Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-14T00:21:31.403Z Has data issue: false hasContentIssue false

9 - DGT and Bioavailability

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nolan, A. L., Lombi, E. and McLaughlin, M. J., Metal bioaccumulation and toxicity in soils – Why bother with speciation?, Aust. J. Chem. 56 (2003), 7791.CrossRefGoogle Scholar
Davison, W., Hooda, P. S., Zhang, H. and Edwards, A. C., DGT measured fluxes as surrogates for uptake of metals by plants, Adv. Environ. Res. 3 (2000), 550555.Google Scholar
Zhang, H., Zhao, F.-J., Sun, B., Davison, W. and McGrath, S. P., A new method to measure effective soil solution concentration predicts copper availability to plants, Environ. Sci. Technol. 35 (2001), 26022607.CrossRefGoogle ScholarPubMed
Song, J., Zhao, F. J., Luo, Y. M., McGrath, S. P. and Zhang, H., Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils, Environ. Pollut. 128 (2004), 307315.CrossRefGoogle ScholarPubMed
Nolan, A. L., Zhang, H. and McLaughlin, M. J., Prediction of zinc, cadmium, lead and copper bioavailability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotope dilution techniques, J. Environ. Qual. 34 (2005), 496507.CrossRefGoogle Scholar
Soriano-Disla, J. M., Speir, T. W., Gómez, I. et al., Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils, Water Air Soil Pollut. 213 (2010), 471483.CrossRefGoogle Scholar
Bravin, M. N., Michaud, A. M., Larabi, B. and Hinsinger, P., RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability, Environ. Pollut. 158 (2010), 33303337.CrossRefGoogle ScholarPubMed
Tandy, S., Mundus, S., Yngvesson, J. et al., The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils, Plant Soil 346 (2011), 167180.CrossRefGoogle Scholar
Oporto, C., Smolders, E., Degryse, F., Verheyen, L. and Vandecasteele, C., DGT-measured fluxes explain the chloride-enhanced cadmium uptake by plants at low but not at high Cd supply, Plant Soil 318 (2009), 127135.CrossRefGoogle Scholar
Agbenin, J. O. and Welp, G., Bioavailability of copper, cadmium, zinc, and lead in tropical savanna soils assessed by diffusive gradient in thin films (DGT) and ion exchange resin membranes, Environ. Monit. Assess. 184 (2012), 22752284.CrossRefGoogle ScholarPubMed
Williams, P. N., Zhang, H., Davison, W. et al., Evaluation of in situ DGT measurements for predicting the concentration of Cd in Chinese field-cultivated rice: Impact of soil Cd: Zn ratios, Environ. Sci. Technol. 46 (2012), 80098016.CrossRefGoogle ScholarPubMed
Montalvo, D., Degryse, F. and McLaughlin, M. J., Natural colloidal P and its contribution to plant P uptake, Environ. Sci. Technol. 49 (2015), 34273434.CrossRefGoogle ScholarPubMed
Menzies, N. W., Kusomo, B. and Moody, P. W., Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique, Plant Soil 269 (2005), 19.CrossRefGoogle Scholar
McBeath, T. M., McLaughlin, M. J., Armstrong, R. D. et al., Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils, Aust. J. Soil Res. 45 (2007), 448458.CrossRefGoogle Scholar
Mason, S., McNeill, A., McLaughlin, M. J. and Zhang, H., Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods, Plant Soil 337 (2010), 243258.CrossRefGoogle Scholar
Six, L., Smolders, E. and Merckx, R., The performance of DGT versus conventional soil phosphorus tests in tropical soils – maize and rice responses to P application, Plant Soil 366 (2013), 4966.CrossRefGoogle Scholar
Tandy, S., Mundus, S., Zhang, H. et al., A new method for determination of potassium in soils using diffusive gradients in thin films (DGT), Environ. Chem. 9 (2012), 1423.CrossRefGoogle Scholar
Zhang, Y., Mason, S., McNeill, A. and McLaughlin, M. J., Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils, Talanta 113 (2013), 123129.CrossRefGoogle ScholarPubMed
Zhao, F. J., Rooney, C. P., Zhang, H. and McGrath, S. P., Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants, Environ. Toxicol. Chem. 25 (2006), 733742.CrossRefGoogle ScholarPubMed
Sonmez, O. and Pierzynski, G. M., Assessment of zinc phytoavailability by diffusive gradients in thin films (DGT), Environ. Toxicol. Chem. 24 (2005), 934941.CrossRefGoogle Scholar
