Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T04:29:16.947Z Has data issue: false hasContentIssue false

35 - Developmental origins of health and disease: implications for developing countries

Published online by Cambridge University Press:  08 August 2009

Caroline H. D. Fall
Affiliation:
University of Southampton
Harshpal Singh Sachdev
Affiliation:
Maulana Azad Medical College
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

The series of epidemiological studies that set the ball rolling for DOHaD research, by linking data from old obstetric and child health records to adult outcomes, were based in (so-called) developed countries. In brief, they showed that adult cardiovascular disease, type 2 diabetes and the metabolic syndrome were increased in people who were light or thin at birth and during infancy, gained weight or body mass index (BMI) rapidly in childhood, and became overweight or obese adults (Barker 1989, Hales et al. 1991, Barker et al. 1993, Osmond et al. 1993, Forsen et al. 1997, 1999, Eriksson et al. 2001, 2003). The associations with accelerated childhood weight gain and adult obesity were strongest in those who were smallest at birth. These findings led to the ‘fetal origins’ and ‘thrifty phenotype’ hypotheses, which proposed that undernutrition during early development, and a mismatch between undernutrition at this time and later overnutrition and obesity, are crucial factors in the development of these adult diseases (Barker 1989, 1995, Hales and Barker 1992).

The concept that cardiovascular disease and type 2 diabetes, generally considered diseases of affluence, have their origins in transition from poverty and undernutrition offered an explanation for the epidemics of coronary heart disease that swept Europe and the USA in the mid twentieth century (Barker et al. 1989). These appeared first in higher socioeconomic groups (the first to experience transition) and later shifted to the less advantaged (the last to experience improvements in fetal and infant nutrition).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, L. S. and Cole, T. J. (2003). Faster childhood growth increases risk of high blood pressure in adolescent boys who were thin at birth. Hypertension, 41, 451–6.CrossRefGoogle Scholar
Adair, L. S. and Prentice, A. M. (2004). A critical evaluation of the fetal origins hypothesis and its implications for developing countries. J. Nutr., 134, 191–3.CrossRefGoogle ScholarPubMed
Adair, L. S., Kuzawa, B. B. A. and Borja, J. (2001). Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation, 104, 1034–9.CrossRefGoogle ScholarPubMed
Anastasiou, E., Alevizaki, M., Grigorakis, S. J., Philippou, G., Kyprianou, M. and Souvatzoglou, A. (1998). Decreased stature in gestational diabetes mellitus. Diabetologia, 41, 997–1001.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1989). Rise and fall of Western diseases. Nature, 338, 371–2.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1995). The fetal origins of coronary heart disease. BMJ, 311, 171–4.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Winter, P. D. W., Margetts, B. and Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 2, 577–80.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Hales, C. N., Fall, C. H. D., Osmond, C., Phipps, K. and Clark, P. M. S. (1993). Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia, 36, 62–7.CrossRefGoogle ScholarPubMed
Barros, F. and Victora, C. (1999). Increased blood pressure in adolescents who were small for gestational age at birth: a cohort study in Brazil. Int. J. Epidemiol., 28, 676–81.CrossRefGoogle Scholar
