahi, M. (2006). Caregiver burden in Parkinson’s disease is closely linked to psychiatric symptoms, falls, and disability in the patient. Parkinsonism & Related Disorders, 12, 3541.Google Scholar
Secker, D. L. & Brown, R. G. (2005). Cognitive behavioural therapy (CBT) for carers of patients with Parkinson’s disease: a preliminary randomised controlled trial. Journal of Neurology, Neurosurgery and Psychiatry, 76(4), 491497.Google Scholar
Soliveri, P., Brown, R. G., Jahanshahi, M. & Marsden, C. D. (1992). Procedural memory in neurological disease. European Journal of Cognitive Psychology, 4, 161193.Google Scholar
Weintraub, D. & Burn, D. J. (2011). Parkinson’s disease: the quintessential neuropsychiatric disorder. Movement Disorders, 26(6), 10221031. DOI: 10.1002/mds.23664.Google Scholar
Weintraub, D., David, A. S., Evans, A. H., Grant, J. E. & Stacy, M. (2015). Clinical spectrum of impulse control disorders in Parkinson’s disease. Movement Disorders, 30(2), 121127.Google Scholar
Wilkinson, L. & Jahanshahi, M. (2007). The striatum and probabilistic implicit sequence learning. Brain Research, 1137, 117130Google Scholar

References

Abramowitz, J. S., Schwartz, S. A., Moore, K. M. & Luenzmann, K. R. (2003). Obsessive-compulsive symptoms in pregnancy and the puerperium: a review of the literature. Journal of Anxiety Disorders, 17(4), 461478.Google Scholar
Bauer, A., Parsonage, M., Knapp, M., Iemmi, V. & Adelaja, B. (2014). The Costs of Perinatal Mental Health Problems London: Centre for Mental Health.Google Scholar
Boots Family Trust Alliance (2013). Perinatal mental health: experiences of women and health professionals. www.tommys.org/sites/default/files/Perinatal_Mental_Health_Experiences%20of%20women.pdf.Google Scholar
Cameron, E. E., Sedov, I. D. & Tomfohr-Madsen, L. M. (2016). Prevalence of paternal depression in pregnancy and the postpartum: an updated meta-analysis. Journal of Affective Disorders, 206, 189203. DOI: 10.1016/j.jad.2016.07.044.Google Scholar
Delicate, A., Ayers, S., & McMullen, S. (2018). A systematic review and meta-synthesis of the impact of becoming parents on the couple relationship. Midwifery, 61, 8896.Google Scholar
Ding, X. X., Wu, Y. L., Xu, S. J., et al. (2014). Maternal anxiety during pregnancy and adverse birth outcomes: a systematic review and meta-analysis of prospective cohort studies. Journal of Affective Disorders, 159, 103110.Google Scholar
Fairbrother, N. & Abramowitz, J. S. (2016). Obsessions and compulsions during pregnancy and the postpartum period. In Wenzel, A. (ed.), The Oxford Handbook of Perinatal Psychology (pp. 167181). New York: Oxford University Press.Google Scholar
Ford, E., Lee, S., Ayers, S. & Shakespeare, J. (2017a). Recognition and management of perinatal mental illness by general practitioners and family physicians: a meta-synthesis. British Journal of General Practice.Google Scholar
Ford, E., Shakespeare, J., Elias, F. & Ayers, S. (2017b). Recognition and management of perinatal depression and anxiety by general practitioners: a systematic review. Family PracticeGoogle Scholar
Glover, V. (2016). Maternal stress during pregnancy and infant and child outcomes. In Wenzel, A. (ed.), The Oxford Handbook of Perinatal Psychology (pp. 268283). New York: Oxford University Press.Google Scholar
Khan, L. (2015). Falling Through the gaps: Perinatal Mental Health and General Practice. London: Royal College of General Practitioners and Centre for Mental Health.Google Scholar
Knight, M., Kenyon, S., Brocklehurst, P., et al. (eds.) (2014). Saving Lives, Improving Mothers’ Care: Lessons Learned to Inform Future Maternity Care from the UK and Ireland Confidential Enquiries Into Maternal Deaths and Morbidity 2009–12. Oxford: National Perinatal Epidemiology Unit, University of Oxford.Google Scholar
Leach, L. S., Poyser, C., Cooklin, A. R. & Giallo, R. (2016). Prevalence and course of anxiety disorders (and symptom levels) in men across the perinatal period: a systematic review. Journal of Affect Disorders, 190, 675686. DOI: 10.1016/j.jad.2015.09.063.Google Scholar
Matthey, S. (2016). Anxiety and stress during pregnancy and the postpartum period. In Wenzel, A. (ed.), The Oxford Handbook of Perinatal Psychology (pp. 132149). New York: Oxford University Press.Google Scholar
Maxson, P. J., Edwards, S. E., Valentiner, E. M. & Miranda, M. L. (2016). A multidimensional approach to characterizing psychosocial health during pregnancy. Maternal and Child Health Journal, 20(6), 11031113. DOI: 10.1007/s10995-015–1872-1.Google Scholar
Murray, L., Halligan, S. L. & Cooper, P. J. (2010). Effects of postnatal depression on mother–infant interactions, and child development. In Bremner, G. & Wachs, T. (eds), Handbook of Infant Development (2nd edn; Vol. 2; pp. 192–220). Chichester: Wiley-Blackwell.Google Scholar
National Institute for Clinical Excellence (2014). Antenatal and Postnatal Mental Health: Clinical Management and Service Guidance. Clinical Guidance 192. London: NICE. www.nice.org.uk/guidance/cg192/evidence/cg192-antenatal-and-postnatal-mental-health-full-guideline3.Google Scholar
O’Donnell, K. J., Glover, V., Barker, E. D. & O’Connor, T. G. (2014). The persisting effect of maternal mood in pregnancy on childhood psychopathology. Developments in Psychopathology, 26(2), 393403. DOI: 10.1017/s0954579414000029.Google Scholar
Paulson, J. F. & Bazemore, S. D. (2010). Prenatal and postpartum depression in fathers and its association with maternal depression: a meta-analysis. JAMA, 303(19), 19611969. DOI: 10.1001/jama.2010.605.Google Scholar
Scottish Intercollegiate Guidelines Network (SIGN) (2012). Management of Perinatal Mood Disorders. Edinburgh: SIGN. www.sign.ac.uk/guidelines/fulltext/127/Google Scholar
Wadhwa, P. D., Buss, C., Entringer, S. & Swanson, J. M. (2009). Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Seminars in Reproductive Medicine, 27(5), 358368. DOI: 10.1055/s-0029–1237424.Google Scholar
Yildiz, P. D., Ayers, S. & Phillips, L. (2017). The prevalence of posttraumatic stress disorder in pregnancy and after birth: a systematic review and meta-analysis. Journal of Affect Disorders, 208, 634645. DOI: 10.1016/j.jad.2016.10.009.Google Scholar

References

Ayers, S. & Olander, E. K. (2013). What are we measuring and why? Using theory to guide perinatal research and measurement. Journal of Reproductive and Infant Psychology, Special Edition, 31(5), 439448.Google Scholar
Ayers, S. & Pickering, A. D. (2005). Women’s expectations and experience of birth. Psychology & Health, 20 (1), 7992.Google Scholar
Betran, A. P., Ye, J., Moller, A. B., et al. (2016). The increasing trend in Caesarean section rates: global, regional and national estimates: 1990–2014. PLoS One, 11(2), e0148343. DOI: 10.1371/journal.pone.0148343.Google Scholar
Cao-Lei, L., Dancause, K. N., Elgbeili, G., et al. (2015a). DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13(1/2) years: Project Ice Storm. Epigenetics, 10(8), 749761. DOI: 10.1080/15592294.2015.1063771.Google Scholar
Cao-Lei, L., Elgbeili, G., Massart, R., et al. (2015b). Pregnant women’s cognitive appraisal of a natural disaster affects DNA methylation in their children 13 years later: Project Ice Storm. Translational Psychiatry, 5, e515. DOI: 10.1038/tp.2015.13.Google Scholar
Dick-Read, G. (1933), Natural Childbirth. London: Pinter & Martin.Google Scholar
Dick-Read, G. (2004), Childbirth Without Fear: The Principles and Practice of Natural Childbirth. London: Pinter & Martin.Google Scholar
Gagnon, A. J. & Sandall, J. (2007). Individual or group antenatal education for childbirth or parenthood, or both. Cochrane Database of Systematic Reviews. DOI: 10.1002/14651858.CD002869.pub2.Google Scholar
Glover, V. (2016). Maternal stress during pregnancy and infant and child outcomes. In Wenzel, A. (ed.), The Oxford Handbook of Perinatal Psychology (pp. 268283). New York: Oxford University Press.Google Scholar
Green, J. M., Coupland, V. A. & Kitzinger, J. V. (1998). Great Expectations: A Prospective Study of Women’s Expectations and Experiences of Childbirth. Hale: Books for Midwives.Google Scholar
Gupton, A., Beaton, J., Sloan, J. & Bramadat, I. (1991). The development of a scale to measure childbirth expectations. The Canadian Journal of Nursing Research, 23(2), 3547.Google Scholar
Iravani, M., Zarean, E., Janghorbani, M. & Bahrami, M. (2015). Women’s needs and expectations during normal labor and delivery. Journal of Education & Health Promotion, 23(4), 6.Google Scholar
Jessop, D. C., Craig, L. & Ayers, S. (2014). Applying Leventhal’s self-regulatory model to pregnancy: evidence that pregnancy-related beliefs and emotional responses are associated with maternal health outcomes. Journal of Health Psychology, 19(9), 10911102.Google Scholar
Jordan, B. (1993). Birth in Four Cultures, a Crosscultural Investigation of Childbirth in Yucatan, Holland, Sweden and the United States. Prospect Heights, IL: Waveland Press.Google Scholar
Laplante, D. P., Brunet, A., Schmitz, N., Ciampi, A. & King, S. (2008). Project Ice Storm: prenatal maternal stress affects cognitive and linguistic functioning in 5½ year old children. Journal of the American Academy of Child and Adolescent Psychiatry, 47(9), 10631072.Google Scholar
Laplante, D. P., Brunet, A. & King, S. (2016). The effects of maternal stress and illness during pregnancy on infant temperament: Project Ice Storm. Pediatric Research, 79(1), 107113. DOI: 10.1038/pr.2015.177.Google Scholar
Laursen, M., Johansen, C. & Hedegaard, M. (2009). Fear of childbirth and risk for birth complications in nulliparous women in the Danish National Birth Cohort. BJOG, 116, 13501355. DOI:10.1111/j.1471-0528.2009.02250.x.Google Scholar
Lazarus, R. S. & Folkman, S. (1984). Stress, Appraisal and Coping. New York: Springer.Google Scholar
MacDorman, M. F., Menacker, F. & Declercq, E. (2008). Cesarean birth in the United States: epidemiology, trends, and outcomes. Clinical Perinatology, 35(2): 293307.Google Scholar
McCourt, C., Weaver, J., Statham, H., et al. (2007). Elective cesarean section and decision making: a critical review of the literature. Birth, 34(1), 6579. DOI:10.1111/j.1523-536X.2006.00147.x.Google Scholar
Menacker, F., Declercq, E. & Macdorman, M. F. (2006). Cesarean delivery: background, trends, and epidemiology. Seminars in Perinatology, 30(5), 235241. DOI: 10.1053/j.semperi.2006.07.002.Google Scholar
Michie, S., van Stralen, M. M. & West, R. (2011). The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation Science, 6, 42. DOI: 10.1186/1748-5908-6-42.Google Scholar
Nieminen, K., Stephansson, O. & Ryding, E. L. (2009). Women’s fear of childbirth and preference for cesarean section: a cross-sectional study at various stages of pregnancy in Sweden. Acta Obstetrica et Gynecologica Scandinavia, 88, 807813. DOI: 10.1080/00016340902998436.Google Scholar
Olander, E. K., Darwin, Z. J., Atkinson, L., Smith, D. M. & Gardner, B. (2016). Beyond the ‘teachable moment’: a conceptual analysis of women’s perinatal behaviour change. Women and Birth, 29(3), e67–71. DOI: 10.1016/j.wombi.2015.11.005.Google Scholar
Palmer, W. L., Bottle, A. & Aylin, P. (2015). Association between day of delivery and obstetric outcomes: observational study. BMJ, 351(8035), 20.Google Scholar
Rouhe, H., Salmela-Aro, K., Halmesmaki, E. & Saisto, T. (2009). Fear of childbirth according to parity, gestational age, and obstetric history. BJOG, 116, 6773. DOI:10.1111/j.1471-0528.2008.02002.x.Google Scholar
Salomonsson, B., Gullberg, M. T., Alehagen, S. & Wijma, K. (2013). Self-efficacy beliefs and fear of childbirth in nulliparous women. Journal of Psychosomatic Obstetrics & Gynecology, 34, 116121. DOI: 10.3109/0167482X.2013.824418.Google Scholar
Saxby, D. E. (2017). Birth of a new perspective? A call for biopsychosocial research on childbirth. Current Directions in Psychological Science, 26, 8186.Google Scholar
Storksen, H. T., Garthus-Niegel, S., Vangen, S. & Eberhard-Gran, M. (2013). The impact of previous birth experiences on maternal fear of childbirth. Acta Obstetrica et Gynecologica Scandinavia, 92, 318324. DOI:10.1111/aogs.12072.Google Scholar
Suls, J. & Rothman, A. (2004). Evolution of the biopsychosocial model: prospects and challenges for health psychology. Health Psychology, 23(2), 119125. DOI: 10.1037/0278-6133.23.2.119.Google Scholar
Van Parys, A., Ryding, E. L., Schei, B., Lukasse, M. & Temmerman, M. (2012). Fear of childbirth and mode of delivery in six European countries: The BIDENS study. 22nd European Congress of Obstetrics and Gynaecology (EBCOG), Book of Abstracts (S14.4).Google Scholar
Wadhwa, P. D., Buss, C., Entringer, S. & Swanson, J. M. (2009). Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Seminars in Reproductive Medicine, 27(5), 358368. DOI: 10.1055/s-0029-1237424.Google Scholar
World Health Organization (2015). Caesarean sections should be performed only when necessary. News release. www.who.int/mediacentre/news/releases/2015/caesarean-sections/en/ (accessed 11 January 2017).Google Scholar

References

Bancroft, J. (1993). The premenstrual syndrome: a reappraisal of the concept and the evidence. Psychological Medicine, 241, 147.Google Scholar
Blake, F. (1995). Cognitive therapy for premenstrual syndrome. Cognitive and Behavioral Practice, 2(1), 167185.Google Scholar
Brown, M. & Zimmer, P. (1986). Personal and family impact of premenstrual symptoms. JOGNN, 15(1), 3137.Google Scholar
Busse, J. W., Montori, V. M., Krasnik, C., Patelis-Siotis, I. & Guyatt, G. H. (2009). Psychological intervention for premenstrual syndrome: a meta-analysis of randomized controlled trials. Psychotherapy and Psychosomatics, 78(1), 615.Google Scholar
Chrisler, J. C. (2004). PMS as a culture-bound syndrome. In Chrisler, J. C., Golden, C. & Rozee, P. D. (eds), Lectures on the Psychology of Women (3rd edn; pp. 110127). Boston, MA: McGraw Hill.Google Scholar
Fontana, A. M. & Palfaib, T. G. (1994). Psychosocial factors in premenstrual dysphoria: stressors, appraisal, and coping processes. Journal of Psychosomatic Research, 38(6), 557567.Google Scholar
Halbreich, U., Borenstein, J., Pearlstein, T. & Kahn, L. S. (2003). The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology, 28(Suppl. 3), 123.Google Scholar
Hartlage, S., Freels, S., Gotman, N. & Yonkers, K. (2012). Criteria for premenstrual dysphoric disorder: secondary analyses of relevant data sets. Archives of General Psychiatry, 69(3), 300.Google Scholar
Hunter, M. S., Ussher, J. M., Cariss, M., et al. (2002). Medical (fluoxetine) and psychological (cognitive-behavioural) treatment for premenstrual dysphoric disorder: a study of treatment process. Journal of Psychosomatic Research, 53, 811817.Google Scholar
Kuczmierczyka, A. R., Labrumb, A. H. & Johnson, C. C. (1992). Perception of family and work environments in women with premenstrual syndrome. Journal of Psychosomatic Research, 36(8), 787795.Google Scholar
Lustyk, M. B. K., Gerrish, W. G., Shaver, S. & Keys, S. L. (2009). Cognitive-behavioral therapy for premenstrual syndrome and premenstrual dysphoric disorder: a systematic review. Archives of Women’s Mental Health, 12(2), 8596. DOI: 10.1007/s00737-009-0052-yGoogle Scholar
Nash, H. C. & Chrisler, J. C. (1997). Is a little (psychiatric) knowledge a dangerous thing? The impact of premenstrual dysphoric disorder on perceptions of premenstrual women. Psychology of Women Quarterly, 21(2), 315322.Google Scholar
Nevatte, T., O’Brien, P., Bäckström, T., et al. (2013). ISPMD consensus on the management of premenstrual disorders. Archives of Women’s Mental Health, 16(4), 279291. DOI: 10.1007/s00737-013-0346-yGoogle Scholar
Rapkin, A. J. & Lewis, E. I. (2013). Treatment of premenstrual dysphoric disorder. Women’s Health, 9(6), 537556. DOI: http://dx.doi.org/10.2217/whe.13.62.Google Scholar
Rundle, R. (2005). A qualitative exploration of couples’ relational experiences when one partner suffers from symptoms of PMS: a systems approach. Dissertation Abstracts International: Section B: The Sciences and Engineering, 66(2-B), 1185.Google Scholar
Ryser, R. & Feinauer, L. L. (1992). Premenstrual syndrome and the marital relationship. American Journal of Family Therapy, 20(2), 179190.Google Scholar
Ussher, J. M. (2002). Processes of appraisal and coping in the development and maintenance of premenstrual dysphoric disorder. Journal of Community and Applied Social Psychology, 12, 114.Google Scholar
Ussher, J. M. (2006). Managing the Monstrous Feminine: Regulating the Reproductive Body. London: Routledge.Google Scholar
Ussher, J. M. (2010). Are we medicalizing women’s misery? A critical review of women’s higher rates of reported depression. Feminism & Psychology, 20(1), 935. DOI: 10.1177/0959353509350213.Google Scholar
Ussher, J. M. & Perz, J. (2008). Empathy, egalitarianism and emotion work in the relational negotiation of PMS: the experience of lesbian couples. Feminism and Psychology, 18(1), 87111.Google Scholar
Ussher, J. M. & Perz, J. (2010). Disruption of the silenced-self: the case of pre-menstrual syndrome. In Jack, D. C. & Ali, A. (eds), The Depression Epidemic: International Perspectives on Women’s Self-Silencing and Psychological distress (pp. 435458). Oxford: Oxford University Press.Google Scholar
Ussher, J. M. & Perz, J. (2013a). PMS as a gendered illness linked to the construction and relational experience of hetero-femininity. Sex Roles, 68(1–2), 132150.Google Scholar
Ussher, J. M. & Perz, J. (2013b). PMS as a process of negotiation: women’s experience and management of premenstrual distress. Psychology & Health, 28(8), 909927. DOI: 10.1080/08870446.2013.765004.Google Scholar
Ussher, J. M., Hunter, M. S. & Cariss, M. (2002). A woman-centred psychological intervention for premenstrual symptoms, drawing on cognitive-behavioural and narrative therapy. Clinical Psychology and Psychotherapy, 9, 319331.Google Scholar

References

Almutary, H., Bonner, A. & Douglas, C. (2013). Symptom burden in chronic kidney disease: a review of recent literature. Journal of Renal care, 39(3), 140150.Google Scholar
Chilcot, J. (2012). The importance of illness perception in end-stage renal disease: associations with psychosocial and clinical outcomes. Seminars in Dialysis, 25(1), 5964.Google Scholar
Dew, M. A., DiMartini, A. F., Dabbs, A. D. V., et al. (2007). Rates and risk factors for nonadherence to the medical regimen after adult solid organ transplantation. Transplantation, 83(7), 858873.Google Scholar
Drew, D. A., Weiner, D. E., Tighiouart, H., et al. (2015). Cognitive function and all-cause mortality in maintenance hemodialysis patients. American Journal of Kidney Diseases, 65(2), 303311.Google Scholar
Elias, M. F., Elias, P. K., Seliger, S. L., et al. (2009). Chronic kidney disease, creatinine and cognitive functioning. Nephrology Dialysis Transplantation, 24(8), 24462452.Google Scholar
Griva, K., Thompson, D., Jayasena, D., et al. (2006). Cognitive functioning pre-to post-kidney transplantation: a prospective study. Nephrology Dialysis Transplantation, 21(11), 32753282.Google Scholar
Griva, K., Davenport, A., Harrison, M. & Newman, S. (2010). An evaluation of illness, treatment perceptions and depression in hospital versus home care dialysis. Journal of Psychosomatic Research, 69, 363370.Google Scholar
Griva, K., Davenport, A., Harrison, M. & Newman, S. P. (2012). The impact of treatment transitions between dialysis and transplantation on illness cognitions and quality of life: a prospective study. British Journal of Health Psychology, 17(4), 812827.Google Scholar
Griva, K., Lai, A. Y., Lim, H. A., et al. (2014). Non-adherence in patients on peritoneal dialysis: a systematic review. PLoS One, 9(2), e89001.Google Scholar
Griva, K., Nandakumar, M., Ng, JH, Lam KFY, James H. & Newman, S. (2018). Hemodialysis Self-management Intervention Randomised Trial (HED-SMART): A Practical Low-intensity intervention to improve adherence and clinical markers in patients receiving Hemodialysis. American Journal of Kidney Diseases, 71(3), 371381.Google Scholar
Hedayati, S. S., Minhajuddin, A. T., Afshar, M., et al. (2010). Association between major depressive episodes in patients with chronic kidney disease and initiation of dialysis, hospitalization, or death. JAMA, 303(19), 19461953.Google Scholar
Heiwe, S. & Jacobson, S. H. (2011). Exercise training for adults with chronic kidney disease. Cochrane Database of Systematic Reviews, 10, CD003236.Google Scholar
Jain, A. K., Blake, P., Cordy, P. & Garg, A. X. (2012). Global trends in rates of peritoneal dialysis. Journal of the American Society of Nephrology, 23(3), 533544.Google Scholar
Landreneau, K., Lee, K. & Landreneau, M. D. (2010). Quality of life in patients undergoing hemodialysis and renal transplantation: a meta-analytic review. Nephrology Nursing Journal, 37(1), 37.Google Scholar
Mapes, D. L., Lopes, A. A., Satayathum, S., et al. (2003). Health-related quality of life as a predictor of mortality and hospitalization: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Kidney International, 64(1), 339349.Google Scholar
Morton, R. L., Tong, A., Howard, K., Snelling, P. & Webster, A. C. (2010). The views of patients and carers in treatment decision making for chronic kidney disease: systematic review and thematic synthesis of qualitative studies. BMJ, 340, c112.Google Scholar
Murray, A. M. (2008). Cognitive impairment in the aging dialysis and chronic kidney disease populations: an occult burden. Advances in Chronic Kidney Disease, 15(2), 123132.Google Scholar
Murray, A. M., Pederson, S. L., Tupper, D. E., et al. (2007). Acute variation in cognitive function in hemodialysis patients: a cohort study with repeated measures. American Journal of Kidney Diseases, 50(2), 270278.Google Scholar
Palmer, S., Vecchio, M., Craig, J. C., et al. (2013). Prevalence of depression in chronic kidney disease: systematic review and meta-analysis of observational studies. Kidney International, 84(1), 179191.Google Scholar
Sharp, J., Wild, M. R. & Gumley, A. I. (2005). A systematic review of psychological interventions for the treatment of nonadherence to fluid-intake restrictions in people receiving hemodialysis. American Journal of Kidney Diseases, 45(1), 1527.Google Scholar
Tong, A., Sainsbury, P., Chadban, S., et al. (2009). Patients’ experiences and perspectives of living with CKD. American Journal of Kidney Diseases, 53(4), 689700.Google Scholar
Valderrabano, F., Jofre, R. & López-Gómez, J. M. (2001). Quality of life in end-stage renal disease patients. American Journal of Kidney Diseases, 38(3), 443464.Google Scholar

References

Astin, J., Beckner, W., Soeken, K., et al. (2002). Psychological interventions for rheumatoid arthritis: a meta-analysis of randomized controlled trials. Arthritis & Rheumatology, 47, 291302.Google Scholar
Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual Review of Psychology, 52, 126.Google Scholar
British Society of Rheumatology. (2013). Simple tasks: rheumatic conditions in the UK. http://80.87.12.43/includes/documents/cm_docs/2013/w/white_paper_report.pdf.Google Scholar
Cramp, F., Hewlett, S., Almeida, C., et al. (2013).Non-pharmacological interventions for fatigue in rheumatoid arthritis. Cochrane Database of Systematic Reviews, 8, CD008322.Google Scholar
De Silva, D. (2011). Evidence: Helping People Help Themselves. London: The Health Foundation.Google Scholar
Druce, K., Bhattacharya, Y., Jones, G., et al. (2016). Most patients who reach disease remission following anti-TNF therapy continue to report fatigue: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Rheumatology, advance access.Google Scholar
Dures, E. & Hewlett, S. (2012). Cognitive-behavioural approaches to self-management in rheumatic disease. Nature Reviews Rheumatology, 8, 553559.Google Scholar
Dures, E., Almeida, C., Caesley, J., et al. (2016). Patient preferences for psychological support in inflammatory arthritis: a multi-centre survey. Annals of the Rheumatic Diseases, 75, 142147.Google Scholar
Emery, P., Breedveld, F., Hall, S., et al. (2008). Comparison of methotrexate monotherapy with a combination of methotrexate and etanercept in active, early, moderate to severe rheumatoid arthritis (COMET): a randomised, double-blind, parallel treatment trial. Lancet, 372, 375382.Google Scholar
Evers, A., Zautra, A. & Thieme, K. (2011). Stress and resilience in rheumatic diseases: a review and glimpse into the future. Nature Reviews Rheumatology, 7, 409415.Google Scholar
Geenen, R., Newman, S., Bossema, E., et al. (2012). Psychological interventions for patients with rheumatic diseases and anxiety or depression. Best Practice & Research in Clinical Rheumatology, 26, 305319.Google Scholar
Hewlett, S., Ambler, N., Almeida, C., et al. (2011). Self-management of fatigue in rheumatoid arthritis: a randomised controlled trial of group cognitive-behavioural therapy. Annals of the Rheumatic Diseases, 70, 10601067.Google Scholar
Homer, D. (2005). Addressing psychological and social issues of rheumatoid arthritis within the consultation: a case report. Musculoskeletal Care, 3, 5459.Google Scholar
Knittle, K., Maes, S. & de Gucht, V. (2010). Psychological interventions for rheumatoid arthritis: examining the role of self-regulation with a systematic review and meta-analysis of randomized controlled trials. ,Arthritis Care & Research, 62, 14601472.Google Scholar
Laas, K., Roine, R., Räsänen, P., et al. (2009). Health-related quality of life in patients with common rheumatic diseases referred to a university clinic. Rheumatology International, 29, 267273.Google Scholar
Lorig, K. & Holman, H. (2003). Self-management education: history, definition, outcomes, and mechanisms. Annals of Behavioural Medicine, 26, 17.Google Scholar
Luqmani, R., Hennell, S. Estrach, C., et al. (2006). British Society for Rheumatology and British Health Professionals in Rheumatology guideline for the management of rheumatoid arthritis (the first 2 years). Rheumatology, 45, 11671169.Google Scholar
Maes, S. & Karoly, P. (2005). Self-regulation assessment and intervention in physical health and illness: a review. International Review of Applied Psychology, 54, 267299.Google Scholar
Matcham, F., Rayner, L., Steer, S., et al. (2013). The prevalence of depression in rheumatoid arthritis: a systemic review and meta-analysis. Rheumatology, 52, 21362148.Google Scholar
Matcham, F., Norton, S. & Scott, D. (2016). Symptoms of depression and anxiety predict treatment response and long-term physical health outcomes in rheumatoid arthritis: secondary analysis of a randomized controlled trial. Rheumatology, 55, 268278.Google Scholar
Polsky, D., Doshi, J., Marcus, S., et al. (2005). Long-term risk for depressive symptoms after a medical diagnosis. Archives of Internal Medicine, 165, 12601266.Google Scholar
Symmons, D., Turner, G., Webb, R., et al. (2002). The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. Rheumatology, 41, 793800.Google Scholar
Taylor, S., Pinnock, H. & Epiphanou, E., et al. (2014). A rapid synthesis of the evidence on interventions supporting self-management for people with long-term conditions: PRISMS – Practical systematic Review of Self-Management Support for long-term conditions. Health Service Delivery Research, 2, 53.Google Scholar
Van Hoogmoed, D., Fransen, J., Bleijenberg, G. et al. (2010). Physical and psychosocial correlates of severe fatigue in rheumatoid arthritis. Rheumatology, 49, 12941302.Google Scholar
Zyrianova, Y., Kelly, B., Sheehan, J., et al. (2011). The psychological impact of arthritis: the effects of illness perception and coping. Irish Journal of Medical Science, 180, 203210.Google Scholar

