Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T09:02:53.423Z Has data issue: false hasContentIssue false

29 - The developmental environment: clinical perspectives on effects on the musculoskeletal system

Published online by Cambridge University Press:  08 August 2009

Cyrus Cooper
Affiliation:
University of Southampton
Avan Aihie Sayer
Affiliation:
University of Southampton
Elaine Margaret Dennison
Affiliation:
University of Southampton
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

The ability to move, the protection of vital organs and stable support for the body are the principal roles of the musculoskeletal system (muscle, bone and cartilage) (Simkin 1994). This system accounts for a large proportion of the body mass; for example, the muscle mass of a healthy adult 70-kg individual is about 20 kg (Kreisberg et al. 1970). The musculoskeletal system develops embryonically from the mesodermal layer, differentiating into dermatomes containing skeletal and muscle cell precursors in the first trimester. At this stage the embryo is only a few millimetres long. The growing fetus usually obtains nourishment at the expense of the mother, who tends to suffer in periods of adversity, but placental size and unrestricted blood flow through placental vessels to and from the fetus are important for optimal growth, especially during the last trimester. Fetal nutrition and the uterine environment are likely to play a part in the transcription of the genomic blueprint acquired at conception into the phenotypic newborn. Some of these developmental adaptations are now known to have long-term effects on the later risk of osteoporosis, sarcopenia and osteoarthritis. During early childhood, growth is rapid and there are windows of opportunity for environmental or lifestyle factors to have long-term effects, especially on the skeleton.