Bavdekar, A., Yajnik, C. S., Fall, C. H. D.et al. (2000). The insulin resistance syndrome (IRS) in eight-year-old Indian children: small at birth, big at 8 years or both?Diabetes, 48, 2422–9.CrossRefGoogle Scholar
Belizan, J. M., Villar, J., Bergel, E., Pino, del A., Di Fulvio, S. and Galliano, S. V. (1997). Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ, 315, 281–5.CrossRefGoogle ScholarPubMed
Bennett, F., Watson-Brown, C., Thame, M.et al. (2002). Shortness at birth is associated with insulin resistance in pre-pubertal Jamaican children. Eur. J. Clin. Nutr., 56, 506–11.CrossRefGoogle ScholarPubMed
Bergel, E., Haelterman, E., Belizan, J., Villar, J. and Carroli, G. (2000). Perinatal factors associated with blood pressure during childhood. Am. J. Epidemiol., 151, 594–601.CrossRefGoogle ScholarPubMed
Bhargava, S. K., Sachdev, H. P. S., Fall, C. H. D.et al. (2004). Relation of serial changes in childhood body mass index to impaired glucose tolerance in young adulthood. N. Engl. J. Med., 350, 865–75.CrossRefGoogle ScholarPubMed
Bulatao, R. A. and Stephens, P. W. (1992). Global Estimates and Projections of Mortality by Cause, 1970–2015. Working Paper Series 1007. Washington, DC: World Bank.Google Scholar
Ceesay, S. M., Prentice, A. M., Cole, T. J.et al. (1997). Effects on birth weight and perinatal mortality of maternal dietary supplements in rural Gambia: 5 year randomised controlled trial. BMJ, 315, 786–90.CrossRefGoogle ScholarPubMed
Christian, P., Khatry, S. K., Katz, J.et al. (2003). Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial. BMJ, 326, 571–6.CrossRefGoogle ScholarPubMed
Clapp, J. F. (2003). The effects of maternal exercise on fetal oxygenation and feto-placental growth. Eur. J. Obstet. Gynecol. Reprod. Biol., 110 (Suppl. 1), S80–5.CrossRefGoogle ScholarPubMed
Cole, T. J. (2004). Modelling postnatal exposures and their interactions with birth size. J. Nutr., 134, 201–4.CrossRefGoogle Scholar
Crowther, N. J., Cameron, N., Trusler, J. and Gray, I. P. (1998). Association between poor glucose tolerance and rapid postnatal weight gain in seven year old children. Diabetologia, 41, 1163–7.CrossRefGoogle Scholar
Cunningham, A. S., Jelliffe, D. B. and Jelliffe, E. F. (1991). Breast-feeding and health in the 1980s: a global epidemiologic review. J. Pediatr., 118, 659–66.CrossRefGoogle ScholarPubMed
Dabelea, D., Hanson, R. L., Lindsay, R. S.et al. (2000a). Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes, 49, 2208–11.CrossRefGoogle Scholar
Dabelea, D., Knowler, W. C. and Pettitt, D. J. (2000b). Effect of diabetes in pregnancy and offspring: follow-up research in the Pima Indians. J. Matern. Fetal Med., 9, 83–8.Google Scholar
Onis, M., Blossner, M. and Villar, J. (1998). Levels of intrauterine growth retardation in developing countries. Eur. J. Clin. Nutr., 52: S1, S5–15.Google ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, H. J. and Barker, D. J. P. (2001). Early growth and coronary heart disease in later life: longitudinal study. BMJ, 322, 949–53.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2003). Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia, 46, 190–4.CrossRefGoogle ScholarPubMed
Fall, C. H. D. (2001). Non-industrialised countries and affluence: relationship with type 2 diabetes. Br. Med. Bull., 60, 33–50.CrossRefGoogle Scholar
Fall, C. H. D., Stein, C., Kumaran, K.et al. (1998). Size at birth, maternal weight, and non-insulin-dependent diabetes (NIDDM) in south Indian adults. Diabet. Med., 15, 220–7.3.0.CO;2-O>CrossRefGoogle Scholar