References

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn). Washington, DC: APA.Google Scholar
American Urological Association. (2007). The management of erectile dysfunction: an update. www.auanet.org/common/pdf/education/clinical-guidance/Erectile-Dysfunction.pdfGoogle Scholar
Bacon, C. G., Mittleman, M. A., Kawachi, I., et al. (2003). Sexual function in men older than 50 years of age: results from the health professionals follow-up study. Annals of Internal Medicine, 139, 161168.Google Scholar
Bodenmann, G., Ledermann, T., Blattner, D. & Galluzzo, C. (2006). Associations among everyday stress, critical life events, and sexual problems. The Journal of Nervous and Mental Disease, 194(7), 494501.Google Scholar
Brotto, L. A., Bitzer, J., Laan, E., et al. (2010). Women’s sexual desire and arousal disorders. The Journal of Sexual Medicine, 7, 586614.Google Scholar
Brotto, L., Atallah, S., Johnson-Agbakwu, C., et al. (2016). Psychological and interpersonal dimensions of sexual function and dysfunction. The Journal of Sexual Medicine, 13, 538571.Google Scholar
Buster, J. E. (2013). Managing female sexual dysfunction. Fertility and Sterility, 100(4), 905915.Google Scholar
Cao, S., Yin, X., Wang, Y., et al. (2013). Smoking and risk of erectile dysfunction: systematic review of observational studies with meta-analysis. PLoS One, 8(4), e60443. http://doi.org/10.1371/journal.pone.0060443.Google Scholar
Clayton, A. H., Croft, H. A., & Handiwala, L. (2014). Antidepressants and sexual dysfunction: mechanisms and clinical implications. Postgraduate Medicine, 126(2), 9199.Google Scholar
Feldman, H. A., Goldstein, I., Hatzlchristou, D. G., et al. (1994). Impotence and its medical and psychosocial correlates: results from the Massachusetts Male Aging Study. Journal of Urology, 151, 5461.Google Scholar
Fugl-Meyer, K. S., Bohm-Starke, N., Damsted Petersen, C., et al. (2013). Standard operating procedures for female genital sexual pain. The Journal of Sexual Medicine, 10, 8393.Google Scholar
Janiszewski, P. M., Janssen, I. & Ross, R. (2009). Abdominal obesity and physical inactivity are associated with erectile dysfunction independent of body mass index. The Journal of Sexual Medicine, 6, 19901998.Google Scholar
Laumann, E. O., Paik, A. & Rosen, R. C. (1999). Sexual dysfunction in the United States: prevalence and predictors. Journal of American Medical Association, 281, 537544.Google Scholar
Laumann, E. O., West, S., Glasser, D., et al. (2007). Prevalence and correlates of erectile dysfunction by race and ethnicity among men aged 40 or older in the United States: from the Male Attitudes Regarding Sexual Health Survey. The Journal of Sexual Medicine, 4, 5765.Google Scholar
Laumann, E. O., Das, A. & Waite, L. J. (2008). Sexual dysfunction among older adults: prevalence and risk factors from a nationally representative U.S. probability sample of men and women 57–85 years of age. The Journal of Sexual Medicine, 5, 23002311.Google Scholar
Laumann, E. O., Glasser, D. B., Neves, R. C. S., et al. (2009). A population-based survey of sexual activity, sexual problems and associated help-seeking behavior patterns in mature adults in the United States of America. International Journal of Impotence Research, 21, 171178.Google Scholar
Levin, R. J., Both, S., Georgiadis, J. et al. (2016). The physiology of female sexual function and the pathophysiology of female sexual dysfunction (Committee 13A). The Journal of Sexual Medicine, 13, 733759.Google Scholar
Lewis, R. W., Fugl-Meyer, K. S., Corona, G., et al. (2010). Definitions/epidemiology/risk factors for sexual dysfunction. The Journal of Sexual Medicine, 7, 15981607.Google Scholar
Lutfey, K. E., Link, C. L., Litman, H. J., et al. (2008). An examination of the association of abuse (physical, sexual, or emotional) and female sexual dysfunction: results from the Boston area community health survey. Fertility and Sterility, 90(4), 957964.Google Scholar
McCabe, M. P., Sharlip, I. D., Atalla, E., et al. (2016a). Definitions of sexual dysfunction in women and men: a consensus statement from the fourth international consultation on sexual medicine 2015. The Journal of Sexual Medicine, 13, 135143.Google Scholar
McCabe, M. P., Sharlip, I. D., Lewis, R., et al. (2016b). Incidence and prevalence of sexual dysfunction in women and men: a consensus statement from the fourth international consultation on sexual medicine 2015. The Journal of Sexual Medicine, 13, 144152.Google Scholar
McCabe, M. P., Sharlip, I. D., Lewis, R., et al. (2016c). Risk factors for sexual dysfunction among women and men: a consensus statement from the fourth international consultation on sexual medicine 2015. The Journal of Sexual Medicine, 13, 153167.Google Scholar
McVary, K. T. (2007). Erectile dysfunction. New England Journal of Medicine, 357, 24722481.Google Scholar
Nehra, A. (2009). Erectile dysfunction and cardiovascular disease: efficacy and safety of phosphodiesterase type 5 inhibitors in men with both conditions. Mayo Clinic Proceedings, 84(2), 139148.Google Scholar
Raina, R., Pahljani, G. & Khan, S. (2007). Female sexual dysfunction: classification, pathophysiology, and management. Fertility and Sterility, 88(5), 12731284.Google Scholar
Rosen, R. C., Fisher, W. A., Eardley, I., et al. (2004). The multinational men’s attitudes to life events and sexuality (MALES) study: I. Prevalence of erectile dysfunction and related health concerns in the general population. Current Medical Research and Opinion, 20, 607617.Google Scholar
Rosen, R. C., Shifren, J. L., Monz, B. U., et al., (2009). Correlates of sexually related personal distress in women with low sexual desire. The Journal of Sexual Medicine, 6, 15491560.Google Scholar
Rosen, R. C., Connor, M. K., Miyasato, G., et al. (2012). Sexual desire problems in women seeking healthcare: a novel study design in ascertaining prevalence of hypoactive sexual desire disorder in clinic-based samples of U.S. women. Journal of Women’s Health, 21(5), 505515.Google Scholar
Selvin, E., Burnett, A. L. & Platz, E. A. (2007). Prevalence and risk factors for erectile dysfunction in the US. The American Journal of Medicine, 120, 151157.Google Scholar
Shifren, J. L., Monz, B. U., Russo, P. A., et al. (2008). Sexual problems and distress in United States women: prevalence and correlates. Obstetrics & Gynecology, 112(5), 970978.Google Scholar
ter Kuile, M. M. & Reissing, E. D. (2014). Lifelong vaginismus. In Binik, Y. M. & Hall, K. S. K. (eds), Principles and Practice of Sex Therapy (5th edn). New York: Guildford Press.Google Scholar
US Food & Drug Administration. (2015). FDA approves first treatment for sexual desire disorder. www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm458734.htm.Google Scholar
Wincze, J. P. & Weisberg, R. B. (2015). Sexual Dysfunction: A Guide for Assessment and Treatment (3rd edn). New York: Guilford Press.Google Scholar

References

Alam, N., Chamot, E., Vermund, S. H., Streatfield, K. & Kristensen, S. (2010). Partner notification for sexually transmitted infections in developing countries: a systematic review. BMC Public Health, 10, 119.Google Scholar
Althaus, C. L., Turner, K. M., Mercer, C. H., et al. (2014). Effectiveness and cost-effectiveness of traditional and new partner notification technologies for curable sexually transmitted infections: observational study, systematic reviews and mathematical modelling. Health Technology Assessment, 18, 1100.Google Scholar
Ariely, D. & Loewenstein, G. (2006). The heat of the moment: the effect of sexual arousal on sexual decision making. Journal of Behavioral Decision Making, 19, 8798.Google Scholar
Armstrong, H., Steiner, R., Jayne, P. & Beltran, O. (2016). Individual-level protective factors for sexual health outcomes among sexual minority youth: a systematic review of the literature. Sexual Health. Epub ahead of print.Google Scholar
Bravo, P., Edwards, A., Rollnick, S. & Elwyn, G. (2010). Tough decisions faced by people living with HIV: a literature review of psychosocial problems. AIDS Reviews, 12, 7688.Google Scholar
Brewer, N. T. & Fazekas, K. I. (2007). Predictors of HPV vaccine acceptability: a theory-informed, systematic review. Preventive Medicine, 45(2), 107114.Google Scholar
Cardoza, V. J., Documet, P. I., Fryer, C. S., Gold, M. A. & Butler, J. (2012). Sexual health behavior interventions for U.S. Latino adolescents: a systematic review of the literature. Journal of Pediatric & Adolescent Gynecology, 25, 136149.Google Scholar
Daley, E. M., Perrin, K. M. K., McDermott, R. J., et al. (2010). The psychosocial burden of HPV: a mixed-method study of knowledge, attitudes and behaviors among HPV+ women. Journal of Health Psychology, 15, 279290.Google Scholar
Graf, A. S. & Patrick, J. H. (2015). Foundations of life-long sexual health literacy. Health Education, 115, 5670.Google Scholar
Li, Q., Li, X. & Stanton, B. (2010). Alcohol use among female sex workers and male clients: an integrative review of global literature. Alcohol and Alcoholism, 45, 188199.Google Scholar
Looker, K. J., Magaret, A. S., Turner, K. M., et al. (2015). Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One, 10, e114989.Google Scholar
Lorimer, K., Kidd, L., Lawrence, M., et al. (2013). Systematic review of reviews of behavioural HIV prevention interventions among men who have sex with men. AIDS Care, 25, 133150.Google Scholar
Merin, A. & Pachankis, J. E. (2011). The psychological impact of genital herpes stigma. Journal of Health Psychology, 16, 8090.Google Scholar
Milaszewski, D., Greto, E., Klochkov, T. & Fuller-Thomson, E. (2012). A systematic review of education for the prevention of HIV/AIDS among older adults. Journal of Evidence-Based Social Work, 9, 213230.Google Scholar
Musheke, M., Ntalasha, H., Gari, S., et al. (2013). A systematic review of qualitative findings on factors enabling and deterring uptake of HIV testing in Sub-Saharan Africa. BMC Public Health, 13, 220.Google Scholar
Naar-King, S., Parsons, J. T. & Johnson, A. M. (2012). Motivational interviewing targeting risk reduction for people with HIV: a systematic review. Current HIV/AIDS Reports, 9, 335343.Google Scholar
Nadarzynski, T., Smith, H., Richardson, D., Jones, C. J. & Llewellyn, C. D. (2014). Human papillomavirus and vaccine-related perceptions among men who have sex with men: a systematic review. Sexually Transmitted Infections, 90, 515523.Google Scholar
Newman, L., Rowley, J., Vander Hoorn, S., et al. (2015). Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PloS One, 10, e0143304.Google Scholar
Palumbo, R. (2015). Discussing the effects of poor health literacy on patients facing HIV: a narrative literature review. International Journal of Health Policy and Management, 4, 417430.Google Scholar
Raffaelli, M. & Crockett, L. J. (2003). Sexual risk taking in adolescence: the role of self-regulation and attraction to risk. Developmental Psychology, 39, 10361046.Google Scholar
Scott-Sheldon, L. A. J., Fielder, R. L. & Carey, M. P. (2010). Sexual risk reduction interventions for patients attending sexually transmitted disease clinics in the United States: a meta-analytic review, 1986 to early 2009. Annals of Behavioral Medicine., 40, 191204.Google Scholar
Sheeran, P., Abraham, C. & Orbell, S. (1999). Psychosocial correlates of heterosexual condom use: a meta-analysis. Psychological Bulletin, 125, 90132.Google Scholar
Shepherd, J., Kavanagh, J., Picot, J., et al. (2010). The effectiveness and cost-effectiveness of behavioural interventions for the prevention of sexually transmitted infections in young people aged 13–19: a systematic review and economic evaluation. Health Technology Assessment, 14, 1230.Google Scholar
Stanberry, L. R. & Rosenthal, S. L. (2012). Sexually Transmitted Diseases: Vaccines, Prevention, and Control. London: Academic.Google Scholar
World Health Organization. (2013). Sexually Transmitted Infections (STIs): The Importance of a Renewed Commitment to STI Prevention and Control in Achieving Global Sexual and Reproductive health. Geneva: WHO.Google Scholar

References

Adams-Graves, P. & Bronte-Jordan, L. (2016). Recent treatment guidelines for managing adult patients with sickle cell disease: challenges in access to care, social issues, and adherence. Expert Review of Hematology, 9, 541552.Google Scholar
Aneke, J. C. & Okocha, C. E. (2016). Sickle cell disease genetic counseling and testing: a review. Archives of Medicine and Health Sciences, 4, 5057.Google Scholar
Anie, K. A., Green, J., Tata, P., et al. (2002). Self-help manual-assisted cognitive behavioural therapy for sickle cell disease. Behavioural and Cognitive Psychotherapy, 30, 451458.Google Scholar
Ashley-Koch, A., Yang, Q. & Olney, R. S. (2000). Sickle hemoglobin (Hb S) allele and sickle cell disease: a HuGE review. American Journal of Epidemiology, 151, 839845.Google Scholar
Ballas, S. K., Gupta, K. & Adams-Graves, P. (2012). Sickle cell pain: a critical reappraisal. Blood, 120, 36473656.Google Scholar
Brawley, O. W., Cornelius, L. J., Edwards, L. R., et al. (2008). National Institutes of Health Consensus Development Conference statement: hydroxyurea treatment for sickle cell disease. Annals of Internal Medicine, 148, 932938.Google Scholar
Bunn, H. F. (2013). The triumph of good over evil: protection by the sickle gene against malaria. Blood, 121, 2025.Google Scholar
Dyson, S. M., Abuateya, H., Atkin, K., et al. (2010a). Reported school experiences of young people living with sickle cell disorder in England. British Educational Research Journal, 36, 125142.Google Scholar
Dyson, S. M., Atkin, K., Culley, L. A., et al. (2010b). Disclosure and sickle cell disorder: a mixed methods study of the young person with sickle cell at school. Social Science & Medicine, 70, 20362044.Google Scholar
Elander, J., Lusher, J., Bevan, D., Telfer, P. & Burton, B. (2004). Understanding the causes of problematic pain management in sickle cell disease: evidence that pseudoaddiction plays a more important role than genuine analgesic dependence. Journal of Pain and Symptom Management, 27, 156169.Google Scholar
Elander, J., Marczewska, M., Amos, R., Thomas, A. & Tangayi, S. (2006). Factors affecting hospital staff judgements about sickle cell disease pain. Journal of Behavioral Medicine, 29, 203214.Google Scholar
Freiermuth, C. E., Silva, S., Cline, D. M. & Tanabe, P. (2016). Shift in emergency department provider attitudes toward patients with sickle cell disease. Advanced Emergency Nursing Journal, 38, 199212.Google Scholar
Glassberg, J. A., Tanabe, P., Chow, A., et al. (2013). Emergency provider analgesic practices and attitudes toward patients with sickle cell disease. Annals of Emergency Medicine, 62, 293302.Google Scholar
Hassell, K. L. (2010). Population estimates of sickle cell disease in the US. American Journal of Preventive Medicine, 38, S512S521.Google Scholar
Haywood, Jr, C., Lanzkron, S., Hughes, M. T., et al. (2011). A video-intervention to improve clinician attitudes toward patients with sickle cell disease: the results of a randomized experiment. Journal of General Internal Medicine, 26, 518523.Google Scholar
Haywood, C., Tanabe, P., Naik, R., Beach, M. C. & Lanzkron, S. (2013). The impact of race and disease on sickle cell patient wait times in the emergency department. The American Journal of Emergency Medicine, 31, 651656.Google Scholar
Jonassaint, C. R., Beach, M. C., Haythornthwaite, J. A., et al. (2016). The association between educational attainment and patterns of emergency department utilization among adults with sickle cell disease. International Journal of Behavioral Medicine, 23, 300309.Google Scholar
Labbé, E., Herbert, D. & Johnson, H. (2005). Physicians’ attitude and practices in sickle cell disease pain management. Journal of Palliative Care, 21, 246.Google Scholar
Lanzkron, S., Carroll, C. P. & Haywood, C. Jr (2013). Mortality rates and age at death from sickle cell disease: US, 1979–2005. Public Health Reports, 110–116.Google Scholar
Masuda, A., Cohen, L. L., Wicksell, R. K., Kemani, M. K. & Johnson, A. (2011). A case study: acceptance and commitment therapy for pediatric sickle cell disease. Journal of Pediatric Psychology, 36, 398408.Google Scholar
McClish, D. K., Penberthy, L. T., Bovbjerg, V. E., et al. (2005). Health related quality of life in sickle cell patients: the PiSCES project. Health and Quality of Life Outcomes, 3, 50.Google Scholar
National Institute for Health and Care Excellence (2015). Sickle cell acute painful episode overview. www.nice.org.uk/Guidance/CG143.Google Scholar
National Institutes of Health, National Heart, Lung, and Blood Institute (2014). Evidence-based management of sickle cell disease: expert panel report. www.nhlbi.nih.gov/health-pro/guidelines/sickle-cell-diseaseguidelinesGoogle Scholar
Ola, B. A., Yates, S. J. & Dyson, S. M. (2016). Living with sickle cell disease and depression in Lagos, Nigeria: a mixed methods study. Social Science & Medicine, 161, 2736.Google Scholar
Piel, F. B., Patil, A. P., Howes, R. E., et al. (2013). Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet, 381(9861), 142151.Google Scholar
Ryan, K., Bain, B. J., Worthington, D., et al. (2010). Significant haemoglobinopathies: guidelines for screening and diagnosis. British Journal of Haematology, 149, 3549.Google Scholar
Streetly, A., Maxwell, K. & Mejia, A. (1997). Sickle Cell Disorder in Greater London: A Needs Assessment of Screening and Care Services. Fair Shares for London. London: United Medical and Dental Schools, Department of Public Health Medicine.Google Scholar
Streetly, A., Latinovic, R. & Henthorn, J. (2010). Positive screening and carrier results for the England-wide universal newborn sickle cell screening programme by ethnicity and area for 2005–07. Journal of Clinical Pathology, 63, 626629.Google Scholar
Treadwell, M., Telfair, J., Gibson, R. W., Johnson, S. & Osunkwo, I. (2011). Transition from pediatric to adult care in sickle cell disease: establishing evidence‐based practice and directions for research. American Journal of Hematology, 86, 116120.Google Scholar
Walters, M. C. (2015). Update of hematopoietic cell transplantation for sickle cell disease. Current Opinion in Hematology, 22, 227233.Google Scholar
Wang, W., Enos, L., Gallagher, D., et al. (2001). Neuropsychologic performance in school-aged children with sickle cell disease: a report from the Cooperative Study of Sickle Cell Disease. The Journal of Pediatrics, 139, 391397.Google Scholar
Williams, T. N. & Obaro, S. K. (2011). Sickle cell disease and malaria morbidity: a tale with two tails. Trends in Parasitology, 27, 315320.Google Scholar

References

Balato, N., Megna, M., Di Costanzo, L., et al. (2013). Educational and motivational support service: a pilot study for mobile-phone-based interventions in patients with psoriasis. The British Journal of Dermatology, 168, 201205.Google Scholar
Beattie, P. E. & Lewis-Jones, M. S. (2006). A comparative study of impairment of quality of life in children with skin disease and children with other chronic childhood diseases. The British Journal of Dermatology, 155, 145151.Google Scholar
Beikert, F. C., Langenbruch, A. K., Radtke, M. A., et al. (2014). Willingness to pay and quality of life in patients with atopic dermatitis. Archives of Dermatological Research, 306, 279286.Google Scholar
Boehm, D., Schmid-Ott, G., Finkeldey, F., et al. (2012). Anxiety, depression and impaired health-related quality of life in patients with occupational hand eczema. Contact Dermatitis, 67, 184192.Google Scholar
Bostoen, J., Bracke, S., De Keyser, S., et al. (2012). An educational programme for patients with psoriasis and atopic dermatitis: a prospective randomized controlled trial. The British Journal of Dermatology, 167, 10251031.Google Scholar
Cvetkovski, R. S., Zachariae, R., Jensen, H., et al. (2006). Quality of life and depression in a population of occupational hand eczema patients. Contact Dermatitis, 54, 106111.Google Scholar
Dalgard, F., Gieler, U., Holm, J. O., et al. (2008). Self-esteem and body satisfaction among late adolescents with acne: results from a population survey. Journal of the American Academy of Dermatology, 59, 746751.Google Scholar
Devaux, S., Castela, A., Archier, E., et al. (2012). Adherence to topical treatment in psoriasis: a systematic literature review. Journal of the European Academy of Dermatology and Venereology: JEADV, 26 (Suppl. 3), 6167.Google Scholar
Dowlatshahi, E. A., Wakkee, M., Arends, L. R., et al. (2014). The prevalence and odds of depressive symptoms and clinical depression in psoriasis patients: a systematic review and meta-analysis. The Journal of Investigative Dermatology, 134, 15421551.Google Scholar
Ersser, S. J., Cowdell, F. C., Nicholls, P. G., et al. (2012). A pilot randomized controlled trial to examine the feasibility and efficacy of an educational nursing intervention to improve self-management practices in patients with mild–moderate psoriasis. Journal of the European Academy of Dermatology and Venereology, 26, 738745.Google Scholar
Genuneit, J., Braig, S., Brandt, S., et al. (2014). Infant atopic eczema and subsequent attention-deficit/hyperactivity disorder: a prospective birth cohort study. Pediatric Allergy and Immunology: Official Publication of the European Society of Pediatric Allergy and Immunology, 25, 5156.Google Scholar
Halvorsen, J. A., Stern, R. S., Dalgard, F., et al. (2011). Suicidal ideation, mental health problems, and social impairment are increased in adolescents with acne: a population-based study. The Journal of Investigative Dermatology, 131, 363370.Google Scholar
Halvorsen, J. A., Lien, L., Dalgard, F., et al. (2014). Suicidal ideation, mental health problems, and social function in adolescents with eczema: a population-based study. The Journal of Investigative Dermatology, 134, 18471854.Google Scholar
Hay, R. J., Johns, N. E., Williams, H. C., et al. (2014). The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. The Journal of Investigative Dermatology, 134, 15271534.Google Scholar
Loite, U., Kingo, K., Reimann, E., et al. (2013). Gene expression analysis of the corticotrophin-releasing hormone-proopiomelanocortin system in psoriasis skin biopsies. Acta Dermato-Venereologica, 93, 400405.Google Scholar
Magnezi, R., Glasser, S., Shalev, H., et al. (2014). Patient activation, depression and quality of life. Patient Education and Counseling, 94, 432437.Google Scholar
Matsuoka, Y., Yoneda, K., Sadahira, C., et al. (2006). Effects of skin care and makeup under instructions from dermatologists on the quality of life of female patients with acne vulgaris. The Journal of Dermatology, 33, 745752.Google Scholar
Matterne, U., Schmitt, J., Diepgen, T. L., et al. (2011). Children and adolescents’ health-related quality of life in relation to eczema, asthma and hay fever: results from a population-based cross-sectional study. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation, 20, 12951305.Google Scholar
Misery, L., Finlay, A. Y., Martin, N., et al. (2007). Atopic dermatitis: impact on the quality of life of patients and their partners. Dermatology, 215, 123129.Google Scholar
Monti, F., Agostini, F., Gobbi, F., et al. (2011). Quality of life measures in Italian children with atopic dermatitis and their families. Italian Journal of Pediatrics, 37, 59.Google Scholar
Mueller, S. M., Itin, P., Vogt, D. R., et al. (2016). Assessment of ‘corticophobia’ as an indicator of non-adherence to topical corticosteroids: a pilot study. The Journal of Dermatological Treatment, 28: 104111.Google Scholar
Onderdijk, A. J., van der Zee, H. H., Esmann, S., et al. (2013). Depression in patients with hidradenitis suppurativa. Journal of the European Academy of Dermatology and Venereology, 27, 473478.Google Scholar
Picardi, A., Abeni, D., Melchi, C. F., et al. (2000). Psychiatric morbidity in dermatological outpatients: an issue to be recognized. The British Journal of Dermatology, 143, 983991.Google Scholar
Pickett, K., Frampton, G. & Loveman, E. (2016). Education to improve quality of life of people with chronic inflammatory skin conditions: a systematic review of the evidence. The British Journal of Dermatology, 174, 12281241.Google Scholar
Sanna, L., Stuart, A. L., Pasco, J. A., et al. (2014). Atopic disorders and depression: findings from a large, population-based study. Journal of Affective Disorders, 155, 261265.Google Scholar
Santer, M., Muller, I., Yardley, L., et al. (2014). Supporting self-care for families of children with eczema with a web-based intervention plus health care professional support: pilot randomized controlled trial. Journal of Medical Internet Research, 16, e70.Google Scholar
Schmitt, J., Romanos, M., Pfennig, A., et al. (2009). Psychiatric comorbidity in adult eczema. The British Journal of Dermatology, 161, 878883.Google Scholar
Schmitt, J., Apfelbacher, C., Heinrich, J., et al. (2013). [Association of atopic eczema and attention-deficit/hyperactivity disorder: meta-analysis of epidemiologic studies]. Zeitschrift fur Kinder- und Jugendpsychiatrie und Psychotherapie, 41, 3542.Google Scholar
Schwartz, J., Evers, A. W., Bundy, C., et al. (2016). Getting under the skin: Report from the International Psoriasis Council Workshop on the role of stress in psoriasis. Frontiers in Psychology, 7, 87.Google Scholar
Sinikumpu, S. P., Huilaja, L., Jokelainen, J., et al. (2014). High prevalence of skin diseases and need for treatment in a middle-aged population: a Northern Finland Birth Cohort 1966 study. PloS One, 9, e99533.Google Scholar
Snyder, S., Crandell, I., Davis, S. A., et al. (2014). Medical adherence to acne therapy: a systematic review. American Journal of Clinical Dermatology, 15, 8794.Google Scholar
Staab, D., Diepgen, T. L., Fartasch, M., et al. (2006). Age related, structured educational programmes for the management of atopic dermatitis in children and adolescents: multicentre, randomised controlled trial. BMJ, 332, 933938.Google Scholar
Thorneloe, R. J., Bundy, C., Griffiths, C. E., et al. (2013). Adherence to medication in patients with psoriasis: a systematic literature review. The British Journal of Dermatology, 168, 2031.Google Scholar
van Os-Medendorp, H., Ros, W. J., Eland-de Kok, P. C., et al. (2007). Effectiveness of the nursing programme ‘Coping with itch’: a randomized controlled study in adults with chronic pruritic skin disease. The British Journal of Dermatology, 156, 12351244.Google Scholar
Verhoeven, E. W., Kraaimaat, F. W., Jong, E. M., et al. (2009). Effect of daily stressors on psoriasis: a prospective study. The Journal of Investigative Dermatology, 129, 20752077.Google Scholar
Zschocke, I., Mrowietz, U., Karakasili, E., et al. (2014). Non-adherence and measures to improve adherence in the topical treatment of psoriasis. Journal of the European Academy of Dermatology and Venereology, 28 (Suppl. 2), 49.Google Scholar