Degryse, F., Smolders, E., Zhang, H. and Davison, W., Predicting availability of mineral elements to plants with the DGT technique: A review of experimental data and interpretation by modelling, Environ. Chem. 6 (2009), 198218.CrossRefGoogle Scholar
Hamels, F., Maleve, J., Sonnet, P., Kleja, D. B. and Smolders, E., Phytotoxicity of trace metals in spiked and field-contaminated soils: linking soil-extractable metals with toxicity, Environ. Toxicol. Chem. 33 (2014), 24792487.CrossRefGoogle ScholarPubMed
McGrath, S. P., Mico, C., Zhao, F. J. et al., Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values, Environ. Pollut. 158 (2010), 30853094.CrossRefGoogle ScholarPubMed
Mojsilovic, O., McLaren, R. G. and Condron, L. M., Modelling arsenic toxicity in wheat: Simultaneous application of diffusive gradients in thin films to arsenic and phosphorus in soil, Environ. Pollut. 159 (2011), 29963002.CrossRefGoogle ScholarPubMed
Caillat, A., Ciffroy, P., Grote, M., Rigaud, S. and Garnier, J. M., Bioavailability of copper in contaminated sediments assessed by a DGT approach and the uptake of copper by the aquatic plant Myriophyllum aquaticum, Environ. Toxicol. Chem. 33 (2014), 278285.CrossRefGoogle ScholarPubMed
Ren, J., Luo, J., Ma, H., Wang, X. and Ma, L. Q., Bioavailability and oxidative stress of cadmium to Corbicula fluminea, Env. Sci. Process. Impact. 15 (2013), 860869.CrossRefGoogle ScholarPubMed
Roulier, J., Tusseau-Vuillemin, M., Coquery, M., Geffard, O. and Garric, J., Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: First results of an experimental study, Chemosphere, 70 (2008), 925932.CrossRefGoogle ScholarPubMed
Yin, H., Cai, Y., Duan, H., Gao, J. and Fan, C., Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamya aeruginosa) from Chinese eutrophic lakes, J. Hazard. Mater. 264 (2014), 184194.CrossRefGoogle ScholarPubMed
Simpson, S. L., Yverneau, H. L., Cremazy, A. et al., DGT-induced copper flux predicts bioaccumulation and toxicity to bivalves in sediments with varying properties, Environ. Sci. Technol. 46 (2012), 90389046.CrossRefGoogle ScholarPubMed
Costello, D. M., Burton, G. A., Hammerschmidt, C. R. and Taulbee, W. K., Evaluating the performance of diffusive gradients in thin films for predicting Ni sediment toxicity, Environ. Sci. Technol. 46 (2012), 1023910246.CrossRefGoogle ScholarPubMed
Slaveykova, V. I., Karadjova, I. B., Karadjov, M. and Tsalev, D. L., Trace metal speciation and bioavailability in surface waters of the Black Sea coastal area evaluated by HF-PLM and DGT, Environ. Sci. Technol. 43 (2009), 17981803.CrossRefGoogle ScholarPubMed
Bradac, P., Behra, R. and Sigg, L., Accumulation of cadmium in periphyton under various freshwater speciation conditions, Environ. Sci. Technol. 43 (2009), 72917296.CrossRefGoogle ScholarPubMed
Luider, C. D., Crusius, J., Playle, R. C. and Curtis, P. J., Influence of natural organic matter source on copper speciation as demonstrated by Cu binding to fish gills, by ion selective electrode, and by DGT gel sampler, Environ. Sci. Technol. 38 (2004), 28652872.CrossRefGoogle ScholarPubMed
Jordan, M. A., Teasdale, P. R., Dunn, R. J. and Lee, S. Y., Modelling copper uptake by Saccostrea glomerata with diffusive gradients in a thin film measurements, Environ. Chem. 5 (2008), 274280.CrossRefGoogle Scholar
Ferreira, D., Ciffroy, P., Tusseau-Vuillemin, M.-H., Bourgeault, A. and Garnier, J.-M., DGT as surrogate of biomonitors for predicting the bioavailability of copper in freshwaters: An ex situ validation study, Chemosphere 91 (2013), 241247.CrossRefGoogle Scholar
Clarisse, O., Lotufo, G. R., Hintelmann, H. and Best, E., Biomonitoring and assessment of monomethylmercury exposure in aqueous systems using the DGT technique, Sci. Total Environ. 416 (2012), 449454.CrossRefGoogle ScholarPubMed
Sakellari, A., Karavoltsos, S., Theodorou, D., Dassenakis, M. and Scoullos, M., Bioaccumulation of metals (Cd, Cu, Zn) by the marine bivalves M. galloprovincialis, P. radiata, V. verrucosa and C. chione in Mediterranean coastal microenvironments: association with metal bioavailability, Environ. Monit. Assess. 185 (2013), 33833395.CrossRefGoogle Scholar
Martin, A. J. and Goldblatt, R., Speciation, behavior, and bioavailability of copper downstream of a mine-impacted lake, Environ. Toxicol. Chem. 26 (2007), 25942603.CrossRefGoogle ScholarPubMed