Fall, C. H. D., Yajnik, C. S., Rao, S., Davies, A. A., Brown, N. and Farrant, H. J. W. (2003). Micronutrients and fetal growth. J. Nutr., 133, 1747–56S.CrossRefGoogle ScholarPubMed
Fawzi, W. W., Msamanga, G., Spiegelman, D.et al. (1998). Randomised trial of effects of vitamin A supplements on pregnancy outcomes and T cell counts in HIV-1 infected women in Tanzania. Lancet, 351, 1477–82.CrossRefGoogle Scholar
Forrester, T. E., Wilks, R. J., Bennett, F. I.et al. (1996). Fetal growth and cardiovascular risk factors in Jamaican schoolchildren. BMJ, 312, 156–60.CrossRefGoogle ScholarPubMed
Forsen, T., Eriksson, J. G., Tuomilehto, J., Teramo, K., Osmond, C. and Barker, D. J. P. (1997). Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ, 315, 837–40.CrossRefGoogle Scholar
Forsen, T., Eriksson, J. G., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (1999). Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ, 319, 1403–7.CrossRefGoogle ScholarPubMed
Freinkel, N. (1980). Of pregnancy and progeny. Diabetes, 29, 1023–35.CrossRefGoogle ScholarPubMed
Friis, H., Gomo, E., Nyazema, N.et al. (2004). Effect of multimicronutrient supplementation on gestational length and birth size: a randomized, placebo-controlled, double-blind effectiveness trial in Zimbabwe. Am. J. Clin. Nutr., 80, 178–84.CrossRefGoogle ScholarPubMed
Gaskin, P. S., Walker, S. P., Forrester, T. E. and Grantham-McGregor, S. M. (2000). Early linear growth retardation and later blood pressure. Eur. J. Clin. Nutr., 54, 563–7.CrossRefGoogle ScholarPubMed
Ghaffar, A., Reddy, K. S. and Singhi, M. (2004). Burden of non-communicable diseases in South Asia. BMJ, 328, 807–10.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Forrester, T., Barker, D. J. P.et al. (1994). Maternal nutritional status in pregnancy and blood pressure in childhood. Br. J. Obstet. Gynaecol., 101, 398–403.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Robinson, S., Barker, D. J. P., Osmond, C. and Cox, V. (1996). Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ, 312, 410–14.CrossRefGoogle ScholarPubMed
Hales, C. N. and Barker, D. J. P. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia, 35, 595–601.CrossRefGoogle ScholarPubMed
Hales, C. N., Barker, D. J. P., Clark, P. M. S.et al. (1991). Fetal and infant growth and impaired glucose tolerance at age 64. BMJ, 303, 1019–22.CrossRefGoogle ScholarPubMed
Hill, J. C., Krishnaveni, G. V., Annamma, I., Leary, S. and Fall, C. H. D. (2005). Glucose tolerance in pregnancy in South India; relationships to neonatal anthropometry. Acta. Obstet. Gynecol. Scand., 84, 159–65.CrossRefGoogle ScholarPubMed
James, W. P. T., Leach, R., Kalamara, E. and Shayeghi, M. (2001). The worldwide obesity epidemic. Obes. Res., 9 (Suppl. 4), 220–33S.CrossRefGoogle ScholarPubMed
Jie, M., Law, C., Zhang, K.-L., Osmond, C., Stein, C. and Barker, D. (2000). Effects of infant birthweight and maternal body mass index in pregnancy on components of the insulin resistance syndrome in China. Ann. Intern. Med., 132, 253–60.Google Scholar
Kelder, S. H., Osganian, S. K., Feldman, H. A.et al. (2002). Tracking of physical and physiological risk variables among ethnic subgroups from third to eighth grade: the Child and Adolescent Trial for Cardiovascular Health cohort study. Prev. Med., 34, 324–33.CrossRefGoogle Scholar
King, J. C. (2003). The risk of maternal nutritional depletion and poor outcomes increases in early or closely spaced pregnancies. J. Nutr., 133, 1732–6S.CrossRefGoogle ScholarPubMed