References

Adzick, N. S., Thom, E. A., Spong, C. Y., et al. (2011). A randomized trial of prenatal versus postnatal repair of myelomeningocele. New England Journal of Medicine, 364, 9931004.Google Scholar
Ammerman, R. T., Kane, V. R., Slomka, G. T., et al. (1998). Psychiatric symptomatology and family functioning in children and adolescents with spina bifida. Journal of Clinical Psychology in Medical Settings, 5, 449465.Google Scholar
Bellin, M. H. & Rice, K. M. (2009). Individual, family, and peer factors associated with the quality of sibling relationships in families of youths with spina bifida. Journal of Family Psychology, 23, 3947.Google Scholar
Brookshire, B. L., Fletcher, J. M., Bohan, T. P., et al. (1995). Verbal and nonverbal skill discrepancies in children with hydrocephalus: a five-year longitudinal follow-up. Journal of Pediatric Psychology, 20, 785800.Google Scholar
Chernoff, R. G., List, D. G., DeVet, K. A., et al. (2001). Maternal reports of raising children with chronic illnesses: the prevalence of positive thinking. Ambulatory Pediatrics, 1, 104107.Google Scholar
Donders, J., Rourke, B. P. & Canady, A. I. (1991). Neuropsychological functioning of hydrocephalic children. Journal of Clinical and Experimental Neuropsychology, 13, 607613.Google Scholar
Holmbeck, G. N. & Devine, K. A. (2010). Psychosocial and family functioning in spina bifida. Developmental Disabilities Research Reviews, 16, 4046.Google Scholar
Holmbeck, G. N., Greenley, R. N., Coakley, R. M., et al. (2006). Family functioning in children and adolescents with spina bifida. Journal of Developmental & Behavioral Pediatrics, 27, 249277.Google Scholar
Hunt, G. M. & Oakeshott, P. (2003). Outcome in people with open spina bifida at age 35: prospective community based cohort study. BMJ, 326, 13651366.Google Scholar
Iddon, J. L., Morgan, D. J. R., Loveday, C., et al. (2004). Neuropsychological profile of young adults with spina bifida with or without hydrocephalus. Journal of Neurology, Neurosurgery & Psychiatry, 75, 11121118.Google Scholar
Khoshnood, B., Loane, M., de Walle, H., et al. (2015). Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ (Clinical Research Ed.), 351, h5949.Google Scholar
Landry, S. H., Taylor, H. B., Swank, P. R., et al. (2013). Longitudinal mediators of social problem solving in spina bifida and typical development. Rehabilitation Psychology, 58, 196205.Google Scholar
Mahone, E. M., Zabel, T. A., Levey, E., et al. (2002). Parent and self-report ratings of executive function in adolescents with myelomeningocele and hydrocephalus. Child Neuropsychology, 8, 258270.Google Scholar
Mitchell, L. E., Adzick, N. S., Melchionne, J., et al. (2004). Spina bifida. Lancet, 364, 18851895.Google Scholar
Oakeshott, P., Reid, F., Poulton, A., et al. (2015). Neurological level at birth predicts survival to the mid-40s and urological deaths in open spina bifida: a complete prospective cohort study. Developmental Medicine & Child Neurology, 57, 634638.Google Scholar
Padua, L., Rendeli, C., Rabini, A., et al. (2002). Health-related quality of life and disability in young patients with spina bifida. Archives of Physical Medicine and Rehabilitation, 83, 13841388.Google Scholar
Parker, S. E., Mai, C. T., Canfield, M. A., et al. (2010). Updated national birth prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Research Part A: Clinical and Molecular Teratology, 88, 10081016.Google Scholar
Pinquart, M. & Teubert, D. (2012). Academic, physical, and social functioning of children and adolescents with chronic physical illness: a meta-analysis. Journal of Pediatric Psychology, 37, 376389.Google Scholar
Pit-ten Cate, I. M. & Loots, G. M. P. (2000). Experiences of siblings of children with physical disabilities: an empirical investigation. Disability and Rehabilitation, 22, 130.Google Scholar
Pit-ten Cate, I. M., Kennedy, C. & Stevenson, J. (2002). Disability and quality of life in spina bifida and hydrocephalus. Developmental Medicine & Child Neurology, 44, 317322.Google Scholar
Rose, B. M. & Holmbeck, G. N. (2007). Attention and executive functions in adolescents with spina bifida. Journal of Pediatric Psychology, 32, 983994.Google Scholar
Tuminello, E. R., Holmbeck, G. N. & Olson, R. (2012). Executive functions in adolescents with spina bifida: relations with autonomy development and parental intrusiveness. Child Neuropsychology, 18, 105124.Google Scholar
Veenboer, P. W., Procee, A. I., Verheijden, J. M. A., et al. (2014). Medical and psychosocial problems in middle-aged spina bifida patients: survey among members of the Dutch patients’ association. Disability and Rehabilitation, 36, 539545.Google Scholar
Vermaes, I. P., Janssens, J. M., Bosman, A. M., et al. (2005). Parents’ psychological adjustment in families of children with spina bifida: a meta-analysis. BMC Pediatrics, 5, 32.Google Scholar
Vermaes, I. P. R., Janssens, J. M. A. M., Mullaart, R. A., et al. (2008). Parents’ personality and parenting stress in families of children with spina bifida. Child: Care, Health and Development, 34, 665674.Google Scholar
Wills, K. E. (1993). Neuropsychological functioning in children with spina-bifida and or hydrocephalus. Journal of Clinical Child Psychology, 22, 247265.Google Scholar
Yeates, K. O., Fletcher, J. M. & Dennis, M. (2008). Spina bifida and hydrocephalus. In Morgan, J. E. & Ricker, J. H. (eds), Textbook of Clinical Neuropsychology (pp. 128148). New York: Taylor & Francis.Google Scholar

References

Anderson, K. D., Borisoff, J., Johnson, R., Stiens, S. & Elliott, S. (2007). The impact of spinal cord injury on sexual function: concerns of the general population. Spinal Cord, 45, 328337.Google Scholar
Berry, C. & Kennedy, P. (2003). A psychometric analysis of the Needs Assessment Checklist (NAC). Spinal Cord, 41, 490501.Google Scholar
Carpenter, C., Forwell, S., Jongbloed, L. & Blackman, C. (2007). Community participation after spinal cord injury. Archives of Physical Medicine and Rehabilitation, 88, 427433.Google Scholar
Couldrick, L., Sadlo, G. & Cross, V. (2010), Proposing a new sexual health model of practice for disability teams: the recognition model. International Journal of Therapy and Rehabilitation., 17, 290293.Google Scholar
Craig, A. & Tran, Y. (2008). Psychosocial Aspects Associated with Spinal Cord Injury Rehabilitation. New York: Nova Biomedical.Google Scholar
Craig, A. R., Hancock, K., Chang, E. & Dickson, H. G. (1998). Immunizing against depression and anxiety after spinal cord injury. Archives of Physical Medicine and Rehabilitation, 79(4), 375377.Google Scholar
Crewe, N. M., Athelston, G. P. & Krumberger, J. (1979). Spinal cord injury: a comparison of pre-injury and post-injury marriages. Archives of Physical Medicine and Rehabilitation, 60, 252256.Google Scholar
De Vivo, M. J. & Stover, S. L. (1995). Long-term survival and causes of death. In: Stover, S. L., DeLisa, J. A. & Whiteneck, G. G. (eds), Spinal Cord Injury: Clinical Outcomes from the Model Systems. Gaithersburg, MD: Aspen.Google Scholar
DeVivo, M. J., Black, K. J., Richard, J. & Stover, S. L. (1991). Suicide following a spinal cord injury. Paraplegia, 29, 620627.Google Scholar
Duff, J. & Kennedy, P. (2003). Spinal cord injury. In: Llewelyn, S. & Kennedy, P. (eds), Handbook of Clinical Health Psychology (pp. 251278). Chichester: John Wiley & Sons.Google Scholar
Duff, J., Evans, M. & Kennedy, P. (2004). Goal planning: a retrospective audit of rehabilitation process and outcome. Clinical Rehabilitation, 18, 275286.Google Scholar
Elliott, T. R. & Kennedy, P. (2004). Treatment of depression following spinal cord injury: an evidence-based review. Rehabilitation Psychology, 49(2), 134139.Google Scholar
Galvin, L. R. & Godfrey, H. P. D. (2001). The impact of coping on emotional adjustment to spinal cord injury (SCI): review of the literature and application of a stress appraisal and coping formulation. Spinal Cord, 39, 615627.Google Scholar
Keith, R. A. & Lipsey, M. W. (1993). The role of theory and rehabilitation assessment, treatment and outcomes. In: Glueckauf, R. L., Sechrest, L. B., Bond, G. R. & McDonell, E. C. (eds), Improving Assessment in Rehabilitation in Health (pp. 3360). Thousand Oaks, CA: Sage.Google Scholar
Kennedy, P. & Garmon-Jones, L. (2016) Self-harm and suicide pre and post spinal cord injury; a systematic review. Spinal Cord, 55, 27.Google Scholar
Kennedy, P. & Hamilton, L. R. (1999). The needs assessment checklist: a clinical approach to measuring outcome. Spinal Cord, 37, 136139.Google Scholar
Kennedy, P. & Rogers, B. (2000). Anxiety and depression after spinal cord injury: a longitudinal analysis. Archives of Physical Medicine and Rehabilitation, 81, 932937.Google Scholar
Kennedy, P. & Smithson, E. (2012). Psychosocial aspects of spinal cord injury. In Fehlings, M. G., Boakye, M., Ditunno, J., et al. (eds), Essentials of Spinal Cord Injury. New York: Thieme.Google Scholar
Kennedy, P., Marsh, N., Lowe, R., et al. (2000). A longitudinal analysis of psychological impact and coping strategies following spinal cord injury. British Journal of Health Psychology, 5, 157172.Google Scholar
Kennedy, P., Duff, J., Evans, M. & Beedie, A. (2003). Coping effectiveness training reduces depression and anxiety following traumatic spinal cord injuries. British Journal of Clinical Psychology, 42, 4152.Google Scholar
Kennedy, P., Lude, P. & Taylor, N. (2006). Quality of life, social participation, appraisals and coping post spinal cord injury: a review of four community samples. Spinal Cord, 44, 95105.Google Scholar
Kennedy, P., Lude, P., Elfström, M. L. & Smithson, E. (2012a). Appraisals, coping and adjustment pre and post spinal cord injury rehabilitation: a two-year follow-up study. Spinal Cord, 50, 112118.Google Scholar
Kennedy, P., Smithson, E. F. & Blakey, L. C. (2012b). Planning and structuring spinal cord injury rehabilitation: the needs assessment checklist. Topics in Spinal Cord Injury Rehabilitation, 18(2), 135137.Google Scholar
King, C. & Kennedy, P. (1999). Coping effectiveness training for people with spinal cord injury: preliminary results of a controlled trial. British Journal of Clinical Psychology, 38, 514.Google Scholar
Krause, J. S. & Coker, J. L. (2006). Aging after spinal cord injury: A 30-year longitudinal study. J Spinal Cord Med. 29(4), 371–6.Google Scholar
Kreuter, M. (2000). Spinal cord injury and partner relationships. Spinal Cord, 38(1), 26.Google Scholar
Lazarus, R. S. & Folkman, S. (1984). Stress, Appraisal and Coping. New York: Springer.Google Scholar
Martz, E., Livneh, H., Priebe, M. & Weurmser, L. (2005). Predictors of psychosocial adaptation among people with spinal cord injury or disorder. Archives of Physical Medicine and Rehabilitation, 86, 11821192.Google Scholar
McCaughey, E., Purcell, M., McLean, A., et al. (2016). Changing demographics of spinal cord injury over a 20-year period: a longitudinal population-based study in Scotland. Spinal Cord, 54, 270276.Google Scholar
Middleton, J. & Craig, A. (2008). Psychological challenges in treating persons with spinal cord injury. In Craig, A. & Tran, Y. (eds), Psychosocial Aspects Associated with Spinal Cord Injury Rehabilitation. New York: Nova Biomedical.Google Scholar
Norris-Baker, C., Stephens, M. A., Rintala, M. A. & Willens, E. P. (1981). Patient behaviour as a predictor of outcomes in spinal cord injury. Archives of Physical Medicine and Rehabilitation, 62, 602608.Google Scholar
Peter, C., Muller, R., Post, M., et al. (2015). Depression in spinal cord injury: assessing the role of psychological resources. Rehabilitation Psychology, 60, 6780.Google Scholar
Pollard, C. & Kennedy, P. (2007). A longitudinal analysis of emotional impact, coping strategies and post-traumatic psychological growth following spinal cord injury: a 10-year review. British Journal of Health Psychology, 12, 347362.Google Scholar
Post, M. & van Leeuwen, C. (2012).Psychosocial issues in spinal cord injury: a review. Spinal Cord, 50, 382389.Google Scholar
Siosteen, A., Lundqvist, C., Blomstrand, C., Sullivan, L. & Sullivan, M. (1990). Sexual ability, activity, attitudes and satisfaction as part of adjustment in spinal cord injured subjects. Paraplegia, 28, 285295.Google Scholar
Tirch, D. D. & Radnitz, C. L. (2000). Spinal cord injury. In Radnitz, C. L. (ed.), Cognitive Behaviour Therapy for Persons with Disabilities. Lanham, MD: Jason Aronson Inc.Google Scholar
Trieschmann, R. B. (1988). Spinal Cord Injuries: Psychological, Social and Vocational Rehabilitation. Scottsdale, AZ: Demos.Google Scholar

References

Arroll, B., Elley, C. R., Fishman, T., et al. (2009). Antidepressants versus placebo for depression in primary care. Cochrane Database of Systematic Reviews, 3, CD007954.Google Scholar
Ayerbe, L., Ayis, S., Wolfe, C. D. A., et al. (2013a). Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. British Journal of Psychiatry, 202, 1421.Google Scholar
Ayerbe, L., Ayis, S., Crichton, S. et al. (2013b). The long-term outcomes of depression up to 10 years after stroke: the South London Stroke Register. J Neurol Neurosurg Psychiatry. DOI: 10.1136/jnnp-2013-306448.Google Scholar
Ayerbe, L., Ayis, S. A., Crichton, S., et al. (2014). Natural history, predictors and associated outcomes of anxiety up to 10 years after stroke: the South London Stroke Register. Age and Ageing, 43(4), 542547.Google Scholar
Ayis, S. A., Ayerbe, L., Crichton, S. L., et al. (2016). The natural history of depression and trajectories of symptoms long term after stroke: the prospective South London Stroke Register. Journal of Affective Disorders, 194, 6571.Google Scholar
Bisson, J. & Andrew, M. (2007). Psychological treatment of post-traumatic stress disorder. Cochrane Database of Systematic Reviews, 3, CD003388.Google Scholar
British Psychological Society (BPS). (2010). Psychological Services for Stroke Survivors and their Families. Leicester: BPS.Google Scholar
Campbell Burton, C. A. & Holmes, J. (2011). Interventions for treating anxiety after stroke. Cochrane Database of Systematic Reviews, 12, CD008860.Google Scholar
Crichton, S. L., Bray, B. D., McKevitt, C., et al. (2016). Patient outcomes up to 15 years after stroke: survival, disability, quality of life, cognition and mental health. Journal of Neurology, Neurosurgery and Psychiatry, 87, 10911098.Google Scholar
de Ridder, D., Geenen, R., Kuijer, R., et al. (2008). Psychological adjustment to chronic disease. Lancet, 372 (9634), 246255.Google Scholar
Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., et al. (2014). Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet, 383(9913), 245255.Google Scholar
Fudge, N., Wolfe, C. D. & McKevitt, C. (2008). Assessing the promise of user involvement in health service development: ethnographic study. BMJ, 336(7639), 313317.Google Scholar
Gillham, S. & Clarke, L. (2011). Psychological Care After Stroke: Improving Stroke Services for People With Cognitive and Mood Disorders. Leicester: NHS Improvement.Google Scholar
Golding, K., Kneebone, I. I. & Fife-Schaw, C. (2015). Self-help relaxation for post-stroke anxiety: a randomised, controlled pilot study. Clinical Rehabilitation, 30, 174180.Google Scholar
Graham, C. D., Gillanders, D., Stuart, S., et al. (2014). An acceptance and commitment therapy (ACT)-based intervention for an adult experiencing post-stroke anxiety and medically unexplained symptoms. Clinical Case Studies, 14, 8397.Google Scholar
Hackett, M. L., Anderson, C. S., House, A., et al. (2009). Interventions for treating depression after stroke. Stroke, 40, e487.Google Scholar
Hackett, M. L., Köhler, S., O’Brien, J. T., et al. (2014). Neuropsychiatric outcomes of stroke. Lancet Neurology, 13, 525534.Google Scholar
Hatano, S. (1976). Experience from a multicentre stroke register: a preliminary report. Bulletin of the World Health Organization, 54, 514553.Google Scholar
Lincoln, N. B. & Flannaghan, T. (2003). Cognitive behavioural psychotherapy for depression following stroke. Stroke, 34, 111115.Google Scholar
McKenna, S., Jones, F., Glenfield, P., et al. (2015). Bridges self‐management program for people with stroke in the community: a feasibility randomized controlled trial. International Journal of Stroke, 10(5), 697704.Google Scholar
McKevitt, C., Fudge, N. & Wolfe, C. (2010). What is involvement in research and what does it achieve? Reflections on a pilot study of the personal costs of stroke. Health Expectations, 13(1), 8694.Google Scholar
McKevitt, C., Fudge, N., Redfern, J., et al. (2011). Self-reported long-term needs after stroke. Stroke, 42(5), 13981403.Google Scholar
Menlove, L., Crayton, E., Kneebone, I. I., et al. (2015). Predictors of anxiety after stroke: a systematic review of observational studies. Journal of Stroke and Cerebrovascular Diseases, 24(6), 11071117.Google Scholar
National Audit Office (NAO). (2010). Progress in Improving Stroke Care: A Good Practice Guide. Norwich: Stationery Office.Google Scholar
National Stroke Foundation, Australia. (2013). The needs of stroke survivors in Australia. http://youngstroke.org/wp-content/uploads/2014/03/NSF700_SS_Needs_web2.pdf (accessed 20 October 2016).Google Scholar
Pellerin, C., Rochette, A. & Racine, E. (2011). Social participation of relatives post-stroke: the role of rehabilitation and related ethical issues. Disability and Rehabilitation, 33(13–14), 10551064.Google Scholar
Pluta, A., Ulatowska, H., Gawron, N., et al. (2015). A thematic framework of illness narratives produced by stroke patients. Disability and Rehabilitation, 37(13), 11701177.Google Scholar
Pollock, A., St George, B., Fenton, M. et al. (2014). Top 10 research priorities relating to life after stroke: consensus from stroke survivors, caregivers, and health professionals. International Journal of Stroke, 9(3), 313320.Google Scholar
Sadler, E., Wolfe, C. D. & McKevitt, C. (2014). Lay and health care professional understandings of self-management: a systematic review and narrative synthesis. SAGE Open Medicine, 2. DOI: 10.1177/2050312114544493.Google Scholar
Sadler, E., Sarre, S., Tinker, A., et al. (2016). Developing a novel peer support intervention to promote resilience after stroke. Health & Social Care in the Community. DOI: 10.1111/hsc.12336.Google Scholar
Sarre, S., Redlich, C., Tinker, A., et al. (2014). A systematic review of qualitative studies on adjusting after stroke: lessons for the study of resilience. Disability and Rehabilitation, 36(9), 716726.Google Scholar
Schmid, A. A., Kroenke, K., Hendrie, H. C., et al. (2011). Poststroke depression and treatment effects on functional outcomes. Neurology, 76, 10001005.Google Scholar
Scottish Intercollegiate Guidelines Network (SIGN). (2010). Management of Patients with Stroke: Rehabilitation, Prevention and Management of Complications, and Discharge Planning. Edinburgh: SIGN.Google Scholar
Soo, C. & Tate, R. (2007). Psychological treatment for anxiety in people with traumatic brain injury. Cochrane Database of Systematic Reviews, 3, CD005239.Google Scholar
Walsh, M. E., Galvin, R., Loughnane, C., et al. (2015a). Community re-integration and long-term need in the first five years after stroke: results from a national survey. Disability and Rehabilitation, 37(20), 18341838.Google Scholar
Walsh, M. E., Galvin, R., Loughnane, C., et al. (2015b). Factors associated with community reintegration in the first year after stroke: a qualitative meta-synthesis. Disability and Rehabilitation, 37(18), 15991608.CrossRefGoogle ScholarPubMed
Williams, A. M. (1993). Caregivers of persons with stroke: their physical and emotional wellbeing. Quality of Life Research, 2(3), 213220.Google Scholar

References

Armitage, C. J., Abdul Rahim, W., Rowe, R. & O’Connor, R. C. (2016). An exploratory randomized trial of a simple, brief psychological intervention to reduce subsequent suicidal ideation and behaviour in patients hospitalised for self-harm. British Journal of Psychiatry, 208(3), 17.Google Scholar
Butler, A. M. & Malone, K. (2013). Attempted suicide v. non-suicidal self-injury: behaviour, syndrome or diagnosis? British Journal of Psychiatry, 202(5), 324325. http://doi.org/10.1192/bjp.bp.112.113506.CrossRefGoogle ScholarPubMed
Cerel, J., Maple, M., Aldrich, R. & van de Venne, J. (2013). Exposure to suicide and identification as survivor: results from a random-digit dial survey. Crisis, 34, 413419.Google Scholar
Dhingra, K., Boduszek, D. & O’Connor, R. C. (2015). Differentiating suicide attempters from suicide ideators using the Integrated Motivational–Volitional model of suicidal behaviour. Journal of Affective Disorders, 186, 211218. http://doi.org/10.1016/j.jad.2015.07.007.CrossRefGoogle ScholarPubMed
Dhingra, K., Boduszek, D. & O’Connor, R. C. (2016). A structural test of the integrated motivational-volitional model of suicidal behaviour. Psychiatry Research, 239, 169178.Google Scholar
Hawton, K. (2000). Sex and suicide: gender differences in suicidal behaviour. British Journal of Psychiatry, 177(6), 484485. http://doi.org/10.1192/bjp.177.6.484.Google Scholar
Hawton, K., Rodham, K. & Evans, E. (2006). By Their Own Young Hand: Deliberate Self-Harm and Suicidal Ideas in Adolescents. London: Jessica Kingsley.Google Scholar
Hawton, K., Bergen, H., Casey, D., et al. (2007). Self-harm in England: a tale of three cities – multicentre study of self-harm. Social Psychiatry and Psychiatric Epidemiology, 42(7), 513521. http://doi.org/10.1007/s00127-007-0199-7.Google Scholar
Hawton, K., Saunders, K. E. & O’Connor, R. C. (2012). Self-harm and suicide in adolescents. Lancet, 379(9834), 23732382.Google Scholar
Joiner, T. (2005). Why People Die by Suicide. Boston, MA: Harvard University Press.Google Scholar
Kapur, N., Cooper, J., O’Connor, R. C. & Hawton, K. (2013). Non-suicidal self-injury v. attempted suicide: new diagnosis or false dichotomy? British Journal of Psychiatry, 202(5), 326328. http://doi.org/10.1192/bjp.bp.112.116111.Google Scholar
Kirtley, O. J., O’Carroll, R. E. & O’Connor, R. C. (2016). Pain and self-harm: a systematic review. Journal of Affective Disorders, 203, 347363.CrossRefGoogle ScholarPubMed
Klonsky, E. D. & May, A. M. (2014). Differentiating suicide attempters from suicide ideators: a critical frontier for suicidology research. Suicide and Life-Threatening Behavior, 44(1), 15. http://doi.org/10.1111/sltb.12068.Google Scholar
Klonsky, E. D. & May, A. M. (2015). The three-step theory (3ST): a new theory of suicide rooted in the ‘ideation-to-action’ framework. International Journal of Cognitive Therapy, 8, 114129.Google Scholar
Mann, J. J., Waternaux, C., Haas, G. L. & Malone, K. M. (1999). Towards a clinical model of suicidal behaviour in psychiatric patients. American Journal of Psychiatry, 156, 181189.Google Scholar
National Institute for Health and Care Excellence. (2004). Self-harm: the short-term physical and psychological management and secondary prevention of self-harm in primary and secondary care. www.nice.org.uk/guidance/cg16.Google Scholar
National Institute for Health and Care Excellence (2011). Self-harm: longer term management. www.nice.org.uk/guidance/cg133.Google Scholar
Nock, M. K. & Favazza, A. (2009). Nonsuicidal self-injury: definition and classification. In Nock, M. K. (ed.), Understanding Nonsuicidal Selfinjury: Origins, Assessment, and Treatment (pp. 918). Washington, DC: American Psychological Association.Google Scholar
Nock, M. K., Borges, G., Bromet, E. J., et al. (2008). Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. British Journal of Psychiatry, 192(2), 98105.Google Scholar
O’Connor, R. C. (2007). The relations between perfectionism and suicidality: a systematic review. Suicide and Life-Threatening Behavior, 37(6), 698714.Google Scholar
O’Connor, R. C. (2011). Towards an integrated motivational-volitional model of suicidal behaviour. In O’Connor, R. C., Platt, S. & Gordon, J. (eds), International Handbook of Suicide Prevention: Research, Policy and Practice (pp. 181198). Chichester: Wiley-Blackwell.Google Scholar
O’Connor, R. C. & Nock, M. K. (2014). The psychology of suicidal behaviour. Lancet Psychiatry, 1(1), 7385. http://doi.org/10.1016/S2215-0366(14)70222-6.Google Scholar
O’Connor, R. C. & Williams, J. M. G. (2014). The relationship between positive future thinking, brooding, defeat and entrapment. Personality and Individual Differences, 70, 2934. http://doi.org/10.1016/j.paid.2014.06.016.Google Scholar
O’Connor, R. C., Rasmussen, S. & Hawton, K. (2012). From thoughts to action: distinguishing adolescents who think about self-harm from those who engage in self-harm. British Journal of Psychiatry, 200, 330335.Google Scholar
O’Connor, R. C., Cleare, S., Eschle, S., Wetherall, K. & Kirtley, O. J. (2016). The integrated motivational-volitional model of suicidal behaviour: an update. In O’Connor, R. C. & Pirkis, J. (eds), International Handbook of Suicide Prevention: Research, Policy and Practice. Chichester: Wiley-Blackwell.Google Scholar
Pollock, L. R. & Williams, J. G. (2004). Problem-solving in suicide attempters. Psychological Medicine, 34(1), 163167. DOI: 10.1017/S0033291703008092.Google Scholar
Rasmussen, S. A., Fraser, L., Gotz, M., et al. (2010). Elaborating the cry of pain model of suicidality: testing a psychological model in a sample of first-time and repeat self-harm patients. British Journal of Clinical Psychology, 49(1), 1530. http://doi.org/10.1348/014466509X415735.Google Scholar
Silverman, M. M., Berman, A. L., Sanddal, N. D., O’Carroll, P. W. & Joiner, T. E. (2007). Rebuilding the Tower of Babel: a revised nomenclature for the study of suicide and suicidal behaviors part 2. Suicide-related ideations, communications, and behaviors. Suicide and Life-Threatening Behavior, 37(3), 264277. http://doi.org/10.1521/suli.2007.37.3.264.Google Scholar
Taylor, P. J., Gooding, P. A., Wood, A. M., Johnson, J. & Tarrier, N. (2011). Prospective predictors of suicidality: defeat and entrapment lead to changes in suicidal ideation over time. Suicide and Life-Threatening Behavior, 41(3), 297306.Google Scholar
Turecki, G. & Brent, D. A. (2016). Suicide and suicidal behaviour. Lancet, 387, 12271239. http://doi.org/http://dx.doi.org/10.1016/S0140-6736(15)00234-2.Google Scholar
Van Heeringen, K. (2012). Stress–diathesis model of suicidal behavior. In Dwivedi, Y. (ed.), The Neurobiological Basis of Suicide. Frontiers in Neuroscience. Boca Raton, FL: CRC Press/Taylor & Francis.Google Scholar
Van Orden, K. A., Witte, T. K., Cukrowicz, K. C., et al. (2010). The interpersonal theory of suicide. Psychological Review, 117(2), 575600. http://doi.org/10.1037/a0018697.Google Scholar
Williams, J. M. G. (1997). The Cry of Pain. London: Penguin.Google Scholar
World Health Organization. (2014). Preventing suicide: a global imperative. http://apps.who.int/iris/bitstream/10665/131056/1/9789241564779_eng.pdf?ua=1&ua=1.Google Scholar
Zetterqvist, M. (2015). The DSM-5 diagnosis of nonsuicidal self-injury disorder: a review of the empirical literature. Child and Adolescent Psychiatry and Mental Health, 9(1). http://doi.org/10.1186/s13034-015-0062-7CrossRefGoogle ScholarPubMed