Røyset, O., Rosseland, B. O., Kristensen, T. et al., Diffusive gradients in thin films sampler predicts stress in brown trout (Salmo trutta L.) exposed to aluminum in acid fresh waters, Environ. Sci. Technol. 39 (2005), 11671174.CrossRefGoogle ScholarPubMed
Navarro, E., Piccapietra, F., Wagner, B. et al., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol. 42 (2008), 89598964.CrossRefGoogle ScholarPubMed
Templeton, D. M., Ariese, F., Cornelis, R. et al., Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC recommendations 2000), Pure Appl. Chem. 72 (2000), 14531470.CrossRefGoogle Scholar
Wilkinson, K. J. and Lead, J. R.. Environmental colloids and particles: Behaviour, separation and characterisation (Chichester: Wiley, 2007), 702pp.Google Scholar
Gustafsson, C. and Gschwend, P. M., Aquatic colloids: Concepts, definitions, and current challenges, Limnol. Oceanogr. 42 (1997), 519528.CrossRefGoogle Scholar
Tipping, E., Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances, Aquat. Geochem. 4 (1998), 348.CrossRefGoogle Scholar
Kinniburgh, D. G., Milne, C. J., Benedetti, M. F. et al., Metal ion binding by humic acid: Application of the NICA-Donnan model, Environ. Sci. Technol. 30 (1996), 16871698.CrossRefGoogle Scholar
Weng, L., Temminghoff, E. and Van Riemsdijk, W., Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique, Eur. J. Soil Sci. 52 (2001), 629637.CrossRefGoogle Scholar
Kalis, E. J., Weng, L., Dousma, F., Temminghoff, E. J. and Van Riemsdijk, W. H., Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique, Environ. Sci. Technol. 40 (2006), 955961.CrossRefGoogle ScholarPubMed
Ellwood, M. J. and Van den Berg, C. M., Zinc speciation in the northeastern Atlantic Ocean, Mar. Chem. 68 (2000), 295306.CrossRefGoogle Scholar
Knepper, T. P., Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment, Trends Anal. Chem. 22: (2003), 708724.CrossRefGoogle Scholar
Bedsworth, W. W. and Sedlak, D. L., Sources and environmental fate of strongly complexed nickel in estuarine waters: The role of ethylenediaminetetraacetate, Environ. Sci. Technol. 33 (1999), 926931.CrossRefGoogle Scholar
Baken, S., Degryse, F., Verheyen, L., Merckx, R. and Smolders, E., Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands, Environ. Sci. Technol. 45 (2011), 25842590.CrossRefGoogle ScholarPubMed
Pesavento, M., Alberti, G. and Biesuz, R., Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review, Anal. Chim. Acta 631 (2009), 129141.CrossRefGoogle ScholarPubMed
Odzak, N., Kistler, D., Xue, H. and Sigg, L., In situ trace metal speciation in a eutrophic lake using the technique of diffusion gradients in thin films (DGT), Aquat. Sci. 64 (2002), 292299.CrossRefGoogle Scholar
Unsworth, E. R., Warnken, K. W., Zhang, H. et al., Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques, Environ. Sci. Technol. 40 (2006), 19421949.CrossRefGoogle ScholarPubMed
Dunn, R. J., Teasdale, P. R., Warnken, J. and Schleich, R. R., Evaluation of the diffusive gradient in a thin film technique for monitoring trace metal concentrations in estuarine waters, Environ. Sci. Technol. 37 (2003), 27942800.CrossRefGoogle Scholar
Degryse, F., Smolders, E. and Parker, D. R., Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: Concepts, methodologies, prediction and applications – A review, Eur. J. Soil Sci. 60 (2009), 590612.CrossRefGoogle Scholar
Ernstberger, H., Davison, W., Zhang, H., Tye, A. and Young, S., Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS, Environ. Sci. Technol. 36 (2002), 349354.CrossRefGoogle ScholarPubMed
Harper, M. P., Davison, W. and Tych, W., DIFS – A modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils, Environ. Model. Softw. 15 (2000), 5566.CrossRefGoogle Scholar
Degryse, F., Smolders, E., Oliver, I. and Zhang, H., Relating soil solution Zn concentration to DGT measurements in contaminated soils, Environ. Sci. Technol. 27 (2003), 39583965.CrossRefGoogle Scholar
Senila, M., Levei, E. A. and Senila, L. R., Assessment of metals bioavailability to vegetables under field conditions using DGT, single extractions and multivariate statistics, Chem. Cent. J. 6 (2012), 119.CrossRefGoogle ScholarPubMed
