Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-31T21:54:22.925Z Has data issue: false hasContentIssue false

Chapter 4 - Imaging and laboratory diagnosis

from Part I - General principles

Published online by Cambridge University Press:  05 August 2016

Louis R. Caplan
Affiliation:
Department of Neurology, Beth Israel Deaconess Medical Center, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Caplan's Stroke
A Clinical Approach
, pp. 78 - 128
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eckert, B, Zeumer, H: Brain computed tomography. In Ginsberg, MD, Bogousslavsky, J (eds): Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management, vol 2. Boston: Blackwell Science, 1998, pp 12411264.Google Scholar
von Kummer, R, Nolte, PN, Schnittger, H, et al: Detectability of cerebral hemisphere ischaemic infarcts by CT within 6 hours of stroke. Neuroradiology 1996;38:3133.Google Scholar
Moulin, T, Cattin, F, Crepin-Leblond, T, et al: Early CT signs in acute middle cerebral artery infarction: Predictive value for subsequent infarct location and outcome. Neurology 1996;47:366375.CrossRefGoogle ScholarPubMed
Norman, D, Price, D, Boyd, D, et al: Quantitative aspects of computed tomography of the blood and cerebrospinal fluid. Radiology 1977;7:223228.Google Scholar
Caplan, LR, Flamm, ES, Mohr, JP, et al: Lumbar puncture and stroke: A statement for physicians by a committee of the Stroke Council of the American Heart Association. Stroke 1987;18:540A544A.Google Scholar
Edlow, JA, Caplan, LR: Primary care: Avoiding pitfalls in the diagnosis of subarachnoid hemorrhage. N Engl J Med 2000;341:2936.CrossRefGoogle Scholar
Beauchamp, NJ, Bryan, RN: Neuroimaging of stroke. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 599611.Google Scholar
Baird, AE, Warach, S: Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 1998;18:583609.Google Scholar
Brant-Zawadski, M, Atkinson, D, Detrick, M, et al: Fluid-attenuated inversion recovery (FLAIR) for assessment of cerebral infarction: Initial clinical experience in 50 patients. Stroke 1996;27:11871191.CrossRefGoogle Scholar
Warach, S, Chien, D, Li, W, et al: Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992;42:17171723.Google Scholar
Warach, S, Gaa, J, Siewert, B, et al: Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 1995;37:231241.Google Scholar
Lansberg, MG, Norbash, AM, Marks, MP, et al: Advantages of adding diffusion-weighted magnetic resonance imaging to conventional imaging for evaluating acute stroke. Arch Neurol 2000;57:13111316.Google Scholar
Engelter, ST, Wetzel, SG, Radue, EW, et al: The clinical significance of diffusion-weighted imaging in infratentorial strokes. Neurology 2004;62:574580.Google Scholar
Kang, DW, Chalela, JA, Ezzeddline, MA, Warach, S: Association of ischemic lesion patterns on early diffusion-weighted imaging with TOAST stroke subtypes. Arch Neurol 2003;60:17301734.CrossRefGoogle ScholarPubMed
Bonati, LH, Lyrer, PA, Wetzel, SG, et al: Diffusion-weighted imaging, apparent diffusion coefficient maps and stroke etiology. J Neurol 2005;252:13871393.Google Scholar
Bonati, LH, Kessel-Schaefer, A, Linka, AZ, et al: Diffusion-weighted imaging in stroke attributable to patent foramen ovale. Stroke 2006;37:20302034.Google Scholar
Kidwell, CS, Saver, JL, Mattiello, J, et al: Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000;47:462469.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Chemmanam, T, Campbell, BCV, Christensen, S, et al: Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion–diffusion mismatch. Neurology 2010;75:10401047.CrossRefGoogle ScholarPubMed
Campbell, BCV, Purushotham, A, Christensen, S, et al: The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab 2012; 32:5056.Google Scholar
Patel, MR, Edelman, RR, Warach, S: Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 1996;27:23212324.Google Scholar
Linfante, I, Llinas, RH, Caplan, LR, Warach, S: MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 2002;30:22632267.CrossRefGoogle Scholar
Chalela, JA, Latour, LL, Jeffries, N, et al: Hemorrhage and early MRI evaluation from the emergency room (HEME-ER): A prospective single center comparison of MRI to CT for the emergency diagnosis of intracranial hemorrhage in patients with suspected acute cerebrovascular disease. Stroke 2003;34:239240.Google Scholar
Schellinger, PD, Fiebach, JB, Mohr, A, et al: The role of stroke MRI in intracranial and subarachnoid hemorrhage. Nervenarzt 2001;72:907917.Google Scholar
Schellinger, PD, Jansen, O, Fiebach, JB, et al: A standardized MRI protocol comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999;30:765768.Google Scholar
Assouline, E, Benziane, K, Reizine, D, et al: Intra-arterial thrombus visualized on T2 gradient echo imaging in acute ischemic stroke. Cerebrovasc Dis 2005;20:611.Google Scholar
Dul, K, Drayer, BP: CT and MR imaging of intracerebral hemorrhage. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 7393.CrossRefGoogle Scholar
Rumboldt, Z, Kalousek, M, Castillo, M: Hyperacute subarachnoid hemorrhage on T2-weighted MR images. AJNR Am J Neuroradiol 2003;24:472475.Google ScholarPubMed
Pexman, JHW, Barber, PA, Hill, MD, et al.: Use of the Alberta Stroke Program Early CT Score (ASPECTS) for Assessing CT Scans in Patients with Acute Stroke. AJNR Am J Neuroradiol 2001;22:15341542.Google Scholar
Becker, H, Desch, H, Hacker, H, et al: CT fogging effect with ischemic cerebral infarcts. Neuroradiol 1978;18:185192.CrossRefGoogle Scholar
Nicolaides, AN, Kalodiki, E, Ramaswami, G, et al: The significance of cerebral infarcts on CT scans in patients with transient ischemic attacks. In Bernstein, EF, Callow, AD, Nicolaides, AN, Shifrin, EG (eds): Cerebral Revascularisation. London, Med-Orion, 1993, pp 159178.Google Scholar
Inatomi, Y, Kimura, K, Yonehara, T, et al: DWI abnormalities and clinical characteristics in TIA patients. Neurology 2004;62:376380.Google Scholar
Winbeck, K, Bruckmaier, K, Etgen, T, et al: Transient ischemic attack and stroke can be differentiated by analyzing early diffusion-weighted imaging signal intensity changes. Stroke 2004;35:10951099.Google Scholar
Lamy, C, Oppenheim, C, Calvet, D, et al: Diffusion-weighted MR imaging in transient ischaemic attacks. Eur Radiol 2006;16:10901095.Google Scholar
Bykowski, J, Latour, LL, Warach, S: More accurate identification of reversible ischemic injury in human stroke by cerebrospinal fluid suppressed diffusion-weighted imaging. Stroke 2004;35:11001106.Google Scholar
Prabhakaran, S, Chong, JY, Sacco, RL: Impact of abnormal diffusion-weighted imaging results on short-term outcome following transient ischemic attack. Arch Neurol 2007;64:11051109.Google Scholar
Redgrave, JNE, Coutts, SB, Schulz, UG, et al: Systematic review of associations between the presence of acute ischemic lesions on diffusion-weighted imaging and clinical predictors of early stroke risk after transient ischemic attack. Stroke 2007;38:14821488.CrossRefGoogle ScholarPubMed
Sylaja, PN, Coutts, SB, Subramaniam, S, et al: Acute ischemic lesions of varying ages predict risk of ischemic events in stroke/TIA patients. Neurology 2007;68:415419.Google Scholar
Caplan, LR: Transient ischemic attack with abnormal diffusion-weighted imaging results. What’s in a name? Arch Neurol 2007; 64:10801082.Google Scholar
Adams, HP Jr, Kassell, NF, Turner, JC, et al: CT and clinical correlations in recent aneurysmal subarachnoid hemorrhage: A preliminary report of the Cooperative Aneurysm Study. Neurology 1983;33:981988.CrossRefGoogle ScholarPubMed
Fishman, RA: Cerebrospinal fluid in cerebrovascular disorders. In Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, FJ (eds): Stroke: Pathophysiology, Diagnosis, and Management. New York: Churchill Livingstone, 1986, pp 109117.Google Scholar
Schluep, M, Bogousslavsky, J: Cerebrospinal fluid in cerebrovascular disease. In Ginsberg, MD, Bogousslavsky, J (eds): Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management, vol 2. Boston: Blackwell Science, 1998, pp 12211226.Google Scholar
Van der Meulen, JP: Cerebrospinal fluid xanthrochromia: An objective index. Neurology 1966;16:170178.CrossRefGoogle Scholar
Soderstrom, CE: Diagnostic significance of CSF spectrophotometry and computer tomography in cerebrovascular disease: A comparative study in 231 cases. Stroke 1977;8:606612.Google Scholar
Davalos, A, Blanco, M, Pedraza, S, et al: The clinical-DWI mismatch: A new diagnostic approach to the brain tissue at risk of infarction. Neurology. 2004;62:21872192.Google Scholar
Caplan, LR: Significance of unexpected (silent) brain infarcts. In Caplan, LR, Shifrin, EG, Nicolaides, AN, Moore, WS (eds): Cerebrovascular Ischaemia: Investigation and Management. London: Med-Orion, 1996, pp 423433.Google Scholar
Yamamoto, H, Bogousslavsky, J: Mechanisms of second and further strokes. J Neurol Neurosurg Psychiatry 1998;64:771776.Google Scholar
Caplan, LR: Reperfusion of ischemic brain: Why and why not? In Hacke, W, del Zoppo, G, Hirschberg, M (eds): Thrombolytic Therapy in Acute Stroke. Berlin: Springer, 1991, pp 3645.CrossRefGoogle Scholar
Ropper, AH: Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med 1986;314:953958.Google Scholar
Ropper, AH: A preliminary MRI study of the geometry of brain displacement and level of consciousness with acute intracranial masses. Neurology 1989;39:622627.Google Scholar