References

Baker, A., Barker, S., Sampson, A. & Martin, C. (2017). Caregiver outcomes and interventions: a systematic scoping review of the traumatic brain injury and spinal cord injury literature. Clinical Rehabilitation, 31(1), 4560.CrossRefGoogle Scholar
Barker-Collo, S., Theadom, A., Ameratunga, S., et al. (2013). Prevalence and predictors of post-traumatic stress disorder in adults one year following traumatic brain injury: a population-based study. Brain Impairment, 14(3), 425435CrossRefGoogle Scholar
Carroll, L. J., Cassidy, J. D., Holm, L., Kraus, J., Coronado, V. G. & WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. (2004). Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 43 (Suppl.), 113125.Google Scholar
Feigin, V. F., Theadom, A., Barker-Collo, S. L., et al. (2013). Incidence of traumatic brain injury in New Zealand: a population-based study. Lancet Neurology, 12(1), 5364.Google Scholar
Levack, W. M. M., Kayes, N. M. & Fadyl, J. K. (2010). Experiences of recovery and outcome following traumatic brain injury: a metasynthesis of qualitative research. Disability & Rehabilitation, 32(12), 986999.Google Scholar
Lingsma, H., Yue, J. K., Maas, A., Steyerberg, E. W. Manley, G. T. on behalf of the TRACK-TBI Investigators. (2014). Outcome prediction after mild and complicated mild traumatic brain injury: external validation of existing models and identification of new predictors using the TRACK-TBI Pilot Study. Journal of Neurotrauma, 32(2), 8494.Google Scholar
McMahon, P., Hricik, A., Yue, J. K., et al. (2013). Symptomatology and functional outcome in mild traumatic brain injury: results from the prospective TRACK-TBI study. Journal of Neurotrauma, 31(1), 2633.Google Scholar
McPherson, K., Fadyl, J., Theadom, A., et al. (2018). Living life after traumatic brain injury (TBI): phase 1 of a longitudinal qualitative study. Journal of Head Trauma and Rehabilitation, 33(1), E44–E52.Google Scholar
Roozenbeek, B., Maas, A. I. & Menon, D. K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews Neurology, 9(4), 231236.Google Scholar
Schofield, P. W., Malacova, E., Preen, D. B., et al. (2015). Does traumatic brain injury lead to criminality? A whole-population retrospective cohort study using linked data. PLoS One. DOI: 10.1371/journal.pone.0132558.Google Scholar
Silverberg, N. D., Gardner, A. J., Brubacher, J. R., et al. (2015). Systematic review of multivariable prognostic models for mild traumatic brain injury. Journal of Neurotrauma, 32(8), 517526.Google Scholar
Teasdale, G. & Jennett, B. (1974). Assessment of coma and impaired consciousness: a practical scale. Lancet, 2(7872), 8184.Google Scholar
Theadom, A., Parmar, P., Jones, K., et al. (2015). Frequency and impact of recurrent traumatic brain injury in a population-based sample. Journal of Neurotrauma, 32(10), 674681.Google Scholar
Theadom, A., Parag, V., Dowell, T., et al. (2016). Persistent problems 1 year after mild traumatic brain injury: a longitudinal population study in New Zealand. British Journal of General Practice, 66(642), e16–23.Google Scholar
Theadom, A., Barker-Collo, S., Jones, K., et al. (2017). Work limitations four years following mild traumatic brain injury: a cohort study. Archives of Physical Medicine and Rehabilitation, 98(8), 1560–1566.Google Scholar

References

Centers for Disease Control and Prevention (n.d., a). National Center for Injury Prevention and Control. Web-based Injury Statistics Query and Reporting System (WISQARS). www.cdc.gov/injury/wisqarsGoogle Scholar
Centers for Disease Control and Prevention (n.d., b), National Center for Injury Prevention and Control. STEADI Materials for Health Care Providers. www.cdc.gov/steadi/materials.htmlGoogle Scholar
Centers for Disease Control and Prevention. (1999). Achievements in public health, 1900–1999 motor-vehicle safety: a 20th century public health achievement. Morbidity and Mortality Weekly Report, 48(18), 369374.Google Scholar
Centers for Disease Control and Prevention. (2011). Vital signs: overdoses of prescription opioid pain relievers: United States, 1999–2008. Morbidity and Mortality Weekly Report, 60(43), 14871492.Google Scholar
Clarke, A. & Walton, W. W. (1979). Effect of safety packaging on aspirin ingestion by children. Pediatrics, 63(5), 687693.Google Scholar
Dowell, D., Haegerich, T. M. & Chou, R. (2016). CDC guideline for prescribing opioids for chronic pain: United States, 2016. MMWR Recommendations and Reports, 65(1), 149. DOI: 10.15585/mmwr.rr6501e1.Google Scholar
Florence, C., Haegerich, T., Simon, T., Zhou, C. & Luo, F. (2015a). Estimated lifetime medical and work-loss costs of emergency department-treated nonfatal injuries: United States, 2013. Morbidity and Mortality Weekly Report, 64(38), 10781082. DOI: 10.15585/mmwr.mm6438a5.Google Scholar
Florence, C., Simon, T., Haegerich, T., Luo, F. & Zhou, C. (2015b). Estimated lifetime medical and work-loss costs of fatal injuries: United States, 2013. Morbidity and Mortality Weekly Report, 64(38), 10741077. DOI: 10.15585/mmwr.mm6438a4.Google Scholar
Frank, R. & Lee, A. (2007). Accidents and unintentional injuries. In Ayers, S., Baum, A., McManus, C., et al. (eds), Cambridge Handbook of Psychology, Health, and Medicine (2nd edn; pp. 527530). Cambridge: Cambridge University Press.Google Scholar
Frieden, T. R. (2010). A framework for public health action: the health impact pyramid. American Journal of Public Health, 100(4), 590595. DOI: 10.2105/AJPH.2009.185652.Google Scholar
Green, L. W. & Kreuter, M. W. (2010). Evidence hierarchies versus synergistic interventions. American Journal of Public Health, 100(10), 18241825. DOI: 10.2105/AJPH.2010.197798.Google Scholar
Lord, S. R., Menz, H. B. & Sherrington, C. (2006). Home environment risk factors for falls in older people and the efficacy of home modifications. Age and Ageing, 35 (Suppl. 2), ii55ii59. DOI: 10.1093/ageing/afl088.Google Scholar
Mack, K. A., Jones, C. & Paulozzi, L. J. (2013). Vital signs: overdoses of prescription opioid pain relievers and other drugs among women – United States, 1999–2010. Morbidity and Mortality Weekly Report, 62(26), 537542.Google Scholar
Mack, K. A., Liller, K. D., Baldwin, G. & Sleet, D. (2015). Preventing unintentional injuries in the home using the Health Impact Pyramid. Health Education & Behavior, 42(1 Suppl.), 115S122S. DOI: 10.1177/1090198114568306.Google Scholar
McDonald, E., Girasek, D. & Gielen, A. (2012). Home injuries. In: Liller, K., (ed.). Injury prevention for children and adolescents: Research, practice, and advocacy. Washington, DC: American Public Health Association.Google Scholar
Paulozzi, L. J., Mack, K. A. & Hockenberry, J. M. (2014). Variation among states in prescribing of opioid pain relievers and benzodiazepines: United States, 2012. Journal of Safety Research, 51, 125129. DOI: 10.1016/j.jsr.2014.09.001.Google Scholar
Rodgers, G. B. (1996). The safety effects of child-resistant packaging for oral prescription drugs: two decades of experience. JAMA, 275(21), 16611665.Google Scholar
Sauber-Schatz, E. K., Ederer, D. J., Dellinger, A. M. & Baldwin, G. T. (2016). Vital signs: motor vehicle injury prevention – United States and 19 comparison countries. Morbidity and Mortality Weekly Report, 65(26), 672677. DOI: 10.15585/mmwr.mm6526e1.Google Scholar
Stevens, J., Noonan, R. & Rubenstein, L. (2009). Older adult fall prevention: perceptions, beliefs, and behaviors. American Journal of Lifestyle Medicine, 4(1), 1620. DOI: 10.1177/1559827609348350.Google Scholar
Walton, W. W. (1982). An evaluation of the Poison Prevention Packaging Act. Pediatrics, 69(3), 363370.Google Scholar

References

Andersson, G., Asmundson, G. J., Denev, J., Nilsson, J. & Larsen, H. C. (2006). A controlled trial of cognitive-behavior therapy combined with vestibular rehabilitation in the treatment of dizziness. Behaviour Research and Therapy, 44 (9), 12651273.Google Scholar
Asmundson, G. J. G., Larsen, D. K. & Stein, M. B. (1998). Panic disorder and vestibular disturbance: an overview of empirical findings and clinical implications. Journal of Psychosomatic Research, 44, 107120.Google Scholar
Beidel, D. C. & Horak, F. B. (2001). Behavior therapy for vestibular rehabilitation. Journal of Anxiety Disorders, 15, 121130.Google Scholar
Bisdorff, A., Von Brevern, M., Lempert, T. & Newman-Toker, D. E. (2009). Classification of vestibular symptoms: towards an international classification of vestibular disorders. Journal of Vestibular Research, 19, 113.Google Scholar
Bronstein, A. M. & Lempert, T. (2007). Dizziness: A Practical Approach to Diagnosis and Management. New York: Cambridge University Press.Google Scholar
Clark, D. B., Hirsch, B. E., Smith, M. G., Furman, J. M. R. & Jacob, R. G. (1994). Panic in otolaryngology patients presenting with dizziness or hearing loss. American Journal of Psychiatry, 151, 12231225.Google Scholar
Essery, R., Kirby, S., Geraghty, A. W. A., et al. (2015). The development of balance retraining: an online intervention for dizziness in adults aged 50 years and older. American Journal of Audiology, 24, 276279.Google Scholar
Furman, J. M. & Jacob, R. G. (2001). A clinical taxonomy of dizziness and anxiety in the otoneurological setting. Journal of Anxiety Disorders, 15, 926.Google Scholar
Gassmann, K. G. & Rupprecht, R. (2009). Dizziness in an older community dwelling population: a multifactorial syndrome. The Journal of Nutrition, Health & Aging, 13, 278282.Google Scholar
Grill, E., Bronstein, A., Furman, J., Zee, D. S. & Muller, M. (2012). International Classification of Functioning, Disability and Health (ICF) Core Set for patients with vertigo, dizziness and balance disorders. Journal of Vestibular Research, 22, 261271.Google Scholar
Hagnebo, C., Melin, L. & Andersson, G. (1999). Coping strategies and anxiety sensitivity in Meniere’s disease. Psychology, Health & Medicine, 4, 1726.Google Scholar
Jacob, R. G., Furman, J. M., Durrant, J. D. & Turner, S. M. (1996). Panic, agoraphobia and vestibular dysfunction. American Journal of Psychiatry, 153, 503512.Google Scholar
Kirby, S. E. & Yardley, L. (2009). Cognitions associated with anxiety in Meniere’s disease. Journal of Psychosomatic Research, 66, 111118.Google Scholar
Lahmann, C., Henningsen, P., Brandt, T., et al. (2015). Psychiatric comorbidity and psychosocial impairment among patients with vertigo and dizziness. Journal of Neurology, Neurosurgery, and Psychiatry,86, 302308.Google Scholar
McDonnell, M. N. & Hillier, S. L. (2015). Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database of Systematic Reviews, 1, CD00539.Google Scholar
Monzani, D., Casolari, L., Guidetti, G. & Rigatelli, M. (2001). Psychological distress and disability in patients with vertigo. Journal of Psychosomatic Research, 50, 319323.Google Scholar
Muller, I., Kirby, S. & Yardley, L. (2015a). Understanding patient experiences of self-managing chronic dizziness: a qualitative study of booklet-based vestibular rehabilitation with or without remote support. BMJ Open, 5, e007680.Google Scholar
Muller, I., Kirby, S. & Yardley, L. (2015b). The therapeutic relationship in telephone-delivered support for people undertaking rehabilitation: a mixed-methods interaction analysis. Disability & Rehabilitation, 37 (12), 10601065.Google Scholar
Murdin, L. & Schilder, A. G. (2015). Epidemiology of balance symptoms and disorders in the community: a systematic review. Otology & Neurotology, 36, 387392.Google Scholar
Olsson Möller, U., Midlöv, P., Kristensson, J., et al. (2013). Prevalence and predictors of falls and dizziness in people younger and older than 80 years of age: a longitudinal cohort study. Archives of Gerontology and Geriatrics, 56, 160168.Google Scholar
Redfern, M., Yardley, L. & Bronstein, A. M. (2001). Visual influences on balance. Journal of Anxiety Disorders, 15, 8194.Google Scholar
Sloane, P. D., Hartman, M. & Mitchell, C. M. (1994). Psychological factors associated with chronic dizziness in patients aged 60 and older. Journal of the American Geriatrics Society, 42, 847852.Google Scholar
Wrisley, D. M. & Pavlou, M. (2005). Physical therapy for balance disorders. Neurologic Clinics, 23, 855874.Google Scholar
Yardley, L., Gresty, M., Bronstein, A. & Beyts, J. (1998). Changes in heart rate and respiration rate in patients with vestibular dysfunction following head movements which provoke dizziness. Biological Psychology, 49, 95108.Google Scholar
Yardley, L. & Kirby, S. (2006). Evaluation of booklet-based self-management of symptoms in Ménière’s disease: a randomized controlled trial. Psychosomatic Medicine, 68, (5), 762769.Google Scholar
Yardley, L., Todd, A. M., Lacoudraye-Harter, M. M. & Ingham, R. (1992). Psychosocial consequences of vertigo. Psychology & Health, 6, 8596.CrossRefGoogle Scholar
Yardley, L., Britton, J., Lear, S., Bird, J. & Luxon, L. M. (1995). Relationship between balance system function and agoraphobic avoidance. Behaviour Research & Therapy, 33, 435439.Google Scholar
Yardley, L., Beech, S. & Weinman, J. (2001). Influence of beliefs about the consequences of dizziness on handicap in people with dizziness, and the effect of therapy on beliefs. Journal of Psychosomatic Research, 50, 16.Google Scholar
Yardley, L., Donovan-Hall, M., Smith, H. E., et al. (2004). Effectiveness of nurse-delivered vestibular rehabilitation for chronic dizziness in primary care: randomized controlled trial. Annals of Internal Medicine, 141, 598605.Google Scholar
Yardley, L., Barker, F., Muller, I., et al. (2012). Cost-effectiveness of booklet-based vestibular rehabilitation for chronic dizziness in primary care. British Medical Journal, 344, e2237.Google Scholar

References

Alma, M. A., Van der Mei, S. F., Feitsma, W. N., et al. (2011). Loneliness and self-management abilities in the visually impaired elderly. Journal of Aging and Health, 23(5), 843861.Google Scholar
Avery, R. A. & Hardy, K. K. (2014). Vision specific quality of life in children with optic pathway gliomas. Journal of Neuro-Oncology, 116(2), 341347.Google Scholar
Bennion, A. E., Shaw, R. L. & Gibson, J. M. (2012). What do we know about the experience of age related macular degeneration? A systematic review and meta-synthesis of qualitative research. Social Science and Medicine, 75(6), 976985.Google Scholar
Bienkowska, A., Starbuck, A. & Churchill, A. (2014). The management of amblyopia in children: the results of a national survey of orthoptists. International Journal of Ophthalmic Practice, 5(2), 7478.Google Scholar
Bourne, R. R. A., Stevens, G. A., White, R. A., et al. (2013). Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Global Health, 1(6), 339349.Google Scholar
Brown, D. M., Kaiser, P. K., Michels, M., et al. (2006). Ranibizumab versus verteporfin for neovascular age-related macular degeneration. New England Journal of Medicine, 355(14), 14321444.Google Scholar
Burton, A. E., Shaw, R. & Gibson, J. (2013a). Experiences of patients with age-related macular degeneration receiving anti-vascular endothelial growth factor therapy: a qualitative study. British Journal of Visual Impairment, 31(3), 178188.Google Scholar
Burton, A. E., Shaw, R. L. & Gibson, J. M. (2013b). ‘I’d like to know what causes it, you know, anything I’ve done?’ Are we meeting the information and support needs of patients with macular degeneration? A qualitative study. BMJ Open, 3(11), e003306. http://doi.org/10.1136/bmjopen-2013-003306.Google Scholar
Burton, A. E., Shaw, R. L. & Gibson, J. M. (2015). Living together with age-related macular degeneration: an interpretative phenomenological analysis of sense-making within a dyadic relationship. Journal of Health Psychology, 20(10), 12851295.Google Scholar
Burton, A. E., Gibson, J. M. & Shaw, R. (2016). How do older people with sight loss manage their general health ? A qualitative study. Disability and Rehabilitation, 14, 19. http://doi.org/10.3109/09638288.2015.1123310.Google Scholar
Carlton, J., Karnon, J., Smith, K. J. & Marr, J. (2008). The clinical effectiveness and cost-effectiveness of screening programmes for amblyopia and strabismus in children up to the age of 4–5 years: a systematic review and economic evaluation. Health Technology Assessment, 12(25).Google Scholar
Christ, S. L., Zheng, D. D., Swenor, B. K., et al. (2014). Longitudinal relationships among visual acuity, daily functional status, and mortality: the Salisbury Eye Evaluation Study. JAMA Ophthalmology, 2055(12), 17.Google Scholar
Dean, S. E., Povey, R. C. & Reeves, J. (2016). Assessing interventions to increase compliance to patching treatment in children with amblyopia: a systematic review and meta-analysis. British Journal of Ophthalmology, 100, 159165.Google Scholar
DeCarlo, D. K., McGwin, G., Bixler, M. L., Wallander, J. & Owsley, C. (2012). Impact of pediatric vision impairment on daily life. Optometry and Vision Science, 89(9), 14091416.Google Scholar
Dixon-Woods, M., Awan, M. & Gottlob, I. (2006). Why is compliance with occlusion therapy for amblyopia so hard? A qualitative study. Archives of Disease in Childhood, 91(6), 491494.Google Scholar
Latham, K., Baranian, M., Timmis, M. & Pardhan, S. (2015). Emotional health of people with visual impairment caused by retinitis pigmentosa. PLoS One, 10(12), 117.Google Scholar
Leissner, J., Coenen, M., Froehlich, S., Loyola, D. & Cieza, A. (2014). What explains health in persons with visual impairment? Health and Quality of Life Outcomes, 12, 65.Google Scholar
Lim, L. A., Mitchell, P., Seddon, J. M., Holz, F. G. & Wong, Y. T. (2012). Age-related macular degeneration. Lancet, 379, 17281738.Google Scholar
Newsham, D. (2002). A randomised controlled trial of written information: the effect on parental non-concordance with occlusion therapy. British Journal of Ophthalmology, 86(7), 787791.Google Scholar
Nyman, S. R., Gosney, M. A. & Victor, C. R. (2010). Psychosocial impact of visual impairment in working-age adults. British Journal of Ophthalmology, 94(11), 14271431.Google Scholar
Nyman, S. R., Dibb, B., Victor, C. R. & Gosney, M. (2012). Emotional well-being and adjustment to vision loss in later life: a meta-synthesis of qualitative studies. Disability & Rehabilitation, 34, 971981.Google Scholar
Sturrock, B. A., Xie, J., Holloway, E. E., et al. (2015). The influence of coping on vision-related quality of life (VRQoL) in patients with low vision: a prospective longitudinal study. Investigative Ophthalmology & Visual Science, 56, 24162422.Google Scholar
Sturrock, B. A., Xie, J., Holloway, E. E., et al. (2016). Illness cognitions and coping self-efficacy in depression among persons with low vision. Investigative Opthalmology & Visual Science, 57(7), 30323038.Google Scholar
Wong, H.-B., Machin, D., Tan, S.-B., Wong, T.-Y. & Saw, S.-M. (2009). Visual impairment and its impact on health-related quality of life in adolescents. American Journal of Ophthalmology, 147(3), 505511.e1.Google Scholar
Wong, W. L., Su, X., Li, X., et al. (2014). Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health, 2, e106e116.Google Scholar
World Health Organization. (2016). ICD-10 Version 2016. http://apps.who.int/classifications/icd10/browse/2016/en#/H53-H54 (accessed 21 July 2016).Google Scholar
Zhang, T., Jiang, W., Song, X. & Zhang, D. (2016). The association between visual impairment and the risk of mortality: a meta-analysis of prospective studies. Journal of Epidemiology and Community Health, 70(8), 836842.Google Scholar

References

Bergeron, C. M. & Wanet-Defalque, M. C. (2013). Psychological adaptation to visual impairment: the traditional grief process revised. British Journal of Visual Impairment, 31, 2031.Google Scholar
Dale, N. & Salt, A. (2007). Early support developmental journal for children with visual impairment: the case for a new developmental framework for early intervention. Child: Care, Health and Development, 33, 684690.Google Scholar
Dale, N. & Sonksen, P. (2002). Developmental outcome, including setback, in young children with severe visual impairment. Developmental Medicine & Child Neurology, 44, 613622.Google Scholar
Emerson, R. W., Holbrook, M. C. & D’Andrea, F. M. (2009). Acquisition of literacy skills by young children who are blind: results from the ABC Braille Study. Journal of Visual Impairment & Blindness, 103, 610.Google Scholar
Greenaway, R. & Dale, N. J. (2017). Congenital visual impairment. In Cummings, L. (ed.), Research in Clinical Pragmatics. Cham: Springer.Google Scholar
Harris, J. & Lord, C. (2016). Mental health of children with vision impairment at 11-years-of age. Developmental Medicine & Child Neurology, 58, 774779.Google Scholar
Hewett, R., Douglas, G., Keil, S. & Williams, H. (2015). The Transition Experiences of Young People With Visual Impairments Aged 17–21. Birmingham: Visual Impairment Centre for Teaching and Research, University of Birmingham.Google Scholar
Hughes, M., Dote‐Kwan, J. & Dolendo, J. (1999). Characteristics of maternal directiveness and responsiveness with young children with visual impairments. Child: Care, Health and Development, 25, 285298.Google Scholar
Huurre, T. M. & Aro, H. M. (1998). Psychosocial development among adolescents with visual impairment. European Child & Adolescent Psychiatry, 7, 7378.Google Scholar
McDonnall, M. C. & Crudden, A. (2009). Factors affecting the successful employment of transition-age youths with visual impairments. Journal of Visual Impairment & Blindness, 103, 329.Google Scholar
Millar, S. (1990). Imagery and blindness. In Hampson, P. J., Marks, D. F. & Richardson, J. T. E. (eds), Imagery: Current Developments. London: Routledge.Google Scholar
Pring, L. (2004). Autism and Blindness. London: Whurr.Google Scholar
Rahi, J. S., Cable, N. & the British Childhood Visual Impairment Study Group. (2003). Severe visual impairment and blindness in children in the UK. Lancet, 362, 13591365.Google Scholar
Röder, B., Rösler, F. & Neville, H. J. (2000). Event-related potentials during auditory language processing in congenitally blind and sighted people. Neuropsychologia, 38, 14821502.Google Scholar
Tadić, V., Hundt, G. L., Keeley, S. & Rahi, J. S. (2015). Seeing it my way: living with childhood onset visual disability. Child: Care, Health and Development, 41, 239248.Google Scholar
Veispak, A., Boets, B. & Ghesquiere, P. (2013). Differential cognitive and perceptual correlates of print reading versus braille reading. Research in Developmental Disabilities, 34, 372385.Google Scholar