Kramer, M. S. (1987). Determinants of low birth weight: methodological assessment and meta-analysis. Bull. World Health Organ., 65, 663–737.Google ScholarPubMed
Kramer, M. S. and Kakuma, R. (2003). Energy and protein intake in pregnancy. Cochrane Database Syst. Rev., 2003 (4), CD000032.CrossRefGoogle Scholar
Krishnaveni, G. V., Hill, J. C., Veena, S. R.et al. (2005). Truncal adiposity is present at birth and in early childhood in South Indian children. Indian Pediatrics, 42, 527–38.Google ScholarPubMed
Kumar, R., Bandyopadhyay, S., Aggarwal, A. K. and Khullar, M. (2004). Relation between birthweight and blood pressure among 7–8 year old rural children in India. Int. J. Epidemiol., 33, 87–91.CrossRefGoogle ScholarPubMed
Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C. and Fleming, T. (2000). Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development, 127, 4195–202.Google ScholarPubMed
Law, C. M., Egger, P., Dada, O.et al. (2000). Body size at birth and blood pressure among children in developing countries. Int. J. Epidemiol., 29, 52–9.Google Scholar
Levitt, N. S., Steyn, K., Wet, T.et al. (1999). An inverse relation between blood pressure and birth weight among 5 year old children from Soweto, South Africa. J. Epidemiol. Community Health, 53, 264–8.CrossRefGoogle ScholarPubMed
Levitt, N. S., Lambert, E. V., Woods, D., Hales, C. N., Andrew, R. and Seckl, J. (2000). Impaired glucose tolerance and elevated blood pressure in low birthweight non-obese young South African adults: early programming of cortisol axis. J. Clin. Endocrinol. Metab., 85, 4611–18.Google Scholar
Margetts, B. M., Rowland, M. G. M., Foord, F. A., Cruddas, A. M., Cole, T. J. and Barker, D. J. P. (1991). The relation of maternal weight to the blood pressures of Gambian children. Int. J. Epidemiol., 20, 938–43.CrossRefGoogle ScholarPubMed
Marmot, M. G., Rose, G., Shipley, M. and Hamilton, P. S. (1978). Employment grade and coronary heart disease in British civil servants. J. Epidemiol. Community Health, 32, 244–9.CrossRefGoogle ScholarPubMed
Martin, R. M., Davey Smith, G., Mangtani, P., Tilling, K., Frankel, S. and Gunnell, D. (2004a). Breastfeeding and cardiovascular mortality: the Boyd Orr cohort and a systematic review with meta-analysis. Eur. Heart J., 25, 778–86.CrossRefGoogle Scholar
Martin, R. M., Davey Smith, G., Frankel, S., and Gunnell, D. (2004b). Parent's growth in childhood and the birth weight of their offspring. Epidemiology, 15, 308–16.CrossRefGoogle Scholar
Martorell, R., Kettel Khan, L. and Schroeder, D. G. (1994). Reversibility of stunting: epidemiological findings in children from developing countries. Eur. J. Clin. Nutr., 48 (Suppl. 1), S45–57.Google ScholarPubMed
McCance, D. R., Pettitt, D. J., Hanson, R. L., Jacobsson, L. T. H., Knowle, W. C. and Bennett, P. H. (1994). Birth weight and non-insulin dependent diabetes: thrifty genotype, thrifty phenotype, or surviving small baby genotype?BMJ, 308, 942–5.CrossRefGoogle ScholarPubMed
Moore, S. E., Halsall, I., Howarth, D., Poskitt, E. M. and Prentice, A. M. (2001). Glucose, insulin and lipid metabolism in rural Gambians exposed to early malnutrition. Diabet. Med., 18, 646–53.CrossRefGoogle ScholarPubMed
Moore, S. E., Fulford, A. J. C., Streatfield, P. K., Persson, L. A. and Prentice, A. M. (2004). Comparative analysis of patterns of survival by season of birth in rural Bangladeshi and Gambian populations. Int. J. Epidemiol., 33, 137–43.CrossRefGoogle ScholarPubMed
Osmond, C., Barker, D. J. P., Winter, P. D., Fall, C. H. D. and Simmonds, S. J. (1993). Early growth and death from cardiovascular disease in women. BMJ, 307, 1519–24.CrossRefGoogle ScholarPubMed
