Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-02T23:19:32.884Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  23 September 2009

Lothar Frommhold
Affiliation:
University of Texas, Austin
Get access

Summary

The existing bibliographies on collision-induced absorption (CIA) list more than 800 original papers published in the 45 years of history of the field. Furthermore, a number of review articles focusing on one aspect of CIA or another are listed, along with compilations of lectures given at summer schools, advanced research seminars or scientific conferences. A monograph which attempts to review the experimental and theoretical foundations of CIA, however, cannot be found in these carefully compiled listings.

Yet the field is of great significance and continues to attract numerous specialists from various disciplines. CIA is a basic science dealing with the interaction of supermolecular systems with light. It has important applications, for example in the atmospheric sciences. CIA exists in all molecular fluids and mixtures. It is ubiquitous in dense, neutral matter and is especially striking in matter composed of infrared-inactive molecules. As a science, CIA has long since acquired a state of maturity. Not only do we have a wealth of experimental observations and data for virtually all common gases and liquids, but rigorous theory based on first principles exists and explains nearly all experimental results in considerable detail. Ab initio calculations of most aspects of CIA are possible which show a high degree of consistency with observation, especially in the low-density limit.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Lothar Frommhold, University of Texas, Austin
  • Book: Collision-induced Absorption in Gases
  • Online publication: 23 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524523.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Lothar Frommhold, University of Texas, Austin
  • Book: Collision-induced Absorption in Gases
  • Online publication: 23 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524523.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Lothar Frommhold, University of Texas, Austin
  • Book: Collision-induced Absorption in Gases
  • Online publication: 23 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524523.001
Available formats
×