References

Amarante Andrade, P., Wood, G., Ratcliffe, P., et al. (2013). Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth. Journal of Voice, 28, 589595.Google Scholar
Aronson, A. E. (1990). Clinical Voice Disorders (3rd edn). New York: Thieme Medical.Google Scholar
Aronson, A. E. & Bless, D. M. (2009). Clinical Voice Disorders (4th edn). New York: Thieme.Google Scholar
Boone, D. R. & McFarlane, S. C. (1988). The Voice and Voice Therapy (4th edn). Upper Saddle River, NJ: Prentice Hall.Google Scholar
Cheyne, H. A., Hanson, H. M., Genereux, R. P., Stevens, K. N. & Hillman, R. E. (2003). Development and testing of a portable vocal accumulator. Journal of Speech, Language and Hearing Research, 46, 14571467.Google Scholar
Colton, R. H. & Casper, J. K. (1990). Understanding Voice Problems. Baltimore, MD: Williams & Williams.Google Scholar
Colton, R. H., Casper, J. K. & Leonard, R. (2006). Understanding Voice Problems: A Physiological Perspective for Diagnosis and Treatment. Baltimore, MD: Lippincott Williams & Williams.Google Scholar
Herrington-Hall, B., Lee, L., Stemple, J., Niemi, K. & McHone, M. (1988). Description of laryngeal pathologies by age, gender, and occupation in a treatment seeking sample. Journal of Speech and Hearing Disorders, 53, 5765.Google Scholar
Hoover, C. A., Sataloff, R. T., Lyons, K. M. & Hawkshaw, M. (2001). Vocal fold mucosal tears: maintaining a high clinical index of suspicion. Journal of Voice, 15, 451455.Google Scholar
Laukkanen, A. M., Titze, I. R., Hoffman, H. & Finnegan, E. (2008). Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject. Folia Phoniatrica et Logopaedica, 60, 298311.Google Scholar
Mathieson, S. P., Hirani, S. P., Epstein, R., et al. (2009). Laryngeal manual therapy: a preliminary study to examine its treatment effects in the management of muscle tension dysphonia. Journal of Voice, 23, 353366.Google Scholar
Murry, T. & Rosen, C. A. (2000). Phonotrauma associated with crying. Journal of Voice, 14, 575580.Google Scholar
Roy, N., Merrill, R. M., Gray, S. D. & Smith, E. M. (2005). Voice disorders in the general population: prevalence, risk factors, and occupational impact. Laryngoscope, 115, 19881995.Google Scholar
Smith, E., Gray, S., Dove, H., Kirchner, L. & Heras, H. (1997). Frequency and effects of teachers’ voice problems. Journal of Voice, 11, 8087.Google Scholar
Stemple, J. C., Glaze, L. E. & Klaben, B. G. (2000). Clinical Voice Pathology (3rd edn). San Diego, CA: Singular Publishing.Google Scholar
Titze, I. R. (2006). Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings. Journal of Speech, Language and Hearing Research, 49, 448459.Google Scholar
Titze, I. R., Lemke, J. & Montequin, D. (1997). Voice as an occupational tool of the trade. Journal of Voice, 11, 254259.Google Scholar
Verdolini, K. (1998). NCVS Guide to Vocology. Iowa City, IA: University of Iowa, National Centre for Voice and Speech.Google Scholar
Verdolini, K., Druker, D. G., Palmer, P. M. & Samawi, H. (1998). Laryngeal adduction in resonant voice. Journal of Voice, 12, 315327.Google Scholar

References

Best, D., Manning, V., Gossop, M., et al. (2004). Adolescent psychological health problems and delinquency among volatile solvent users in a school sample in south London. Drugs: Education, Prevention and Policy, 11, 473482.Google Scholar
Butland, B., Field-smith, M., Ramsey, J., Anderson, R. (2012). Twenty-five years of volatile substance abuse mortality: a national mortality surveillance programme. Addiction, 108, 385393.Google Scholar
Center for Behavioral Health Statistics and Quality. (2015). Behavioral health trends in the United States: Results from the 2014 National Survey on Drug Use and Health. Rockville, MD: Substance Abuse and Mental Health Services Administration, Department of Heath & Human ServicesGoogle Scholar
Health and Social Care Information Centre (2015). Smoking, Drinking and Drug Use Among Young People in England in 2014. London: Health and Social Care Information Centre.Google Scholar
Home Office (2014). Drug Misuse: Findings from the 2013 to 2014 Crime Survey for England and Wales. London: Home Office.Google Scholar
Johnston, L. D., O’Malley, P. M., Miech, R. A., Bachman, J. G. & Schulenberg, J. E. (2016). Monitoring the Future National Survey Results on Drug Use, 1975–2015: Overview, Key Findings on Adolescent Drug Use. Ann Arbor, MI: Institute for Social Research, University of Michigan.Google Scholar
Sharp, C., Howard, M. & Schiffer, W. (2011). Inhalants. In Ruiz, P. & Strain, E. (eds), Lowinson and Ruiz’s Substance Abuse: A Comprehensive Textbook (5th edn). Philadelphia, PA: Lippincott Williams and Wilkins.Google Scholar

References

Gaba, D. M., Howard, S. K., Fish, K. J., Smith, B. E. & Sowb, Y. A., (2001). Simulation-based training in anesthesia crisis resource management (ACRM): a decade of experience. Simulation and Gaming, 32, 175193.Google Scholar
Haynes, A. B., Weiser, T. G., Berry, W. R., et al. (2009). A surgical safety checklist to reduce morbidity and mortality in a global population. New England Journal of Medicine, 360, 491499.Google Scholar
Hughes, A. M., Gregory, M. E., Joseph, D. L., et al. (2016). Saving lives: a meta-analysis of team training in healthcare. Journal of Applied Psychology, 101, 12661304.Google Scholar
Jelacic, S., Bowdle, A., Nair, B. G., et al. (2015). A system for anesthesia drug administration using barcode technology: the Codonics Safe Label System and Smart Anesthesia Manager. Anesthesia and Analgesia, 121, 410421.Google Scholar
Merry, A. F. & Webster, C. S. (2009). Has anesthesia care become safer and is anesthesia-related mortality decreasing? F1000 Medicine Reports, 1, 69. DOI: 10.3410/M3411-3469.Google Scholar
Portela, M. C., Pronovost, P. J., Woodcock, T., Carter, P. & Dixon-Woods, M. (2015). How to study improvement interventions: a brief overview of possible study types. BMJ Quality and Safety, 24(5), 325336.Google Scholar
Pronovost, P., Needham, D., Berenholtz, S., et al. (2006). An intervention to decrease catheter-related bloodstream infections in the ICU. New England Journal of Medicine, 355(26), 27252732.Google Scholar
Webster, C. S., Merry, A. F., Larsson, L., McGrath, K. A. & Weller, J., (2001). The frequency and nature of drug administration error during anaesthesia. Anaesthesia and Intensive Care, 29(5), 494500.Google Scholar
Webster, C. S., Larsson, L., Frampton, C. M., et al. (2010). Clinical assessment of a new anaesthetic drug administration system: a prospective, controlled, longitudinal incident monitoring study. Anaesthesia, 65, 490499.Google Scholar
Wikipedia (2017a) Aviation safety. http://en.wikipedia.org/wiki/Aviation_safety (accessed 20 January 2017).Google Scholar
Wikipedia (2017b) The WHO surgical safety checklist. https://en.wikipedia.org/wiki/WHO_Surgical_Safety_Checklist (accessed 20 January 2017).Google Scholar

References

Barlow, J., McMillan, A. S., Kirkpatrick, S., et al. (2010). Health-led interventions in the early years to enhance infant and maternal mental health: a review of reviews. Child and Adolescent Mental Health, 15, 178185.Google Scholar
Beijers, R., Buitelaar, J. K. & de Weerth, C. (2014). Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis. European Child & Adolescent Psychiatry, 23, 943956.Google Scholar
Bishop, F. L. & Lewith, G. T. (2010). Who uses CAM? A narrative review of demographic characteristics and health factors associated with CAM use. Evidence-Based Complementary and Alternative Medicine, 7(1), 1128.Google Scholar
Daley, A. J., Foster, L., Long, G., et al. (2014). The effectiveness of exercise for the prevention and treatment of antenatal depression: systematic review with meta-analysis. BJOG: An International Journal of Obstetrics & Gynaecology, 122, 5762.Google Scholar
Dennis, C.-L., Hodnett, E., Kenton, L., et al. (2009). Effect of peer support on prevention of postnatal depression among high risk women: multisite randomised controlled trial. British Medical Journal, 338, a3064.Google Scholar
Department of Health. (2010). The Report from the Taskforce on the Health Aspects of Violence Against Women and Children. London: Department of Health.Google Scholar
Flach, C., Leese, M., Heron, J., et al. (2011). Antenatal domestic violence, maternal mental health and subsequent child behaviour: a cohort study. BJOG: An International Journal of Obstetrics & Gynaecology, 118, 13831391.Google Scholar
Grigoriadis, S., Vonder Porten, E. H., Mamisashvili, L., et al. (2013). The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. Journal of Clinical Psychiatry, 74, e321e341.Google Scholar
Grote, N. K., Bridge, J. A., Gavin, A. R., et al. (2010). A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight and intrauterine growth restriction. Archives of General Psychiatry, 67, 10121024.Google Scholar
Knight, M., Tuffnell, D., Kenyon, S., et al. (2015). Saving Lives, Improving Mothers’ Care: Surveillance of Maternal Deaths in the UK 2011–13 and Lessons Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries Into Maternal Deaths and Morbidity 2009–13. Oxford: National Perinatal Epidemiology Unit, University of Oxford.Google Scholar
Levine, T. A., Alderdice, F. A., Grunau, R. E., et al. (2016). Prenatal stress and hemodynamics in pregnancy: a systematic review. Archives of Women’s Mental Health, 19, 721739.Google Scholar
Lewis, G. & Drife, J. (2001). Why Mothers Die 2000–2002: Report on Confidential Enquiries Into Maternal Deaths in the United Kingdom. London: CEMACH.Google Scholar
Mohammad, K. I., Gamble, J., & Creedy, D. K. (2011). Prevalence and factors associated with the development of antenatal and postnatal depression among Jordanian women. Midwifery, 27, e238e245.Google Scholar
NICE. (2014). Antenatal and Postnatal Mental Health: Clinical Management and Service Guidance. Clinical Guidance 192. London: NICE.Google Scholar
NICE. (2016). Antenatal and Postnatal Mental Health. Quality Standard 115. London: NICE.Google Scholar
NICE. (2017). Antenatal Care for Uncomplicated Pregnancies. Clinical Guidance 62. London: NICEGoogle Scholar
Philipp, D. A. & Carr, M. L. (2001). Normal and medically complicated pregnancies. In Stotland, N. L. & Stewart, D. E. (eds), Psychological Aspects of Women’s Health Care: The Inteface between Psychiatry and Obstetrics and Gynecology (2nd edn). Washington, DC: American Psychiatric Press.Google Scholar
Raine, R., Cartwright, M., Richens, Y., et al. (2010). A qualitative study of women’s experiences of communication in antenatal care: identifying areas for action. Maternal Child Health Journal, 14, 590599.Google Scholar
Vieten, C. & Astin, J. (2008). Effects of a mindfulness-based intervention during pregnancy on prenatal stress and mood: results of a pilot study. Archives of Women’s Mental Health, 11, 6774.Google Scholar
World Health Organization. (2011). Intimate partner violence during pregnancy: information sheet. http://apps.who.int/iris/bitstream/10665/70764/1/WHO_RHR_11.35_eng.pdf (accessed 29 March 2017).Google Scholar
World Health Organization. (2015). Trends in maternal mortality: 1990 to 2015. Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division. www.who.int/reproductivehealth/publications/monitoring/maternal-mortality-2015/en/ (accessed 28 March 2017).Google Scholar
World Health Organization. (2016). WHO recommendations on antenatal care for a positive pregnancy experience. http://apps.who.int/iris/bitstream/10665/250796/1/9789241549912-eng.pdf?ua=1 (accessed 27 March 2017).Google Scholar

References

Benyamini, Y., Gozlan, M. & Kokia, E. (2005). Variability in the difficulties experienced by women undergoing infertility treatments. Fertility and Sterility, 83(2), 275283.Google Scholar
Boivin, J. & Lancastle, D. (2010). Medical waiting periods: imminence, emotions and coping. Women’s Health, 6(1), 5969.Google Scholar
Boivin, J. & Takefman, J. (1996). The impact of the in vitro fertilization-embryo transfer (IVF-ET) process on emotional, physical and relational variables. Human Reproduction, 11, 903907.Google Scholar
Boivin, J., Bunting, L., Collins, J. A. & Nygren, K. (2007). An international estimate of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Human Reproduction, 22(6), 15061512.Google Scholar
Boivin, J., Griffiths, E. & Venetis, C. A. (2011). Emotional distress in infertile women and failure of assisted reproductive technologies: meta-analysis of prospective psychosocial studies. British Medical Journal, 342, d223.Google Scholar
Boivin, J., Takefman, J. & Braverman, A. (2010). The fertility quality of life (FertiQoL) tool: development and general psychometric properties. Fertility and Sterility, 96(2), 409415.Google Scholar
Bouwmans, C. A., Lintsen, B. A., Al, M., et al. (2008). Absence from work and emotional stress in women undergoing IVF or ICSI: an analysis of IVF-related absence from work in women and the contribution of general and emotional factors. Acta Obstetricia et Gynecologica Scandinavica, 87(11), 11691175.Google Scholar
Bunting, L. & Boivin, J. (2010). Development and preliminary validation of the fertility status awareness tool: FertiSTAT. Human Reproduction, 25, 17221733.Google Scholar
Daniluk, J. C. (2001). Reconstructing their lives: a longitudinal, qualitative analysis of the transition to biological childlessness for infertile couples. Journal of Counseling and Development, 79(4), 439.Google Scholar
Frederiksen, Y., Farver-Vestergaard, I., Skovgård, N. G., Ingerslev, H. J. & Zachariae, R. (2015). Efficacy of psychosocial interventions for psychological and pregnancy outcomes in infertile women and men: a systematic review and meta-analysis. BMJ Open, 5(1), e006592.Google Scholar
Gameiro, S., Boivin, J., Peronace, L. & Verhaak, C. M. (2012). Why do patients discontinue fertility treatment? A systematic review of reasons and predictors of discontinuation in fertility treatment. Human Reproduction Update, 18(6), 652669.Google Scholar
Gameiro, S., van den Belt-Dusebout, A. W., Bleiker, E., et al. (2014). Do children make you happier? Sustained child-wish and mental health in women 11–17 years after fertility treatment. Human Reproduction, 29(10), 2238.Google Scholar
Gameiro, S., Boivin, J., Dancet, E., et al. (2015). ESHRE guideline: routine psychosocial care in infertility and medically assisted reproduction: a guide for fertility staff. Human Reproduction, 30(11), 24762485.Google Scholar
Homan, G. F., Davies, M. & Norman, R. (2007). The impact of lifestyle factors on reproductive performance in the general population and those undergoing infertility treatment: a review. Human Reproduction Update, 13(3), 209223.Google Scholar
Human Fertilisation & Embryology Authority (HFEA) (2016). Fertility treatment 2014: Trends and figures. www.hfea.gov.uk/docs/HFEA_Fertility_treatment_Trends_and_figures_2014.pdf.Google Scholar
Lancastle, D. & Boivin, J. (2008). A feasibility study of a brief coping intervention (PRCI) for the waiting period before a pregnancy test during fertility treatment. Human Reproduction, 23(10), 22992307.Google Scholar
Matthiesen, S. M. S., Frederiksen, Y., Ingerslev, H. J. & Zachariae, R. (2011). Stress, distress and outcome of assisted reproductive technology (ART): a meta-analysis. Human Reproduction, 26 (10), 27632776.Google Scholar
McLernon, D. J., Maheshwari, A., Lee, A. J. & Bhattacharya, S. (2016). Cumulative live birth rates after one or more complete cycles of IVF: a population-based study of linked cycle data from 178 898 women. Human Reproduction, 31(3), 572581.CrossRefGoogle ScholarPubMed
McMahon, C. A., Boivin, J., Gibson, F. L., et al. (2011). Age at first birth, mode of conception and psychological wellbeing in pregnancy: findings from the parental age and transition to parenthood Australia (PATPA) study. Human Reproduction, 26(6), 13891398.Google Scholar
Mutsaerts, M. A., van Oers, A. M., Groen, H., et al. (2016). Randomized trial of a lifestyle program in obese infertile women. New England Journal of Medicine, 374(20), 19421953.Google Scholar
Ockhuijsen, H., van den Hoogen, A., Eijkemans, M., Macklon, N. & Boivin, J. (2014). Clarifying the benefits of the positive reappraisal coping intervention for women waiting for the outcome of IVF. Human Reproduction, 29(12), 27122718.Google Scholar
Pook, M. & Krause, W. (2005). Stress reduction in male infertility patients: a randomized, controlled trial. Fertility and sterility, 83(1), 6873.Google Scholar
Rockliff, H. E., Lightman, S. L., Rhidian, E., et al. (2014). A systematic review of psychosocial factors associated with emotional adjustment in in vitro fertilization patients. Human Reproduction Update, 20(4), 594613.Google Scholar
Verhaak, C. M., Smeenk, J. M. J., Evers, A. W. M., et al. (2007). Women’s emotional adjustment to IVF: a systematic review of 25 years of research. Human Reproduction Update, 13(1), 2736.Google Scholar
Verhaak, C. M., Lintsen, A. M. E., Evers, A. W. M. & Braat, D. D. M. (2010). Who is at risk of emotional problems and how do you know? Screening of women going for IVF treatment. Human Reproduction, 25(5), 12341240.Google Scholar

References

Brandberg, Y., Sandelin, K., Erikson, S., et al. (2008). Psychological reactions, quality of life, and body image after bilateral prophylactic mastectomy in women at high risk for breast cancer: a prospective 1-year follow-up study. Journal of Clinical Oncology, 26(24), 39433949.Google Scholar
Brown, L. F. & Kroenke, K. (2009). Cancer-related fatigue and its associations with depression and anxiety: a systematic review. Psychosomatics, 50(5), 440447.Google Scholar
Carayol, M., Bernard, P., Boiché, J., et al. (2013). Psychological effect of exercise in women with breast cancer receiving adjuvant therapy: what is the optimal dose needed? Annals of Oncology, 24(2), 291300.Google Scholar
Carter, J., Raviv, L., Applegarth, L. et al. (2010). A cross-sectional study of the psychosexual impact of cancer-related infertility in women: third-party reproductive assistance. Journal of Cancer Survivorship, 4(3),236246.Google Scholar
Di Mattei, V. E., Carnelli, L., Pagani Bagliacca, E., et al. (2014). Quality of life and body image: a psychosocial program for cancer patients. In Psychology Applications and Developments. Lisbon: Science Press.Google Scholar
Di Mattei, V. E., Carnelli, L., Carrara, L., et al. (2016). Chemotherapy-induced nausea and vomiting in women with gynecological cancer: a preliminary single-center study investigating medical and psychosocial risk factors. Cancer Nursing, 39(6), E52E59.Google Scholar
Doolittle, M. N. & Duhamel, K. N. (2015). Post-traumatic stress disorder associated with cancer diagnosis and treatment. In Holland, J. C., Breitbart, W., Jacobsen, P., et al. Psycho-Oncology (3rd edn). Oxford: Oxford University Press.Google Scholar
Erol, O., Can, G. & Aydiner, A. (2012). Effects of alopecia on body image and quality of life of Turkish cancer women with or without headscarf. Supportive Care in Cancer, 20, 23492356.Google Scholar
Fischer, D. S., Knobf, M. T., Durivage, J. H., et al. (2003). The Cancer Chemotherapy Handbook. (6th edn). Philadelphia, PA: Elsevier Science.Google Scholar
Grassi, L., Berardi, M. A., Ruffilli, F., et al. (2015). Role of psychosocial variables on chemotherapy-induced nausea and vomiting and health-related quality of life among cancer patients: a European study. Psychotherapy and Psychosomatics, 84(6), 339347.Google Scholar
Hilton, S., Hunt, K., Emslie, C., et al. (2008). Have men been overlooked? A comparison of young men and women’s experiences of chemotherapy-induced alopecia. Psycho-Oncology, 17, 577583.Google Scholar
Kershaw, T., Northouse, L., Kritpracha, C., et al. (2004). Coping strategies and quality of life in women with advanced breast cancer and their family caregivers. Psychology & Health, 19(2), 139155.Google Scholar
Kroenke, C. H., Kubzansky, L. D., Schernhammer, E. S., et al. (2006). Social networks, social support, and survival after breast cancer diagnosis. Journal of Clinical Oncology, 24(7), 11051111.Google Scholar
Kroenke, C. H., Kwan, M. L., Neugut, A. I., et al. (2013). Social networks, social support mechanisms, and quality of life after breast cancer diagnosis. Breast Cancer Research and Treatment, 139(2), 515527.Google Scholar
Lambertini, M., Del Mastro, L., Pescio, M. C., et al. (2016). Cancer and fertility preservation: international recommendations from an expert meeting. BMC Medicine, 4(14), 1.Google Scholar
Lazarus, R. S. & Folkam, S. (1984). Stress, Appraisal and Coping. New York: Springer.Google Scholar
Lemieux, J., Maunsell, E. & Provencher, L. (2008). Chemotherapy-induced alopecia and effects on quality of life among women with breast cancer: a literature review. Psycho-Oncology, 17, 317328.Google Scholar
Menshadi, N., Bar-Tal, Y. & Barnoy, S. (2013). The relationship between learned resourcefulness and cancer-related fatigue in patients with non-Hodgkin lymphoma. Oncology Nursing Forum, 40(2), 133138.Google Scholar
Mitchell, A. J., Chan, M., Bhatti, H., et al. (2011). Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncology, 12(2), 160174.Google Scholar
Münstedt, K., Manthey, N., Sachsse, S., et al. (1997). Changes in self-concept and body image during alopecia induced cancer chemotherapy. Supportive Care in Cancer, 5(2), 139143.Google Scholar
Peccatori, F. A., Azim, H. A. Jr, Orecchia, R., et al. (2013). Cancer, pregnancy and fertility: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 24(Suppl. 6), vi160vi170.Google Scholar
Rock, C. L. (2005). Dietary counseling is beneficial for the patient with cancer. Journal of Clinical Oncology, 23, 13481349.Google Scholar
Roscoe, J. A. (2006). The role of patients’ response expectancies in side effect development and control. Current Problems in Cancer, 30(2), 4098.Google Scholar
Roscoe, J. A., Heckler, C. E., Morrow, G. R., et al. (2012). Prevention of delayed nausea: a university of Rochester cancer center community clinical oncology program study of patients receiving chemotherapy. Journal of Clinical Oncology, 30, 33893395.Google Scholar
Rosenberg, S. M., Tamimi, R. M., Gelber, S., et al. (2013). Body image in recently diagnosed young women with early breast cancer. Psycho-Oncology, 22, 18491855.Google Scholar
Tuncay, T. (2014). Coping and quality of life in Turkish women living with ovarian cancer. Asian Pacific Journal of Cancer Prevention, 15(9), 40054012.Google Scholar
Wells, J. S., Strickland, O. L. & Dalton, J. A. (2015). Adherence to intravenous chemotherapy in African American and white women with early-stage breast cancer. Cancer Nursing, 38(2), 8998.Google Scholar
Wenzel, L. B., Fairclough, D. L., Brady, M. J., et al. (2000). Age-related differences in the quality of life of breast carcinoma patients after treatments. Cancer, 86(9), 17681774.Google Scholar

References

Ausanee, W., Jane, M. & Stewart, B. (2010). Complementary and alternative medicine use among women with breast cancer: a systematic review. Clinical Journal of Oncology Nursing, 14(4), E45.Google Scholar
Bishop, F. L. & Lewith, G. T. (2010). Who uses CAM? A narrative review of demographic characteristics and health factors associated with CAM use. Evidence-Based Complementary and Alternative Medicine, 7(1), 1128.Google Scholar
Clarke, T. C., Black, L. I., Stussman, B. J., Barnes, P. M. & Nahin, R. L. (2015). Trends in the use of complementary health approaches among adults: United States, 2002–2012. National Health Statistics Reports, 10(79), 116.Google Scholar
Cramer, H., Lauche, R., Haller, H. & Dobos, G. (2013). A systematic review and meta-analysis of yoga for low back pain. Clinical Journal of Pain, 29(5), 450460.Google Scholar
Eardley, S., Bishop, F. L., Prescott, P., et al. (2012). A systematic literature review of complementary and alternative medicine prevalence in EU. Forschende Komplementärmedizin/Research in Complementary Medicine, 19 (Suppl. 2), 1828.Google Scholar
Ernst, E. (2007). Adverse effects of spinal manipulation: a systematic review. Journal of the Royal Society of Medicine, 100(7), 330338.Google Scholar
Falci, L., Shi, Z. & Greenlee, H. (2016). Peer reviewed: multiple chronic conditions and use of complementary and alternative medicine among US adults: results from the 2012 National Health Interview Survey. Preventing Chronic Disease, 13, E61. http://dx.doi.org/10.5888/pcd13.150501.Google Scholar
Frass, M., Strassl, R. P. & Friehs, H. (2012). Use and acceptance of complementary and alternative medicine among the general population and medical personnel: a systematic review. The Ochsner Journal, 12(1), 4556.Google Scholar
Gotink, R. A., Chu, P., Busschbach, J. J., et al. (2015). Standardised mindfulness-based interventions in healthcare: an overview of systematic reviews and meta-analyses of RCTs. PLoS One, 10(4), e0124344.Google Scholar
Harris, P. E., Cooper, K. L., Relton, C. & Thomas, K. J. (2012). Prevalence of complementary and alternative medicine (CAM) use by the general population: a systematic review and update. International Journal of Clinical Practice, 66(10), 924939.Google Scholar
Henderson, C., Evans-Lacko, S. & Thornicroft, G. (2013). Mental illness stigma, help seeking, and public health programs. American Journal of Public Health, 103(5), 777780.Google Scholar
Hoffmann, S. G., Sawyer, A. T., Witt, A. A. & Oh, D. (2010). The effect of mindfulness-based therapy on anxiety and depression: a meta-analytic review. Journal of Consulting and Clinical Psychology, 78(2), 169183.Google Scholar
Horneber, M., Bueschel, G., Dennert, G., et al. (2011). How many cancer patients use complementary and alternative medicine: a systematic review and metaanalysis. Integrative Cancer Therapies, 11, 187203.Google Scholar
Hunt, K. J., Coelho, H. F., Wider, B., et al. (2010). Complementary and alternative medicine use in England: results from a national survey. International Journal of Clinical Practice, 64(11), 14961502.Google Scholar
Liu, L., Skinner, M., McDonough, S., Mabire, L. & Baxter, G. D. (2015). Acupuncture for low back pain: an overview of systematic reviews. Evidence-Based Complementary and Alternative Medicine, 2015. DOI: 10.1155/2015/328196.Google Scholar
Macfarlane, G. J., Paudyal, P., Doherty, M., et al. (2012). A systematic review of evidence for the effectiveness of practitioner-based complementary and alternative therapies in the management of rheumatic diseases: osteoarthritis. Rheumatology, 51(12), 22242233.Google Scholar
McFadden, K. L., Hernández, T. D. & Ito, T. A. (2010). Attitudes toward complementary and alternative medicine influence its use. Explore: The Journal of Science and Healing, 6(6), 380388.Google Scholar
National Institutes of Health (NIH). (2016a). Complementary, alternative, or integrative health: What’s in a name? https://nccih.nih.gov/sites/nccam.nih.gov/files/Whats_In_A_Name_06-16-2016.pdf (accessed 15 July 2016).Google Scholar
National Institutes of Health (NIH). (2016b). Safe use of complementary health products and practices. https://nccih.nih.gov/health/safety (accessed 11 August 2017).Google Scholar
Podazaski, P., Watson, L. K., Alotaibi, A. & Ernst, E. (2013). Prevalence of use of complementary and alternative medicine (CAM) by patients/consumers in the UK: systematic review of surveys. Clinical Medicine, 13(2), 126131.Google Scholar
Shneerson, C., Taskila, T., Gale, N., Greenfield, S. & Chen, Y. F. (2013). The effect of complementary and alternative medicine on the quality of life of cancer survivors: a systematic review and meta-analyses. Complementary Therapies in Medicine, 21(4), 417429.Google Scholar
Solomon, D. & Adams, J. (2015). The use of complementary and alternative medicine in adults with depressive disorders: a critical integrative review. Journal of Affective Disorders, 179, 101113.Google Scholar
Thomson, P., Jones, J., Evans, J. M. & Leslie, S. L. (2012). Factors influencing the use of complementary and alternative medicine and whether patients inform their primary care physician. Complementary Therapies in Medicine, 20(1), 4553.Google Scholar
Ventola, C. L. (2010). Current issues regarding complementary and alternative medicine (CAM) in the United States. Part 1: the widespread use of CAM and the need for better-informed health care professionals to provide patient counseling. Pharmacy and Therapeutics, 35(8), 461468.Google Scholar
White, A., Boon, H., Alraek, T., et al. (2014). Reducing the risk of complementary and alternative medicine (CAM): challenges and priorities. European Journal of Integrative Medicine, 6(4), 404408.Google Scholar
Woollen, L. & Paudyal, P. (2015). Practitioner-based complementary and alternative therapies in the management of asthma in children and adolescents: a systematic review and meta-analysis. Lancet, 386, S80.Google Scholar
World Health Organization. (2013). WHO traditional medicine strategy 2014–2023. http://apps.who.int/iris/bitstream/10665/92455/1/9789241506090_eng.pdf?ua=1 (accessed 12 August 2016).Google Scholar

