Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T02:51:39.402Z Has data issue: false hasContentIssue false

Chapter 2 - Major world ecosystems

Published online by Cambridge University Press:  05 June 2012

Andrew S. Pullin
Affiliation:
University of Birmingham
Get access

Summary

This chapter builds on the previous one by cataloguing the world's ecosystems, describing major types of terrestrial and aquatic environments and how these are shaped by prevailing environmental conditions. For reasons of space, the coverage of some subjects in this chapter is rather superficial and you may already be familiar with parts and wish to skip over them. Guidance is given to further reading for those who wish to study particular aspects in more detail.

By reading this chapter, students will gain an understanding of some major terms used in describing the natural world; of the major types of ecosystems that presently exist and how major environmental factors dictate the distribution of ecosystem types.

The ecosystem concept

Anecosystem is a community of living organisms together with the physical processes that occur within an environment. Allorganisms are faced with environmental variables to cope with. These are usually divided into abiotic factors, including the broad climate and geology as well as specificfactors such as temperature,water (rainfall and humidity),light, salinity, pressure and soil and water chemistry (pH and mineral content), and biotic factors, which are interactions with other organisms, including competition, predation, parasitism and symbiosis. Thus there are abiotic (non-living) and biotic (living) components of an ecosystem, all potentially interacting to forma functioning unit, distinguishable, although not isolated, from other ecosystems. The concept of the ecosystem is central to our understanding of the natural world. Ecological studies have shown how energy flows through ecosystems, from the capture of light energy by plants and conversion to the chemical energy in sugars, to its passage through successive trophic levels and constant escape back into the environment (Fig. 2.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×