Scally, S., Davison, W. and Zhang, H., Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films, Anal. Chim. Acta 558 (2006), 222229.CrossRefGoogle Scholar
Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E. and Tack, F., Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review, Sci. Total Environ. 407 (2009), 39723985.CrossRefGoogle ScholarPubMed
Weng, L., Temminghoff, E. J. and Van Riemsdijk, W. H., Contribution of individual sorbents to the control of heavy metal activity in sandy soil, Environ. Sci. Technol. 35 (2001), 44364443.CrossRefGoogle Scholar
Buekers, J., Degryse, F., Maes, A. and Smolders, E., Modelling the effects of ageing on Cd, Zn, Ni and Cu solubility in soils using an assemblage model, Eur. J. Soil Sci. 59 (2008), 11601170.CrossRefGoogle Scholar
Yin, Y., Impellitteri, C. A., You, S.-J. and Allen, H. E., The importance of organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals from soils, Sci. Total Environ. 287 (2002), 107119.CrossRefGoogle ScholarPubMed
Bolan, N. S., Adriano, D. C. and Curtin, D., Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability, Adv. Agron. 78 (2003), 215272.CrossRefGoogle Scholar
Jacquat, O., Voegelin, A., Villard, A., Marcus, M. A. and Kretzschmar, R., Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils, Geochim. Cosmochim. Acta 72 (2008), 50375054.CrossRefGoogle Scholar
Salomons, W., De Rooij, N., Kerdijk, H. and Bril, J., Sediments as a source for contaminants?, Hydrobiologia 149 (1987), 1330.CrossRefGoogle Scholar
Widerlund, A. and Davison, W., Size and density distribution of sulfide-producing microniches in lake sediments, Environ. Sci. Technol. 41 (2007), 80448049.CrossRefGoogle ScholarPubMed
Haygarth, P. M., Warwick, M. S. and House, W. A., Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution, Water Res. 31 (1997), 439448.CrossRefGoogle Scholar
Hens, M. and Merckx, R., Functional characterization of colloidal phosphorus species in the soil solution of sandy soils, Environ. Sci. Technol. 35 (2001), 493500.CrossRefGoogle ScholarPubMed
Moorleghem, C. V., Six, L., Degryse, F., Smolders, E. and Merckx, R., Effect of organic P forms and P present in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography, and colorimetry, Anal. Chem. 83 (2011), 53175323.CrossRefGoogle ScholarPubMed
Sakadevan, K. and Bavor, H., Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems, Water Res. 32 (1998), 393399.CrossRefGoogle Scholar
Börling, K., Otabbong, E. and Barberis, E., Phosphorus sorption in relation to soil properties in some cultivated Swedish soils, Nutr. Cycl. Agroecosys. 59 (2001), 3946.CrossRefGoogle Scholar
Gerke, J., Humic (organic matter)-Al (Fe)-phosphate complexes: An underestimated phosphate form in soils and source of plant-available phosphate, Soil Sci. 175 (2010), 417425.CrossRefGoogle Scholar
Fixen, P. E., Ludwick, A. E. and Olsen, S. R., Phosphorus and potassium fertilization of irrigiated alfalfa on calcareous soils. 2. Soil phosphorus solubility relationships, Soil Sci. Soc. Am. J. 47 (1983), 112117.CrossRefGoogle Scholar
Lombi, E., Scheckel, K. G., Armstrong, R. D. et al., Speciation and distribution of phosphorus in a fertilized soil: A synchrotron-based investigation, Soil Sci. Soc. Am. J. 70 (2006), 20382048.CrossRefGoogle Scholar
Nash, D. M., Haygarth, P. M., Turner, B. L. et al., Using organic phosphorus to sustain pasture productivity: A perspective, Geoderma 221–222 (2014), 1119.CrossRefGoogle Scholar
Lasat, M. M., Baker, A. J. M. and Kochkian, L. V., Physiological characterization of root Zn absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi, Plant Physiol. 112 (1996), 17151727.CrossRefGoogle ScholarPubMed
Morel, F. M. M., Hudson, R. J. M. and Price, N. M., Limitation of productivity by trace-metals in the sea, Limnol. Oceanogr. 36 (1991), 17421755.CrossRefGoogle Scholar
Campbell, P. G. and Fortin, C.. Biotic ligand model, In Encyclopedia of aquatic ecotoxicology, eds. Férard, J. F. and Blaise, C. (Dordrecht: Springer, 2013), pp. 237246.CrossRefGoogle Scholar
Morel, F. M. M. and Hering, J.. Principles and applications of aquatic chemistry (New York: Wiley, 1993), 608pp.Google Scholar