References

Daniels, K., Mosher, W. D. & Jones, J. (2013). Contraceptive Methods Women Have Ever used: United States, 1982–2010. National Health Statistics Reports, 62. Hyattsville, MD: National Center for Health Statistics.Google Scholar
Daniels, K., Daugherty, J., Jones, J. & Mosher, W. D. (2015). Current Contraceptive Use and Variation by Selected Characteristics Among Women Aged 15–44: United States, 2011–2013. National Health Statistics Reports, 86. Hyattsville, MD: National Center for Health Statistics.Google Scholar
Eisenstadt v. Baird (1972). 405, US 438.Google Scholar
Faisal-Cury, A., Menezes, P. R. & Huang, H. (2013). The relationship between perinatal psychiatric disorders and contraception use among postpartum women. Contraception, 88(4), 498502.Google Scholar
Francis, J., Presser, L., Malbon, K., Braun-Courville, D. & Linares, L. O. (2015). An exploratory analysis of contraceptive method choice and symptoms of depression in adolescent females initiating prescription contraception. Contraception, 91(4), 336343.Google Scholar
Frost, J. J. & Darroch, J. E. (2008). Factors associated with contraceptive choice and inconsistent method use, United States, 2004. Perspectives on Sexual and Reproductive Health, 40(2), 94104.Google Scholar
Frost, J. J., Singh, S. & Finer, L. B. (2007). Factors associated with contraceptive use and nonuse, United States, 2004. Perspectives on Sexual and Reproductive Health, 39(2), 9099.Google Scholar
Frost, J. J., Frohwirth, L. F., Blades, N., et al. (2017). Publicly Funded Contraceptive Services at U.S. Clinics, 2015. New York: Guttmacher Institute.Google Scholar
Garbers, S., Correa, N., Tobier, N., Blust, S. & Chiasson, M. A. (2010). Association between symptoms of depression and contraceptive method choices among low-income women at urban reproductive health centers. Maternal & Child Health Journal, 14(1), 102109.Google Scholar
Griswold v. Connecticut (1965) 381, US 479.Google Scholar
Hall, K. S., White, K. O., Rickert, V. I., Reame, N. & Westhoff, C. (2012). Influence of depressed mood and psychological stress symptoms on perceived oral contraceptive side effects and discontinuation in young minority women. Contraception, 86(5), 518525.Google Scholar
Hall, K. S., Moreau, C., Trussell, J. & Barber, J. (2013a). Role of young women’s depression and stress symptoms in their weekly use and nonuse of contraceptive methods. Journal of Adolescent Health, 53 (2), 241248.Google Scholar
Hall, K. S., Moreau, C., Trussell, J. & Barber, J. (2013b). Young women’s consistency of contraceptive use: does depression or stress matter? Contraception, 88(5), 641649.Google Scholar
Hall, K. S., Steinberg, J. R., Cwiak, C. A., Allen, R. H. & Marcus, S. M. (2015). Contraception and mental health: a commentary on the evidence and principles for practice. American Journal of Obstetrics & Gynecology, 212 (6), 740746.Google Scholar
Hubacher, D. & Trussell, J. (2015). A definition of modern contraceptive methods. Contraception, 92(5), 420421.Google Scholar
Jaccard, J. & Levitz, N. (2013). Counseling adolescents about contraception: towards the development of an evidence-based protocol for contraceptive counselors. Journal of Adolescent Health, 52(4 Suppl.), S6S13.Google Scholar
Jones, R. K. (2011). Beyond Birth Control: The Overlooked Benefits of Oral Contraceptive Pills. New York: Guttmacher Institute.Google Scholar
Library of Congress (1873). 42nd Congress, Session III, Ch. 258. https://memory.loc.gov/cgi-bin/ampage?collId=llsl&fileName=017/llsl017.db&recNum=639.Google Scholar
Møller, S. E. (1981). Effect of oral contraceptives on tryptophan and tyrosine availability: evidence for a possible contribution to mental depression. Neuropsychobiology, 7(4), 192200.Google Scholar
Singh, S., Darroch, J. E. & Ashford, L. S. (2014). Adding It Up: The Costs and Benefits of Investing in Sexual and Reproductive Health 2014. New York: Guttmacher Institute.Google Scholar
Skovlund, C. W., Morch, L. S., Kessing, L. V. & Lidegaard, O. (2016). Association of hormonal contraception with depression. JAMA Psychiatry, 73(11), 11541162.Google Scholar
Sonfield, A., Hasstedt, K. & Gold, R. B. (2014). Moving Forward: Family Planning in the Era of Health Reform. New York: Guttmacher Institute.Google Scholar
Steinauer, J. E., Upadhyay, U. D., Sokoloff, A., et al. (2015). Choice of levonorgestrel intrauterine device, etonogestrel implant or depot medroxyprogesterone acetate for contraception after aspiration abortion. Contraception, 92(6), 553559.Google Scholar
Steinberg, J. R., Tschann, J. M., Henderson, J. T., et al. (2013). Psychological distress and post-abortion contraceptive method effectiveness level chosen at an urban clinic. Contraception, 88 (6), 717724.Google Scholar
Sundaram, A., Vaughan, B., Kost, K., et al. (2017). Contraceptive failure in the United States: estimates from the 2006–2010 National Survey of Family Growth. Perspectives on Sexual and Reproductive Health, 49(1), 716.Google Scholar
Trussell, J. (2011). Contraceptive failure in the United States. Contraception, 83(5), 397404.Google Scholar
Trussell, J. & Guthrie, K. A. (2011). Choosing a contraceptive: efficacy, safety, and personal considerations. In Hatcher, R. A, Trussell, J., Nelson, A. L., et al. (eds), Contraceptive Technology (20th revised edn; pp. 4574). New York: Ardent Media.Google Scholar
Upadhyay, U. D., Brown, B. A., Sokoloff, A. & Raine, T. R. (2012). Contraceptive discontinuation and repeat unintended pregnancy within 1 year after an abortion. Contraception, 85(1), 5662.Google Scholar
Yale Law Journal Company (1960). Connecticut’s birth control law: reviewing a state statute under the fourteenth amendment. Yale Law Journal, 70(2), 322334.Google Scholar
Zethraeus, N., Dreber, A., Ranehill, E., et al. (2017). A first-choice combined oral contraceptive influences general well-being in healthy women: a double-blind, randomized, placebo-controlled trial. Fertility & Sterility. Epub ahead of print.Google Scholar

References

Andreen, L., Nyberg, S., Turkmen, S., et al. (2009). Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychoneuroendocrinology, 34, 11211132.Google Scholar
Barnabei, V. M., Cochrane, B. B., Aragaki, A. K., et al. (2005). Menopausal symptoms and treatment related effects of estrogen and progestin in the women’s health initiative. Obstetrics and Gynaecology, 105, 10631073.Google Scholar
Beral, V., et al., Million Women Study Collaborators (2003). Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet, 362, 419427.Google Scholar
Bergandal, A., Kieler, H., Sundstrom, A., et al. (2016). Risk of venous thromboembolism associated with local and systemic use of hormone therapy in peri- and postmenopausal women and in relation to type and route of administration. Menopause, 23(6), 593599.Google Scholar
Canonico, M., Oger, E., Plu-Bureau, G., et al. (2007). Hormone therapy and venous thromboembolism among postmenopausal women. Circulation, 115, 840845.Google Scholar
Cauley, J. A., Robbins, J., Chen, Z., et al. (2003). Effects of estrogen plus progestin on risk of fracture and bone mineral density; the women’s health initiative randomized trial. Journal of the American Medical Association, 290, 17291738.Google Scholar
Cohen, L. S., Soares, C. N., Vitonis, A. F., et al. (2006). Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Archives of General Psychiatry, 63(4), 385390.Google Scholar
Cushman, M., Kuller, L. H., Prentice, R., et al. (2004). Estrogen plus progestin and risk of venous thrombosis. Journal of the American Medical Association, 292, 15731580.Google Scholar
Deecher, D., Andree, T. H., Sloan, D., et al. (2008). From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology, 33(1), 317.Google Scholar
Fahlen, M., Fornander, T., Johansson, H., et al. (2013). Hormone replacement therapy after breast cancer: 10 year follow up of the Stockholm randomised trial. European Journal of Cancer, 49, 5259.Google Scholar
Freeman, E. W., Sammel, M. D., Lin, H., et al. (2006). Association of hormones and menopausal status with depressed mood in women with no history of depression. Archives of General Psychiatry, 63(4), 375382.Google Scholar
Furness, S., Roberts, H., Marjoribanks, J., et al. (2012). Hormone therapy in postmenopausal women and risk of endometrial hyperplasia. Cochrane Database of Systematic Reviews, 8, CD000402.Google Scholar
Gold, E. B., Colvin, A., Avis, N., et al. (2006). Longitudinal analysis of the association between vasomotor symptoms and race/ethnicity across the menopausal transition: study of women’s health across the nation. American Journal of Public Health, 96(7), 12261235.Google Scholar
Hoga, L., Radolpho, J., Goncalves, B., et al. (2015). Women’s experience of menopause: a systematic review of qualitative evidence. JBI Database of Systematic Reviews and Implementation Reports, 13(8), 250337.Google Scholar
Holmberg, L., Iverson, O. E., Rudenstam, C. M., et al. (2008). Increased risk of recurrence after hormone replacement therapy in breast cancer survivor. Journal of the National Cancer Institute, 100, 475482.Google Scholar
Leidy, S. (2013). Menopause across cultures: clinical considerations. North American Menopause Society practice pearl. Menopause, 21(4), 421423.Google Scholar
MacLennan, A. H., Boradbent, J. L., Lester, S., et al. (2004). Oral oestrogen and combined oestrogen/progestogen therapy versus placebo for hot flushes. Cochrane Database Systematic Reviews, 18(4), CD002978.Google Scholar
Manson, J. E., Chlebowski, R. T., Stefanick, M. L., et al. (2013). Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the women’s health initiative randomized trials. Journal of the American Medical Association, 310(13), 13531368.Google Scholar
Melby, M. K., Lock, M., Kaufert, P., et al. (2005). Culture and symptom reporting at menopause. Human Reproduction Update, 11(5), 495512.Google Scholar
Mohammed, K., Abu Dabrh, A. M., Benkhadra, K., et al. (2015). Oral vs transdermal estrogen therapy and vascular events: a systematic review and meta-analysis. Journal of Clinical Endocrinology & Metabolism, 100(11), 40124020.Google Scholar
National Institute for Health and Care Excellence. (2015). Menopause: diagnosis and management guideline. National Institute for Health and Care Excellence, 8, 129.Google Scholar
Neves-e-Castro, M., Birkhauser, M., Samsioe, G., et al. (2015). EMAS Position Statement: the ten point guide to the integral management of menopausal health. Maturitas, 81, 8892.Google Scholar
North American Menopause Society. (2012). The 2012 hormone therapy position statement of the North American Menopause Society. Menopause, 19(3), 257271.Google Scholar
Obermeyer, C. M. (2000). Menopause across cultures: a review of the evidence. Menopause, 7(3), 184192.Google Scholar
Roberts, H. & Hickey, M. (2015). Should hormone therapy be recommended for prevention of cardiovascular disease? Cochrane Database of Systematic Reviews, 3, ED000097.Google Scholar
Schenck-Gustafsson, K., Brincat, M., Gambacciani, M., et al. (2011). EMAS position statement: managing the menopause in the context of coronary heart disease. Maturitas, 68(1), 9497.Google Scholar
Schmidt, P. J. & Rubinow, D. R. (2009). Sex hormones and mood in the perimenopause. Annals of the New York Academy of Sciences, 1179, 7085.Google Scholar
Schmidt, P. J., Ben Dor, R., Martinez, P. E., et al. (2015). Effects of estradiol withdrawal on mood in women with past perimenopausal depression. JAMA Psychiatry, 72(7), 714726.Google Scholar
Stuenkel, C. A., Davis, S. R., Gompel, A., et al. (2015). Treatment of symptoms of the menopause: an endocrine society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism, 100(11), 39754011.Google Scholar
Suckling, J. A., Lethaby, A., Kennedy, R. (2006). Local oestrogen for vaginal atrophy in postmenopausal women. Cochrane Database of Systematic Reviews, 4, CD001500.Google Scholar
Timur, S. & Sahin, N. H. (2010). The prevalence of depression symptoms and influencing factors among perimenopausal and postmenopausal women. Menopause, 17(3), 545551.Google Scholar
Worsely, R., Davis, S. R., Gavrilidis, E., et al. (2012). Hormonal therapies for new onset and relapsed depression during perimenopause. Maturitas, 73, 127133.Google Scholar
Worsley, R., Bell, R., Kulkarni, J., et al. (2014). The association between vasomotor symptoms and depression during perimenopause: a systematic review. Maturitas, 77, 111117.Google Scholar

References

Bevan, J. C., Johnston, C., Haig, M. J., et al. (1990). Preoperative parental anxiety predicts behavioural and emotional responses to induction of anaesthesia in children. Canadian Journal of Anaesthesia, 37, 177182.Google Scholar
Capurso, M. & Ragni, B. (2016). Psycho-educational preparation of children for anaesthesia: a review of intervention methods. Patient Education and Counseling, 99(2), 173185.Google Scholar
D’Angelica, M., Hirsch, K., Ross, H., et al. (1998). Surgeon–patient communication in the treatment of pancreatic cancer. Archives of Surgery, 133, 962966.Google Scholar
DeGroot, K. I., Boeke, S., Bonke, B. & Passchier, J. (1997). A revaluation of the adaptiveness of avoidant and vigilant coping with surgery. Psychology & Health, 12, 711717.Google Scholar
Delva, D., Vanoost, S., Bijttebier, P., et al. (2002). Needs and feelings of anxiety of relatives of patients hospitalized in intensive care units: implications for social work. Social Work in Health Care, 35, 2140.Google Scholar
Esteghamat, S. S., Moghaddami, S., Esteghamat, S. S., et al. (2014). The course of anxiety and depression in surgical and non-surgical patients. International Journal of Psychiatry in Clinical Practice, 18, 1620.Google Scholar
Janis, I. (1958). Psychological Stress. New York: Wiley.Google Scholar
Johnston, M. (1988). Impending surgery. In Fisher, S. & Reason, J. (eds), Handbook of Life Stress, Cognition and Health (pp. 79100). New York: Wiley.Google Scholar
Johnston, M. & Vögele, C. (1993). Benefits of psychological preparation for surgery: a meta-analysis. Annals of Behavioral Medicine, 15, 245256.Google Scholar
Johnston, M., Foulkes, J., Johnston, D. W., et al. (1999). Impact on patients and partners of inpatient and extended cardiac counseling and rehabilitation: a controlled trial. Psychosomatic Medicine, 61, 225233.Google Scholar
Kain, Z. N., Caldwell-Andrews, A. A., Maranets, I., et al. (2006). Predicting which child–parent pair will benefit from parental presence during induction of anesthesia: a decision-making approach. Anesthesia and Analgesia, 102, 8184.Google Scholar
Kitagawa, R., Yasui-Furukori, N., Tsushima, T., et al. (2011). Depression increases the length of hospitalisation for patients undergoing thoracic surgery: a preliminary study. Psychosomatics, 52, 428432.Google Scholar
LeRoy, S., Elixson, E. M., O’Brien, P., et al. (2003). Recommendations for preparing children and adolescents for invasive cardiac procedures: a statement from the American Heart Association Pediatric Nursing Subcommittee of the council on cardiovascular nursing in collaboration with the council on cardiovascular diseases of the young. Circulation, 108, 25502564.Google Scholar
Ley, P. (1988). Communicating with Patients. London: Croom Helm.Google Scholar
Ludwick-Rosenthal, R. & Neufeld, R. W. J. (1993). Preparation for undergoing an invasive medical procedure: interacting effects of information and coping style. Journal of Consulting and Clinical Psychology, 61, 156164.Google Scholar
Manyande, A., Cyna, A. M., Yip, P., et al. (2015). Non-pharmacological interventions for assisting the induction of anaesthesia in children. Cochrane Database of Systematic Reviews, 7, CD006447.Google Scholar
McAdam, J. L., Dracup, K. A., White, D. B., et al. (2010). Symptom experiences of family members of intensive care unit patients at high risk for dying. Critical Care Medicine, 38, 10781085.Google Scholar
McLean, M., Cleland, J., Worrell, M. & Vögele, C. (2011). ‘What am I going to say here?’ The experiences of doctors and nurses communicating with patients in a cancer unit. Frontiers in Psychology for Clinical Settings, 2(339).Google Scholar
Melnyk, B. M., Alpert-Gillis, L., Feinstein, N. F., et al. (2004). Creating Opportunities for parent empowerment: program effects on the mental health/coping outcomes of critically ill young children and their mothers Pediatrics, 113, e597e607.Google Scholar
Munafò, M. R. & Stevenson, J. (2001). Anxiety and surgical recovery: reinterpreting the literature. Journal of Psychosomatic Research, 51, 589596.Google Scholar
Padilla Fortunatti, C. F. (2014). Most important needs of family members of critical patients in light of the critical care family needs inventory. Investigación y Educación en Enfermería, 32, 306316.Google Scholar
Parks, K. R. (1985). Stressful episodes reported by first year student nurses: a descriptive account. Social Science & Medicine, 20, 945953.Google Scholar
Pederson, J. L., Warkentin, L. M., Majumdar, S. R. & McAlister, F. A. (2016). Depressive symptoms are associated with higher rates of readmission or mortality after medical hospitalisation: a systematic review and meta-analysis. Journal of Hospital Medicine, 11, 373380.Google Scholar
Powell, R., Ahmad, M., Gilbert, F. J., et al. (2015). Improving magnetic resonance imaging (MRI) examinations: development and evaluation of an intervention to reduce movement in scanners and facilitate scan completion. British Journal of Health Psychology, 20, 449465.Google Scholar
Powell, R., Scott, N. A. M., Bruce, J., et al. (2016). Psychological preparation and postoperative outcomes for adults undergoing surgery under general anaesthesia. Cochrane Database of Systematic Reviews, 5, CD008646.Google Scholar
Rennick, J. E. & Rashotte, J. (2009). Psychological outcomes in children following pediatric intensive care unit hospitalisation: a systematic review of the research. Journal of Child Health Care, 13, 128149.Google Scholar
Reynolds, P. M., Sanson-Fisher, R. W., Poole, A., et al. (1981). Cancer and communication: information-giving in an oncology clinic. British Medical Journal, 282, 14491451.Google Scholar
Shipley, R. H., Butt, J. H., Horwitz, B. & Farbry, J. E. (1978). Preparation for a stressful medical procedure: effect of amount of stimulus preexposure and coping style. Journal of Consulting and Clinical Psychology, 46, 499507.Google Scholar
Small, S. P. & Graydon, J. E. (1993). Uncertainty in hospitalized patients with chronic obstructive pulmonary disease. International Journal of Nursing Studies, 30, 239246.Google Scholar
Stochel-Gaudyn, A., Skltadzien, T., Skalski, J. H. & Fyderek, K. (2013). The emotional reactions of parents to the hospitalisation and conservative treatment of children after cardiac surgery in comparison to the parents of children treated for acute infection. Kardiochirurgia I Torakochirurgia Polska, 10, 2730.Google Scholar
Suls, J. & Fletcher, B. (1985). The relative efficacy of avoidant and nonavoidant coping strategies: a meta-analysis. Health Psychology, 4, 249288.Google Scholar
Tamburini, M., Gangeri, L., Brunelli, C., et al. (2003). Cancer patients’ needs during hospitalisation: a quantitative and qualitative study. BMC Cancer, 3(12).Google Scholar
Titler, M. G., Cohen, M. Z. & Craft, M. J. (1991). Impact of adult critical care hospitalisation: perceptions of patients, spouses, children, and nurses. Heart & Lung, 20, 174182.Google Scholar
Van Horn, E. & Tesh, A. (2000). The effect of critical care hospitalisation on family members: stress and responses. Dimensions of Critical Care Nursing, 19, 4049.Google Scholar
Verhaeghe, S., Defloor, T., Van Zuuren, F., et al. (2005). The needs and experiences of family members of adult patients in an intensive care unit: a review of the literature. Journal of Clinical Nursing, 14(4), 501509.Google Scholar
Volicer, B. J. & Bohannon, M. W. (1975). A hospital stress rating scale. Nursing Research, 24, 352359.Google Scholar
Weinman, J. & Johnston, M. (1988). Stressful medical procedures: an analysis of the effects of psychological interventions and of the stressfulness of the procedures. In Maes, S., Defares, P., Sarason, L. G. & Spielberger, C. (eds), Proceedings of the First International Expert Conference on Health Psychology. London: Wiley.Google Scholar
Zigmond, A. S. & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67, 361370.Google Scholar

References

Aitken, L. M., Castillo, M. I., Ullman, A., et al. (2016). What is the relationship between elements of ICU treatment and memories after discharge in adult ICU survivors? Australian Critical Care, 29(1), 514.Google Scholar
Castillo, M. I., Cooke, M. L., Macfarlane, B. & Aitken, L. M. (2015). In ICU state anxiety is not associated with posttraumatic stress symptoms over six months after ICU discharge: a prospective study. Australian Critical Care, 29(3), 158164.Google Scholar
Castillo, M. I., Cooke, M. L., Macfarlane, B. & Aitken, L. M. (2016). Trait anxiety but not state anxiety during critical illness was associated with anxiety and depression over 6 months after ICU. Critical Care Medicine, 44(1): 100110.Google Scholar
Davidson, J. E., Jones, C. & Bienvenu, O. J. (2012). Family response to critical illness: postintensive care syndrome-family. Critical Care Medicine, 40(2): 618624.Google Scholar
Davydow, D. S., Gifford, J. M., Desai, S. V., Needham, D. M. & Bienvenu, O. J. (2008). Posttraumatic stress disorder in general intensive care unit survivors: a systematic review. General Hospital Psychiatry, 30(5), 421434.Google Scholar
Davydow, D. S., Gifford, J. M., Desai, S. V., Bienvenu, O. J. & Needham, D. M. (2009). Depression in general intensive care unit survivors: a systematic review. Intensive Care Medicine, 35(5): 796809.Google Scholar
Garrouste-Orgeas, M., Coquet, I., Perier, A., et al. (2012). Impact of an intensive care unit diary on psychological distress in patients and relatives. Critical Care Medicine, 40(7), 20332040.Google Scholar
Jones, C. & Griffiths, R. D., (2007). Patient and caregiver counselling after the intensive care unit: What are the needs and how should they be met? Current Opinions in Critical Care, 13(5), 503507.Google Scholar
Kiekkas, P., Theodorakopoulou, G., Spyratos, F. & Baltopoulos, G. (2010). Psychological distress and delusional memories after critical care: a literature review. International Nursing Review, 57, 288296.Google Scholar
Marshall, J. C., Bosco, L., Adhikari, N. K., et al. (2016). What is an intensive care unit (ICU): a report of the Task Force of the World Federation of Societies of Intensive and Critical Care Medicine. Journal of Critical Care, 37, 270276.Google Scholar
Peris, A., Bonizzoli, M., Iozzelli, D., et al. (2011). Early intra-intensive care unit psychological intervention promotes recovery from post traumatic stress disorders, anxiety and depression symptoms in critically ill patients. Critical Care, 15(1), R41.Google Scholar
Smith, G. & Nielsen, M. (1999). Criteria for admission. BMJ, 318(7197), 15441547.Google Scholar
Stoll, C., Kapfhammer, H. P., Rothenhausler, H. B., et al. (1999). Sensitivity and specificity of a screening test to document traumatic experiences and to diagnose post-traumatic stress disorder in ARDS patients after intensive care treatment. Intensive Care Medicine, 25(7): 697704.Google Scholar
Ullman, A. J., Aitken, L. M., Rattray, J., et al. (2014). Diaries for recovery from critical illness (Review). Cochrane Database of Systematic Reviews, 12: CD010468.Google Scholar
van den Born-van Zanten, S. A. (2016). Caregiver strain and posttraumatic stress symptoms of informal caregivers of intensive care unit survivors. Rehabilitation Psychology, 61(2), 173178.Google Scholar
Wade, D. M., Hankins, M., Smyth, D. A., et al. (2014). Detecting acute distress and risk of future psychological morbidity in critically ill patients: validation of the intensive care psychological assessment tool. Critical Care, 18(5), 519.Google Scholar
Walsh, T. S., Salisbury, L. G., Merriweather, J. L., et al. (2015). Increased hospital-based physical rehabilitation and information provision after intensive care unit discharge: the RECOVER Randomized Clinical Trial. JAMA Internal Medicine, 175(6), 901910.Google Scholar
Zigmond, A. S. & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361370.Google Scholar