Lansberg, MG, Thijs, VN, O’Brien, MW, et al: Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. AJNR Am J Neuroradiol 2001;22:637644.Google Scholar
Weisberg, LA, Stazio, A, Shamsnia, M, et al: Nontraumatic parenchymal brain hemorrhages. Medicine (Baltimore) 1990;69:277295.CrossRefGoogle ScholarPubMed
Delgado Almandoz, JE, Schaefer, PW, Forero, NP, et al: Diagnostic accuracy and yield of multidetector CT angiography in the evaluation of spontaneous intraparenchymal cerebral hemorrhage. AJNR Am J Neuroradiol 2009;30:12131221.Google Scholar
Kase, CS: Cerebral amyloid angiopathy. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 179200.Google Scholar
Hauw, J-J, Seilhean, D, Duyckaerts, CH: Cerebral amyloid angiopathy. In Ginsberg, MD, Bogousslavsky, J (eds): Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management. Boston: Blackwell, 1998, pp 17721794.Google Scholar
Kase, C, Robinson, R, Stein, R, et al: Anticoagulant-related intracerebral hemorrhages. Neurology 1985;35:943948.Google Scholar
Kase, CS: Bleeding disorders. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 117151.Google Scholar
Broderick, JP, Brott, TG, Duldner, JE, Tomsick, T, Huster, G. Volume of intracerebral hemorrhage: a powerful and easy-to-use predictor of 30-day mortality. Stroke 1993;24:987993.CrossRefGoogle Scholar
Wada, R, Aviv, RI, Fox, A, et al: CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 2007;38:12571262.Google Scholar
Demchuk, AM, Dowlatshahi, D, Rodriguez-Luna, D, et al; and PREDICT Group: Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol 2012;11:307314.CrossRefGoogle ScholarPubMed
Weisberg, L: Computed tomography in aneurysmal subarachnoid hemorrhage. Neurology 1979;29:802808.Google Scholar
Adams, H, Kassell, N, Torner, J, et al: CT and clinical correlations in recent aneurysmal subarachnoid hemorrhage: A preliminary report of the cooperative aneurysm study. Neurology 1983;33:981988.Google Scholar
van Gijn, J, van Dongen, K: Computerized tomography in subarachnoid hemorrhage: Difference between patients with and without an aneurysm on angiography. Neurology 1980;30:538539.CrossRefGoogle ScholarPubMed
van Gijn, J, van Dongen, KJ, Vermeulen, M, et al: Perimesencephalic hemorrhage: A non-aneurysmal and benign form of subarachnoid hemorrhage. Neurology 1985;35:493497.Google Scholar
Rinkel, GJ, Wijdicks, EF, Vermeulen, M, et al: Outcome in perimesencephalic (non-aneurysmal) subarachnoid hemorrhage: A follow-up study in 37 patients. Neurology 1990;40:11301132.Google Scholar
Kumar, S, Goddeau, RP Jr, Selim, MH, et al: Atraumatic convexal subarachnoid hemorrhage: clinical presentation, imaging patterns, and etiologies. Neurology 2010;74:893899.Google Scholar
Kistler, JP, Crowell, R, Davis, K, et al: The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: A prospective study. Neurology 1983;33:424437.CrossRefGoogle Scholar
Mohsen, F, Pominis, S, Illingworth, R: Prediction of delayed cerebral ischemia after subarachnoid hemorrhage by computed tomography. J Neurol Neurosurg Psychiatry 1984;47:11971202.CrossRefGoogle ScholarPubMed
Kern, R, Szabo, K, Hennerici, M, Meairs, S: Characterization of carotid artery plaques using real-time compound B-mode ultrasound. Stroke 2004;35:870875.Google Scholar
Landry, A, Spence, JD, Fenster, A: Measurement of carotid plaque volume by 3-dimensional ultrasound. Stroke 2004;35:864869.Google Scholar
O’Donnell, TF, Erdoes, L, Mackey, W, et al: Correlation of B-mode ultrasound imaging and arteriography with pathologic findings at carotid endarterectomy. Arch Surg 1985;120:443449.Google Scholar
Hennerici, M, Baezner, H, Daffertshofer, M: Ultrasound of cervical arteries. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 223242.Google Scholar
Schenk, EA, Bond, G, Aretz, T, et al: Multicenter validation study of real-time ultrasonography, arteriography and pathology: Pathologic evaluation of carotid endarterectomy specimens. Stroke 1988;19:289296.Google Scholar
Hennerici, M, Meairs, S: Imaging arterial wall disease. Cerebrovasc Dis 2000;10(Suppl 5):920.Google Scholar
Gronholdt, M-LM, Nordestgaard, BG, Nielsen, TG, Sillesen, H: Echolucent carotid artery plaques are associated with elevated levels of fasting and postprandial triglyceride-rich lipoproteins. Stroke 1996;27:21662172.Google Scholar
Geroulakos, G, Hobson, RW, Nicolaides, AW: Ultrasonic carotid plaque morphology. In Caplan, LR, Shifrin, EG, Nicolaides, AN, Moore, WS (eds): Cerebrovascular Ischaemia: Investigation and Management. London: Med-Orion, 1996, pp 2532.Google Scholar
O’Leary, DH, Polka, JF, Kronmal, RA, et al: Thickening of the carotid wall: A marker for atherosclerosis in the elderly? Stroke 1996;27:224231.Google Scholar
Bots, ML, Hoes, AW, Koudstaal, PJ, et al: Common carotid intima-media thickness and risk of stroke and myocardial infarction: The Rotterdam Study. Circulation 1997;96:14321437.Google Scholar
O’Leary, DH, Polak, JF, Kronmal, RA, et al: Carotid artery intima and media thickness as a risk factor for myocardial infarction and stroke risk in older adults. N Engl J Med 1999;340:1422.CrossRefGoogle ScholarPubMed
Yakushiji, Y, Yasaka, M, Takada, T, Minematsu, K: Serial transoral carotid ultrasonographic findings in extracranial internal carotid artery dissection. J Ultrasound Med 2005;24:877880.Google Scholar
Yakushijji, Y, Takase, Y, Kosugi, M, et al: Transoral carotid ultrasonography is useful for detection and follow-up of extracranial internal carotid artery dissecting aneurysm. Cerebrovasc Dis 2007;24:144146.Google Scholar
Forteza, A, Krejza, J, Koch, S, Babikian, V: Ultrasound imaging of cerebrovascular disease. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 335.Google Scholar
von Reutern, GM, von Budingen, HJ: Ultrasound Diagnosis of Cerebrovascular Disease. New York: Georg Thieme, 1993.Google Scholar
Bartels, E: Color-Coded Duplex Ultrasonography of the Cerebral Vessels. Stuttgart: Schattauer, 1998.Google Scholar
Steinke, W, Kloetzsch, C, Hennerici, M: Carotid artery disease assessed by color Doppler flow imaging: correlation with standard Doppler sonography and angiography. AJNR Am J Neuroradiol 1990;11:259266.Google ScholarPubMed
Steinke, W, Hennerici, M, Rautenberg, W, Mohr, JP: Symptomatic and asymptomatic high-grade carotid stenosis in Doppler color-flow imaging. Neurology 1992;42;131138.CrossRefGoogle ScholarPubMed
Steinke, W, Ries, S, Artemis, N, et al: Power Doppler imaging of carotid artery stenosis. Comparison with color Doppler flow imaging and angiography. Stroke 1997;28:19811987.CrossRefGoogle ScholarPubMed
Griewing, B, Doherty, C, Kessler, CH: Power Doppler ultrasound examination of the intracerebral and extracerebral vasculature. J Neuroimaging 1996;6:3235.Google Scholar
Lenzi, GL, Vicenzini, E: The ruler is dead: An analysis of carotid plaque motion. Cerebrovasc Dis 2007;23:121125.Google Scholar
Aaslid, R: Transcranial Doppler Sonography. New York: Springer, 1986.Google Scholar
Alexandrov, AV (ed): Cerebrovascular Ultrasound in Stroke Prevention and Treatment. New York: Futura Blackwell Publishing, 2003.Google Scholar
Molina, CA, Alexandrov, AV: Transcranial Doppler ultrasound. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 113128.Google Scholar
Babikian, VL, Wechsler, LR (eds): Transcranial Doppler Ultrasonography, 2nd ed. Boston: Butterworth–Heinemann, 1999.Google Scholar
Otis, SM, Ringelstein, EB: The transcranial Doppler examination: Principles and applications of transcranial Doppler sonography. In Tegeler, CH, Babikian, VL, Gomez, CR (eds): Neurosonology. St Louis: Mosby, 1996, pp 113128.Google Scholar
Gomez, CR, Brass, LM, Tegeler, CH, et al: The trans-cranial Doppler standardization project. Phase 1 results. The TCD Study Group, American Society of Neuroimaging. J Neuroimaging 1993;3:190192.Google Scholar
Caplan, LR, Brass, LM, DeWitt, LD, et al: Transcranial Doppler ultrasound: Present status. Neurology 1990;40:696700.Google Scholar
Hennerici, M, Rautenberg, W, Sitzer, G, et al: Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity. Surg Neurol 1987;27:439448.Google Scholar
Hennerici, M, Rautenberg, W, Schwartz, A: Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity. II. Evaluation of intracranial arterial disease. Surg Neurol 1987;27:523532.Google Scholar
Demchuk, A, Christou, I, Wein, T, et al: Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 2000;10:112.CrossRefGoogle ScholarPubMed
Demchuk, AM, Christou, I, Wein, T, et al: Specific transcranial Doppler flow findings related to the presence and site of arterial occlusion. Stroke 2000;31:140146.Google Scholar
Baumgartner, RW: Transcranial color duplex sonography in cerebrovascular disease: A systematic review. Cerebrovasc Dis 2003;16:413.Google Scholar
Krejza, J, Baumagartner, RW: Clinical applications of transcranial color-coded duplex sonography. J Neuroimaging 2004;14:215225.Google Scholar
Burns, PN: Overview of echo-enhanced vascular ultrasound imaging for clinical diagnosis in neurosonology. J Neuroimaging 1997;7(Suppl 1):S2S14.Google Scholar
Bogdahn, U, Becker, G, Schlief, R, et al: Contrast-enhanced transcranial color-coded real-time sonography. Stroke 1993;24:676684.Google Scholar
Delcker, A, Turowski, B: Diagnostic value of three-dimensional transcranial contrast duplex sonography. J Neuroimaging 1997;7:139144.Google Scholar
Stolz, E, Kaps, M: New techniques in ultrasound. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 383401.Google Scholar