Campbell, P. G. C.. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model, In Metal speciation and bioavailability in aquatic systems, eds Tessier, A. and Turner, D. R. (Chichester: Wiley, 1995), pp. 45102.Google Scholar
Di Toro, D. M., Allen, H. E., Bergman, H. L. et al., Biotic ligand model of the acute toxicity of metals. 1. Technical basis, Environ. Toxicol. Chem. 20 (2001), 23832396.CrossRefGoogle ScholarPubMed
Lineweaver, H. and Burk, D., The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56 (1934), 658666.CrossRefGoogle Scholar
Wilkinson, K. J. and Buffle, J.. Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems, In Physicochemical kinetics and transport at biointerfaces, eds. Buffle, J. and van Leeuwen, H. P. (Chichester: Wiley, 2004), pp. 445533.CrossRefGoogle Scholar
Worms, I. A. and Wilkinson, K. J., Ni uptake by a green alga. 2. Validation of equilibrium models for competition effects, Environ. Sci. Technol. 41 (2007), 42644270.CrossRefGoogle Scholar
Lock, K., Van Eeckhout, H., De Schamphelaere, K. A. C., Criel, P. and Janssen, C. R., Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare), Chemosphere 66 (2007), 13461352.CrossRefGoogle ScholarPubMed
Lock, K., De Schamphelaere, K. A. C., Becaus, S. et al., Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare), Environ. Pollut. 147 (2007), 626633.CrossRefGoogle ScholarPubMed
Thakali, S., Allen, H., Di Toro, D. et al., A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils, Environ. Sci. Technol. 40 (2006), 70857093.CrossRefGoogle Scholar
Lock, K., De Schamphelaere, K., Becaus, S. et al., Development and validation of an acute biotic ligand model (BLM) predicting cobalt toxicity in soil to the potworm Enchytraeus albidus, Soil Biol. Biochem. 38 (2006), 19241932.CrossRefGoogle Scholar
Errecalde, O., Seidl, M. and Campbell, P. G., Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion model, Water Res. 32 (1998), 419429.CrossRefGoogle Scholar
Fortin, C. and Campbell, P. G., Thiosulfate enhances silver uptake by a green alga: Role of anion transporters in metal uptake, Environ. Sci. Technol. 35 (2001), 22142218.CrossRefGoogle Scholar
Phinney, J. T. and Bruland, K. W., Uptake of lipophilic organic Cu, Cd, and Pb complexes in the coastal diatom Thalassiosira weissflogii, Environ. Sci. Technol. 28 (1994), 17811790.CrossRefGoogle ScholarPubMed
Hassler, C. S. and Wilkinson, K. J., Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii, Environ. Toxicol. Chem. 22 (2003), 620626.Google ScholarPubMed
Hassler, C. S., Slaveykova, V. I. and Wilkinson, K. J., Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models, Environ. Toxicol. Chem. 23 (2004), 283291.CrossRefGoogle ScholarPubMed
Zhao, C. M. and Wilkinson, K. J., Biotic ligand model does not predict the bioavailability of rare earth elements in the presence of organic ligands, Environ. Sci. Technol. 49 (2015), 22072214.CrossRefGoogle Scholar
Checkai, R. T., Hendrickson, L. L., Corey, R. B. and Helmke, P. A., A method for controlling the activities of free metal, hydrogen and phosphate ions in hydroponic solutions using ion exchange and chelating resins, Plant Soil 99 (1987), 321334.CrossRefGoogle Scholar
Bell, P. F., Chaney, R. L. and Angle, J. S., Free metal activity and total metal concentrations as indices of micronutrient availability to barley [Hordeum-vulgare (L.) ‘Klages’], Plant Soil 130 (1991), 5162.CrossRefGoogle Scholar
McLaughlin, M., Smolders, E., Merckx, R. and Maes, A.. Plant uptake of Cd and Zn in chelator-buffered nutrient solution depends on ligand type, In Plant nutrition – for sustainable food production and environment, eds. Ando, T., Fujita, K., Mae, T. et al. (Dordrecht: Kluwer Academic Publishers, 1997), pp. 113118.CrossRefGoogle Scholar
Berkelaar, E. J. and Hale, B. A., Cadmium accumulation by durum wheat roots in ligand-buffered hydroponic culture: uptake of Cd-ligand complexes or enhanced diffusion?, Can. J. Bot., 81 (2003), 755763.CrossRefGoogle Scholar
Van Leeuwen, H. P., Metal speciation dynamics and bioavailability: Inert and labile complexes, Environ. Sci. Technol. 33 (1999), 37433748.CrossRefGoogle Scholar
