Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-06T12:34:40.937Z Has data issue: false hasContentIssue false

5.14 - Memory

from 5 - Neural Circuits

Published online by Cambridge University Press:  08 November 2023

Mary-Ellen Lynall
Affiliation:
University of Cambridge
Peter B. Jones
Affiliation:
University of Cambridge
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

The term memory, in its broadest sense, refers to the influence of prior experience on subsequent behaviour. Memory impacts everyday life in countless ways (e.g. recalling a past social occasion, producing factual information about an object, or knowing how to ride a bicycle). There is no universally accepted classification of human memory, but an appreciation of the way memory operates can be important for improving clinical outcomes. Alterations in memory are key features of multiple psychiatric disorders. In addition, patients’ memory for medical information has a major influence on their adherence to recommended treatments [1]. Around 40–80% of medical information provided by healthcare practitioners is forgotten immediately, and much of what is remembered is recalled incorrectly. Thus, understanding how memory works can provide an appreciation of the obstacles patients face in remembering medical information and suggestions for helping to overcome them.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ley, P.. Communicating with Patients: Improving Communication, Satisfaction and Compliance. Croom Helm, 1988.Google Scholar
Galton, F.. Inquiries into Human Faculty and Its Development. Macmillan, 1883.CrossRefGoogle Scholar
James, W.. Principles of Psychology. Holt, 1890.Google Scholar
Atkinson, R. C., Shiffrin, R. M.. Human memory: a proposed system and its control processes. In Spence, K. W., Spence, J. T (eds.), The Psychology of Learning and Motivation, volume 2. Academic Press, 1968, 89–195.Google Scholar
Scoville, W. B., Milner, B.. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 1957; 20: 1121.CrossRefGoogle ScholarPubMed
Shallice, T., Warrington, E. K.. Independent functioning of verbal memory stores: a neuropsychological study. Q J Exp Psychol 1970; 22(2): 261273.CrossRefGoogle ScholarPubMed
Schacter, D. L., Wagner, A. D.. Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 1999; 9: 724.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Henson, R. N. A., Burgess, N., Frith, C. D.. Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia 2000; 38: 426440.CrossRefGoogle ScholarPubMed
Baddeley, A. D., Hitch, G.. Working memory. In Bower, G. H (ed.), Psychology of Learning and Motivation, volume 8. Academic Press, 1974, pp. 4789.Google Scholar
Baddeley, A. D.. The episodic buffer: a new component of working memory? Trends Cogn Sci 2000; 4: 417423.CrossRefGoogle ScholarPubMed
Baddeley, A. D.. Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Q J Exp Psychol 1966; 18(4): 362365.CrossRefGoogle ScholarPubMed
Baddeley, A. D., Thomson, N., Buchanan, M.. Word length and the structure of short-term memory. J Verb Learn Verb Behav 1975; 14(6): 575589.CrossRefGoogle Scholar
Baddeley, A. D.. Human Memory: Theory and Practice. Psychology Press, 1990.Google Scholar
Logie, R. H.. Visuo-spatial Working Memory. Psychology Press, 1995.Google Scholar
Prabhakaran, V., Narayanan, K., Zhao, Z., Gabrieli, J. D. E.. Integration of diverse information in working memory within the frontal lobe. Nat Neurosci 2000; 3: 8590.CrossRefGoogle ScholarPubMed
Hebb, D. O.. The Organization of Behavior: A Neuropsychological Theory. Wiley, 1949.Google Scholar
Bliss, T. V. P., Lømo, T.. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthesized rabbit following stimulation of the perforant path. J Physiol 1973; 232: 331356.CrossRefGoogle Scholar
Squire, L. R.. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 1992; 99(2): 195231.CrossRefGoogle ScholarPubMed
Nadel, L., Moscovitch, M.. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 1997; 7: 217227.CrossRefGoogle ScholarPubMed
Winocur, G., Moscovitch, M., Bontempi, B.. Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal–neocortical interactions. Neuropsychologia 2010; 48: 23392356.CrossRefGoogle ScholarPubMed
Lewis, D. J.. Psychobiology of active and inactive memory. Psychol Bull 1979; 86: 10541083.CrossRefGoogle ScholarPubMed
Nader, K.. Memory traces unbound. Trends Neurosci 2003; 26: 6572.CrossRefGoogle ScholarPubMed