Sharma, VK, Tsivgoulis, G, Lao, AY, Alexandrov, AV: Role of transcranial Doppler ultrasonography in evaluation of patients with cerebrovascular disease. Curr Neurol Neurosci Rep 2007;7:820.Google Scholar
Tsivgoulis, G, Sharma, VK, Lao, AY, et al: Validation of transcranial Doppler with computed tomography angiography in acute cerebral ischemia. Stroke 2007;38:12451249.Google Scholar
Sharma, VK, Tsivgoulis, G, Lao, AY, et al: Noninvasive detection of diffuse intracranaial disease. Stroke 2007;38:31753181.CrossRefGoogle Scholar
Caplan, LR: Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell, 1996.Google Scholar
Sliwka, U, Rautenberg, W: Multimodal ultrasound versus angiography for imaging the vertebrobasilar circulation. J Neuroimaging 1998;8:182.Google Scholar
Seiler, RW, Grolimund, P, Asaslid, R, et al: Cerebral vasospasm evaluated by transcranial ultrasound correlated with clinical grade and CT-visualized subarachnoid hemorrhage. J Neurosurg 1986;64:594600.Google Scholar
Becker, G, Greiner, K, Kaune, B, et al: Diagnosis and monitoring of subarachnoid hemorrhage by transcranial color-coded real time sonography. Neurosurgery 1991;28:814820.Google Scholar
Chaudhuri, R, Padayachee, TS, Lewis, RR, et al: Non-invasive assessment of the circle of Willis using transcranial pulsed Doppler ultrasound with angiographic correlation. Clin Radiol 1992;46:193197.Google Scholar
Anzola, GP, Gasparotti, R, Magoni, M, Prandini, F: Transcranial Doppler sonography and magnetic resonance angiography in the assessment of collateral hemispheric flow in patients with carotid artery disease. Stroke 1995;26:214217.Google Scholar
Klotzsch, C, Popescu, O, Berlit, P: Assessment of the posterior communicating artery by transcranial color-coded duplex sonography. Stroke 1996;27:486489.Google Scholar
Piepgras, A, Schmiedek, P, Leinsinger, G, et al: A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide. Stroke 1990;21:13061311.Google Scholar
Dahl, A, Russell, D, Rootwelt, K, et al: Cerebral vasoreactivity assessed with transcranial Doppler and regional cerebral blood flow measurements. Dose, concentration, and time of the response to acetazolamide. Stroke 1995;26:23022306.Google Scholar
Valdueza, JM, Draganski, B, Hoffman, O, et al: Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke 1999;30:8186.Google Scholar
Yonas, H, Smith, HA, Durham, SR, et al: Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg 1993;79:483489.Google Scholar
Markus, HS: Transcranial Doppler detection of circulating cerebral emboli: A review. Stroke 1993;24:12461250.Google Scholar
Markus, HS, Harrison, MJ: Microembolic signal detection using ultrasound. Stroke 1995;26:15171519.Google Scholar
Tong, DC, Albers, GW: Transcranial Doppler-detected microemboli in patients with acute stroke. Stroke 1995;26:15881592.Google Scholar
Sliwka, U, Job, F-P, Wissuwa, D, et al: Occurrence of transcranial Doppler high-intensity transient signals in patients with potential cardiac sources of embolism: A prospective study. Stroke 1995;26:20672070.Google Scholar
Daffertshofer, M, Ries, S, Schminke, U, Hennerici, M: High-intensity transient signals in patients with cerebral ischemia. Stroke 1996;27:18441849.Google Scholar
Sliwka, U, Lingnau, A, Stohlmann, W-D, et al: Prevalence and time course of microembolic signals in patients with acute strokes: A prospective study. Stroke 1997;28:358363.Google Scholar
Ringelstein, EB, Droste, DW, Babikian, VL, et al: Consensus on microembolus detection by TCD. International Consensus Group on Microembolus Detection. Stroke 1998;29:725729.Google Scholar
Siebler, M, Nachtmann, A, Sitzer, M, et al: Cerebral microembolism and the risk of ischemia in asymptomatic high-grade internal carotid artery stenosis. Stroke 1995;26:21842186.Google Scholar
Molloy, J, Markus, HS: Asymptomatic embolization predicts stroke and TIA risk in patients with carotid artery stenosis. Stroke 1999;30:14401443.Google Scholar
Segura, T, Serena, J, Molins, A, Davalos, A: Clusters of microembolic signals: A new form of cerebral microembolism presentation in a patient with middle cerebral artery stenosis. Stroke 1998;29:722724.CrossRefGoogle Scholar
Wong, KS, Li, H, Chan, YL, et al: Use of trans-cranial Doppler to predict outcome in patients with intracranial large-artery occlusive disease. Stroke 2003;31:26412647.Google Scholar
Gao, S, Wong, KS, Hansberg, T, et al: Microembolic signal predicts recurrent cerebral ischemic events in acute stroke patients with middle cerebral artery stenosis. Stroke 2004;35:28322836.Google Scholar
Mackinnon, AD, Aaslid, R, Markus, HS: Long-term ambulatory monitoring for cerebral emboli using transcranial Doppler ultrasound. Stroke 2004;35:7378.CrossRefGoogle ScholarPubMed
Teague, SM, Sharma, MK: Detection of paradoxical cerebral echo contrast embolization by transcranial Doppler ultrasound. Stroke 1991;22:740745.CrossRefGoogle ScholarPubMed
Chimowitz, MI, Nemec, JJ, Marwick, TH, et al: Transcranial Doppler ultrasound identifies patients with right-to-left cardiac or pulmonary shunts. Neurology 1991;41:19021904.Google Scholar
Albert, A, Muller, HR, Hetzel, A: Optimized transcranial Doppler technique for the diagnosis of cardiac right-to-left shunts. J Neuroimaging 1997;7:159163.Google Scholar
Di Tullio, M, Sacco, RL, Venketasubramanian, N, et al: Comparison of diagnostic techniques for the detection of a patent foramen ovale in stroke patients. Stroke 1993;24:10201024.Google Scholar
Klotzsch, C, Janzen, G, Berlit, P: Transesophageal echocardiography and contrast-TCD in the detection of a patent foramen ovale. Experiences with 111 patients. Neurology 1994;44:16031606.Google Scholar
Jauss, M, Zanette, E: Detection of right-to-left shunt with ultrasound contrast agent and trans-cranial Doppler sonography. Cerebrovasc Dis 2000;10:490496.CrossRefGoogle Scholar
Sastry, S, Daly, K, Chengodu, T, McCollum, C: Is transcranial Doppler for the detection of venous-to-arterial circulation shunts reproducible? Cerebrovasc Dis 2007;23:424429.Google Scholar
Baumgartner, RW, Gonner, F, Arnold, M, Muri, R: Transtemporal power- and frequency-based color-coded duplex sonography of cerebral veins and sinuses. AJNR Am J Neuroradiol 1997;18:17711781.Google Scholar
Stolz, E, Kaps, M, Dorndorf, W: Assessment of intracranial venous hemodynamics in normal individuals and patients with cerebral venous thrombosis. Stroke 1999;30:7075.Google Scholar
Ries, S, Steinke, W, Neff, KW, Hennerici, M: Echocontrast enhanced transcranial color-coded sonography for the diagnosis of transverse sinus thrombosis. Stroke 1997;28:696700.Google Scholar
Valdueza, JM, Hoffmann, O, Weih, M, et al: Monitoring of venous hemodynamics in patients with cerebral venous thrombosis by transcranial Doppler ultrasound. Arch Neurol 1999;56:229234.Google Scholar
Becker, G, Bogdahn, U, Gehlberg, C, et al: Transcranial color-coded real-time sonography of intracranial veins. J Neuroimaging 1995;5:8794.CrossRefGoogle ScholarPubMed
Pressman, BD, Tourje, EJ, Thompson, JR: An early sign of ischemic infarction: Increased density in a cerebral artery. AJNR Am J Neuroradiol 1987;8:645648.Google Scholar
Riedel, CH, Zoubie, J, Ulmer, S, Gierthmuehlen, J, Jansen, O: Thin-slice reconstructions of nonenhanced CT images allow for detection of thrombus in acute stroke. Stroke 2012;43:23192323.Google Scholar
Lays, D, Pruvo, JP, Godefroy, O, et al: Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke 1992;23:317324.Google Scholar
Tomsick, T, Brott, T, Barsan, W, et al: Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultraearly thrombolytic therapy. AJNR Am J Neuroradiol 1996;17:7985.Google Scholar
Lee, TC, Bartlett, E, Fox, AJ, Symons, SP: The hypodense artery sign. AJNR Am J Neuroradiol 2005;26:20272029.Google Scholar
Grunholdt, ML: B-mode ultrasound and spiral CT for the assessment of carotid atherosclerosis. Neuroimaging Clin N Am 2002;12:421435.Google Scholar
Frank, H: Characterization of atherosclerotic plaque by magnetic resonance imaging. Am Heart J 2001;141(Suppl 2):S45S48.Google Scholar
Yuan, C, Mitsumori, LM, Beach, KW, Maravilla, KR: Carotid atherosclerotic plaque: Noninvasive MR characterization and identification of vulnerable lesions. Radiology 2001;221:285299.Google Scholar
Adams, GJ, Greene, J, Vick, GW 3rd, et al: Tracking regression and progression of atherosclerosis in human carotid arteries using high-resolution magnetic resonance imaging. Magn Reson Imaging 2004;22:12491258.Google Scholar
Honda, M, Kitagawa, N, Tsutsumi, K, et al: High-resolution magnetic resonance imaging for detection of carotid plaques. Neurosurgery 2006;58:338346.Google Scholar
Hatsukami, TS, Ross, R, Polissar, NL, Yuan, C: Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000;102:959964.Google Scholar
Moody, AR, Murphy, RE, Morgan, PS, et al: Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation 2003;107:30473052.Google Scholar
Saloner, D, Acevedo-Bolton, G, Wintermark, M, Rapp, JH: MRI of geometric and compositional features of vulnerable carotid plaque. Stroke 2007;38(2):637641.Google Scholar
Touzé, E, Toussaint, J-F, Coste, J, et al; for the High-Resolution Magnetic Resonanace Imaging in Atherosclerotic Stenosis of the Carotid Artery (HIRISC) Study Group: Reproducibility of high-resolution MRI for the identification and the quantification of carotid atherosclerotic plaque components. Stroke 2007;38:18121819.Google Scholar
Yuan, C, Mitsumori, LM, Ferguson, MS, et al: In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001;104:20512056.Google Scholar