References

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavior change. Psychological Review, 84, 191215.Google Scholar
Bodden-Heidrich, R., Walter, S., Teutenberger, S., et al. (2000). What does a young girl experience in her first gynecological examination? Study on the relationship between anxiety and pain. Journal of Pediatric and Adolescent Gynecology, 13, 139142.Google Scholar
Byrne, P. (1984). Psychiatric morbidity in a gynaecology clinic: an epidemiological survey. British Journal of Psychiatry, 144, 2834.Google Scholar
Dabson, A. M., Magin, P. J., Heading, G. & Pond, D. (2014). Medical students’ experiences learning intimate physical examination skills: a qualitative study. BMC Medical Education, 14, 39.Google Scholar
Dean, J. (1998). Examination of patients with sexual problems. BMJ, 317, 16411643.Google Scholar
Derose, K., Hays, R. D., McCaffrey, D. R. & Baker, D. W. (2001). Does physician gender affect satisfaction of men and women visiting the emergency department? Journal of General Internal Medicine, 16, 218226.Google Scholar
Fiddes, P., Scott, A., Fletcher, J. & Glaiser, A. (2003). Attitudes towards pelvic examination and chaperones: a questionnaire survey of patients and providers. Contraception, 67, 313317.Google Scholar
Frank, J., Thomas, K., Oliver, S., et al. (2001). Couch or crouch? Examining the prostate: a randomized study comparing the knee–elbow and the left-lateral position. BJU International, 87, 331334.Google Scholar
General Medical Council (2013). Intimate examinations and chaperones. www.gmc-uk.org/guidanceGoogle Scholar
Lazare, A. (1987). Shame and humiliation in the medical encounter. Archives of International Medicine, 147, 16531658.Google Scholar
Lodge, N., Mallett, J., Blake, P. & Fryatt, I. (1997). A study to ascertain gynaecological patients’ perceived levels of embarrassment with physical and psychological care given by female and male nurses. Journal of Advanced Nursing, 25, 893907.Google Scholar
Marshall, G. (1994). A comparative study of re-attenders and non-re-attenders for second triennial national breast screening programme appointments. Journal of Public Health Medicine, 16, 7986.Google Scholar
Miller, S. (1987). Monitoring and blunting: validation of a questionnaire to assess styles of information seeking under threat. Journal of Personality and Social Psychology, 52, 345353.Google Scholar
Pickard, S., Baraitser, P., Rymer, J. & Piper, J. (2003). Can gynaecology teaching associates provide high quality effective training for medical students in the United Kingdom? Comparative study. BMJ, 327, 13891392.Google Scholar
Racz, J. M., Srikanthan, A., Hahn, P. M. & Reid, R. L. (2008). Gender preference for a female physician diminishes as women have increased experience with intimate examinations. Journal of Obstetrics and Gynaecology Canada, 30, 910917.Google Scholar
Royal College of Nursing (2006). Chaperoning: The Role of the Nurse and the Rights of Patients. London: RCN.Google Scholar
Seehusen, D. A., Johnson, D. R., Scott Earwood, J., et al. (2006). Improving women’s experience during speculum examinations at routine gynaecological visits: randomized clinical trial. BMJ. https://doi.org/10.1136/bmj.38888.588519.55.Google Scholar
Seymore, C., DuRant, R. H., Jay, M. S., et al. (1986). Influence of position during examination, and sex of examiner on patient anxiety during pelvic examination. Journal of Pediatrics, 108, 2, 312317.Google Scholar
Sörensdotter, R. & Siwe, K. (2016). Touching the private parts: how gender and sexuality norms affect medical students; first pelvic examination. Culture, Health & Sexuality, 2, 114.Google Scholar
Stattin, H., Magnusson, D., Olah, A., Kassin, H. & Yadagiri-Reddy, N. (1991). Perception of threatening consequences of anxiety-provoking situations Anxiety Research, 4, 141166.Google Scholar
Van Ness, C. J. & Lynch, D. A. (2000). Male adolescents and physician sex preference. Archives of Pediatric and Adolescent Medicine, 154, 4953.Google Scholar
Webb, R. & Opdahl, M. (1996). Breast and pelvic examinations: easing women’s discomfort. Canadian Family Physician, 42, 5458.Google Scholar
Wijma, B., Schei, B., Swahnberg, K., et al. (2003). Emotional, physical, and sexual abuse in patients visiting gynaecology clinics: a Nordic cross-sectional study. Lancet, 361, 21072113.Google Scholar
Winterich, J. A., Quandt, S. A., Grzywacz, J. G., et al. (2009). Masculinity and the body: how African-American and white men experience cancer screening exams involving the rectum. American Journal of Mens’ Health, 3, 300309.Google Scholar

References

Albino, J. (2002). A psychologist’s guide to oral diseases and disorders and their treatment. Professional Psychology: Research and Practice, 33, 176182.Google Scholar
Brake, H., Gorter, R., Hoogstraten, J. & Eijkman, M. (2001). Burnout intervention among Dutch dentists: long-term effects. European Journal of Oral Science, 109, 380387.Google Scholar
Dailey, Y., Humphris, G. & Lennon, M. (2002). Reducing patients’ state anxiety in general dental practice: a randomized controlled trial. Journal of Dental Research, 81, 319322.Google Scholar
Gao, X., Lo, E. C., Kot, S. C. & Chan, K. C. (2014). Motivational interviewing in improving oral health: a systematic review of randomized controlled trials. Journal of Periodontology, 85, 426437.Google Scholar
Gatchel, R. (1986). Impact of a videotaped dental fear-reduction program on people who avoid dental treatment. Journal of the American Dental Association, 112, 218221.Google Scholar
Harris, R., Gamboa, A., Dailey, Y. & Ashcroft, A. (2012). One-to-one dietary interventions undertaken in a dental setting to change dietary behaviour. Cochrane Database of Systematic Reviews, 3, CD006540. DOI: 10.1002/14651858.CD006540.pub2.Google Scholar
Hayden, C., Bowler, J. O., Chambers, S., et al. (2013). Obesity and dental caries in children: a systematic review and meta-analysis. Community Dentistry and Oral Epidemiology, 41(4):289308.Google Scholar
Humphris, G. & Ling, M. (2000). Behavioural Sciences for Dentistry. Edinburgh: Churchill Livingstone.Google Scholar
Humphris, G. & Weinman, J. (1990). Development of dental health beliefs and their relation to dental health behaviour. In Schmidt, L., Schwenkmezger, J., Weinman, J. & Maes, S. (eds), Theoretical and Applied Aspects of Health Psychology. London: Harwood Academic.Google Scholar
Humphris, G., Blinkhorn, A., Freeman, R., et al. (2002). Psychological stress in undergraduate dental students: baseline results from seven European dental schools. European Journal of Dental Education, 6, 2229.Google Scholar
Humphris, G., Crawford, J. R., Hill, K., Gilbert, A. & Freeman, R. (2013). UK population norms for the modified dental anxiety scale with percentile calculator: adult dental health survey 2009 results. BMC Oral Health, 13, 29.Google Scholar
Innes, N. P., Evans, D. J., Bonifacio, C. C., et al. (2017). The Hall Technique 10 years on: questions and answers. British Dental Journal, 222, 478483.Google Scholar
Kassebaum, N. J., Bernabe, E., Dahiya, M., et al. (2014). Global burden of severe periodontitis in 1990–2010: a systematic review and meta-regression. Journal of Dental Research, 93, 10451053.Google Scholar
Kassebaum, N. J., Bernabe, E., Dahiya, M., et al. (2015). Global burden of untreated caries: a systematic review and metaregression. Journal of Dental Research, 94, 650658.Google Scholar
Kegeles, S. & Lund, A. (1982). Adolescents’ health beliefs and acceptance of a novel preventive dental activity. Health Education Quarterly, 9, 96111.Google Scholar
Kvale, G., Berggren, U. & Milgrom, P. (2004). Dental fear in adults: a meta-analysis of behavioural interventions. Community Dental Oral Epidemiology, 32, 250264.Google Scholar
Lindsay, S., Millar, K. & Jennings, K. (2000). The psychological benefits of dental implants in patients distressed by untolerated dentures. Psychology and Health, 15, 451466.Google Scholar
Locker, D. (2004). Oral health and quality of life. Oral Health and Preventive Dentistry, 2(Suppl. 1), 247253.Google Scholar
McGrath, C. & Bedi, R. (2004). A national study of the importance of oral health to life quality to inform scales of oral health related quality of life. Quality of Life Research, 13, 1318.Google Scholar
Miller, J., Elwood, P. C. & Swallow, J. N. (1975). Dental pain: an incidence study. British Dentistry Journal, 139(8):327328.Google Scholar
Moore, R., Brodsgaard, I. & Rosenberg, N. (2004). The contribution of embarrassment to phobic dental anxiety: a qualitative research study. BMC Psychiatry, 19, 10.Google Scholar
Newton, J. T. & Asimakopoulou, K. (2015). Managing oral hygiene as a risk factor for periodontal disease: a systematic review of psychological approaches to behaviour change for improved plaque control in periodontal management. Journal of Clinical Periodontology, 42 (Suppl. 16), S36S46.Google Scholar
Scheerman, J. F., van Loveren, C., van Meijel, B., et al. (2016). Psychosocial correlates of oral hygiene behaviour in people aged 9 to 19: a systematic review with meta-analysis. Community Dentistry and Oral Epidemiology, 44, 331341.Google Scholar
Schuz, B., Sniehotta, F. F. & Schwarzer, R. (2007). Stage-specific effects of an action control intervention on dental flossing. Health Education Research, 22, 332341.Google Scholar
Sondell, K., Soderfeldt, B. & Palmqvist, S. (2004). Underlying dimensions of verbal communication between dentists and patients in prosthetic dentistry. Patient Education and Counselling, 50, 157165.Google Scholar
Tomar, S. & Asma, S. (2000). Smoking-attributable periodontitis in the United States: findings from NHANES III. National Health and Nutrition Examination Survey. Journal of Periodontology, 71, 743751.Google Scholar
Watt, R. G. & Sheiham, A. (2012). Integrating the common risk factor approach into a social determinants framework. Community Dentistry and Oral Epidemiology, 40, 289296.Google Scholar

References

Bednall, C. & Bove, L. L. (2011). Donating blood: a meta-analytic review of self-reported motivators and deterrents. Transfusion Medicine Reviews, 25, 317334.Google Scholar
Behavioural Insights Team. (2013). Applying Behavioural Insights to Organ Donation: preliminary results from a randomised controlled trial. www.behaviouralinsights.co.uk/publications/applying-behavioural-insights-to-organ-donation/.Google Scholar
Cotte, J., Coulter, R. A. & Moore, M. (2005). Enhancing and disrupting guilt: the role of credibility and perceived manipulative intent. Journal of Business Research, 58, 361368.Google Scholar
Csillag, C. (1998). Brazil abolishes ‘presumed consent’ in organ donation. Lancet, 352(9137), 1367.Google Scholar
Fabre, J., Murphy, P. & Matesanz, R. (2010). Presumed consent: a distraction in the quest for increasing rates of organ donation. BMJ, 341, c4973c4973.Google Scholar
Fehr, E. & Schmidt, K. M. (1999). A theory of fairness, competition and cooperation. Quarterly Journal of Economics, 114, 817868.Google Scholar
Ferguson, E. (2015). Mechanisms of altruism approach to blood donor recruitment and retention: a review and future directions. Transfusion Medicine, 25, 211226.Google Scholar
Ferguson, E. & Lawrence, C. (2015). Blood donation and altruism: the mechanism of altruism approach. ISBT Science Series, 11(Suppl. 1), 148157.Google Scholar
Ferguson, E., Farrell, K. & Lawrence, C. (2008). Blood donation is an act of benevolence rather than altruism. Health Psychology, 27, 327336. DOI: 10.1037/0278-6133.27.3.327.Google Scholar
Ferguson, E., Atsma, F., de Kort, W. & Veldhuizen, I. (2012). Exploring the pattern of blood donor beliefs in first time, novice and experienced donors: differentiating reluctant altruism, pure altruism, impure altruism and warm-glow. Transfusion, 52, 343355.Google Scholar
France, C. R., Kawalsky, J. M., France, J. L., et al. (2014). The blood donor identity survey: a multidimensional measure of blood donor motivations. Transfusion, 54, 20982105.Google Scholar
Greinacher, A., Fendrich, K., Alpen, U. & Hoffman, W. (2007). Impact of demographic changes on the blood supply: Meckenburg-West Pomerania as a model region for Europe. Transfusion, 47, 395401.Google Scholar
Henderson, A. J. Z., Landolt, M. A., McDonald, M. F., et al. (2003). The living anonymous kidney donor: lunatic or saint? American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 3(2), 203213.Google Scholar
Johnson, E. J. & Goldstein, D. G. (2003). Do defaults save lives? Science, 302(5649), 13381339.Google Scholar
Lacetera, N., Macis, M. & Slonim, R. (2013). Economic rewards to motivate blood donation. Science, 340, 927928.Google Scholar
Landry, D. W. (2006). Voluntary reciprocal altruism: a novel strategy to encourage deceased organ donation. Kidney International, 69(6), 957959.Google Scholar
Maple, H., Chilcot, J., Burnapp, L., et al. (2014). Motivations, outcomes, and characteristics of unspecified (nondirected altruistic) kidney donors in the United Kingdom. Transplantation, 98(11), 11821189.Google Scholar
Mellstrom, C. & Johannesson, M. (2008). Crowding out in blood donation: was Titmuss right? Journal of the European Economic Assocition, 6, 845863.Google Scholar
Morgan, S. E., Stephenson, M. T., Harrison, T. R., Afifi, W. A. & Long, S. D. (2008). Facts versus ‘feelings’: how rational is the decision to become an organ donor? Journal of Health Psychology, 13(5), 644658.Google Scholar
NHSBT (2012–13). Annual Review 2012–13: Saving and Improving Lives 2020.Google Scholar
O’Carroll, R. E., Foster, C., McGeechan, G., Sandford, K. & Ferguson, E. (2011). The ‘ick’ factor, anticipated regret, and willingness to become an organ donor. Health Psychology, 30(2), 236245.Google Scholar
O’Carroll, R. E., Shepherd, L., Hayes, P. C. & Ferguson, E. (2016). Anticipated regret and organ donor registration: a randomized controlled trial. Health Psychology. http://doi.org/10.1037/hea0000363.Google Scholar
Schreiber, G. B., Sharma, U. K., Wright, D. J., et al. (2005). First-year donation patterns predict long-term commitment for first time donors. Vox Sanguinis, 88, 114121.Google Scholar
Shaz, B. H., Zimring, J. C., Demmons, D. G. & Hillyer, C. D. (2008). Blood donation and blood transfusion: special considerations for African Americans. Transfusion Medicine Review, 22, 202214.Google Scholar
Shepherd, L., O’Carroll, R. E. & Ferguson, E. (2014). An international comparison of deceased and living organ donation/transplant rates in opt-in and opt-out systems: a panel study. BMC Medicine, 12(1), 131.Google Scholar
Zou, S., Stramer, S. L. & Dodd, R. Y. (2012). Donor testing and risk: current prevalence, incidence, and residual risk of transfusion-transmissible agents in US allogenic donations. Transfusion Medicine Review, 26, 119128.Google Scholar

References

Adriane Labs (2015). The Serious Illness Conversation Guide. www.ariadnelabs.org/wp-content/uploads/sites/2/2015/08/Serious-Illness-Conversation-Guide-5.22.15.pdf (accessed 1 February 2017).Google Scholar
Anderson, J. R. & Barrett, R. L. (eds). (2001). Ethics in HIV-Related Psychotherapy: Clinical Decision Making in Complex Cases. Washington, DC: American Psychological Association.Google Scholar
Bernacki, R., Hutchings, M., Vick, J., et al. (2015). Development of the Serious Illness Care Program: a randomised controlled trial of a palliative care communication intervention. BMJ Open, 5(10).Google Scholar
Carolan, C. M., Smith, A. & Forbat, L. (2015). Conceptualising psychological distress in families in palliative care: findings from a systematic review. Palliative Medicine, 23. DOI: 10.1177/0269216315575680.Google Scholar
Chochinov, H. M. (2001). Dignity-conserving care: a new model for palliative care – helping the patient feel valued. Journal of the American Medical Association, 287(17), 22532260.Google Scholar
Chochinov, H. M., Johnston, W., McClement, S. E., et al. (2016). Dignity and distress towards the end of life across four non-cancer populations. PloS One, 11(1).Google Scholar
Deshields, T. L. & Nanna, S. K. (2010). Providing care for the ‘whole patient’ in the cancer setting: the psycho-oncology consultation model of patient care Journal of Clinical Psychology in Medical Settings, 17 (3), 249257.Google Scholar
Fitchett, G., Emanuel, L., Handzo, G., Boyken, L. & Wilkie, D. J. (2015). Care of the human spirit and the role of dignity therapy: a systematic review of dignity therapy research. BMC Palliative Care, 14(1), 1.Google Scholar
Franks, H. M. & Roesch, S. C. (2006). Appraisals and coping in people living with cancer: a meta‐analysis. Psycho‐Oncology, 15(12), 10271037.Google Scholar
Galfin, J., Watkins, E. & Harlow, T. (2012). A brief guided self-help intervention for psychological distress in palliative care patients: a randomised controlled trial. Palliative Medicine, 26, 197205.Google Scholar
Hayes, R. D., Lee, W., Rayner, L., et al. (2012). Gender differences in prevalence of depression among patients receiving palliative care: the role of dependency. Palliative Medicine, 26(5), 696702.Google Scholar
Horwitz, A. V. & Wakefield, J. C. (2007). The Loss of Sadness: How Psychiatry Transformed Normal Sorrow Into Depressive Disorder. Oxford: Oxford University Press.Google Scholar
Jünger, S., Payne, S., Costantini, A., Kalus, C. & Werth, J. L. (2010). EAPC task force on education for psychologists in palliative care. European Journal of Palliative Care, 17(2), 8487.Google Scholar
Kreutzer, J. S., Kolakowsky-Hayner, S. A., Demm, S. R. & Meade, M. A. (2002). A structured approach to family intervention after brain injury. The Journal of Head Trauma Rehabilitation, 17(4), 349367.Google Scholar
Lloyd-Williams, M. L. & Payne, S. (2003). A qualitative study of clinical nurse specialists’ views on depression in palliative care patients. Palliative Medicine, 17(4), 334338.Google Scholar
Murray, S. (2016). Set a low bar for starting palliative care: dying patients and their families most need support early on. BMJ. https://doi.org/10.1136/bmj.i3598.Google Scholar
Quill, T. E. & Abernethy, A. P. (2013). Generalist plus specialist palliative care: creating a more sustainable model. New England Journal of Medicine, 368(13), 11731175.Google Scholar
Rayner, L., Loge, J. H., Wasteson, E. & Higginson, I. J. (2009). The detection of depression in palliative care. Current Opinion in Supportive and Palliative Care, 3(1), 5560.Google Scholar
Schippers, M. C., West, M. A. & Dawson, J. F. (2015). Team reflexivity and innovation: the moderating role of team context. Journal of Management, 41(3), 769788.Google Scholar
Scottish Government (2015). Strategic Framework for Action on Palliative and End of Life Care. Edinburgh: Scottish Government.Google Scholar
Temel, J. S., Greer, J. A., Muzikansky, A., et al. (2010). Early palliative care for patients with metastatic non-small-cell lung cancer. New England Journal of Medicine, 363(8), 733742.Google Scholar
White, C. A. (2015). Physical health problems. In Tarrier, N. & Johnson, J. (eds), Case Formulation in Cognitive Behaviour Therapy: The Treatment of Challenging and Complex Cases. London: Routledge.Google Scholar
World Health Organization (2017). WHO definition of palliative care. www.who.int/cancer/palliative/definition/en/ (accessed 4 January 2017).Google Scholar

References

Baldwin, D. S., Aitchison, K., Bateson, A., et al. (2014). Benzodiazepines: risks and benefits. A reconsideration. Focus, 12(2): 229234.Google Scholar
Barker, M. J., Greenwood, K. M., Jackson, M. & Crowe, S. F. (2004). Persistence of cognitive effects after withdrawal from long-term benzodiazepine use: a meta-analysis. Archives of Clinical Neuropsychology, 19(3): 437454.Google Scholar
CMO. (2016). UK Chief Medical Officers’ low risk drinking guidelines. www.gov.uk/government/uploads/system/uploads/attachment_data/file/545937/UK_CMOs__report.pdf.Google Scholar
Cohen, P. J. (2009). Medical marijuana: the conflict between scientific evidence and political ideology. Part one of two. Journal of Pain and Palliative Care Pharmacotherapy, 23(1), 425.Google Scholar
Connor, J. P., Haber, P. S. & Hall, W. D. (2016). Alcohol use disorders. Lancet, 387(10022), 988998.Google Scholar
Cook, J., Lloyd‐Jones, D., Ogden, E. & Bonomo, Y. (2015). Medical use of cannabis: an addiction medicine perspective. Internal Medicine Journal, 45(6), 677680.Google Scholar
Dargan, P. I., Hudson, S., Ramsey, J. & Wood, D. M. (2011). The impact of changes in UK classification of the synthetic cannabinoid receptor agonists in ‘Spice’. International Journal of Drug Policy, 22(4), 274277.Google Scholar
Ellis, P. (2004). Australian and New Zealand clinical practice guidelines for the treatment of depression. The Australian and New Zealand Journal of Psychiatry, 38(6), 389407.Google Scholar
Gaynes, B. N., Lloyd, S. W., Lux, L., et al. (2014). Repetitive transcranial magnetic stimulation for treatment-resistant depression: a systematic review and meta-analysis. Journal of Clinical Psychiatry, 75, 477489.Google Scholar
Heltsley, R., Shelby, M. K., Crouch, D. J., et al. (2012). Prevalence of synthetic cannabinoids in US athletes: initial findings. Journal of Analytical Toxicology, 36(8), 588593.Google Scholar
Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187193.Google Scholar
Kalkhoran, S. & Glantz, S. A. (2016). E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respiratory Medicine, 4(2), 116128.Google Scholar
Lancaster, T., Stead, L., Silagy, C. & Sowden, A. (2000). Effectiveness of interventions to help people stop smoking: findings from the Cochrane Library. BMJ, 321(7257), 355.Google Scholar
Leucht, S., Komossa, K., Rummel-Kluge, C., et al. (2009). A meta-analysis of head-to-head comparisons of second-generation antipsychotics in the treatment of schizophrenia. American Journal of Psychiatry, 166(2), 152163.Google Scholar
Mills, E. J., Wu, P., Lockhart, I., et al. (2012). Comparisons of high-dose and combination nicotine replacement therapy, varenicline, and bupropion for smoking cessation: a systematic review and multiple treatment meta-analysis. Annals of Medicine, 44(6), 588597.Google Scholar
Mortati, K., Dworetzky, B. & Devinsky, O. (2007). Marijuana: an effective antiepileptic treatment in partial epilepsy? A case report and review of the literature. Reviews in Neurological Diseases, 4(2), 103106.Google Scholar
New, A. S. & Stanley, B. (2010). An opioid deficit in borderline personality disorder: self-cutting, substance abuse, and social dysfunction. American Journal of Psychiatry, 167(8), 882885.Google Scholar
Ogawa, Y., Tajika, A., Takeshima, N., Hayasaka, Y. & Furukawa, T. A. (2014). Mood stabilizers and antipsychotics for acute mania: a systematic review and meta-analysis of combination/augmentation therapy versus monotherapy. CNS drugs, 28(11), 9891003.Google Scholar
Pariente, A., de Gage, S. B., Moore, N. & Bégaud, B. (2016). The benzodiazepine–dementia disorders link: current state of knowledge. CNS drugs, 30(1), 17.Google Scholar
Parrott, A. C. (2013). Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research. Human Psychopharmacology: Clinical and Experimental, 28(4): 289307.Google Scholar
Parrott, A. C. (2014). The potential dangers of using MDMA for psychotherapy. Journal of Psychoactive Drugs, 46(1), 3743.Google Scholar
Parrott, A. C. & Murphy, R. S. (2012). Explaining the stress‐inducing effects of nicotine to cigarette smokers. Human Psychopharmacology: Clinical and Experimental, 27(2), 150155.Google Scholar
Rosenbaum, C. D., Carreiro, S. P. & Babu, K. M. (2012). Here today, gone tomorrow… and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines. Journal of Medical Toxicology, 8(1), 1532.Google Scholar
Sachdeva, A., Choudhary, M. & Chandra, M. (2015). Alcohol withdrawal syndrome: benzodiazepines and beyond. Journal of Clinical and Diagnostic Research, 9(9), VE01.Google Scholar
Smith, G. W., Farrell, M., Bunting, B. P., Houston, J. E. & Shevlin, M. (2011). Patterns of polydrug use in Great Britain: findings from a national household population survey. Drug and Alcohol Dependence, 113(2), 222228.Google Scholar
Stead, L. F., Perera, R., Bullen, C., Mant, D. & Lancaster, T. (2008). Nicotine replacement therapy for smoking cessation. Cochrane Database of Systematic Reviews, 11, CD000146.Google Scholar
Thompson, J., Neave, N., Moss, M., et al. (1999). Sedation: cognitive properties of sedation agents – comparison of the effects of nitrous oxide and midazolam on memory and mood. British Dental Journal, 187(10), 557562.Google Scholar
Valente, M. J., Guedes de Pinho, P., de Lourdes Bastos, M., Carvalho, F. & Carvalho, M. (2014). Khat and synthetic cathinones: a review. Archives on Toxicology, 88(1), 1545.Google Scholar
Walker, E., Kestler, L., Bollini, A., & Hochman, K. M. (2004). Schizophrenia: etiology and course. Annual Reviews in Psychology, 55, 401430.Google Scholar
Wingerchuk, D. (2004). Cannabis for medical purposes: cultivating science, weeding out the fiction. Lancet, 364(9431),315316.Google Scholar