Degryse, F., Smolders, E. and Merckx, R., Labile Cd complexes increase Cd availability to plants, Environ. Sci. Technol. 40 (2006), 830836.CrossRefGoogle ScholarPubMed
Amery, F., Degryse, F., Degeling, W., Smolders, E. and Merckx, R., The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures, Environ. Sci. Technol. 41 (2007), 22772281.CrossRefGoogle ScholarPubMed
Wang, P., Zhou, D., Luo, X. and Li, L., Effects of Zn-complexes on zinc uptake by wheat (Triticum aestivum) roots: a comprehensive consideration of physical, chemical and biological processes on biouptake, Plant Soil 316 (2009), 177192.CrossRefGoogle Scholar
Gramlich, A., Tandy, S., Frossard, E., Eikenberg, J. and Schulin, R., Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role?, J. Agric. Food. Chem. 61 (2013), 1040910417.CrossRefGoogle ScholarPubMed
Hudson, R. J. M., Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects, Sci. Total Environ. 219 (1998), 95115.CrossRefGoogle Scholar
Winne, D., Unstirred layer, source of biased Michaelis constant in membrane transport, Biochimica et Biophysica Acta (BBA)-Biomembranes, 298 (1973), 2731.CrossRefGoogle ScholarPubMed
Degryse, F., Shahbazi, A., Verheyen, L. and Smolders, E., Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant, Plant Physiol. 160 (2012), 10971109.CrossRefGoogle Scholar
Luo, J., Zhang, H., Zhao, F. J. and Davison, W., Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants, Environ. Sci. Technol. 44 (2010), 66366641.CrossRefGoogle ScholarPubMed
Van Leeuwen, H. P., Town, R. M., Buffle, J. et al., Dynamic speciation analysis and bioavailability of metals in aquatic systems, Environ. Sci. Technol. 39 (2005), 85458556.CrossRefGoogle ScholarPubMed
Degryse, F., Smolders, E. and Parker, D. R., Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions, Plant Soil 289 (2006), 171185.CrossRefGoogle Scholar
Buffle, J., Startchev, K. and Galceran, J., Computing steady-state metal flux at microorganism and bioanalogical sensor interfaces in multiligand systems. A reaction layer approximation and its comparison with the rigorous solution, Phys. Chem. Chem. Phys. 9 (2007), 28442855.CrossRefGoogle ScholarPubMed
Santner, J., Smolders, E., Wenzel, W. W. and Degryse, F., First observation of diffusion-limited plant root phosphorus uptake from nutrient solution, Plant Cell Environ. 35 (2012), 15581566.CrossRefGoogle ScholarPubMed
Jansen, S., Blust, R. and Van Leeuwen, H. P., Metal speciation dynamics and bioavailability: Zn(II) and Cd(II) uptake by mussel (Mytilus edulis) and carp (Cyprinus carpio), Environ. Sci. Technol. 36 (2002), 21642170.CrossRefGoogle ScholarPubMed
Hudson, R. J. M. and Morel, F. M. M., Trace-metal transport by marine microorganisms – implications of metal coordination kinetics, Deep-Sea Res. 40 (1993), 129150.CrossRefGoogle Scholar
Pypers, P., Delrue, J., Diels, J., Smolders, E. and Merckx, R., Phosphorus intensity determines short-term P uptake by pigeon pea (Cajanus cajan L.) grown in soils with differing P buffering capacity, Plant Soil 284 (2006), 217227.CrossRefGoogle Scholar
Silberbush, M. and Barber, S., Prediction of phosphorus and potassium uptake by soybeans with a mechanistic mathematical model, Soil Sci. Soc. Am. J. 47 (1983), 262265.CrossRefGoogle Scholar
Claassen, N., Syring, K. and Jungk, A., Verification of a mathematical model by simulating potassium uptake from soil, Plant Soil 95 (1986), 209220.CrossRefGoogle Scholar
Sterckeman, T., Perriguey, J., Cael, M., Schwartz, C. and Morel, J. L., Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: Consequences for the assessment of the soil quantity and capacity factors, Plant Soil 262 (2004), 289302.CrossRefGoogle Scholar
Adhikari, T. and Rattan, R. K., Modelling zinc uptake by rice crop using a Barber-Cushman approach, Plant Soil 227 (2000), 235242.CrossRefGoogle Scholar
Custos, J.-M., Moyne, C., Treillon, T. and Sterckeman, T., Contribution of Cd-EDTA complexes to cadmium uptake by maize: a modelling approach, Plant Soil 374 (2014), 497512.CrossRefGoogle Scholar
Oorts, K., Ghesquiere, U., Swinnen, K. and Smolders, E., Soil properties affecting the toxicity of CuCl and NiCl for soil microbial processes in freshly spiked soils, Environ. Toxicol. Chem. 25 (2006), 836844.CrossRefGoogle Scholar