Botnar, RM, Buecker, A, Wiethoff, AJ, et al: In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 2004;110:14631466.Google Scholar
Sirol, M, Fuster, V, Badimon, JJ, et al: Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 2005;112:15941600.Google Scholar
Klein, IF, Lavallee, PC, Schouman-Claeys, E, Amaraenco, P: High-resolution MRI identifies basilar artery plaques in paramedian pontine infarct. Neurology 2005;64:551552.Google Scholar
Klein, IF, Lavallee, PC, Touboul, P-J, et al: In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 2006;67:327329.Google Scholar
Lam, WW, Wong, KS, So, NM, et al: Plaque volume measurement by magnetic resonance imaging as an index of remodeling of middle cerebral artery: Correlation with transcranial color Doppler and magnetic resonance angiography. Cerebrovasc Dis 2004;17:166169.Google Scholar
Chalela, JA, Haaymore, JB, Ezzeddine, MA, et al: The hypointense MCA sign. Neurology 2002;58:1470.Google Scholar
Cho, K-H, Kim, JS, Kwon, SU, et al: Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 2005;36:23792383.Google Scholar
Hermier, M, Nighoghossian, N: Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 2004;35:19891994.Google Scholar
Assouline, E, Benziane, K, Reizine, D, et al: Intra-arterial thrombus visualized on T2* gradient echo imaging in acute ischemic stroke. Cerebrovasc Dis 2005;20:611.Google Scholar
Idbaih, A, Boukobza, M, Crassard, I, et al: MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke 2006;37:991995.Google Scholar
Selim, M, Fink, J, Linfante, I, et al: Diagnosis of cerebral venous thrombosis with echo-planar T2*-weighted magnetic resonance imaging. Arch Neurol 2002;59:10211026.Google Scholar
Lovblad, KO, Bassetti, C, Schneider, J, et al: Diffusion-weighted MR in cerebral venous thrombosis. Cerebrovasc Dis 2001;11:169176.Google Scholar
Favrole, P, Guichard, JP, Crassard, I, et al: Diffusion-weighted imaging of intravascular clots in cerebral venous thrombosis. Stroke 2004;35:99103.Google Scholar
Essig, M, von Kummer, R, Egelhof, T, et al: Vascular MR contrast enhancement in cerebrovascular disease. AJNR Am J Neuroradiol 1996;17:887894.Google Scholar
Lazar, EB, Russell, EJ, Cohen, BA, et al: Contrast-enhanced MR of cerebral arteritis: Intravascular enhancement related to flow stasis within areas of focal arterial ectasia. AJNR Am J Neuroradiol 1992;13:271276.Google Scholar
Warach, S, Latour, LI: Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke 2004;35(Suppl 1):26592661.Google Scholar
Latour, LL, Kang, DW, Ezzeddine, MA, et al: Early blood–brain barrier disruption in human focal brain ischemia. Ann Neurol 2004;56:468477.Google Scholar
Schellinger, PD, Chalela, JA, Kang, DW, et al: Diagnostic and prognostic value of early MR Imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 2005;26:618624.Google Scholar
Bang, OY, Buck, BH, Saver, JL, et al: Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann Neurol 2007;62:170176.Google Scholar
Singer, OC, Humpich, MC, Fiehler, J, et al: Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 2008;63:5260.Google Scholar
Campbell, BCV, Christensen, S, Butcher, KS, et al: Regional very low cerebral blood volume predicts hemorrhagic transformation better than diffusion-weighted imaging volume and thresholded apparent diffusion coefficient in acute ischemic stroke. Stroke 2010;41:8288.Google Scholar
Kim, JH, Bang, OY, Liebeskind, DS, et al: Impact of baseline tissue status (diffusion-weighted imaging lesion) versus perfusion status (severity of hypoperfusion) on hemorrhagic transformation. Stroke 2010;41:e135e142.Google Scholar
Campbell, BCV, Christensen, S, Parsons, MW, et al: Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann Neurol 2013;73:510519.Google Scholar
Edelman, RR, Mattle, HP, Atkinson, DJ, et al: MR angiography. AJR Am J Roentgenol 1990;154:937946.Google Scholar
Bradley, WG: Magnetic resonance angiography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 3750.Google Scholar
Qureshi, A, Isa, A, Cinnamon, J, et al: Magnetic resonance angiography in patients with brain infarction. J Neuroimaging 1998;8:6570.Google Scholar
Gillard, JH, Oliverio, PJ, Barker, PB, et al: MR angiography in acute cerebral ischemia of the anterior circulation: A preliminary report. AJNR Am J Neuroradiol 1997;18:343350.Google Scholar
Yano, T, Kodama, T, Suzuki, Y, Watanabe, K: Gadolinium-enhanced 3D time-of-flight MR angiography. Acta Radiol 1997;38:4754.Google Scholar
Leclerc, X, Martinat, P, Godefroy, O, et al: Contrast-enhanced three-dimensional fast imaging with steady-state precession (FISP) MR angiography of supraaortic vessels: Preliminary results. AJNR Am J Neuroradiol 1998;19:14051413.Google Scholar
U-King-Im, J, Trivedi, R, Graves, M, et al: Contrast-enhanced MR angiography for carotid disease: Diagnostic and potential clinical impact. Neurology 2004;62:12821290.Google Scholar
Mitti, RL, Broderick, M, Carpenter, JP, et al: Blinded-reader comparison of magnetic resonance angiography and Duplex ultrasonography for carotid artery bifurcation stenosis. Stroke 1994;25:410.Google Scholar
Levi, CR, Mitchell, A, Fitt, G, Donnan, GA: The accuracy of magnetic resonance angiography in the assessment of extracranial carotid artery occlusive disease. Cerebrovasc Dis 1996;6:231236.Google Scholar
Bash, S, Villablanca, JP, Duckwiler, G, et al: Intracranial vascular stenosis and occlusive disease. Evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:10121021.Google Scholar
Uehara, T, Mori, E, Tabuchi, M, et al: Detection of occlusive lesions in intracranial arteries by three-dimensional time-of-flight magnetic resonance angiography. Cerebrovasc Dis 1994;4:365370.Google Scholar
Johnson, BA, Heiserman, JE, Drayer, BP, Keller, PJ: Intracranial MR angiography: Its role in the integrated approach to brain infarction. AJNR Am J Neuroradiol 1994;15:901908.Google Scholar
Ko, SB, Kim, D-E, Kim, SH, Roh, J-K: Visualization of venous system by time-of-flight magnetic resonance angiography. J Neuroimaging 2006;16:353356.Google Scholar
Amin-Hanjani, S, Du, X, Rose-Finnell, L, et al; on behalf of the VERiTAS Study Group: Hemodynamic features of symptomatic vertebrobasilar disease. Stroke 2015;46:18501856.Google Scholar
Roberts, HC, Lee, TJ, Dillon, WP: Computed tomography angiography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 5171.Google Scholar
Leclerc, X, Godefroy, O, Pruvo, JP, Leys, D: Computed tomographic angiography for the evaluation of carotid artery stenosis. Stroke 1995;26:15771581.Google Scholar
Josephson, S, Bryant, S, Mak, H, et al: Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology 2004;63:457460.Google Scholar
Feasby, T, Findlay, J: CT angiography for the assessment of carotid stenosis. Neurology 2004;63:412413.Google Scholar
Bartlett, ES, Walters, TD, Symons, SP, Fox, AJ: Carotid stenosis index revisited with direct CT angiography measurement of carotid arteries to quantify carotid stenosis. Stroke 2007;38:286291.Google Scholar
Wong, KS, Liang, EY, Lam, WWM, et al: Spiral computed tomography angiography in the assessment of middle cerebral artery occlusive disease. J Neurol Neurosurg Psychiatry 1995;59:537539.Google Scholar
Skutta, B, Furst, G, Eilers, J, et al: Intracranial stenoocclusive disease: Double detector helical CTA versus digital subtraction angiography. AJNR Am J Neuroradiol 1999;20:791799.Google Scholar
Brisman, J, Song, JK, Newell, DW: Cerebral aneurysms. N Engl J Med 2006;355:928939.Google Scholar
Nguyen-Huynh, MN, Wintermark, M, English, J, et al: How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke 2008;39:11841188.Google Scholar
Nijjar, S, Patel, B, McGinn, G, West, M: Computed tomographic angiography as the primary diagnostic study in spontaneous subarachnoid hemorrhage. J Neuroimaging 2007;17:295299.Google Scholar
Wada, R, Aviv, RI, Fox, AJ, et al: CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 2007;38:12571262.Google Scholar
Davis, SM, Broderick, J, Hennerici, M, et al: Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006;66:11751181.CrossRefGoogle ScholarPubMed
Rodriguez-Luna, D, Dowlatshahi, D, Aviv, RI, et al; and the PRSICS Group: Venous phase of computed tomography angiography increases spot sign detection, but intracerebral hemorrhage expansion is greater in spot signs detected in arterial phase. Stroke 2014;45:734739.Google Scholar
Warach, S, Li, W, Ronthal, M, Edelman, R: Acute cerebral ischemia: evaluation with dynamic contrast-enhanced MR imaging and MR angiography. Radiology 1992;182:4147.Google Scholar
Fisher, M, Prichard, JW, Warach, S. New magnetic resonance techniques for acute ischemic stroke. JAMA 1995;274:908911.Google Scholar
Rother, J, Guckel, F, Neff, W, et al: Assessment of regional cerebral blood flow volume in acute human stroke by use of a single-slice dynamic susceptibility contrast-enhanced magnetic resonance imaging. Stroke 1996;27:10881093.Google Scholar
Sorensen, AG, Buonanno, F, Gonzalez, RG, et al: Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 1996;199:391401.Google Scholar
Schlaug, G, Benfield, A, Baird, AE, et al: The ischemic penumbra operationally defined by diffusion and perfusion MRI. Neurology 1999;53:15281537.Google Scholar
Schellinger, PD, Fiebach, JB, Jansen, O, et al: Stroke magnetic resonance imaging within 6 hours after onset of hyperacute cerebral ischemia. Ann Neurol 2001;49:460469.Google Scholar