Puberty, which occurs much earlier in girls, brings growth to an end and its timing will have long-term consequences for adult stature.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aihie Sayer, A., Cooper, C., Evans, J. R.et al. (1998). Are rates of ageing determined in utero?Age Ageing, 27, 579–83.CrossRefGoogle Scholar
Aihie Sayer, A., Syddall, H., Dell, O' S. D.et al. (2002). Polymorphism of the IGF-2 gene, birthweight and grip strength in adult men. Age Ageing, 31, 468–70.CrossRefGoogle Scholar
Ardawi, M. S. M., Nasrat, H. A. N. and B A'Aqueel, H. S. (1997). Calcium-regulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur. J. Endocrinol., 137, 402–9.CrossRefGoogle ScholarPubMed
Badley, E. M. and Tennant, A. (1992). The changing profile of joint troubles with age: findings from a postal survey of the population. Ann. Rheum. Dis., 51, 366–71.CrossRefGoogle Scholar
Barker, D. J. P. (1995a). Fetal origins of coronary heart disease. BMJ, 311, 171–4.CrossRefGoogle Scholar
Barker, D. J. P. (1995b). The fetal origins of adult disease. Proc. R. Soc. Lond. B, 262, 37–43.CrossRefGoogle Scholar
Barker, D. J. P. (1998). Programming the baby. In Mothers, Babies and Health in Later Life (ed. Barker, D. J. P.). Edinburgh: Churchill Livingstone, pp. 13–41.Google Scholar
Bhaumick, B. and Bala, R. M. (1991). Differential effects of insulin-like growth factors I and II on growth, differentiation and glucoregulation in differentiating chondrocyte cells in culture. Acta Endocrinol. (Copenh.), 125, 201–11.Google ScholarPubMed
Black, A. J., Topping, J., Durham, B., Farquharson, R. G. and Fraser, W. D. (2000). A detailed assessment of alterations in bone turnover, calcium homeostasis, and bone density in normal pregnancy. J. Bone Miner. Res., 15, 557–63.CrossRefGoogle ScholarPubMed
Brown, S. A., Rogers, L. K., Dunn, J. K., Gotto, A. M. and Patsch, W. (1990). Development of cholesterol homeostatic memory in the rat is influenced by maternal diets. Metabolism, 39, 468–73.CrossRefGoogle ScholarPubMed
Chow, B. F. and Lee, C. J. (1964). Effect of dietary restriction of pregnant rats on body weight gain of the offspring. J. Nutr., 82, 10–18.CrossRefGoogle ScholarPubMed
Cooper, C. and Melton, L. J. (1996). Magnitude and impact of osteoporosis and fractures. In Osteoporosis (ed. Marcus, R., Feldman, D. and Kelsey, J.). San Diego, CA: Academic Press, pp. 419–34.Google ScholarPubMed
Cooper, C., Cawley, M. I. D., Bhalla, A.et al. (1995). Childhood growth, physical activity and peak bone mass in women. J. Bone Miner. Res., 10, 940–7.CrossRefGoogle ScholarPubMed
Cooper, C., Fall, C., Egger, P., Hobbs, R., Eastell, R. and Barker, D. (1997). Growth in infancy and bone mass in later life. Ann. Rheum. Dis., 56, 17–21.CrossRefGoogle ScholarPubMed
Cooper, C., Eriksson, J. G., Forsén, T., Osmond, C., Tuomilehto, J. and Barker, D. J. P. (2001). Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos. Int., 12, 623–9.CrossRefGoogle ScholarPubMed
DeLise, A. M., Fischer, L. and Tuan, R. S. (2000). Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage, 8, 309–34.CrossRefGoogle ScholarPubMed
Dennison, E., Hindmarsh, P., Fall, C.et al. (1999). Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J. Clin. Endocrinol. Metab., 84, 3058–63.Google ScholarPubMed
Dennison, E. M., Arden, N. K., Keen, R. W.et al. (2001). Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr. Perinat. Epidemiol., 15, 211–19.CrossRefGoogle Scholar
Dennison, E. M., Syddall, H. E., Rodriguez, S., Voropanov, A., Day, I. N. M., Cooper, C., and the Southampton Genetic Epidemiology Research Group (2004). Polymorphism in the growth hormone gene, weight in infancy, and adult bone mass. J. Clin. Endocrinol. Metab., 89, 4898–903.CrossRefGoogle ScholarPubMed
Ducy, P. (2000). Cbfa1: a molecular switch in osteoblast biology. Dev. Dyn., 219, 461–71.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Fall, C., Hindmarsh, P, Dennison, E., Kellingray, S., Barker, D. and Cooper, C. (1998). Programming of growth hormone secretion and bone mineral density in elderly men: an hypothesis. J. Clin. Endocrinol. Metab., 83, 135–9.Google ScholarPubMed
Ferrari, S., Rizzoli, R., Slosman, D. and Bonjour, J. P. (1998). Familial resemblance for bone mineral mass is expressed before puberty. J. Clin. Endocrinol. Metab., 83, 358–61.Google ScholarPubMed
Forestier, F., Daffos, F., Rainaut, M., Bruneau, M. and Trivin, F. (1987). Blood chemistry of normal human fetuses at midtrimester of pregnancy. Pediatr. Res., 21, 579–83.CrossRefGoogle ScholarPubMed
Gale, C. R., Martyn, C. N., Kellingray, S., Eastell, R. and Cooper, C. (2001). Intrauterine programming of adult body composition. J. Clin. Endocrinol. Metab., 86, 267–72.Google ScholarPubMed
Gambacciani, M., Spinetti, A., Gallo, R., Cappagli, B., Teti, G. C. and Facchini, V. (1995). Ultrasonographic bone characteristics during normal pregnancy: longitudinal and cross-sectional evaluation. Am. J. Obstet. Gynecol., 173, 890–3.CrossRefGoogle ScholarPubMed
Gilsanz, V., Roe, T. F., Mora, S., Costin, G. and Goodman, W. G. (1991). Changes in vertebral bone density in black girls and white girls during childhood and puberty. N. Engl. J. Med., 325, 1597–600.CrossRefGoogle ScholarPubMed
Godfrey, K., Walker-Bone, K., Robinson, S.et al. (2001). Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J. Bone Miner. Res., 16, 1694–703.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J. P. and Osmond, C. (1994). Disproportionate fetal growth and raised IGE concentration in adult life. Clin. Exp. Allergy, 24, 641–8.CrossRefGoogle ScholarPubMed
Harvey, N. C. W., Javaid, M. K., Taylor, P.et al. (2004). Umbilical cord calcium and maternal vitamin D status predict different lumbar spine bone parameters in the offspring at 9 years. J. Bone. Miner. Res., 19, 1032.Google Scholar