Owen, C. G., Whincup, P. H., Gilg, J. A. and Cook, D. G. (2003). Effect of breast feeding in infancy on blood pressure in later life: systematic review and meta-analysis. BMJ, 327, 1189–95.CrossRefGoogle ScholarPubMed
Popkin, B. M. (2004). The nutrition transition: an overview of world patterns of change. Nutr. Rev., 62, S140–3.CrossRefGoogle ScholarPubMed
Ramachandran, A., Snehalatha, C., Dharmaraj, D. and Viswanathan, M. (1992). Prevalence of glucose intolerance in Asian Indians: urban–rural difference and significance of upper body adiposity. Diabetes Care, 15, l348–55.CrossRefGoogle ScholarPubMed
Ramakrishnan, U. (2002). Prevalence of micronutrient malnutrition worldwide. Nutr. Rev., 60, S46–52.CrossRefGoogle ScholarPubMed
Ramakrishnan, U., Gonzalez-Cossio, T., Neufeld, L. M., Rivera, J. and Martorell, R. (2003). Multiple micronutrient supplementation during pregnancy does not lead to greater infant birth size than does iron-only supplementation: a randomized controlled trial in a semirural community in Mexico. Am. J. Clin. Nutr., 77, 720–5.CrossRefGoogle ScholarPubMed
Rao, S., Yajnik, C. S., Kanade, A.et al. (2001). Maternal fat intakes and micronutrient status are related to fetal size at birth in rural India: the Pune Maternal Nutrition Study. J. Nutr., 131, 1217–24.CrossRefGoogle Scholar
Rao, S., Kanade, A., Margetts, B. M.et al. (2003). Maternal activity in relation to birth size in rural India: the Pune Maternal Nutrition Study. Eur. J. Clin. Nutr., 57, 531–42.CrossRefGoogle ScholarPubMed
Reilly, J. J. and McDowell, Z. C. (2003). Physical activity interventions in the prevention and treatment of paediatric obesity: systematic review and critical appraisal. Proc. Nutr. Soc., 62, 611–19.CrossRefGoogle ScholarPubMed
Rich-Edwards, J. W., Manson, J. E., Stampfer, M. J.et al. (1995). Height and risk of cardiovascular disease in women. Am. J. Epidemiol., 142, 909–17.CrossRefGoogle ScholarPubMed
Rich-Edwards, J. W., Colditz, G. A., Stampfer, M. J.et al. (1999). Birthweight and the risk of type 2 diabetes in adult women. Ann. Int. Med., 130, 278–84.CrossRefGoogle ScholarPubMed
Robinson, J. J., Sinclair, K. D. and McEvoy, T. G. (1999). Nutritional effects on foetal growth. Anim. Sci., 68, 315–31.CrossRefGoogle Scholar
Ronnemaa, T., Knip, M., Lautala, P.et al. (1991). Serum insulin and other cardiovascular risk indicators in children, adolescents and young adults. Ann. Med., 23, 67–72.CrossRefGoogle Scholar
Rush, D. (2000). Nutrition and maternal mortality in the developing world. Am. J. Clin. Nutr., 72 (suppl.), 212–40S.CrossRefGoogle ScholarPubMed
Rush, D. (2001). Maternal nutrition and perinatal survival. Nutr. Rev., 59, 315–26.CrossRefGoogle ScholarPubMed
Sachdev, H. P. S. (2003). Recent transitions in the anthropometric profile of Indian children: clinical and public health implications. NFI Bull., 24, 6–8.Google Scholar
Sachdev, H. P. S. (2004). Nutritional transition in the backdrop of early life origins of adult diseases: a challenge for the future. Indian J. Med. Res., 119, ⅲ–ⅳ.Google ScholarPubMed
Sawaya, A. L., Martins, P., Hoffman, D. and Roberts, S. B. (2003). The link between childhood undernutrition and risk of chronic diseases in adulthood: a case study of Brazil. Nutr. Rev., 61, 168–75.CrossRefGoogle ScholarPubMed
Shrimpton, R., Victora, C. G., Onis, M., Lima, R. C., Blossner, M. and Clugston, G. (2001). Worldwide timing of growth faltering: implications for nutritional interventions. Pediatrics, 107, E75.CrossRefGoogle ScholarPubMed