Chaves, C, Silver, B, Staroselskaya, I, et al: Relation of perfusion-weighted magnetic resonance imaging (MRI) and clinical outcome in patients with ischemic stroke. Cerebrovasc Dis 1999;9(Suppl 1):56.Google Scholar
Staroselskaya, I, Chaves, C, Silver, B, et al: Relationship between magnetic resonance arterial patency and perfusion–diffusion mismatch in acute ischemic stroke and its potential clinical use. Arch Neurol 2001;58:10691074.Google Scholar
Neumann-Haefelin, T, Moseley, ME, Albers, GW: New magnetic resonance imaging methods for cerebrovascular disease: emerging clinical applications. Ann Neurol 2000;47:559570.Google Scholar
Ostergaard, L, Sorensen, AG, Chesler, DA, et al: Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 2000;31:10971103.Google Scholar
Chaves, CJ, Staroselskaya, I, Linfante, I, Llinas, R, et al: Patterns of perfusion-weighted imaging in patients with carotid artery occlusive disease. Arch Neurol 2003;60:237242.Google Scholar
Kane, I, Carpenter, T, Chappell, F, et al: Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke. Stroke 2007;38:31583164.Google Scholar
Wintermark, M, Flanders, AE, Velthuis, B, et al: Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006;37:979985.Google Scholar
Bivard, A, McElduff, P, Spratt, N, Levi, C, Parsons, M: Defining the extent of irreversible brain ischemia using perfusion computed tomography. Cerebrovasc Dis 2011;31:238245.Google Scholar
Campbell, BC, Christensen, VS, Levi, CR, et al: Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 2011;42:34353440.Google Scholar
Kamalian, S, Maas, MB, Goldmacher, GV, et al: CT cerebral blood flow maps optimally correlate with admission diffusion-weighted imaging in acute stroke but thresholds vary by postprocessing platform. Stroke 2011;42:19231928.Google Scholar
Olivot, JM, Mlynash, M, Thijs, VN, et al: Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009;40:469475.Google Scholar
Zaro-Weber, O, Moeller-Hartmann, W, Heiss, WD, Sobesky, J: Maps of time to maximum and time to peak for mismatch definition in clinical stroke studies validated with positron emission tomography. Stroke 2010;41:28172821.Google Scholar
Albers, GW, Thijs, VN, Wechsler, L, et al: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006;60:508517.Google Scholar
Lansberg, MG, Straka, M, Kemp, S, et al: MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): A prospective cohort study. Lancet Neurol 2012;11:860867.Google Scholar
Davis, SM, Donnan, GA, Parsons, MW, et al: Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): A placebo-controlled randomised trial. Lancet Neurol 2008;7:299309.Google Scholar
Meretoja, AD, Strbian, D, Mustanoja, S, et al: Reducing in-hospital delay to 20 minutes in stroke thrombolysis. Neurology 2012;79:306313.Google Scholar
Meretoja, A, Weir, L, Ugalde, M, et al: Helsinki model cut stroke thrombolysis delays to 25 minutes in Melbourne in only 4 months. Neurology 2013;81:10711076.Google Scholar
Wong, EC: Quantifying CBF with pulsed ASL: Technical and pulse sequence factors. J Magn Reson Imaging 2005;22:727731.Google Scholar
Wang, Z, Wang, J, Connick, TJ, et al: Continuous ASL (CASL) perfusion MRI with an array coil and parallel imaging at 3T. Magn Reson Med 2005;54:732737.Google Scholar
Fernandez-Seara, MA, Wang, Z, Wang, J, et al: Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med 2005;54:12411247.Google Scholar
Ances, BM, McGarvey, ML, Abrahams, JM, et al: Continuous arterial spin labeled perfusion magnetic resonance imaging in patients before and after carotid endarterectomy. J Neuroimaging 2004;14:133138.Google Scholar
Yoo, R-E, Yun, TJ, Rhim, JH, et al: Bright vessel appearance on arterial spin labeling MRI for localizing arterial occlusion in acute ischemic stroke. Stroke 2015;46:564567.Google Scholar
Park, K-Y, Youn, YC, Chung, C-S, et al: Large-artery stenosis predicts subsequent vascular events in patients with transient ischemic attack. J Clin Neurol 2007;3:169174.Google Scholar
Perez, A, Restepo, L, Kleinman, J, et al: Patients with diffusion–perfusion mismatch on magnetic resonance imaging 48 hours or more after stroke symptom onset: Clinical and imaging features. J Neuroimaging 2006;16:329333.Google Scholar
Linfante, I, Llinas, RH, Schlaug, G, et al: Diffusion-weighted imaging and National Institutes of Health Stroke Scale in the acute phase of posterior-circulation stroke. Arch Neurol 2001;58:621628.Google Scholar
Ma, H, Parsons, MW, Christensen, S, et al: A multicentre, randomized, double blinded, placebo controlled phase 3 study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND). Int J Stroke 2012;7:7480.Google Scholar
Campbell, BC, Mitchell, PJ, Yan, B, et al; and E-I investigators: A multicenter, randomized, controlled study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits with Intra-Arterial therapy (EXTEND-IA). Int J Stroke 2014;9:126132.Google Scholar
von Kummer, R, Weber, J: Brain and vascular imaging in acute ischemic stroke: The potential of computed tomography. Neurology 1997;49(Suppl 4):S52S55.Google Scholar
Nabavi, DG, Kloska, SP, Nam, E-M, et al: MOSAIC: Multimodal stroke assessment using computed tomography. Novel diagnostic approach for the prediction of infarction size and clinical outcome. Stroke 2002;33:28192826.Google Scholar
Koroshetz, W: Contrast computed tomography scan in acute stroke: “You can’t always get what you want but … you get what you need.” Ann Neurol 2002;51:415416.Google Scholar
Wintermark, M, Reichhart, M, Thiran, J-P, et al: Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002;51:417432.Google Scholar
Wintermark, M, Reichart, M, Cuisenaire, O, et al: Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002;33:20252031.Google Scholar
Parsons, MW, Pepper, EM, Bateman, GA, et al: Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology 2007;68:730736.Google Scholar
Na, DG, Byun, HS, Lee, KH, et al: Acute occlusion of the middle cerebral artery: Early evaluation with triphasic helical CT – Preliminary results. Radiology 1998;207:113122.Google Scholar
Lee, KH, Cho, S-J, Byun, HS, et al: Triphasic perfusion computed tomography in acute middle cerebral artery stroke. Arch Neurol 2000;57:990999.Google Scholar
Lee, KH, Lee, S-J, Cho, S-J, et al: Usefulness of triphasic perfusion computed tomography for intravenous thrombolysis with tissue-type plasminogen activator in acute ischemic stroke. Arch Neurol 2000;57:10001008.Google Scholar
Kohrmann, M, Juttler, E, Huttner, HB, et al: Acute stroke imaging for thrombolytic therapy – an update. Cerebrovasc Dis 2007;24:161169.Google Scholar
Menon, BK, Smith, EE, Modi, J, et al: Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions. AJNR Am J Neuroradiol 2011;32:16401645.Google Scholar
Wintermark, M, Meuli, R, Browaeys, P, et al: Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. Neurology 2007;68:694697.Google Scholar
Chalela, JA, Kidwell, CS, Nentwich, LM, et al: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: A prospective comparison. Lancet 2007;369:293298.Google Scholar
Yonas, H, Wolfson, SK, Gur, D, et al: Clinical experience with the use of xenon-enhanced CT blood flow mapping in cerebral vascular disease. Stroke 1984;15:443450.Google Scholar
Yonas, H, Darby, JM, Marks, EC, et al: CBF measured by Xe-CT: Approach to analysis and normal values. J Cereb Blood Flow Metab 1991;11:716725.Google Scholar
Hilman, J, Sturnegk, P, Yonas, H, et al: Bedside monitoring of CBF with xenon-CT and a mobile scanner: A novel method in neurointensive care. Br J Neurosurg 2005;19:395401.Google Scholar
Fayad, P, Brass, LM: Single photon emission computed tomography in cerebrovascular disease. Stroke 1991;22:950954.Google Scholar
Caplan, LR: Question-driven technology assessment: SPECT as an example. Neurology 1991;41:187191.Google Scholar
Masdeu, JC, Brass, LM: SPECT imaging of stroke. J Neuroimaging 1995;5:514522.Google Scholar
Therapeutics and Technology Subcommittee of the American Academy of Neurology: Assessment of Brain SPECT. Neurology 1996;46:278285.Google Scholar
Masdeu, JC: Imaging of stroke with single-photon emission computed tomography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 131143.Google Scholar
Wintermark, M, Sesay, M, Barbier, E, et al: Comparative overview of brain perfusion imaging techniques. JNR J Neuroradiol 2005;32:294314.Google Scholar
Frackowiak, R: PET CBF investigations of stroke. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, B, Weir, B (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 636640.Google Scholar
Phelps, M, Mazziotta, J, Huang, S: Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 1982;2:113162.Google Scholar
Baron, JC, Bousser, M-G, Rey, A, et al: Reversal of focal misery-perfusion syndrome by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. Stroke 1981;12:454459.Google Scholar
Marchal, G, Furlong, M, Beaudouin, V, et al: Early spontaneous hyperperfusion after stroke: A marker of favorable tissue outcome. Brain 1996;119:409419.Google Scholar
Baron, J-C: Positron emission tomography. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 115130.Google Scholar
Johnson, KA, Gregas, M, Becker, JA, et al: Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007;62:229234.Google Scholar
Vinters, HV: Imaging cerebral microvascular amyloid. Ann Neurol 2007;62:209212.Google Scholar
