Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-03T08:18:27.326Z Has data issue: false hasContentIssue false

1 - Introduction to DGT

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aller, R. C., Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment, Geochim. Cosmochim. Acta 44 (1980), 19551962.CrossRefGoogle Scholar
Boudreau, B. P., Diagenetic models and their implementation (Berlin: Springer, 1997), 414pp.CrossRefGoogle Scholar
Hesslein, R. H., An in situ sampler for close interval pore water studies, Limnol. Oceanog. 21 (1976), 912915.CrossRefGoogle Scholar
Belzile, N., DeVitre, R. R. and Tessier, A., In situ collection of diagenetic iron and manganese oxyhydroxides from natural sediments, Nature 340 (1989), 376377.CrossRefGoogle Scholar
Davison, W., Grime, G. W., Morgan, J. A. W. and Clarke, K., Distribution of dissolved iron in sediment pore waters at submillimeter resolution, Nature 352 (1991), 352, 323325.CrossRefGoogle Scholar
Davison, W., Fones, G., Harper, M., Teasdale, P. and Zhang, H., Dialysis, DET and DGT: In situ diffusional techniques for studying water, sediments and soils, In In situ monitoring of aquatic systems: Chemical analysis and speciation, ed. Buffle, J. and Horvai, G. (Chichester: Wiley, 2000), pp. 495569.Google Scholar
Krom, M. D., Davison, P., Zhang, H. and Davison, W., High-resolution pore-water sampling with a gel sampler, Limnol. Oceanogr. 39 (1994), 19671972.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: Dialysis and DET, Environ. Sci. Technol. 31 (1997), 31103119.CrossRefGoogle Scholar
Davison, W. and Zhang, H., In-situ speciation measurements of trace components in natural-waters using thin-film gels, Nature 367 (1994), 546548.CrossRefGoogle Scholar
van Leeuwen, H. P., Town, R. M., Buffle, J. et al., Dynamic speciation analysis and bioavailability of metals in aquatic systems, Environ. Sci. Technol. 39 (2005), 35453556.CrossRefGoogle ScholarPubMed
Hayward, S. J., Gouin, T. and Wania, F., Comparison of four active and passive sampling techniques for pesticides in air, Environ. Sci. Technol. 44 (2010), 34103416.CrossRefGoogle ScholarPubMed
Greenwood, R., Mills, G. and Vrana, B. (eds), Passive sampling techniques in environmental modelling (Oxford: Elsevier, 2007).Google Scholar
Fick, A., On liquid diffusion, Phil. Mag. J. Sci. 10 (1855), 3039.CrossRefGoogle Scholar
Warnken, K. W., Zhang, H. and Davison, W., Accuracy of the diffusive gradient in thin-films technique: Diffusion boundary layer and effective sampling area considerations, Anal. Chem. 78 (2006), 37803787.CrossRefGoogle ScholarPubMed
Warnken, J., Dunn, R. J. K. and Teasdale, P. R., Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin films and sediment measurements, Mar. Poll. Bull. 49 (2004), 833843.CrossRefGoogle Scholar
Warnken, K. W., Lawlor, A. J., Lofts, S. et al., In situ speciation measurements of trace metals in headwater streams, Environ. Sci. Technol. 43 (2009), 72307236.CrossRefGoogle ScholarPubMed
Garmo, O. A., Roysett, O., Steinnes, E. and Flaten, T. P., Performance study of diffusive gradients in thin films for 55 elements, Anal. Chem. 75 (2003), 35733580.CrossRefGoogle ScholarPubMed
Teasdale, P. R., Hayward, S. and Davison, W., In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry, Anal. Chem. 71 (1999), 21862191.CrossRefGoogle ScholarPubMed
Murdock, C., Kelly, M., Chang, L. Y., Davison, W. and Zhang, H., DGT as an in situ tool for measuring radiocesium in natural waters, Environ. Sci. Technol. 35 (2001), 45304535.CrossRefGoogle Scholar
Fernández-Gómez, C., Dimock, B., Hintelmann, H. and Díez, S., Development of the DGT technique for Hg measurement in water: Comparison of three different types of samplers in laboratory assays, Chemosphere 85 (2011), 14521457.CrossRefGoogle ScholarPubMed
French, A., Zhang, H., Pates, J. M., Bryan, S. E. and Wilson, R. C., Development and performance of the diffusive gradients in thin-films technique for the measurement of technetium-99 in seawater, Anal. Chem. 77 (2005), 135139.CrossRefGoogle ScholarPubMed
Zhang, H., Davison, W., Gadi, R. and Kobayashi, T., In situ measurement of dissolved phosphorus in natural waters using DGT, Anal. Chim. Acta. 370 (1998), 2938.CrossRefGoogle Scholar
Bennett, W. W., Teasdale, P. R., Panther, J. G., Welsh, D. T. and Jolley, D. F., Speciation of dissolved inorganic arsenic by diffusive gradients in thin-films: Selective binding of As-III by 3-mercaptopropyl-functionalized silica gel, Anal. Chem. 83 (2011), 82938299.CrossRefGoogle ScholarPubMed
Chen, C-E, Zhang, H. and Jones, K. C., A novel passive water sampler for in situ sampling of antibiotics, J. Environ. Monit. 14 (2012), 15231530.CrossRefGoogle ScholarPubMed
Warnken, K. W., Davison, W. and Zhang, H., Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT, Environ. Sci. Technol. 42 (2008), 69036909.CrossRefGoogle ScholarPubMed
Zhang, H., Davison, W., Miller, S. and Tych, W., In situ high resolution measurements of fluxes of Ni, Cu, Fe and Mn and concentrations of Zn and Cd in porewaters by DGT, Geochim. Cosmochim. Acta 59 (1995), 41814192.CrossRefGoogle Scholar
Zhang, H., Davison, W., Knight, B. and McGrath, S. P., In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT, Environ. Sci. Technol. 32 (1998), 704710.CrossRefGoogle Scholar
Ernstberger, H., Zhang, H., Tye, A., Young, S. and Davison, W., Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT, Environ. Sci. Technol. 39 (2005), 15911597.CrossRefGoogle ScholarPubMed
Zhang, H., Zhao, F. J., Sun, B., Davison, W. and McGrath, S. P., A new method to measure effective soil solution concentration predicts copper availability to plants, Environ. Sci. Technol. 35 (2001), 26022607.CrossRefGoogle ScholarPubMed
Widerlund, A. and Davison, W., Size and density distribution of sulfide-producing microniches in lake sediments. Environ. Sci. Technol. 41 (2007), 80448049.CrossRefGoogle ScholarPubMed
Bennett, W. W., Teasdale, P. R., Panther, J. G. et al., Investigation of arsenic speciation in sediments with DGT and DET: A mesocosm evaluation of oxic-anoxic transitions, Environ. Sci. Technol. 46 (2012), 39813989.CrossRefGoogle ScholarPubMed
Sochaczewski, L., Davison, W., Zhang, H. and Tych, W., Understanding small-scale features in DGT measurements in sediments, Environ. Chem. 6 (2009), 477485.CrossRefGoogle Scholar
Sochaczewski, L., Stockdale, A., Davison, W., Tych, W. and Zhang, H., A three-dimensional reactive transport model for sediments, incorporating microniches, Environ. Chem. 5 (2008), 218225.CrossRefGoogle Scholar
Santner, J., Zhang, H., Leitner, D. et al., High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L. cultivars, Environ. Exp. Bot. 77 (2012), 219226.CrossRefGoogle Scholar
Williams, P. N., Santner, J., Larsen, M et al., Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice, Environ. Sci. Technol. 48 (2014), 84988506.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×