Simpson, S. L. and Batley, G. E., Predicting metal toxicity in sediments: a critique of current approaches, Integrated Environ. Assess. Manag. 3 (2007), 1831.CrossRefGoogle ScholarPubMed
Howard, D. E. and Evans, R. D., Acid-volatile sulfide (AVS) in a seasonally anoxic mesotrophic lake: Seasonal and spatial changes in sediment AVS, Environ. Toxicol. Chem. 12 (1993), 10511057.Google Scholar
Burton, G. A. Jr, Sediment quality criteria in use around the world, Limnology 3 (2002), 6576.CrossRefGoogle Scholar
Di Toro, D. M., Mahony, J. D., Hansen, D. J. et al., Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments, Environ. Sci. Technol. 26 (1992), 96101.CrossRefGoogle Scholar
Ankley, G. T., Di Toro, D. M., Hansen, D. J. and Berry, W. J., Technical basis and proposal for deriving sediment quality criteria for metals, Environ. Toxicol. Chem. 15 (1996), 20562066.CrossRefGoogle Scholar
Di Toro, D. M., McGrath, J. A., Hansen, D. J. et al., Predicting sediment metal toxicity using a sediment biotic ligand model: methodology and initial application, Environ. Toxicol. Chem. 24 (2005), 24102427.CrossRefGoogle ScholarPubMed
Smolders, E., Buekers, J., Oliver, I. and McLaughlin, M. J., Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils, Environ. Toxicol. Chem. 23 (2004), 26332640.CrossRefGoogle ScholarPubMed
Simpson, S. L., Exposure-effect model for calculating copper effect concentrations in sediments with varying copper binding properties: A synthesis, Environ. Sci. Technol. 39 (2005), 70897096.CrossRefGoogle ScholarPubMed
Barry, P. H. and Diamond, J. M., Effects of unstirred layers on membrane phenomena, Physiol. Rev. 64 (1984), 763872.CrossRefGoogle ScholarPubMed
Tusseau-Vuillemin, M. H., Gilbin, R., Bakkaus, E. and Garric, J., Performance of diffusion gradient in thin films to evaluate the toxic fraction of copper to Daphnia magna, Environ. Toxicol. Chem. 23 (2004), 21542161.CrossRefGoogle ScholarPubMed
Meylan, S., Behra, R. and Sigg, L., Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study, Environ. Sci. Technol. 38 (2004), 31043111.CrossRefGoogle ScholarPubMed
Davison, W. and Zhang, H., Progress in understanding the use of diffusive gradients in thin films (DGT) – Back to basics, Environ. Chem. 9 (2012), 113.CrossRefGoogle Scholar
Peijnenburg, W. J., Teasdale, P. R., Reible, D. et al., Passive sampling methods for contaminated sediments: State of the science for metals, Integrated Environ. Assess. Manag. 10 (2014), 179196.CrossRefGoogle ScholarPubMed
Sand-Jensen, K., Revsbech, N. P. and Jørgensen, B. B., Microprofiles of oxygen in epiphyte communities on submerged macrophytes, Mar. Biol. 89 (1985), 5562.CrossRefGoogle Scholar
Larkum, A. W., Koch, E.-M. and Kühl, M., Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs, Mar. Biol. 142 (2003), 10731082.CrossRefGoogle Scholar
Kaspar, H. F., Oxygen conditions on surfaces of coralline red algae, Mar. Ecol. Prog. Ser. 81 (1992), 97100.CrossRefGoogle Scholar
Clarisse, O. and Hintelmann, H., Measurements of dissolved methylmercury in natural waters using diffusive gradients in thin film (DGT), J. Environ. Monit. 8 (2006), 12421247.CrossRefGoogle ScholarPubMed
Williams, P. N., Zhang, H., Davison, W. et al., Organic matter – Solid -phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils, Environ. Sci. Technol. 45 (2011), 60806087.CrossRefGoogle ScholarPubMed
Harper, M. P., Davison, W. and Tych, W., Estimation of pore water concentrations from DGT profiles: A modelling approach, Aquat. Geochem. 5 (1999), 337355.CrossRefGoogle Scholar
Luo, J., Cheng, H., Ren, J., Davison, W. and Zhang, H., Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish, Environ. Sci. Technol. 48 (2014), 73057313.CrossRefGoogle ScholarPubMed
Marschner, H., Römheld, V., Horst, W. J. and Martin, P., Root-induced changes in the rhizosphere: Importance for the mineral nutrition of plants, Z. Pflanzenernähr. Bodenkd. 149 (1986), 441456.CrossRefGoogle Scholar
Jones, D. L., Organic acids in the rhizosphere – A critical review, Plant Soil 205 (1998), 2544.CrossRefGoogle Scholar
Mongin, S., Uribe, R., Puy, J. et al., Key role of the resin layer thickness in the lability of complexes measured by DGT, Environ. Sci. Technol. 45 (2011), 48694875.CrossRefGoogle ScholarPubMed