Caplan, LR, Wolpert, SM: Angiography in patients with occlusive cerebrovascular disease: A stroke neurologist and neuroradiologist’s views. AJNR Am J Neuroradiol 1991;12:593601.Google Scholar
Akers, DL, Markowitz, IA, Kerstein, MD: The value of aortic arch study in the evaluation of cerebrovascular insufficiency. Am J Surg 1987;154:230232.Google Scholar
Caplan, LR, Manning, WJ: Cardiac sources of embolism: The usual suspects. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 129159.Google Scholar
DeRook, FA, Comess, KA, Albers, GW, Popp, RL: Transesophageal echocardiography in the evaluation of stroke. Ann Intern Med 1992;117:922932.Google Scholar
Grullon, C, Alam, M, Rosman, HS, et al: Transesophageal echocardiography in unselected patients with focal cerebral ischemia: When is it useful? Cerebrovasc Dis 1994;4:139145.Google Scholar
Daniel, WG, Mugge, A: Transesophageal echocardiography. N Engl J Med 1995;332:12681279.Google Scholar
Horowitz, DR, Tuhrim, S, Weinberger, J, et al: Transesophageal echocardiography: Diagnostic and clinical applications in the evaluation of the stroke patient. J Stroke Cerebrovasc Dis 1997;6:332336.Google Scholar
Manning, WJ: Cardiac sources of embolism: Pathophysiology and identification. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 161186.Google Scholar
Furlan, AJ, Reisman, M, Massaro, J, et al; and CI Investigators: Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med 2012;366:991999.Google Scholar
Carroll, JD, Saver, JL, Thaler, DE, et al; and R Investigators: Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med 2013;368:10921100.Google Scholar
Caplan, LR: Of birds and nests and cerebral emboli. Rev Neurol 1991;147:265273.Google Scholar
Caplan, LR: Brain embolism. In Caplan, LR, Chimowitz, M, Hurst, JW (eds): Practical Clinical Neurocardiology. New York: Marcel Dekker, 1999, pp 35185.Google Scholar
Caplan, LR: The aorta as a donor source of brain embolism. In Caplan, LR, Manning, WJ (eds): Brain Embolism. New York: Informa Healthcare, 2006, pp 187201.Google Scholar
Amarenco, P, Davis, S, Jones, EF, et al; for The Aortic Arch Related Cerebral Hazard Trial Investigators: Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke 2014;45:12481257.Google Scholar
Johnson, LL, Pohost, GM: Nuclear cardiology. In Schlant, RC, Alexander, RW (eds): Hurst’s The Heart, 8th ed. New York: McGraw-Hill, 1994, pp 22812323.Google Scholar
Caplan, LR. Translating what is known about neurological complications of coronary artery bypass grafting into action. Arch Neurol 2009;66:10631064.Google Scholar
Weinberger, J, Azhar, S, Danisi, F, et al: A new noninvasive technique for imaging atherosclerotic plaque in the aortic arch of stroke patients by transcutaneous real-time B-mode ultrasonography. Stroke 1998;29:673676.Google Scholar
Chatzikonstantinou, A, Krissak, R, Flüchter, S: CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic ischemic stroke. Cerebrovasc Dis 2012;33:322328.Google Scholar
Svedlund, S, Wetterholm, R, Volkmann, R, Caidahl, K: Retrograde blood flow in the aortic arch determined by transesophageal Doppler ultrasound. Cerebrovasc Dis 2009;27:2228.Google Scholar
Hur, J, Kim, YJ, Lee, H-J, et al: Cardiac computed tomographic angiography for detection of cardiac sources of embolism in stroke patients. Stroke 2009;40:20732078.Google Scholar
Rokey, R, Rolak, LA, Harati, Y, et al: Coronary artery disease in patients with cerebrovascular disease: A prospective study. Ann Neurol 1985;16:5053.Google Scholar
Dhamoon, MS, Tai, W, Boden-Albala, B, et al: Risk of myocardial infarction or vascular death after first ischemic stroke. The Northern Manhattan Study. Stroke 2007;38:17521758.Google Scholar
Calvet, D, Touzé, E, Varenne, O, et al: Prevalence of asymptomatic coronary artery disease in ischemic stroke patients: The PRECORIS study. Circulation 2010;121:16231629.Google Scholar
Yoo, J, Yang, JH, Choi, BW, et al: The frequency and risk of preclinical coronary artery disease detected using multichannel cardiac computed tomography in patients with ischemic stroke. Cerebrovasc Dis 2012;33:286294.Google Scholar
Kim, WY, Danias, PG, Stuber, M, et al: Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:18631869.Google Scholar
Budoff, MJ, Shaw, LJ, Liu, ST, et al: Long-term prognosis associated with coronary calcification: Observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:18601870.Google Scholar
Liao, J, Khalid, Z, Scallan, C, et al: Noninvasive cardiac monitoring for detecting paroxysmal atrial fibrillation or flutter after acute ischemic stroke: A systematic review. Stroke 2007;38:29352940.Google Scholar
Rizos, T, Güntner, J, Jenetsky, E, et al: Continuous stroke unit electrocardiographic monitoring versus 24-hour holter electrocardiography for detection of paroxysmal atrial fibrillation after stroke. Stroke 2012;43:26892694.Google Scholar
Rabinstein, A: Prolonged cardiac monitoring for detection of paroxysmal atrial fibrillation after cerebral ischemia. Stroke 2014;45:12081214.Google Scholar
Kishore, A, Vail, A, Majid, A, et al: Detection of atrial fibrillation after ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Stroke 2014;45:520526.Google Scholar
Patton, KK, Ellinor, PT, Hecklert, SR, et al: N-terminal pro-B-type natriuretic peptide is a major predictor of the development of atrial fibrillation. Circulation 2009;120:17681777.Google Scholar
Hijazi, Z, Wallentin, L, Siegbahn, A, et al: N-terminal pro–B-type natriuretic peptide for risk assessment in patients with atrial fibrillation. J Am Coll Cardiol 2013;61:22742284.Google Scholar
Warraich, HJ, Gandhavadi, M, Manning, WJ: Mechanical discordance of the left atrium and appendage. A novel mechanism of stroke in paroxysmal atrial fibrillation. Stroke 2014;45:14811484.Google Scholar
Lieb, WE, Flaharty, PM, Sergott, RC, et al: Color Doppler imaging provides accurate assessment of orbital blood flow in occlusive carotid artery disease. Ophthalmology 1991;98:548552.Google Scholar
Hedges, TR. Ocular ischemia. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 6173.Google Scholar
Castillo, M, Kwock, L, Mukherij, SK: Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 1996;17:115.Google Scholar
Pavlakis, SG, Kingsley, PB, Kaplan, GP, et al: Magnetic resonance spectroscopy: Use in monitoring MELAS treatment. Arch Neurol 1998;55:849852.Google Scholar
Koroshetz, WJ: New techniques in computed tomography, magnetic resonance imaging, and optical imaging in cerebrovascular disease. In Babikian, VL, Wechsler, LR, Higashida, RT (eds): Imaging Cerebrovascular Disease. Philadelphia: Butterworth–Heinemann, 2003, pp 403412.Google Scholar
Cramer, SC, Nelles, G, Benson, RR, et al: A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997;28:25182527.Google Scholar
Ward, NS, Brown, MM, Thompson, AJ, Frackowiak, RSJ: Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003;126:24762496.Google Scholar
Love, T, Haist, F, Nicol, J, Swinney, D: A functional neuroimaging investigation of the roles of structural complexity and task-demand during auditory sentence processing. Cortex 2006;42:577590.Google Scholar
Levine, SR, Brust, JCM, Futrell, N, et al: A comparative study of the cerebrovascular complications of cocaine-alkaloidal versus hydrochloride – a review. Neurology 1991;41:11731177.Google Scholar
Caplan, LR: Drugs. In Kase, CS, Caplan, LR (eds): Intracerebral Hemorrhage. Boston: Butterworth–Heinemann, 1994, pp 201220.Google Scholar
Alberico, RA, Patel, M, Casey, S, et al: Evaluation of the circle of Willis with three-dimensional CT angiography in patients with suspected intracranial aneurysms. AJNR Am J Neuroradiol 1995;16:15711578.Google Scholar
Sekhar, L, Wechsler, L, Yonas, H, et al: Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 1988;22:813821.Google Scholar
Sloan, MA, Haley, EC, Kassell, NF, et al: Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 1989;39:15141518.Google Scholar
Pollock, S, Tsitsopoulas, P, Harrison, M: The effect of hematocrit on cerebral perfusion and clinical status following occlusion in the gerbil. Stroke 1982;13:167170.Google Scholar
Harrison, M, Pollock, S, Kindoll, B, et al: Effect of hematocrit on carotid stenosis and cerebral infarction. Lancet 1981;2:114115.Google Scholar
Thomas, D, duBoulay, G, Marshall, J, et al: Effect of hematocrit on cerebral blood flow in man. Lancet 1977;2:941943.Google Scholar
Tohgi, H, Yamanouchi, H, Murakami, M, et al: Importance of the hematocrit as a risk factor in cerebral infarction. Stroke 1978;9:369374.Google Scholar
Grotta, J, Ackerman, R, Correia, J, et al: Whole-blood viscosity parameters and cerebral blood flow. Stroke 1982;13:296298.Google Scholar
Thomas, D: Whole blood viscosity and cerebral blood flow. Stroke 1982;13:285287.Google Scholar
Kee, DB Jr, Wood, JH: Influence of blood rheology on cerebral circulation. In Wood, JH (ed): Cerebral Blood Flow: Physiological and Clinical Aspects. New York: McGraw-Hill, 1987, pp 173185.Google Scholar
Allport, LE, Parsons, MW, Butcher, KS, et al: Elevated hematocrit is associated with reduced reperfusion and tissue survival in acute stroke. Neurology 2005;65:13821387.Google Scholar
Adams, RJ, Nichols, FT, Figueroa, R, et al: Transcranial Doppler correlation with cerebral angiography in sickle cell disease. Stroke 1992;23:10731077.Google Scholar
Switzer, JA, Hess, DC, Nichols, FT, Adams, RJ: Pathophysiology and treatment of stroke in sickle-cell disease: Present and future. Lancet Neurol 2006;5:501512.Google Scholar