Fernández, R. S., Boccia, M. M., Pedreira, M. E.. The fate of memory: reconsolidation and the case of prediction error. Neurosci Biobehav Rev 2016; 68: 423441.CrossRefGoogle ScholarPubMed
Milton, A. L., Everitt, B. J.. The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. Eur J Neurosci 2010; 31: 23082319.CrossRefGoogle ScholarPubMed
Merlo, E., Milton, A. L., Goozée, Z. Y., Theobald, D. E. H., Everitt, B. J.. Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence. J Neurosci 2014; 34(7): 24222431.CrossRefGoogle ScholarPubMed
Schacter, D. L.. Implicit memory: history and current status. J Exp Psychol Learn Mem Cogn 1987; 13: 501518.CrossRefGoogle Scholar
Graf, P., Squire, L. R., Mandler, G.. The information that amnesic patients do not forget. J Exp Psychol Learn Mem Cogn 1984; 10 : 164178.CrossRefGoogle Scholar
Gabrieli, J. D. E., Fleischman, D. A., Keane, M. M., Reminger, S. L., Morrell, F.. Double dissociation between memory systems underlying explicit and implicit memory in the human brain. Psychol Sci 1995; 6: 7682.CrossRefGoogle Scholar
Tulving, E.. Episodic and semantic memory. In Tulving, E, Donaldson, W (eds.), Organization of Memory. Academic Press, 1972, pp. 381403.Google Scholar
Yonelinas, A. P., Kroll, N. E., Quamme, J. R. et al. Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nat Neurosci 2002; 5(11): 12364121.CrossRefGoogle ScholarPubMed
Buffalo, E. A., Reber, P. J., Squire, L. R.. The human perirhinal cortex and recognition memory. Hippocampus 1998; 8: 330339.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Hasselmo, M. E.. The role of acetylcholine in learning and memory. Curr Opin Neurobiol 2006; 16(6): 710715.CrossRefGoogle ScholarPubMed
Rugg, M. D., Vilberg, K. L.. Brain networks underlying episodic memory retrieval. Curr Opin Neurobiol 2013; 23(2): 255260.CrossRefGoogle ScholarPubMed
Milad, M. R., Quirk, G. J.. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 2012; 63: 129151.CrossRefGoogle Scholar
Simons, J. S., Peers, P. V., Hwang, D. Y. et al. Is the parietal lobe necessary for recollection in humans? Neuropsychologia 2008; 46(4): 11851191.CrossRefGoogle ScholarPubMed
Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E., Olson, I. R.. Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cereb Cortex 2010; 20(2): 479485.CrossRefGoogle ScholarPubMed
Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., Olson, I. R.. Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. J Neurosci 2007; 27: 1441514423.CrossRefGoogle ScholarPubMed
Davidson, P. S. R., Anaki, D., Ciaramelli, E. et al. Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia 2008; 46: 17431755.CrossRefGoogle ScholarPubMed
Seghier, M. L.. The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist 2013; 19(1): 4361.CrossRefGoogle ScholarPubMed
Bonnici, H. M., Richter, F. R., Yazar, Y., Simons, J. S.. Multimodal feature integration in the angular gyrus during episodic and semantic retrieval. J Neurosci 2016; 36(20): 5462–1571.CrossRefGoogle ScholarPubMed
Graham, K. S., Simons, J. S., Pratt, K. H., Patterson, K., Hodges, J. R.. Insights from semantic dementia on the relationship between episodic and semantic memory. Neuropsychologia 2000; 38: 313324.CrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., Oxbury, S., Funnell, E.. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain 1992; 115: 17831806.CrossRefGoogle ScholarPubMed
Simons, J. S., Graham, K. S., Hodges, J. R.. Perceptual and semantic contributions to episodic memory: evidence from semantic dementia and Alzheimer’s disease. J Mem Lang 2002; 47: 197213.CrossRefGoogle Scholar
Layton, B., Krikorian, R.. Memory mechanisms of posttraumatic stress disorder. J Neuropsychiatry Clin Neurosci 2002; 14: 254261.CrossRefGoogle ScholarPubMed
de Quervain, D., Schwabe, L., Roozendaal, B.. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat Rev Neurosci 2017; 18: 719.CrossRefGoogle ScholarPubMed
O’Doherty, D. C. M., Chitty, K. M., Saddiqui, S., Bennett, M. R., Lagopoulos, J.. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res Neuroim 2015; 232: 133.CrossRefGoogle ScholarPubMed
Keane, T. M., Zimering, R. T., Caddell, R. T.. A behavioral formulation of PTSD in Vietnam veterans. Behav Ther (N Y) 1985; 8: 912.Google Scholar
Rau, V., DeCola, J. P., Fanselow, M. S.. Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 2005; 29: 12071223.CrossRefGoogle ScholarPubMed
Baek, J., Lee, S., Cho, T. et al. Neural circuits underlying a psychotherapeutic regimen for fear disorders. Nature 2019; 556(7744): 339343.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×