Garmo, O. A., Lehto, N. J., Zhang, H. et al., Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidendate ligand, Environ. Sci. Technol. 40 (2006), 47544760.CrossRefGoogle Scholar
Zhang, H. and Davison, W., Use of DGT for studies of chemical speciation and bioavailability, Environ. Chem. 12 (2015), 85101.CrossRefGoogle Scholar
Degryse, F. and Smolders, E., Cadmium and nickel uptake by tomato and spinach seedlings: plant or transport control?, Environ. Chem. 9 (2011), 4854.CrossRefGoogle Scholar
Black, A., McLaren, R. G., Reichman, S. M., Speir, T. W. and Condron, L. M., Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts, Environ. Pollut. 159 (2011), 15231535.CrossRefGoogle Scholar
Nowack, B., Koehler, S. and Schulin, R., Use of diffusive gradients in thin films (DGT) in undisturbed field soils, Environ. Sci. Technol. 38 (2004), 11331138.CrossRefGoogle ScholarPubMed
Sun, Q., Chen, J., Ding, S., Yao, Y. and Chen, Y., Comparison of diffusive gradients in thin film technique with traditional methods for evaluation of zinc bioavailability in soils, Environ. Monit. Assess. 186 (2014), 65536564.CrossRefGoogle ScholarPubMed
Smolders, E., Buekers, J., Waegeneers, N., Oliver, I. and McLaughlin, M., Effects of field and laboratory Zn contamination on soil microbial processes and plant growth. Final Report to the International Lead and Zinc Research Organisation (ILZRO). (Katholieke Universiteit Leuven and CSIRO, 2003), 67pp.Google Scholar
Bravin, M., Marti, A. L., Clairotte, M. and Hinsinger, P., Rhizosphere alkalisation – A major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil, Plant Soil 318 (2009), 257268.CrossRefGoogle Scholar
Chapman, E. E. V., Dave, G. and Murimboh, J. D., Bioavailability as a factor in risk assessment of metal-contaminated soil, Water Air Soil Pollut. 223 (2012), 29072922.CrossRefGoogle Scholar
Tian, Y., Wang, X., Luo, J., Yu, H. and Zhang, H., Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice, Environ. Sci. Technol. 42 (2008), 76497654.CrossRefGoogle ScholarPubMed
Wang, J. J., Bai, L. Y., Zeng, X. B. et al., Assessment of arsenic availability in soils using the diffusive gradients in thin films (DGT) technique – A comparison study of DGT and classic extraction methods, Environ. Sci.-Process Impacts, 16 (2014), 23552361.CrossRefGoogle ScholarPubMed
Duquène, L., Vandenhove, H., Tack, F., Van Hees, M. and Wannijn, J., Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass, J. Environ. Radioact. 101 (2010), 140147.CrossRefGoogle ScholarPubMed
Vandenhove, H., Antunes, K., Wannijn, J., Duquene, L. and Van Hees, M., Method of diffusive gradients in thin films (DGT) compared with other soil testing methods to predict uranium phytoavailability, Sci. Total Environ. 373 (2007), 542555.CrossRefGoogle ScholarPubMed
Liu, J., Feng, X., Qiu, G., Anderson, C. W. and Yao, H., Prediction of methyl mercury uptake by rice plants (Oryza sativa L.) using the diffusive gradient in thin films technique, Environ. Sci. Technol. 46 (2012), 1101311020.CrossRefGoogle ScholarPubMed
Hooda, P. S., Zhang, H., Davison, W. and Edwards, A. C., Measuring bioavailable trace metals by diffusive gradients in thin films (DGT): Soil moisture effects on its performance in soils, Eur. J. Soil Sci. 50 (1999), 285294.CrossRefGoogle Scholar
Mason, S., McNeill, A., Zhang, Y., McLaughlin, M. J. and Guppy, C., Application of diffusive gradients in thin-films (DGT) to measure potassium and sulphur availability in agricultural soils, Sixteenth Australian Agronomy Conference (2012).Google Scholar
Pelfrêne, A., Waterlot, C. and Douay, F., Investigation of DGT as a metal speciation tool in artificial human gastrointestinal fluids, Anal. Chim. Acta 699 (2011), 177186.CrossRefGoogle ScholarPubMed
Verheyen, L., Degryse, F., Niewold, T. and Smolders, E., Labile complexes facilitate cadmium uptake by Caco-2 cells, Sci. Total Environ. 426 (2012), 9099.CrossRefGoogle ScholarPubMed
Pouran, H. M., Martin, F. L. and Zhang, H., Measurement of ZnO nanoparticles using diffusive gradients in thin films: Binding and diffusional characteristics, Anal. Chem. 86 (2014), 59065913.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×