Adams, RJ: TCD in sickle cell disease: An important and useful test. Pediatr Radiol 2005;35:229234.Google Scholar
Adams, RJ, McKie, VC, Hsu, L, et al: Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998;339:511.Google Scholar
Adams, RJ, Brambilla, D: Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) Trial Investigators: Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med 2005;353:27692778.Google Scholar
Mercuri, M, Bond, MG, Evans, G, et al: Leukocyte count and carotid atherosclerosis. Stroke 1991;22:134.Google Scholar
Elkind, MS, Cheng, I, Boden-Albala, B, et al: Elevated white blood cell count and carotid plaque thickness: The Northern Manhattan Stroke Study. Stroke 2001;32:842849.Google Scholar
Elkind, MS, Sciacca, R, Boden-Albala, B, et al: Leukocyte count is associated with aortic arch plaque thickness. Stroke 2002;33:25872592.Google Scholar
Elkind, MS, Sciacca, RR, Boden-Albala, B, et al: Leukocyte count is associated with reduced endothelial reactivity. Atherosclerosis 2005;181:329338.Google Scholar
Elkind, MS, Sciacca, RR, Boden-Albala, B, et al: Relative elevation in baseline leukocyte count predicts first cerebral infarction. Neurology 2005;64:21212125.Google Scholar
Elkind, MS: Inflammation, atherosclerosis, and stroke. Neurologist 2006;12:140148.Google Scholar
Bennett, JS, Kolodziej, MA: Disorders of platelet function. Dis Month 1992;38:557563.Google Scholar
Anderson, IR, Feinberg, WM: Primary platelet disorders. In Welch, KMA, Caplan, LR, Reis, DJ, Siesjo, BK, Weir, B (eds): Primer on Cerebrovascular Diseases. San Diego, Academic Press, 1997, pp 401405.Google Scholar
Wu, K: Platelet hyperaggregability and thrombosis in patients with thrombocythemia. Ann Intern Med 1978;88:711.Google Scholar
Arboix, A, Besses, C, Acin, P, et al: Ischemic stroke as first manifestation of essential thrombocythemia: Report of six cases. Stroke 1995;26:14631466.Google Scholar
Ogata, J, Yonemura, K, Kimura, K, et al: Cerebral infarction associated with essential thrombocythemia: An autopsy case study. Cerebrovasc Dis 2005;19:201205.Google Scholar
Atkinson, JLD, Sundt, TM, Kazmier, FJ, et al: Heparin-induced thrombocytopenia and thrombosis in ischemic stroke. Mayo Clin Proc 1988;63:353361.Google Scholar
Arepally, GM, Ortel, TL: Clinical practice. Heparin-induced thrombocytopenia. N Engl J Med 2006;355:809817.Google Scholar
Uchyama, S, Takeuchi, M, Osawa, M, et al: Platelet function tests in thrombotic cerebrovascular disorders. Stroke 1983;14:511517.Google Scholar
Ludlam, CA: Evidence for the platelet specificity of beta-thromboglobulin and studies on its plasma concentration in healthy individuals. Br J Haematol 1979;41:271278.Google Scholar
Fisher, M, Francis, R: Altered coagulation in cerebral ischemia: Platelet, thrombin, and plasmin activity. Arch Neurol 1990;47:10751079.Google Scholar
Helgason, CH, Bolin, KM, Hoff, JA, et al: Development of aspirin resistance in persons with previous ischemic stroke. Stroke 1994;25:23312336.Google Scholar
Yeh, RW, Everett, BM, Foo, SY, et al: Predictors for the development of elevated anti-heparin/platelet factor 4 antibody titers in patients undergoing cardiac catheterization. Am J Cardiol 2006;98:419421.Google Scholar
Qizilbash, N, Duffy, S, Prentice, CRM, et al: von Willebrand factor and risk of ischemic stroke. Neurology 1997;49:15521556.Google Scholar
Blann, AD: Plasma von Willebrand factor, thrombosis, and the endothelium: The first 30 years. Thromb Haemost 2006;95:4955.Google Scholar
Bowen, DJ, Collins, PW: Insights into von Willebrand factor proteolysis: Clinical implications. Br J Haematol 2006;133:457467.Google Scholar
Weiss, EJ, Bray, PF, Tayback, M, et al: A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996;334:10901094.Google Scholar
Kannel, WB, Wolf, PA, Castelli, WP, et al: Fibrinogen and risk of cardiovascular disease. JAMA 1987;258:11831186.Google Scholar
Coull, BM, Beamer, NB, deGarmo, PL, et al: Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 1991;22:162168.Google Scholar
Beamer, N, Coull, BM, Sexton, G, et al: Fibrinogen and the albumin-globulin ratio in recurrent stroke. Stroke 1993;24:11331139.Google Scholar
Ernst, E, Resch, KL: Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med 1993;118:956963.Google Scholar
Danesh, J, Lewington, S, Thompson, SG, et al: Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis. JAMA 2005;294:17991809.Google Scholar
Rothwell, PM, Howard, SC, Power, DA, et al: Fibrinogen concentration and risk of ischemic stroke and acute coronary events in 5113 patients with transient ischemic attack and minor ischemic stroke. Stroke 2004;35:23002305.Google Scholar
Mora, S, Rifai, N, Buring, JE, Ridker, PM: Additive value of immunoassay-measured fibrinogen and high-sensitivity C-reactive protein levels for predicting incident cardiovascular events. Circulation 2006;114:381387.Google Scholar
The Ancrod Stroke Study Investigators: Ancrod for the treatment of acute ischemic brain infarction. Stroke 1994;25:17551759.Google Scholar
Atkinson, RP: Ancrod in the treatment of acute ischemic stroke. a review of clinical data. Cerebrovasc Dis 1998;8(Suppl 1):2328.Google Scholar
Gonzales-Conejero, R, Fernandez-Cadenas, I, Iniesta, JA, et al: Role of fibrinogen levels and factor XIII V34L polymorphism in thrombolytic therapy in stroke patients. Stroke 2006;37:22882293.Google Scholar
Radack, K, Deck, C, Huster, G: Dietary supplementation with low-dose fish oils lowers fibrinogen levels: A randomized double-blind controlled study. Ann Intern Med 1989;111:757758.Google Scholar
Dashe, J: Hyperviscosity and stroke. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 100109.Google Scholar
Rosenson, RS, Lowe, GD: Effects of lipids and lipoproteins on thrombosis and rheology. Atherosclerosis 1998;140:271280.Google Scholar
Ariyo, A, Thach, C, Tracy, R; for the Cardiovascular Health Study Investigators: Lp (a) lipoprotein, vascular disease, and mortality in the elderly. N Engl J Med 2003;349:21082115.Google Scholar
Ohira, T, Schreiner, P, Morrisett, JD, et al: Lipoprotein (a) and incident ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 2006;37:14071412.Google Scholar
Arenillas, JF, Molina, CA, Chacon, P, et al: High lipoprotein (a), diabetes, and the extent of symptomatic intracranial atherosclerosis. Neurology 2004;63:2732.Google Scholar
Dahlback, B, Carlsson, M, Svensson, PJ: Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: Prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A 1993;90:10041008.Google Scholar
Zoller, B, Dahlback, B: Linkage between inherited resistance to activated protein C and factor V gene mutation in venous thrombosis. Lancet 1994;343:15361538.Google Scholar
Coull, BM, Skaff, PT: Disorders of coagulation. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 8695.Google Scholar
Ridker, PM, Miletich, JP, Stampfer, MJ, et al: Factor V Leiden and risks of recurrent idiopathic venous thromboembolism. Circulation 1997;95:17771782.Google Scholar
Poort, SR, Rosendaal, FR, Reitsma, PH, et al: A common genetic variation in the 3’ untranslated region of the prothrombin gene is associated with elevated prothrombin levels and an increase in venous thrombosis. Blood 1996;88:36983703.Google Scholar
Martinelli, I, Sacchi, E, Landi, G, et al: High risk of cerebral-vein thrombosis in carriers of a prothrombin-gene mutation and in users of oral contraceptives. N Engl J Med 1998;338:17931797.Google Scholar
Kosik, KS, Furie, B: Thrombotic stroke associated with elevated plasma factor VIII. Arch Neurol 1980;8:435437.Google Scholar
Bhopale, GM, Nanda, RK: Blood coagulation factor VIII: An overview. J Biosci 2003;28:783789.Google Scholar
Estol, C, Pessin, MS, DeWitt, LD, et al: Stroke and increased factor VIII activity. Neurology 1989;39:225.Google Scholar
Pan, W-H, Bai, C-H, Chen, J-R, Chiu, H-C: Associations between carotid atherosclerosis and high factor VIII activity, dyslipidemia, and hypertension. Stroke 1997;28:8894.Google Scholar
Anadure, RK, Nagaraja, D, Christopher, R: Plasma factor VIII in non-puerperal cerebral venous thrombosis: a prospective case-control study. J Neurol Sci 2014;339:140143.Google Scholar
Lip, GYH, Lane, D, Van Walraven, C, Hart, RG: Additive role of plasma von Willebrand factor levels to clinical factors for risk stratification of patients with atrial fibrillation. Stroke 2006;37:22942300.Google Scholar
Bongers, TN, de Maat, MP, van Goor, ML, et al: High von Willebrand factor levels increase the risk of first ischemic stroke: Influence of ADAMTS 13, inflammation, and genetic variability. Stroke 2006;37:26722677.Google Scholar
Markus, HS, Hambley, H: Neurology and the blood: haematological abnormalities in ischaemic stroke. J Neurol Neurosurg Psychiatry 1998;64:150159.Google Scholar
Feinberg, WM, Bruck, DC, Ring, ME, et al: Hemostatic markers in acute stroke. Stroke 1989;20:592597.Google Scholar
Feinberg, WM, Cornell, ES, Nightingale, SD, et al: Relationship between prothrombin activation fragment F1.2 and international normalized ratio in patients with atrial fibrillation. Stroke 1997;28:11011106.Google Scholar
Toghi, H, Kawashima, M, Tamura, K, et al: Coagulation–fibrinolysis abnormalities in acute and chronic phases of cerebral thrombosis and embolism. Stroke 1990;21:16631667.Google Scholar
Jeppeson, LL, Jorgensen, HS, Nakayama, H, et al: Tissue plasminogen activator is elevated in women with ischemic stroke. J Stroke Cerebrovasc Dis 1998;7:187191.Google Scholar