Hosking, D. J. (1996). Calcium homeostasis in pregnancy. Clin. Endocrinol. (Oxf.), 45, 1–6.CrossRefGoogle ScholarPubMed
Karaplis, A. C., Luz, A., Glowacki, J.et al. (1994). Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev., 8, 277–89.CrossRefGoogle ScholarPubMed
Keen, R., Egger, P., Fall, C.et al. (1997). Polymorphisms of the vitamin D receptor, infant growth and adult bone mass. Calcif. Tissue Int., 60, 233–5.CrossRefGoogle ScholarPubMed
Koo, W. W. K., Bush, A. J., Walters, J. and Carlson, S. E. (1998). Postnatal development of bone mineral status during infancy. J. Am. Coll. Nutr., 17, 65–70.CrossRefGoogle ScholarPubMed
Kovacs, C. S., Lanske, B., Hunzelman, J. L., Guo, J., Karaplis, A. C. and Kronenberg, H. M. (1996). Parathyroid hormone-related peptide (PTHrP) regulates fetal–placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc. Natl. Acad. Sci. USA, 93, 15233–8.CrossRefGoogle ScholarPubMed
Kreisberg, R. A., Bowdoin, B. and Meador, C. K. (1970). Measurement of muscle mass in humans by isotopic dilution of creatine 14C. J. Appl. Physiol., 28, 264–7.CrossRefGoogle ScholarPubMed
Kuh, D., Bassey, E. J., Hardy, R., Sayer, Aihie A., Wadsworth, M. and Cooper, C. (2002). Birthweight, childhood size and muscle strength in adult life: evidence from a birth cohort study. Am. J. Epidemiol., 156, 627–33.CrossRefGoogle ScholarPubMed
Li, J. Y., Specker, B. L., Ho, M. L. and Tsang, R. C. (1989). Bone mineral content in black and white children 1–6 years of age. Am. J. Dis. Child., 143, 1346–9.CrossRefGoogle Scholar
Lucas, A. (1991). Programming by early nutrition in man. In The Childhood Environment and Adult Disease (ed. Bock, G. R. and Whelan, J.). New York, NY: Wiley, pp. 38–55.Google Scholar
Matkovic, V., Jelic, T., Wardlaw, G. M.et al. (1994). Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. J. Clin. Invest., 93, 799–808.CrossRefGoogle Scholar
Matsui, R., Thurlbeck, W. M., Fujita, Y., Yu, S. Y. and Kida, K. (1989). Connective tissue, mechanical, and morphometric changes in the lungs of weanling rats fed a low protein diet. Pediatr. Pulmonol., 7, 159–66.CrossRefGoogle ScholarPubMed
McCance, R. A. and Widdowson, E. M. (1962). Nutrition and growth. Proc. R. Soc. Lond. B, 156, 326–37.CrossRefGoogle Scholar
McCance, R. A. and Widdowson, E. M. (1974). The determinants of growth and form. Proc. R. Soc. Lond. B, 185, 1–17.CrossRefGoogle ScholarPubMed
McLeod, K. I., Goldrick, R. B. and Whyte, H. M. (1972). The effect of maternal malnutrition on the progeny in the rat: studies on growth, body composition and organ cellularity in first and second generation progeny. Aust. J. Exp. Biol. Med. Sci., 50, 435–46.CrossRefGoogle ScholarPubMed
Mehta, G., Roach, H. I., Langley-Evans, S.et al. (2002). Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif. Tissue Int., 71, 493–8.CrossRefGoogle ScholarPubMed
Namgung, R., Tsang, R. C., Lee, C., Han, D. G., Ho, M. L. and Sierra, R. I. (1998). Low total body bone mineral content and high bone resorption in Korean winter-born versus summer-born newborn infants. J. Pediatr., 132, 421–5.CrossRefGoogle ScholarPubMed
Newton-John, H. F. and Morgan, B. D. (1970). The loss of bone with age, osteoporosis and fractures. Clin. Orthop. Relat. Res., 71, 229–52.CrossRefGoogle ScholarPubMed
Oreffo, R. O. C., Lashbrooke, B., Roach, H. I., Clarke, N. M. P. and Cooper, C. (2003). Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone, 33, 100–7.CrossRefGoogle ScholarPubMed
Phillips, D. I. W. (1995). Relation of fetal growth to adult muscle mass and glucose tolerance. Diabetic Med., 12, 686–90.CrossRefGoogle ScholarPubMed
Phillips, D. I. W., Barker, D. J. P., Fall, C. H. D.et al. (1998). Elevated plasma cortisol concentrations: a link between low birthweight and the insulin resistance syndrome?J. Clin. Endocrinol. Metab., 83, 757–60.Google ScholarPubMed
Purdie, D. W., Aaron, J. E. and Selby, P. L. (1988). Bone histology and mineral homeostasis in human pregnancy. Br. J. Obstet. Gynaecol., 95, 849–54.CrossRefGoogle ScholarPubMed
Quarto, R., Campanile, G., Cancedda, R. and Dozin, B. (1997). Modulation of commitment, proliferation, and differentiation of chondrogenic cells in defined culture medium. Endocrinology, 138, 4966–76.CrossRefGoogle ScholarPubMed
Schauberger, C. W. and Pitkin, R. M. (1979). Maternal–perinatal calcium relationships. Obstet. Gynecol., 53, 74–6.Google ScholarPubMed
Simkin, P. A. (1994). The musculoskeletal system. In Rheumatology, (ed. Klippel, J. H. and Dieppe, P. A.). London: Mosby, pp. 1.2.1–1.2.10.Google Scholar
Smart, J. L., Massey, R. F., Nash, S. C. and Tonkiss, J. (1987). Effects of early life undernutrition in artificially reared rats: subsequent body and organ growth. Br. J. Nutr., 58, 245–55.CrossRefGoogle ScholarPubMed
Snoeck, A., Remacle, C., Reusens, B. and Hoet, J. J. (1990). Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol. Neonate, 57, 107–18.CrossRefGoogle ScholarPubMed
Specker, B. L., Namgung, R. and Tsang, R. C. (2001). Bone mineral acquisition in utero, during infancy, and throughout childhood. In Osteoporosis, 2nd edn (ed. Marcus, R., Feldman, D. and Kelsey, J.). New York, NY: Academic Press, vol. 1, pp. 599–620.Google ScholarPubMed
Sylvia, V. L., Del Toro, F., Hardin, R. R., Dean, D. D., Boyan, B. D. and Schwartz, Z. (2001). Characterization of PGE(2) receptors (EP) and their role as mediators of 1alpha,25-(OH)(2)D(3) effects on growth zone chondrocytes. J. Steroid Biochem. Mol. Biol., 78, 261–74.CrossRefGoogle ScholarPubMed
Widdowson, E. M., Southgate, D. A. T. and Hey, E. (1988). Fetal growth and body composition. In Perinatal Nutrition (ed. Landblad, B. S.). New York, NY: Academic Press, pp. 3–14.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×