Singhal, A. and Lucas, A. (2004). Early origins of cardiovascular disease: is there a unifying hypothesis?Lancet, 363, 1642–5.CrossRefGoogle Scholar
Stein, A. D., Barnhardt, H. X., Wang, M.et al. (2004). Comparison of linear growth patterns in the first three years of life across two generations in Guatemala. Pediatrics, 113, 270–5.CrossRefGoogle ScholarPubMed
Stein, C., Fall, C. H. D., Kumaran, K., Osmond, C., Cox, V. and Barker, D. J. P. (1996). Fetal growth and coronary heart disease in South India. Lancet, 348, 1269–73.CrossRefGoogle ScholarPubMed
Summerbell, C. D., Ashton, V., Campbell, K. J., Edmunds, L., Kelly, S. and Waters, E. (2003). Interventions for treating obesity in children. Cochrane Database Syst. Rev., 2003 (3), CD001872.CrossRefGoogle Scholar
Swinburn, B. A., Caterson, I., Seidell, J. C. and James, W. P. T. (2004). Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr., 7, 123–46.Google ScholarPubMed
Uauy, R. and Kain, J. (2002). The epidemiological transition: need to incorporate obesity prevention into nutrition programmes. Public Health Nutr., 5, 223–9.CrossRefGoogle ScholarPubMed
Victora, C. G., Barros, F. C., Horta, B. L. and Martorell, R. (2001). Short-term benefits of catch-up growth for small-for-gestational-age infants. Int. J. Epidemiol., 30, 1325–30.CrossRefGoogle ScholarPubMed
Victora, C. G., Barros, F. C., Lima, R. C., Horta, B. L. and Wells, J. (2003). Anthropometry and body composition of 18 year old men according to duration of breast feeding: birth cohort study from Brazil. BMJ, 327, 901–6.CrossRefGoogle ScholarPubMed
Waaler, H. T. (1984). Height, weight and mortality: the Norwegian experience. Acta Med. Scand. Suppl., 679, 1–56.Google ScholarPubMed
Wei, J.-N., Sung, F.-C., Li, C.-Y.et al. (2003). Low birthweight and high birthweight infants are both at risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care, 26, 343–8.CrossRefGoogle ScholarPubMed
Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–53.CrossRefGoogle ScholarPubMed
Woelk, G., Emanuel, I., Weiss, N. S. and Psaty, B. M. (1998). Birthweight and blood pressure among children in Harare, Zimbabwe. Arch. Dis. Child. Fetal Neonatal Ed., 79, F119–22.CrossRefGoogle ScholarPubMed
World Health Organization (1995). Maternal anthropometry and pregnancy outcomes: a WHO collaborative study. Bull. World Health Organ., 73 (suppl.).
World Health Organization (2004). Global Strategy on Diet, Physical Activity and Health. 57th World Health Assembly. www.who.int/features/2004/wha57/en, accessed 10 October 2004.
Yajnik, C. S. (2004a). Obesity epidemic in India: intrauterine origins?Proc. Nutr. Soc., 63, 1–10.CrossRefGoogle Scholar
Yajnik, C. S. (2004b). Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries. J. Nutr., 134, 205–10.CrossRefGoogle Scholar
Yajnik, C. S., Fall, C. H. D., Vaidya, U.et al. (1995). Fetal growth and glucose and insulin metabolism in four-year old Indian children. Diabet. Med., 12, 330–6.CrossRefGoogle ScholarPubMed
Yajnik, C. S., Lubree, H. G., Rege, S. S.et al. (2002). Adiposity and hyperinsulinaemia in Indians are present at birth. J. Clin. Endocrinol. Metab., 87, 5575–80.CrossRefGoogle ScholarPubMed
Yajnik, C. S., Fall, C. H. D., Coyaji, K. J.et al. (2003). Neonatal anthropometry: the thin–fat Indian baby. The Pune Maternal Nutrition Study. Int. J. Obes., 27, 173–80.CrossRefGoogle ScholarPubMed
Zhao, M., Shu, X. O., Jin, F.et al. (2002). Birthweight, childhood growth and hypertension in adulthood. Int. J. Epidemiol., 31, 1043–51.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×