Feinberg, WM: Coagulation. In Caplan, LR (ed): Brain Ischemia: Basic Concepts and Clinical Relevance. London: Springer, 1995, pp 8596.Google Scholar
Palareti, G, Cosmi, B, Legnani, C, et al: D-dimer testing to determine the duration of anticoagulant therapy. N Engl J Med 2006;355:17801789.Google Scholar
Stallworth, C, Brey, R: Antiphospholipid antibody syndrome. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 6377.Google Scholar
Coull, BM, Goodnight, SH: Antiphospholipid antibodies, prothrombotic states, and stroke. Stroke 1990;21:13701374.Google Scholar
Levine, SR, Welch, KMA: The spectrum of neurologic disease associated with antiphospholipid antibodies: Lupus anticoagulants, and anticardiolipin antibodies. Arch Neurol 1987;44:876883.Google Scholar
Hess, DC, Sheppard, S, Adams, RJ: Increased immunoglobulin binding to cerebral endothelium in patients with antiphospholipid antibodies. Stroke 1993;24:994999.Google Scholar
Levine, SR, Salowich-Palm, L, Sawaya, K, et al: IgG anticardiolipin antibody titer ϒ40GPL and the risk of subsequent thrombo-occlusive events and death. A prospective cohort study. Stroke 1997;28:16601665.Google Scholar
Ortel, TL: The antiphospholipid syndrome: What are we really measuring? How do we measure it? And how do we treat it? J Thromb Thrombolysis 2006;21:7983.Google Scholar
Tuhrim, S, Rand, JH, Horowitz, DR, et al: Antiphosphatidyl serine antibodies are independently associated with ischemic stroke. Neurology 1999;53:15231527.Google Scholar
Toschi, V, Motta, A, Castelli, C, et al: High prevalence of antiphosphatidylinositol antibodies in young patients with cerebral ischemia of undetermined cause. Stroke 1998;29:17591764.Google Scholar
Tanne, D, Triplett, D, Levine, SR: Antiphospholipid-protein antibodies and ischemic stroke: Not just cardiolipin anymore. Stroke 1998;29:17551758.Google Scholar
Francès, C, Papo, T, Wechsler, B, et al: Sneddon syndrome with or without antiphospholipid antibodies. A comparative study in 46 patients. Medicine 1999;78:209219.Google Scholar
Myers, R, Yamaguchi, S: Nervous system effects of cardiac arrest in monkeys. Arch Neurol 1977;34:6574.Google Scholar
Pulsinelli, W, Waldman, S, Rawlinson, D, et al: Hyperglycemia converts ischemic neuronal damage into brain infarction. Neurology 1982;32:12391246.Google Scholar
Plum, F: What causes infarction in ischemic brain? Neurology 1983;33:222233.Google Scholar
Pulsinelli, W, Levy, D, Sigsbel, B, et al: Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 1983;74:540544.Google Scholar
Bellolio, MF, Gilmore, RM, Stead, LG: Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst Rev 2011 Sep 7;(9):CD005346. doi:10.1002/14651858.CD005346.pub3.Google Scholar
Walker, G, Williamson, P, Ravich, R, et al: Hypercalcemia associated with cerebral vasospasm causing infarction. J Neurol Neurosurg Psychiatry 1980;43:464467.Google Scholar
Gorelick, PB, Caplan, LR: Calcium, hypercalcemia, and stroke. Current concepts of cerebrovascular disease. Stroke 1985;20:1317.Google Scholar
Siesjo, B, Kristian, T: Cell calcium homeostasis and calcium-related ischemic damage. In Welch, KMA, Caplan, LR, Reis, DJ, et al. (eds): Primer on Cerebrovascular Diseases. San Diego: Academic Press, 1997, pp 172178.Google Scholar
Henderson, GV, Caplan, LR: Calcium, hypercalcemia, magnesium, and brain ischemia. In Bogousslavsky, J, Caplan, LR (eds): Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2001, pp 110113.Google Scholar
Ovbiagele, B, Saver, J, Fredieu, A, et al: In-hospital initiation of secondary stroke prevention therapies yields high rates of adherence at follow-up. Stroke 2004;35:28792883.Google Scholar
Ovbiagele, B, Saver, J, Fredieu, A, et al: PROTECT. A coordinated stroke treatment program to prevent recurrent thromboembolic events. Neurology 2004;63:12171222.Google Scholar
Ridker, PM, Stampfer, MJ, Rifai, N: Novel risk factors for systemic atherosclerosis: A comparison of C-reactive protein, fibrinogen, homcysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001;285:24812485.Google Scholar
Sacco, RL, Anand, K, Lee, H-S, et al: Homocysteine and the risk of ischemic stroke in a triethnic cohort. The Northern Manhattan Study. Stroke 2004;35:22632269.Google Scholar
Tanne, D, Haim, M, Goldbourt, U, et al: Prospective study of serum homocysteine and risk of ischemic stroke among patients with preexisting coronary heart disease. Stroke 2003;34:632636.Google Scholar
Eikelboom, JW, Hankey, GJ, Anand, SS, et al: Association between high homocyst(e)ine and ischemic stroke due to large and small-artery disease but not other etiologic subtypes of ischemic stroke. Stroke 2000;31:10691075.Google Scholar
Bova, I, Chapman, J, Sylantiev, C, et al: The A677V methylenetetrahydrofolate reductase gene polymorphism and carotid atherosclerosis. Stroke 1999;30:21802182.Google Scholar
Selhub, J, Jacques, PF, Rosenberg, IH, et al: Serum total homocysteine concentrations in the Third National Health and Nutrition Examination Survey (1991–1994): Population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 1999;331339.Google Scholar
den Heijer, , Rosendaal, FR, Blom, HJ, Gerrits, WB, Bos, GM: Hyperhomocysteinemia and venous thrombosis: a meta-analysis. Thromb Haemost 1998;80:874877.Google Scholar
Ridker, PM, Rifai, N, Rose, L, et al: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347:15571565.Google Scholar
Eikelboom, JW, Hankey, GJ, Baker, RI, et al: C-reactive protein in ischemic stroke and its etiologic subtypes. J Stroke Cerebrovasc Dis 2003;12:7481.Google Scholar
Arenillas, JF, Alvarez-Sabin, J, Molina, CA, et al: C-reactive protein predicts further ischemic events in first-ever transient ischemic attack or stroke patients with intracranial large-artery occlusive disease. Stroke 2003;34:24632470.Google Scholar
Wakugawa, Y, Kiyohara, Y, Tanizaki, Y, et al: C-reactive protein and risk of first-ever ischemic and hemorrhagic stroke in general Japanese population. The Hisayama Study. Stroke 2006;37:2732.Google Scholar
Schlager, O, Exner, M, Miekusch, W, et al: C-reactive protein predicts future cardiovascular events in patients with carotid stenosis. Stroke 2007;38:12631268.Google Scholar
Salvarani, C, Canini, F, Boiardi, L, Hunder, GG: Laboratory investigations useful in giant cell arteritis and Takayasu’s arteritis. Clin Exp Rheumatol 2003;21(Suppl 32):523528.Google Scholar
Lavigne-Lissalde, G, Schved, JF, Granier, C, Villard, S: Anti-factor VIII antibodies: A 2005 update. Thromb Haemost 2005;94:760769.Google Scholar
Franchini, M: Acquired hemophilia A. Hematology 2006;11:119125.Google Scholar
Saposnik, G, Caplan, LR: Convulsive-like movements in brainstem stroke. Arch Neurol 2001;54:654657.Google Scholar
Ropper, AH: “Convulsions” in basilar artery occlusions. Neurology 1988;38:15001501.Google Scholar
Carrera, E, Michel, P, Despland, PA, et al: Continuous assessment of electrical epileptic activity in acute stroke. Neurology 2006 11;67:99104.Google Scholar
Bladin, CF, Alexandrov, A, Bellavance, A, et al: Seizures after stroke: A prospective multicenter study. Arch Neurol 2000;57:16171622.Google Scholar
Wilber, DJ, Garan, H, Finkelstein, D, et al: Out-of-hospital cardiac arrest: Use of electrophysiologic testing in the prediction of long-term outcome. N Engl J Med 1988;318:1924.Google Scholar
Madl, C, Kramer, L, Domanovits, H, et al: Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med 2000;28:721726.Google Scholar
Wijdicks, EF, Hijdra, A, Young, GB, et al; For the Quality Standards Subcommittee of the American Academy of Neurology Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;67:203210.Google Scholar
Marx, J, Thoömke, F, Urban, PP, Bense, S, Dieterich, M: Electrophysiologic diagnostics. In Urban, PP, Caplan, LR (eds): Brainstem Disorders, Berlin: Springer-Verlag, 2011, pp 61101.Google Scholar
Alberts, MJ: Genetics of cerebrovascular disease. Stroke 2004;35:342344.Google Scholar
Meschia, JF, Worrall, BB: New advances in identifying genetic anomalies in stroke-prone probands. Curr Neurol Neurosci Rep 2004;4:420426.Google Scholar
Dichgans, M, Hegele, RA: Update on the genetics of stroke and cerebrovascular disease – 2006. Stroke 2007;38:216218.Google Scholar
Dichgans, M: Genetics of ischaemic stroke. Lancet Neurol 2007;6:149161.Google Scholar
Sims, KB, Alberts, MJ, Caplan, LR. New Insights into the Diagnosis of Single-gene Disorders Associated with Cryptogenic Ischemic Stroke. CME Monograph. Lexington, KY: University of Kentucky College of Medicine and CE Health Sciences Inc, 2010.Google Scholar
Debette, S, Bis, JC, Fornage, M, et al: Genome-wide association studies of MRI-defined brain infarcts: Meta-analysis from the CHARGE Consortium. Stroke 2010;41:210217.Google Scholar
Caplan, LR, Arenillas, J, Cramer, SC, et al: Stroke-related translational research (review). Arch Neurol 2011;68:11101123.Google Scholar
Falcone, GJ, Malik, R, Dichgans, M, Rosand, J: Current concepts and clinical applications of stroke genetics. Lancet Neurol 2014;13:405418.Google Scholar
Gretarsdottir, S, Thorleifsson, G, Reynisdottir, ST, et al: The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 2003;35:131138.Google Scholar
Yee, RYL, Brophy, VH, Cheng, S, et al: Polymorphisms of the phosphodiesterase 4D, camp-specific (PDE4D) gene and risk of ischemic stroke: A prospective, nested case-control evaluation. Stroke 2006;37:20122017.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×