References

Arber, A., Faithfull, S., Plaskota, M., Lucas, C. & De Vries, K. (2010). A study of patients with a primary malignant brain tumour and their carers: symptoms and access to services. International Journal of Palliative Nursing, 16, 2430.Google Scholar
Bentzen, S. G. H. & Al, C. E. (2005). Towards evidence-based guidelines for radiotherapy infrastructure and staffing needs in Europe: the ESTRO QUARTS project. Radiotherapy and Oncology, 75, 355365.Google Scholar
Blazquez, H. & Cruzado, J. (2016). A longitudinal study on anxiety, depressive and adjustment disorder, suicide ideation and symptoms of emotional distress in patients with cancer undergoing radiotherapy. Journal of Psychosomatic Research, 87, 1421.Google Scholar
Browall, M., Ahlberg, K., Karlsson, P., et al. (2008). Health-related quality of life during adjuvant treatment for breast cancer among postmenopausal women. European Journal of Oncology Nursing, 12, 180189.Google Scholar
Dieng, C. A., Kasparian, N. A., Mann, G. J. & Morton, R. L. (2016). Economic evaluations of psychosocial interventions in cancer: a systematic review. Psychooncology, 25, 13801392.Google Scholar
Dunn, J., Steginga, S. K., Rose, P., et al. (2004). Evaluating patient education materials about radiation therapy. Patient Education and Counseling, 52, 325332.Google Scholar
Edelstein, K., Richard, N. & Bernstein, L. (2017). Neurocognitive impairment of cranial radiation in adults with cancer: an update of recent findings. Current Opinion in Supportive and Palliative Care, 11, 3237.Google Scholar
Faithfull, S., Cockle-Hearne, J. & Khoo, V. (2011). Self-management after prostate cancer treatment: evaluating the feasibility of providing a cognitive and behavioural programme for lower urinary tract symptoms. BJU International, 107, 783790.Google Scholar
Faithfull, S., Lemanska, A. & Chen, T. (2015). Patient-reported outcome measures in radiotherapy: clinical advances and research opportunities in measurement for survivorship. Clinical Oncology, 27, 679685.Google Scholar
Fritzsche, K., Liptai, C. & Henke, M. (2004). Psychosocial distress and need for psychotherapeutic treatment in cancer patients during radiotherapy. Radiotherapy and Oncology, 72, 138189.Google Scholar
González-Arriagada, W., De Andrade, M., Ramos, L., et al. (2013). Evaluation of an educational video to improve the understanding of radiotherapy side effects in head and neck cancer patients. Supportive Care in Cancer, 21, 20072015.Google Scholar
Greene-Schlosser, D. & Me, R. (2012). Radiation-induced cognitive impairment:from bench to bedside. Neuro-Oncology., 14, 3744.Google Scholar
Halkett, G. K. B., Kristjanson, L. J. & Lobb, E. (2012). Information needs and preferences of women as they proceed through radiotherapy for breast cancer. Patient Education and Counseling, 86, 396404.Google Scholar
Hess, C. & Chen, A. (2014). Measuring psychosocial functioning in the radiation oncology clinic. Psychooncology, 23, 841854.Google Scholar
Howren, M., Christensen, A., Karnell, L. & Funk, G. (2014). Psychological factors associated with head and neck cancer treatment and survivorship: evidence and opportunities for behavioral medicine. Journal of Consulting and Clinical Psychology, 81, 299317.Google Scholar
Jacobsson, S., Ekman, T. & Ahlberg, K. (2015). Living through pelvic radiotherapy: a mixed study of self care activities and distressful symptoms. European Journal of Oncology Nursing, 19, 301309.Google Scholar
Kangas, M., Milross, C., Taylor, A. & Bryant, R. (2013). A pilot randomized controlled trial of a brief early intervention for reducing posttraumatic stress disorder, anxiety and depressive symptoms in newly diagnosed head and neck cancer patients. Psychooncology, 22, 16651673.Google Scholar
Kuderer, N. M. & Wolff, A. C. (2014). Enhancing therapeutic decision making when options abound: toxicities matter. Journal of Clinical Oncology, 32, 19901993.Google Scholar
Kunneman, M., Marijnen, C., Baas-Thijssen, M., et al. (2015). Considering patient values and treatment preferences enhances patient involvement in rectal cancer treatment decision making. Radiotherapy and Oncology, 117, 338342.Google Scholar
Magnusson, W., Mahal, A. & Yu, J. (2016). Emerging technologies and techniques in radiation therapy. Seminars in Radiation Oncology, 27, 3442.Google Scholar
McCorkle, R., Ercolano, E., Lazenby, M., et al. (2011). Self-management: enabling and empowering patients living with cancer as a chronic illness. CA: A Cancer Journal for Clinicians, 61, 5062.Google Scholar
Merchant, S., O’Connor, M. & Halkett, G. (2017). Time, space and technology in radiotherapy departments: how do these factors impact on patients’ experinces of radiotherapy? European Journal of Cancer Care (England), 26.Google Scholar
Meyer, T. A. & Mark, M. (1995). Effects of psychosocial interventions with adult cancer patients: a meta-analysis of randomised experiments. Health Psychology, 14, 101108.Google Scholar
Mitchell, A., Chan, M., Bhatti, H., et al. (2011). Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncology, 12, 160174.Google Scholar
Mohan, R. & Grosshans, D. (2016). Proton therapy: present and future. Advanced Drug Delivery Reviews. DOI: 10.1016/j.addr.2016.11.006.Google Scholar
Neilson, K., Pollard, A., Boonzair, A., et al. (2013). A longitudinal study of distress (depression and anxiety) up to 18 months after radiotherapy for head and neck cancer. Psychooncology, 22, 18431848.Google Scholar
Newell, S. A., Sanson-Fisher, R. W. & Johanna, S. N. (2002). Systematic review of psychological therapies for cancer patients: overview and recommendations for future research. Journal of the National Cancer Institute, 94, 558584.Google Scholar
Pollard, A., Burchell, J., Castle, D., et al. (2017). Individualised mindfulness-based stress reduction for head and neck cancer patients undergoing radiotherapy of curative intent: a descriptive pilot study. European Journal of Cancer Care, 26, e12474.Google Scholar
Rutten, L., Arora, N., Bakos, A., Aziz, N. & Rowland, J. (2005). Information needs and sources of information among cancer patients: a systematic review of research (1980–2003). Patient Education and Counseling, 57, 250261.Google Scholar
Schnur, J. B., Ouellette, S. C., Bovbjerg, D. H. & Gh, M. (2009). Breast cancer patients’ experience of external-beam radiotherapy. Qualitative Health Research, 19, 668676.Google Scholar
Sohl, S., Schnur, J., Sucala, M., et al. (2012). Distress and emotional well-being in breast cancer patients prior to radiotherapy: an expectancy-based model. Psychology and Health, 27, 347361.Google Scholar
Stiegelis, H., Hagedoorn, M., Sanderman, R., et al. (2003). The impact of an informational self-management intervention on the association between control and illness uncertainty before and psychological distress after radiotherapy. Psychooncology, 13, 248259.Google Scholar
Stiegelis, H. E., Hagedoorn, M., Sanderman, R., et al. (2004a). The impact of an informational self-management intervention on the association between control and illness uncertainty before and psychological distress after radiotherapy. Psychooncology, 13(4):248259.Google Scholar
Stiegelis, H. E., Ranchor, A. V. & Sanderman, R. (2004b). Psychological functioning in cancer patients treated with radiotherapy. Patient Education and Counseling, 52, 131141.Google Scholar
Tallet, A., Azria, D., Barlesi, F., et al. (2012). Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiation Oncology, 7.Google Scholar
Trippa, F., Draghini, L., Arcidiacono, F. & Maranzano, E. (2014). Radiation-induced neurocognitive deficits in patients with brain metastases. Reviews in Oncology, 2, 8791.Google Scholar
Welzel, G., Steinvorth, S. & Wenz, F. (2005). Cognitive effects of chemotherapy and/or cranial irradiation in adults. Strahlenther Onkol, 181, 141156.Google Scholar
Wengstrom, Y., Strander, H. & Forsberg, C. (2000). Perceived symptoms and quality of life in women with breast cancer receiving radiation therapy. European Journal of Oncology Nursing, 4, 2888.Google Scholar
Williams, K., Blencowe, J., Ind, M. & Willis, D. (2017). Meeting radiation therapy patients informational needs through educational videos augmented by 3D visualisation software. Journal of Medical Radiation Sciences. DOI: 10.1002/jmrs.220Google Scholar
Yi-Shan, W., Pao-Yen, L., Chih-Yen, C., et al. (2016). Anxiety and depression in patients with head and neck cancer: 6 months follow-up study. Neuropsychiatric Disease Treatment, 12, 10291036.Google Scholar
Zeguers, M., De Haes, H. C. & Zandbelt, L. C. (2012). The information needs of new radiotherapy patients: how to measure? Do they want to know everything? And if not, why? International Journal of Radiation Oncology Biology Physics, 82, 418424.Google Scholar

References

American Society of Plastic Surgeons (2017). 2017 Plastic Surgery Statistics Report. https://www.plasticsurgery.org/documents/News/Statistics/2016/plastic-surgery-statistics-full-report-2016.pdf (accessed 09 May 2018).Google Scholar
Ashikali, E.-M., Dittmar, H. & Ayers, S. (2015). The impact of cosmetic surgery advertising on women’s body image and attitudes towards cosmetic surgery. Psychology of Popular Media Culture. http://dx.doi.org/10.1037/ppm0000099.Google Scholar
Callaghan, G. M., Lopez, A., Wong, L., Northcross, J. & Anderson, K. R. (2011). Predicting consideration of cosmetic surgery in a college population: a continuum of body image disturbance and the importance of coping strategies. Body Image, 8(3), 267274. http://dx.doi.org/10.1016/j.bodyim.2011.04.002.Google Scholar
Crerand, C. E., Franklin, M. E. & Sarwer, D. B. (2006). Body dysmorphic disorder and cosmetic surgery. Plastic and Reconstructive Surgery, 118(7), 167e180e. DOI: 10.1097/01.prs.0000242500.28431.24.Google Scholar
Crockett, R. J., Pruzinsky, T. & Persing, J. A. (2007). The influence of plastic surgery ‘reality TV’ on cosmetic surgery patient expectations and decision making. Plastic and Reconstructive Surgery, 120(1), 316324. DOI: 10.1097/01.prs.0000264339.67451.71.Google Scholar
Denford, S., Harcourt, D., Rubin, L. & Pusic, A. (2011). Understanding normality: a qualitative analysis of breast cancer patients’ concepts of normality after mastectomy and reconstructive surgery. Psycho‐Oncology, 20(5), 553558. DOI: 10.1002/pon.1762.Google Scholar
Duraes, E. F., Durand, P., Duraes, L. C., et al. (2016). Comparison of preoperative quality of life in breast reconstruction, breast aesthetic and non-breast plastic surgery patients: a cross-sectional study. Journal of Plastic, Reconstructive & Aesthetic Surgery, 69(11), 14781485.Google Scholar
Fauerbach, J. A., Spence, R. J. & Patterson, D. R. (2006). Adult burn injury. In Sarwer, D., Pruzinsky, T., Cash, T.F., et al. (eds), Psychological Perspectives of Reconstructive and Cosmetic Surgery: Clinical, Empirical, and Ethical Considerations (pp. 105124). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Fingeret, M. C., Nipomnick, S. W., Crosby, M. A. & Reece, G. P. (2013). Developing a theoretical framework to illustrate associations among patient satisfaction, body image and quality of life for women undergoing breast reconstruction. Cancer Treatment Reviews, 39(6), 673681. http://dx.doi.org/10.1016/j.ctrv.2012.12.010.Google Scholar
Fingeret, M. C., Teo, I. & Epner, D. E. (2014). Managing body image difficulties of adult cancer patients: lessons from available research. Cancer, 120(5), 633641. DOI: 10.1002/cncr.28469.Google Scholar
Frierson, G. M. & Andersen, B. L. (2006). Breast reconstruction. In Sarwer, D., Pruzinsky, T., Cash, T.F., et al. (eds), Psychological Perspectives of Reconstructive and Cosmetic Surgery: Clinical, Empirical, and Ethical Considerations (pp. 173188). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Graham, N. (2010). The hard sell in cosmetic surgery advertising. British Medical Journal, 340, c1223.Google Scholar
Harcourt, D. (2012). Plastic surgery: breast reconstruction and breast reduction. In Cash, T. (ed.). Encyclopedia of Body Image and Human Appearance (pp. 275281). San Diego, CA: Academic Press.Google Scholar
Harcourt, D. M., Rumsey, N. J., Ambler, N. R., et al. (2003). The psychological effect of mastectomy with or without breast reconstruction: a prospective, multicenter study. Plastic and Reconstructive Surgery, 111(3), 10601068. DOI: 10.1097/01.PRS.0000046249.33122.76.Google Scholar
Sarwer, D. B., Wadden, T. A., Pertschuk, M. J. & Whitaker, L. A. (1998). The psychology of cosmetic surgery: a review and reconceptualization. Clinical Psychology Review, 18(1), 122. http://dx.doi.org/10.1016/S0272-7358(97)00047-0.Google Scholar
Sarwer, D. B., Infield, A. L., Baker, J. L., et al. (2008). Two-year results of a prospective, multi-site investigation of patient satisfaction and psychosocial status following cosmetic surgery. Aesthetic Surgery Journal, 28(3), 245250. DOI: 10.1016/j.asj.2008.02.003.Google Scholar
von Soest, T., Kvalem, I. L., Skolleborg, K. C. & Roald, H. E. (2006). Psychosocial factors predicting the motivation to undergo cosmetic surgery. Plastic and Reconstructive Surgery, 117(1), 5162. DOI: 10.1097/01.prs.0000194902.89912.f1.Google Scholar
von Soest, T., Kvalem, I. L., Skolleborg, K. C. & Roald, H. E. (2011). Psychosocial changes after cosmetic surgery: a 5-year follow-up study. Plastic and Reconstructive Surgery, 128(3), 765772. DOI: 10.1097/PRS.0b013e31822213f0.Google Scholar
Yurek, D., Farrar, W. & Andersen, B. L. (2000). Breast cancer surgery: comparing surgical groups and determining individual differences in postoperative sexuality and body change stress. Journal of Consulting and Clinical Psychology, 68(4), 697709. http://dx.doi.org/10.1037/0022–006X.68.4.697Google Scholar

References

Anderson, J. E., Jamieson, D. J., Warner, L., et al. (2012). Contraceptive methods among married adults: national data on who chooses vasectomy and tubal ligation. Contraception, 85, 552557.Google Scholar
Baldé, A., Légaré, F. & Labrecque, M. (2006). Assessment of needs of men for decision support on male sterilization. Patient Education and Counselling, 2006, 301307.Google Scholar
Cooper, P., Bledin, K. D., Brice, B. & MacKenzie, S. (1985). Effects of female sterilization: one year follow-up in a prospective controlled study of psychological and psychiatric outcome. Journal of Psychosomatic Research, 29, 1322.Google Scholar
Curtis, K. M., Mohllajee, A. P. & Peterson, H. B. (2006). Regret following female sterilisation at a young age: a systematic review. Contraception, 73, 205210.Google Scholar
Gath, D. & Cooper, P. J. (1983). Psychiatric aspects of hysterectomy and female sterilization. Recent Advances in Clinical Psychiatry, 5, 75100.Google Scholar
Hofmeyr, D. G. & Greeff, A. P. (2002). The influence of a vasectomy on the marital relationship and sexual satisfaction of the married man. Journal of Sexual and Marital Therapy, 28, 339351.Google Scholar
Jayaraman, S. & Mann, M. (2013). Male and female sterilization. Obstetrics, Gynaecology and Reproductive Medicine, 22, 8591.Google Scholar
Joshi, R., Khadilkar, S. & Patel, M. (2015). Global trends in use of long-acting reversible and permanent methods of contraception: seeking a balance. International Journal of Gynaecology and Obstetrics, 131, S60S63.Google Scholar
Kariminia, A., Saunders, D. M. & Chamberlain, M. (2002). Risk factors for strong regret and subsequent IVF request after having tubal ligation. Australia and New Zealand Journal of Obstetrics and Gynaecology, 42, 526529.Google Scholar
Kelekci, S., Erdemoglu, E., Kutluk, S., Yilmaz, B. & Savan, K. (2005). Risk factors for tubal ligation: regret and psychological effects impact of Beck depression inventory. Contraception, 71, 417420.Google Scholar
Mattinson, A. & Mansour, D. (2003). Female sterilisation: is it what women really want? Journal of Family Planning and Reproductive Health Care, 29, 136139.Google Scholar
Miller, W. B., Shain, R. N. & Pasta, D. J. (1991a). Tubal sterilization or vasectomy: how do married couples make the choice? Fertility and Sterility, 56, 278284.Google Scholar
Miller, W. B. Shain, R. N. & Pasta, D. J. (1991b). The predictors of post-sterilization regret in married women. Journal of Applied Social Psychology, 21, 10831010.Google Scholar
Philiber, S. D. & Philiber, W. W. (1985). Social and psychological perspectives in voluntary sterilization: a review. Studies in Family Planning, 6, 129.Google Scholar
Rogstad, K. E. (1996). The psychological effects of vasectomy. Sexual and Marital Therapy, 11, 265272.Google Scholar
Rowlands, S. & Hannaford, P. (2003). The incidence of sterilisation in the UK. British Journal of Gynaecology, 110, 819824.Google Scholar
Schreffer, K. M., Greil, A. L., McQuillan, J. & Gallus, K. L. (2016). Reasons for tubal ligation, regret and depressive symptoms. Journal of Reproductive and Infant Psychology, 34, 304313.Google Scholar
Shain, R. N., Miller, W. B., Holden, A. E. C. & Rosenthal, M. (1991). Impact of tubal sterilization and vasectomy on female marital sexuality: results of a controlled longitudinal study. American Journal of Obstetrics and Gynaecology, 64, 763771.Google Scholar
Smith, A., Lyons, A., Ferris, J., et al. (2010). Are sexual problems more common in men who have had a vasectomy? A population-based study of Australian men. The Journal of Sexual Medicine, 7, 736742.Google Scholar
Thonneau, P. & D’Isle, B. (1990). Does vasectomy have long-term effects on somatic and psychological health status? International Journal of Andrology, 13, 419432.Google Scholar

References

Arpino, L., Iavarone, A., Parlato, C., Moraci, A. (2004). Prognostic role of depression after lumbar disc surgery. Neurological Sciences, 3, 145147.Google Scholar
Bruce, J., Thornton, A. J., Scott, N. W., et al. (2012). Chronic preoperative pain and psychological robustness predict acute postoperative pain outcomes after surgery for breast cancer. British Journal of Cancer, 107 (6), 937946.Google Scholar
Bruce, J., Thornton, A. J., Powell, R., et al. (2014). Psychological, surgical and sociodemographic predictors of pain outcomes after breast cancer surgery: a population-based cohort study. Pain, 155(2), 232243. DOI: 10.1016/j.pain.2013.09.028.Google Scholar
Contrada, R. J., Leventhal, E. A. & Anderson, J. R. (1994). Psychological preparation for surgery: marshalling individual and social resources to optimize self-regulation. In Maes, S., Leventhal, H. & Johnston, M. (eds), International Review of Health Psychology (Vol. 3; pp. 219266). New York: Wiley.Google Scholar
Granot, M. & Ferber, S. G. (2005). The roles of pain catastrophizing and anxiety in the prediction of postoperative pain intensity: a prospective study. Clinical Journal of Pain, 21(5), 439445.Google Scholar
Johnston, M. (1980). Anxiety in surgical patients. Psychological Medicine, 10(1), 145152.Google Scholar
Johnston, M. & Vögele, C. (1993). Benefits of psychological preparation for surgery: a meta-analysis. Annals of Behavioral Medicine, 15, 245256.Google Scholar
Kehlet, H. & Wilmore, D. W. (2002). Multimodal strategies to improve surgical outcome. American Journal of Surgery, 183, 630641.Google Scholar
Maple, H., Joseph, C., Lee, V., et al. (2015). Stress predicts the trajectory of wound healing in living kidney donors as measured by high-resolution ultrasound. Brain, Behaviour and Immunity, 43, 1926.Google Scholar
Munafò, M. R. & Stevenson, J. (2001). Anxiety and surgical recovery. Reinterpreting the literature. Journal of Psychosomatic Research, 51, 589596.Google Scholar
O’Dwyer, M. J., Owen, H. C. & Torrance, H. D. T. (2015). The perioperative immune response. Current Opinion in Critical Care, 21 (4) 336342.Google Scholar
Powell, R., Johnston, M., Smith, W. C. S., et al. (2012). Psychological risk factors for chronic post-surgical pain after inguinal hernia repair surgery: a prospective cohort study. European Journal of Pain, 16(4), 600610.Google Scholar
Powell, R., Scott, N. W., Manyande, A., et al. (2016). Psychological preparation and postoperative outcomes for adults undergoing surgery under general anaesthesia. Cochrane Database of Systematic Reviews, 5, CD008646. DOI: 10.1002/14651858.CD008646.pub2.Google Scholar
Salmon, P. & Hall, G. M. (1997). A theory of postoperative fatigue: an interaction of biological, psychological, and social processes. Pharmacology, Biochemistry and Behavior, 56, 623628.Google Scholar
Salomaki, T. E., Leppaluoto, J., Laitinen, J. O., Vuolteenaho, O. & Nuutinen, L. S. (1993). Epidural versus intravenous fentanyl for reducing hormonal, metabolic, and physiologic responses after thoracotomy. Anesthesiology, 79, 672679.Google Scholar
Scheier, M. F., Matthews, K. A., Owens, J. F., et al. (1989). Dispositional optimism and recovery from coronary artery bypass surgery: the beneficial effects on physical and psychological well-being. Journal of Personality and Social Psychology, 57, 10241040.Google Scholar
Selye, H. (ed.). (1980). Guide to Stress Research. New York: Van Nostrand.Google Scholar
Vögele, C. (1992). Perioperative stress. In Schmidt, L. R. (ed.), Jahrbuch der Medizinischen Psychologie (Vol. 7; pp. 7495). Berlin: Springer.Google Scholar
Vögele, C. & Steptoe, A. (1986). Physiological and subjective stress responses in surgical patients. Journal of Psychosomatic Research, 30, 205215.Google Scholar
Walburn, J., Vedhara, K., Hankins, M., Rixon, L. & Weinman, J. (2009). Psychological stress and wound healing in humans: a systematic review and meta-analysis. Journal of Psychosomatic Research, 67(3), 253271.Google Scholar
Weinman, J. & Johnston, M. (1988). Stressful medical procedures: an analysis of the effects of psychological interventions and of the stressfulness of the procedures. In Maes, S., Defares, P., Sarason, I. G. & Spielberger, C. D. (eds), Topics in Health Psychology (pp. 205217). Chichester: Wiley.Google Scholar

References

Abu-Elmagd, K. M., Kosmach-Park, B., Costa, G., et al. (2012). Long-term survival, nutritional autonomy, and quality of life after intestinal and multivisceral transplantation. Annals of Surgery, 256(3), 494508.Google Scholar
Butler, J. A., Roderick, P., Mullee, M., Mason, J. C. & Peveler, R. C. (2004). Frequency and impact of nonadherence to immunosuppressants after renal transplantation: a systematic review. Transplantation, 77(5), 769776.Google Scholar
Cooper, D. K., Dou, D. F., Tao, K. S., et al. (2016). Pig liver xenotransplantation: a review of progress toward the clinic. Transplantation, 100(10), 20392047.Google Scholar
Dew, M. A., DiMartini, A. F., Dabbs, A. D. V., et al. (2007). Rates and risk factors for nonadherence to the medical regimen after adult solid organ transplantation. Transplantation, 83(7), 858873.Google Scholar
Dew, M. A., Rosenberger, E. M., Myaskovsky, L., et al. (2015). Depression and anxiety as risk factors for morbidity and mortality after organ transplantation: a systematic review and meta-analysis. Transplantation, 100(5), 988.Google Scholar
Dew, M. A., DiMartini, A. F., Ladner, D. P., et al. (2016). Psychosocial outcomes 3 to 10 years after donation in the adult to adult living donor liver transplantation cohort study. Transplantation, 100(6), 12571269.Google Scholar
European Commission. (2014). Journalist workshop on organ donation and transplantation – recent facts and figures. http://ec.europa.eu/health/blood_tissues_organs/docs/ev_20141126_factsfigures_en.pdf (accessed 29 August 2016).Google Scholar
Fine, R. N., Becker, Y., De Geest, S., et al. (2009). Nonadherence consensus conference summary report. American Journal of Transplantation, 9(1), 3541.Google Scholar
Gelb, S., Shapiro, R. J., Hill, A. & Thornton, W. L. (2008). Cognitive outcome following kidney transplantation. Nephrology Dialysis Transplantation, 23(3), 10321038.Google Scholar
Griva, K., Ziegelmann, J. P., Thompson, D., et al. (2002). Quality of life and emotional responses in cadaver and living related renal transplant recipients. Nephrology Dialysis Transplantation, 17(12), 22042211.Google Scholar
Griva, K., Kang, A. W., Yu, Z. L., et al. (2014). Quality of life and emotional distress between patients on peritoneal dialysis versus community-based hemodialysis. Quality of Life Research, 23(1), 5766.Google Scholar
Harder, H., Cornelissen, J. J., Van Gool, A. R., et al. (2002). Cognitive functioning and quality of life in long‐term adult survivors of bone marrow transplantation.Cancer, 95(1), 183192.Google Scholar
Hayashi, K., Uchida, H., Takaoka, C., et al. (2015). Discrepancy in psychological attitudes toward living donor liver transplantation between recipients and donors. Transplantation, 99(12), 25512555.Google Scholar
Irving, M. J., Tong, A., Jan, S., et al. (2012). Factors that influence the decision to be an organ donor: a systematic review of the qualitative literature. Nephrology Dialysis Transplantation, 27(6), 25262533.Google Scholar
Johnson, R. J., Bradbury, L. L., Martin, K. & Neuberger, J. (2014). Organ donation and transplantation in the UK: the last decade – a report from the UK National Transplant Registry. Transplantation, 97, S1S27.Google Scholar
Lentine, K. L., Schnitzler, M. A., Xiao, H., et al. (2012). Depression diagnoses after living kidney donation: linking United States registry data and administrative claims. Transplantation, 94(1), 77.Google Scholar
Low, J. K., Crawford, K., Manias, E. & Williams, A. (2016). Stressors and coping resources of Australian kidney transplant recipients related to medication taking: a qualitative study. Journal of Clinical Nursing. DOI: 10.1111/jocn.13435.Google Scholar
Maldonado, J. R., Dubois, H. C., David, E. E., et al. (2012). The Stanford Integrated Psychosocial Assessment for Transplantation (SIPAT): a new tool for the psychosocial evaluation of pre-transplant candidates. Psychosomatics, 53(2), 123132.Google Scholar
Muzaale, A. D., Massie, A. B., Wang, M. C., et al. (2014). Risk of end-stage renal disease following live kidney donation. JAMA, 311(6), 579586.Google Scholar
Rosenberger, E. M., DiMartini, A. F., Dabbs, A. J. D., et al. (2016). Psychiatric predictors of long-term transplant-related outcomes in lung transplant recipients. Transplantation, 100(1), 239247.Google Scholar
Simmons, P. D. (2000). Ethical considerations in composite tissue allotransplantation. Microsurgery, 20(8), 458465.Google Scholar
Sorensen, L. G., Neighbors, K., Martz, K., et al. (2011). Cognitive and academic outcomes after pediatric liver transplantation: Functional Outcomes Group (FOG) results. American Journal of Transplantation, 11(2), 303311.Google Scholar
Trounson, A. & McDonald, C. (2015). Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell, 17(1), 1122.Google Scholar
Verbesey, J. E., Simpson, M. A., Pomposelli, J. J., et al. (2005). Living donor adult liver transplantation: a longitudinal study of the donor’s quality of life. American Journal of Transplantation, 5(11), 27702777.Google Scholar
Watson, C. J. E. & Dark, J. H. (2012). Organ transplantation: historical perspective and current practice. British Journal of Anaesthesia, 108(S1), i29i42.Google Scholar
Wong, F. L., Francisco, L., Togawa, K., et al. (2010). Long-term recovery after hematopoietic cell transplantation: predictors of quality of life concerns. Blood. http://dx.doi.org/10.1182/blood-2009-06-225631.Google Scholar
Ziegelmann, J. P., Griva, K., Hankins, M., et al. (2002). The Transplant Effects Questionnaire (TxEQ): the development of a questionnaire for assessing the multidimensional outcome of organ transplantation – example of end stage renal disease (ESRD). British Journal of Health Psychology, 7(4), 393408.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×